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LA THEORIE DE LA RELATIVITE
ET L’ ELECTROMAGNETISME

PAR

R. SOUDAN

1. INTRODUCTION.

Il est trés tentant de chercher a déduire les équations de
I'électromagnétisme de la Théorie de la Relativité (énérale
comme cela se fait d’ailleurs pour les équations de la mécanique
newtonienne classique.

On pourrait s’attendre, & priori, a ce que cette entreprise
réussisse, étant donnée.la grande généralité des considérations
sur lesquelles repose la Théorie de la Relativité. Toutefois les
difficultés sont connues qui s’opposent a la réalisation d’un tel
projet.

Nous aimerions montrer ici comment on peut, malgré tout,
arriver au but m‘dyeﬁnanﬁ_ deux postulats et sous certaines
réserves. '

2. GENERALITES.

Un individu parcourant l'espace peut, comme on sait, en
déduire la courbure s'il est armé d’un étalon de longueur.
Mais cet individu arriverait-il au méme résultat s’il effectue
ses mesures apres avoir été chargé d’électricité ? Nous postu-
lons le contraire:
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PosturaT I: Un individu porteur d'une charge électrostatique
et parcourant U'espace peut en trouver la courbure différente de
celle qu’tl mesurerait aux mémes endroits, mais non chargé ou
diﬁ’ére}nment chargé d’électricité.

En d’autres termes, il est postulé que les g, du ds? de
I'espace dépendent, en particulier, de la charge (ou du rapport
e/m) de la particule dont on cherche la trajectoire. L’espace
devient «relatif & chaque particule qu’il contient ».

Dans toute mécanique on peut distinguer deux groupes
d’équations: celles du premier groupe permettent de déduire
les champs de I’ensemble des particules étudiées; celles du
second groupe sont les équations qui permettent de trouver la
trajectoire de chaque particule en particulier, lorsque les
champs sont connus.

Dans le cas qui nous occupe, '’ensemble des particules
étudiées courbe I'espace et détermine les g;w ou champs. Mais,
a cause du postulat I, ces g, ne sont complétement déterminés
que si I'on connait encore la charge de la particule étudiée.

Ceci étant posé, une géodésique de ’espace n’est déterminée
que si I’on connait encore la charge de la particule qui la décrit.
[l est alors possible d’admettre que les géodésiques soient les
trajectoires possibles des particules formant I'espace. Sans le
postulat 1, une géodésique ne saurait étre trajectoire, car les
particules de toutes masses et charges devraient décrire la
méme trajectoire dans des conditions initiales identiques. Or
il est trés tentant de conserver le grand principe de Leibnitz
niant la possibilité d’action a distance, c’est-a-dire de conserver
aux trajectoires la nature d’une géodésique.

Les raisons de formuler le postulat I sont maintenant
indiquées.

Les équations du premier et second groupe sont, sous réserve
de la petite extension apportée par le postulat I, celles de la
Théorie de la Relativité Générale:

ds* = g, da* dz’ | (1)
‘ 1
RU-V = Tu-v — Eggv T, (2)
d® z* dxz* dic

. =0 . (3)'

ds? + @B ds ds
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I, sont les symboles de Christoffel de seconde espéce.
R,, est le tenseur de Ricci:

_ ‘ B B ;
Rw — aa I";v — Ou I’fa + I“:‘W Paﬁ — Pua I‘ZB . (4)
Pour simplifier, nous avons posé: D — 9
P ’ pose: 9, = dat

T,, dépendra du rapport e/m de la particule étudiée pour
que g,, en dépende: c’est la petite extension signalée plus
haut.

Nous allons maintenant transformer approximativement les
équations ci-dessus pour leur donner une forme maxwellienne
dans un systéme particulier de coordonnées.

Supposons. tres faibles les masses et charges de I’ensemble
de particules étudié. Alors nous sommes en droit de choisir nos
coordonnées comme étant a la fois quasi galiléennes et iso-
thermes ainsi qu’'on le démontre dans les traités généraux sur
la Théorie de la Relativité 1.

Les coordonnées étant quasi galiléennes, on a:

guv = Yuv + E[J.V ' (5)

les €,, sont trés petits devant 1; les y,, sont ceux du ds? de
la relativité restreinte:

Yi =—15 Yo =035 Yu=+1. (6)

Les indices latins prennent toujours les valeurs 1, 2, 3 et les
indices grecs les valeurs 1, 2, 3, 4.
Les coordonnées étant isothermes, on a 1:

#ITE = ¢ . (7)

En outre, nous supposerons que les vitesses des particules
sont petites devant celle de la lumiére. Nous négligerons devant
1 (¢/c)? ou ¢,, mais non ¢/c. Pour fixer les idées, disons que ¢/c
est infiniment petit du premier ordre et que nous ne négligeons

! Voir, par exemple: Cuazy, Théorie de la Relativité et Mécanique
céleste, tome 11, p. 150, 141, 147. -



8 LA THEORIE EE LA RELATIVITE

devant 1 que les infiniments petits du second ordre (ou d’ordre
supérieur) tels que (¢/c)? ou ¢,,. Nous supposerons encore, pour
simplifier, que les champs varient «lentement » par rapport au
temps, c’est-a-dire que:

19
= 318w KO By -

Nous considérerons le premier terme de I'inégalité comme
trés petit, mais non négligeable par rapport au second. Comme
le second membre de I'inégalité est infiniment petit du deuxiéme
ordre (& cause de (5)), le premier membre est infiniment petit
du troisitme ordre. Enfin, pour simplifier I’écriture, nous
supposerons 'unité de temps choisie de telle sorte que C = 1.

On sait que les approximations ci-dessus sont celles d’Einstein
qui conduisent, si I’on néglige le premier ordre devant 1, & la
mécanique de Newton.

Nous ne négligerons, comme déja dit, que le deuxieme ordre
devant 1 et arriverons a une forme d’équations identiques a
celles de 1’électromagnétisme.

Pour simplifier nous négligerons les potentiels dis aux
masses.

3. GEODESIQUES.

Puisque ¢,, est négligeable devant 1 et, en vertu de (5) et
(6), les équations (3) deviennent:

2 1 o J.B
d? z + uu[“ﬁ]g‘t_dx =0 . (8)

ds? w| ds ds
En outre, (1) montre que:

ds _ds _
dzt = dt
dans le cadre de 'approximation indiquée. Par contre:

dzt © . dat dzt - d_al1
ds ~ ds dr* ~ dt



ET L'ELECTROMAGNETISME 9

sont les vitesses qui sont infiniment petites du premier ordre
puisque C = 1.

Ainsi il faut retrancher de la somme en «,  dans (8) tous
les couples d’indices «, B ou o et B sont différents de 4, ces
termes ¢tant infiniment petits du second ordre par rapport &
celui ot &« = 4, B = 4.

Il reste donc, en nous limitant aux trois premieres équa-
tions (8):

dx”

ds

4r

. =0 . (9)

a2 zt o {4_4] o

L

Le premier terme de (9) se transforme de la maniére suivante:

d? ot _daxt d (dx‘ d:t:i) . gt dr 1 dat\2 d2 2t (10)
ds® — ds da*\ds dxt/ = ds* da* \ds) dre

Notons d’un point les dérivées par rapport au temps et

2 4
substituons dans (10) la valeur de & 2 tirée de (8). Il vient

ds®

approximativement:

(11)

k3

d2 ot i [ B] dx* da?
== ."El S -'17! e e
ds? 4 ds ds ‘

Le second terme de (11) contenant déja un infiniment petit
du premier ordre (z'), il suffit de conserver le couple de
valeurs o = 4, B = 4 dans (11), ce qui donne, aprés substi-
tution dans (9):

i e I e Y
1 l 4
Développons cette équation:
— 0.8, a + 0; 8rnx” — 9, g, a" —
1 ‘s
._.Ea‘ ' = 0 - (12)

Si nous nous limitions aux deux premiers termes, nous
retomberions sur un résultat connu: I'équation des trajectoires
en mécanique newtonienne classique.
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Par suite des approximations faites, les troisiéme, quatrieme,
cinquiéme termes sont du premier ordre par rapport aux deux
premiers et doivent étre conservés. Par contre, les deux derniers
doivent étre éliminés puisque contenant une dérivée par rap-
port au temps et une vitesse infiniment petite du premier
ordre.

En nous rappelant (5) et en désignant par i, i', i" trois
indices qui se suivent dans I'ordre circulaire, (12) devient:

1 e
zt + 5 Oi€a — Oggyy + (95 — O yy) .

—_— (ai”E 0 S”[‘)x = O - (1.3)

Comme un seul systéme de coordonnées est utilisé ici, il est
possible d’écrire (13) ainsi (puisque le systéme est quasi
gali]éen):

i .
zt + - b €44 — + rot,,e;, . z* —rot, g, .20 =0,

€i4

et méme:

=t + "lfai cuw — Oy + [2f, rotey ] =0 . (14)

Il est bien entendu que les trois quantités g;, ne peuvent étre
les composantes d’un vecteur, puisque, selon (5), elles font
partie de g, qui lui est un tenseur symétrique covariant du
second ordre. Mais puisque nous nous interdisons un change-
ment de coordonnées, aucune confusion n’est possible en écri-
vant rot ¢;, ou encore en faisant intervenir un produit vectoriel.

Supposons maintenant que la dépendance des g,, en e/m soit
linéaire parce que cette supposition est la plus simple qui se
présente & I'esprit et aussi parce que si e/m est trés petit, on
peut développer g, en série de pulssances de e/m et se limiter
a I'approximation linéaire.

Posons dans le but de rappeler les notations maxwelliennes:

1
9 = _miU(xl’-) )
(15)
e
€4 = — HAi (.‘1:”') :



ET L'ELECTROMAGNETISME 11

Ici encore U, A; ne seront que I'image des potentiels électro-
magnétiques puisqu’ils ne sauraient former, dans le cas parti-
culier, un quadrivecteur. (Les termes d’ordre o en e/m seraient
les potentiels gravifiques que nous négligeons ici.)

En posant encore, comme on le fait en électromagnétisme
(au signe pres pour U):

E; = + grad; U — A, |

)

(16)
H; = 4+ rot; A,
il vient finalement pour (14) 'expression:
mzt = eE; + [ext, HJ:’ (17)

Cette équation a une forme identique a celle que I'on ren-
contre en électromagnétisme. Le produit vectoriel serait tres
petit en gravifique, mais en électromagnétisme, il se produit
une compensation du fait que les charges qui se déplacent dans
les conducteurs sont beaucbup plus importantes que celles qui
peuvent étre déposées de fagon électrostatique.

4. EQUATIONS DU CHAMP.

Arrivons maintenant aux équations du premier groupe, aux
équations du champ (2). C’est un résultat acquis et démontré
dans les traités généraux ! que, si ¢, est négligeable devant 1;
ce que nous avons admis, et dans le systéme de coordonnées
adopté, (2) se réduisent a:

1 1
sle =Ty —g%T - (18)

D’autre part, en multipliant (7) par g,, et en sommant en y,
il vient, en nous rappelant que g,, = y,, au deuxiéme ordre
pres:

< [“ B] =0 . (19)

v

! Voir note 1, page 2.
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Si nous imposons aux composantes du tenseur T, de vérifier
approximativement et dans notre systeme de coordonnées les
relations suivantes 1:

3
1 X e
s : (20)

e .
Ti"l - + ;1’—27:{]1 3

(Comme on sait, T, doivent dépendre du rapport e/m de la
particule étudiée), alors les équations (18) et la quatriéme des
équations (19) prennent une forme maxwellienne. (Les trois
premieres équations (19) sont sans intérét.)

En effet, on a approximativement:

3
T — YGBTQG = '1‘4‘_2'1‘,“ = —'2T44 3
1

et, par suite, en tenant compte de (15) et (20), (18) deviennent:

OU = 4rop, & _
. . {::E." = 0 y (21)
l:]Ai — 4wt é‘i "

I

Les autres équations (18) sont sans intérét. La troisiéme des
équations (21) peut étre satisfaite en posant Ze;; = 0 et alors
la quatriéme des équations (19) devient:

REHETE

r=1

! Comme on sait, Ty, doit étre conservatif. L'une des équations
de conservation, traitée dans le cadre de nos approximations conduit,
compte tenu de (20), a I’équation de continuité.

Remarquons que T, est nul dans le vide, comme dans la Théorie
de la Relativité. :

Quant au signe moins dans la premiére des équations (20), il
s’explique aisément du fait que J; = — Ji (approximativement).
C’est une considération de ce genre qui nous a conduit a changer le
signe classique de U dans (15) (16) (21) (22).
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C’est-a-dire, en nous rappelant que Zg; = 0:

—

en enfin, en tenant compte de (15):

U—divA =0 . (22)

Finalement (22) (21) (16) permettent de retrouver I’ensemble
des équations de Maxwell:

rot E = —H 3

rot H = E + 4nl, (23)
divE = hrop ,

div I1 = 0

5. CONCLUSIONS.

Ainsi, sous réserve du postulat I, des approximations faites
et des conditions imposées au tenseur T, , les équations de la
Relativité Générale peuvent étre ramenées, dans un systéme de
coordonnées particulier, & la forme de I’ensemble des équations
de I'électromagnétisme.

Il en résulte que les mouvements de 'ensemble des particules
étudié seront les mémes, que Uon emploie les équations de la
Théorie de la Relativité (avec les réserves indiquées) ou celles de
Uélectromagnétisme !

Si maintenant on change de systeme de coordonnées, les
équations perdront peut étre leur forme maxwellienne et (20)
changeront d’apparence, mais les mouvements des particules
auxquelles elles conduiront seront les mémes puisque ces
équations (1) (2) (3) (4) sont de covariance générale, c’est-a-dire
que les résultats physiques auxquelles elles conduisent sont
indépendants du choix des coordonnées.

Or on n’observe jamais rien d’autre que des particules ou des
ensembles de particules.
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Si les mouvements de toutes les particules observables sont
les mémes dans les deux mécaniques, alors ces deux mécaniques
sont physiquement identiques.

Mais il n’y a pas que les particules telles que les électrons,
protons, neutrons qui sont susceptibles d’étre observées, mais
aussi les photons et gravitons, puisque la physique moderne
identifie actuellement champ et particule (découverte du méson).
Il est évident que si les photons et gravitons (c’est-a-dire les
champs électromagnétique et gravifique) étaient inobservables
directement, il n'y aurait aucune différence observable entre
les deux mécaniques. Si, par contre, les photons sont directement
observables, les deux mécaniques leur donnent vraisemblable-
ment des propriétés différentes & cause de la variance relativiste
différente (quadrivecteur du potentiel électromagnétique pour
la mécanique maxwellienne et tenseur symétrique d’ordre 2
dans le deuxiéme cas). Alors peut-étre serait-il possible de
trancher entre les deux possibilités. Mais remarquons bien
qu’une expérience sur la polarisation de la lumiére par exemple
ne fait pas intervenir directement les photons: la lumiére ou
absence de lumiére n’est pergue que par agitation d’électrons,
protons, etc. Sa trajectoire n’est observée que par agitation
a tel endroit des mémes particules. Les verres polaroides ne sont
encore observables que par les mémes particules. En somme
on pourrait s’exprimer ainsi pour décrire une telle expérience:
« En agitant quelque part et d’une certaine fagon des électrons
(production de lumiére), en plagant un peu plus loin des élec-
trons, protons, etc. disposés d’une certaine fagon (verres
polaroides), on peut avoir un peu plus loin encore agitation ou
non des mémes particules » (la lumiére passe ou ne passe pas).
Méme si nous pensions voir directement un photon, nous ne
pourrions dire qu’on I'observe directement puisqu’il serait
observé par le mouvement des électrons, protons, etc. de notre
cristallin et rétine. Par contre il n’est pas exclu d’observer
directement un électron, puisque les électrons. de notre rétine
font partie de I’ensemble de particules étudié et sont influencés
par cet ensemble.

Il est maintenant possible d’énoncer un deuxiéme pos-

tulat:
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PostuLAT I1: Aucune expérience n’a été effectuée jusqu’a ce jour
directement sur les photons, c’est-a-dire sur les champs électro-
magnétiques.

Si le postulat II est vrai, aucune différence ne peut étre
trouvée (sous réserve de nos approximations) entre les faits
déduits de la théorie de Maxwell et de celle d’Einstein.

Le comportement du champ électromagnétique comme un
quadrivecteur n’est donc peut étre, apres tout, qu’une illusion.

Si II est ou s’avére faux, 'une des deux théories devra peut-
étre céder le pas a l'autre.

Il est indiqué maintenant de revenir sur les approximations
faites: il est possible de se passer de I'absence des potentiels
gravifiques et de la variation « lente » du champ. On arrive aux
mémes conciusions. On peut se passer aussi, seinble-t-il, de
I'approximation sur les petites vitesses des particules mais nous
tenons a donner ce résultat sous toutes réserves, car alors il
faut probablement faire encore une petite modification a la
théorie et bien des possibilités s’offrent alors au chercheur.

La seule approximation qui semble devoir étre maintenue
est celle de la petitesse des masses et charges qui entraine
I'espace quasi galiléen. Cette approximation semble numéri-
quement bien correcte dans I’électrotechnique courante.

Pour les champs puissants, toutefois, il y a peut-étre des
différences de trajectoires entre les deux mécaniques.

Ajoutons qu'il faudrait trouver dans ce cas la véritable dépen-
dance des g"¥ en e/m qui n’est peut-étre pas linéaire ainsi que
les véritables conditions qui se réduisent approximativement
a (20).

6. DIGRESSION SUR L’ELECTRON.

L’électron ne serait-il pas une « sphére magique » analogue
a celle que I'on rencontre dans le ds® de Schwarzschild et au
travers de la surface de laquelle ne saurait passer aucun phé-
nomene mécanique ?

L’espace engendré par un électron unique et relatif a un
point de masse m’ et de charge — ¢’, toutes deux infiniment
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petites par rapport a la masse et charge de I’électron jouit
évidemment de la symétrie sphérique et annulle, & I'extérieur
de ’électron, le tenseur de Ricei.

La solution est donc celle du ds?® de Schwarzschild et il est
facile d’identifier la seule constante arbitraire. Voici cette
solution:

2 ’
dst = =~ — L a0 cos0de?) + (02 — if,i)dzﬂ .
1  m'ctr

(24)

Nous aurons une idée trés grossiére du rayon de la .« sphére
magique » de 'espace d’un électron relatif 4 un autre électron
(de signe contraire) en remplacant dans (24) e¢'/m’ par e/m
(ce: qui modifie I'espace) et en annulant le dénominateur du
premier terme du second membre. Il vient alors:

2e?

mc?

(25)

Il est étonnant de constater que la formule (25) donne numé-
riquement un rayon de Pordre de grandeur de 107*° cm qui
est bien 'ordre de grandeur adopté pour le rayon de I’électron.

Ainsi D'électron pourrait étre une «spheére magique », un
espace. fermé sur lui-méme ! |
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