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SUR LA DIFFUSION
PAR ELECTRONS LIBRES
DANS UNE ATMOSPHERE STELLAIRE
ETENDUE

PAR

Pierre BOUVIER

Résumé. — L.e probleme étudié ici concerne une atmosphere
stellaire de courbure non négligeable, qui diffuse le rayonne-
ment d’apres 'effet Thomson. Nous suivons, pour résoudre
I'équation de transfert d’énergie, la méthode utilisée par
Chandrasekhar dans le probléeme analogue relatif & une atmo-
~ sphere stratifiée en couches planes. Le calcul ne peut s’achever
qu’en admettant pour le coefficient d’absorption xp une dépen-
dance de la distance au centre r de la forme xp = c.r*(c, a
constantes). Nous donnons les résultats numériques pour
o = 4, alors que Chandrasekhar ne s’était occupé que du cas
o = 2. Dans les deux cas, d’ailleurs, I'anisotropie de l'effet
Thomson n’introduit pas de modification essentielle, comme on
pouvait s’y attendre.

LA DIFFUSION PAR ELECTRONS LIBRES

(effet Thomson).

La diffusion du rayonnement par un électron libre est régie,
pour les fréquences v {{ mc2/h > 102 sec™’, par la section
différentielle efficace de Thomson

- 2
dQ = r5_1+g—(m(9dﬂ (1)

P4
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qui fournit la probabilité de diffusion dans un cone d’angle
solide d(2, incliné d’un angle ® sur la direction du rayonnement

e e? ; : ;
incident. 7; = — est le carré du «rayon» classique de I'élec-

tron diffuseur (™ 107" cm); m, ¢, &, e ont les significations
usuelles. La fréquence v de la radiation reste inchangée au
cours du processus.

La section différentielle (1) peut se décomposer, a la fagon
d’une probabilité composée, en un produit de la forme

dQ = QL dn (2)

ou la section efficace totale vaut

8
Q = ?nrz = 6,5'7‘.10'25 em?
X
br
une fois diffusé, le soit précisément dans la direction ©:

dQ est la probabilité pour que le quantum de rayonnement,

Y a0 — 3 2
[”ch — 161:“ + cos? ©)dQ . (3)

Le recul de I’électron est ici négligeable; il en va de méme du
freinage de radiation. D’ailleurs, méme si on voulait tenir
compte de ce dernier, ce qui obligerait & pousser jusqu’a la
troisiéme approximation en e%/he, yd()/4m resterait inchangé
car les divers travaux effectués sur cette question ! montrent
que la section (1) est alors multipliée par un facteur voisin de
I'unité, dépendant de la fréquence v mais pas de I'angle de
diffusion @. .

Dans deux articles 2 (que nous désignerons par III et V selon
le rang qu’ils occupent dans une série de sept communications
consacrées a l'équilibre radiatif des atmospheéres stellaires),
S. Chandrasekhar aborde le probléme du transfert d’énergie

1 P. Bouvier, thése, Kundig, Genéve, 1947, ou l'on trouvera

d’autres références.
2 S. CHANDRASEKHAR, Ap. J., 100, 117, 1944; 101, 95, 1945.
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rayonnante diffusée selon (3) & travers une atmosphere stratifiée
en couches plan-parallgles (ceci dans III), pour étudier ensuite
(en V) linfluence de la courbure dans le cas d’une diffusion
1sotrope.

Nous désirons discuter ici le cas intermédiaire de la diffusion
Thomson a travers une atmosphére étendue, c’est-a-dire telle
que la courbure des couches extérieures ne saurait étre négligée.

L’EQUATION DE TRANSFERT ET SA RESOLUTION

Soit r la distance du centre de symétrie, au point considéré
ou I(r, 0) est I'intensité diffusée dans la direction s, de vecteur
unité 59, faisant avec r I'angle 6 compté positivement & partir
de 0. I’équation de transfert, caractérisant I’équilibre thermo-
dynamique local, s’écrira sous la forme:

dl

;i—‘; == —'/.pl(r, e) -+
n 2z
-+ %—i I(r, 8)v(0, ¢"; 0)d(cosb)de’ (&)
00

ou p est la densité, x le coefficient d’absorption, indépendant de
la fréquence par hypothese (corps gris), et v d (cos 0') do’ la
probabilité pour qu'un quantum de rayonnement, arrivant de
la direction (0', ), soit diffusé dans la direction fixe (0, 0) qui
détermine avec r le plan ¢ = 0. Cette probabilité est donnée
par (3) ou © est 'angle des directions (6', ') et (6, 0), de sorte
que

cos ® = cos 0 cos 6’ + sin 0 sin 0" cos ¢’

Le premier membre de (4) vaudra, dans les coordonnées r, 0:

dl - oI sin6dl
o = (% gradI) = cos 65— — — = .
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En procédant avec la variable uw = cos 0, on obtient, apres

intégration sur ¢’, I'équation ¢
o1 | 1 —p2dl _
arYs r du
g =1 —"1
= —xpl + ?%) l(B—«lu.g) f Idu' 4+ (3p2—1) ’ Ip2dy’
21 i |

(9)

Pour résoudre 1l'’équation (5), nous suivons une méthode
d’approximations successives due & G. C. Wick et qui, adaptée
par Chandrasekhar !, permet de traiter les problémes astro-
physiques reliés a I'’équation de transfert d’'une fagon beaucoup
plus systématique que les anciennes méthodes de Milne et
d’autres.

Cette méthode-ci repose sur le procédé de Gauss 2, consistant
a remplacer les intégrales du second membre de (5) par des
sommes:

+n +n

"V Wl 2
ML, resp. > eyl
-n -n

ou I, = I(r, ), u; étant les 2n racines, opposées deux a deux,
(e.; = — ;) du polynéme de Legendre P,,(n). Quant aux

poids a;, ce sont des nombres satisfaisant aux relations:
m
i

+n - . . .
N 0 st m est impair
L1

-n

si m est pair

m + 1

L’équation intégrodifférentielle (5) est alors remplacée, en
n*™¢ approximation, par le systéme différentiel d’ordre 2n:

M.
i

al; i"'ﬂi /o1
p,._u-__l_ ——-
Ldr r ou

3x 2 2 2
= —xpl;, + —56—‘3[(3——;11-)2%1‘.,- + (35"1“‘1)2%#;,‘13"-
J ,

j
(6)
1 S. CHANDRASEKHAR, Ap. J., 100, 76, 1944.

2 RIEMANN-WEBER, Differentialgleichungen der Physik, t. 1, p. 315;
Vieweg, Braunschweig, 1925.
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La convergence du procédé est assurée car, pour toute fonc-
tion continue I (u), les sommes de Gauss différent des intégrales
correspondantes d’autant moins que n est grand. Il reste a

éliminer les valeurs aux points y;, de la dérivée g_é : a cet effet,
Chandrasekhar (V, p. 96) définit des polyndmes Qm(p,) a l'aide

de la relation

ou l'on déterminera la constante d’intégration par la condition
toujours réalisable Q, = 0 pour \p. ‘ = 1. Il en résulte que
Q,, (@) est divisible par 1 — p?; et que 'on peut écrire, en
intégrant par parties,

/’ Qu (1 f IP,, (1

itme

ou, en termes des sommes de n*™ approximation,

(P'i) (g—i)ui = s‘__iJa’i Ii Pm(\ui) :

Il sera en outre commode de poser par la suite

Qm(P-) = Qm(nu') . (1' - E‘Lz) L

Multiplions les deux membres de (6) par «;Q,,; = a;Q,, (&;)
et sommons sur { de — n a + n, nous obtiendrons ainsi, apres
quelques modifications au second membre, le systéme suivant

M approcimation:

en n
dr Zai(p‘iQmi Ii ol r Za Pmllt - ZPEG‘iQmi i
7 /

1 1

+ 5o Sl Syl + %0 8 Py O D4 Py T (7
2 bl

ou Pmi - Pm(y'i)'
Les équations (7) different de celles de Chandrasekhar
(V, p. 97, éq. (11)) par le dernier terme seulement, caractéris-



92 DIFFUSION PAR ELECTRONS LIBRES

tique d’'une diffusion anisotrope. On vérifie d’abord que I'équa-
tion pour m == 1 s’intégre immédiatement et donne, comme
dans le cas de la diffusion isotrope, 'expression du flux total

+1
F
F“_—Q.[‘I”d“‘:Zai”iIi:_o (8)

-1 i

F, étant une constante d’intégration.

Pour toute valeur paire de m, (Q,, est impaire en . et il en
résulte que le second membre de (7) est réduit & son premier
terme. La premiére approximation ou n =1, m = 1 et 2, ne
différera donc pas du cas isotrope. Aussi passons-nous sans
autre a la seconde approximation, pour laquelle n =2 et m
prend les valeurs 1, 2, 3 et 4.

Les quatre équations correspondantes (7) s’écriront plus
aisément si on introduit les notations commodes:

LSt = 1%a 1 ( = 2 8a;ul1
J=§2“ii’ H=gxeul, K=gguey
-n

1 3 1 4
L:Ezai“‘ili’ M=§Eaipili .

Nous aurons alors:

1F,
dK 1 .
*‘i—r+-;(3k——J)——po (gb)
d 4 3
(5L —H) + —(5L—3H) = —Sxp(3K—1J) (90)
c%(71\1—31():—xp(n—:m). (9d)

Aux équations 9 b), ¢), d) nous devons encore adjoindre
I'identité résultant de la définition des w; pour n = 2:

Yo Py =0

ou
35M —30K 4+ 3J =0 (9e)
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afin de déterminer les quatre inconnues J, K, L, M. Seule
I'équation 9 c) differe de 1'équation correspondante pour la

. ’ s o3 : 5
diffusion isotrope; cette derniere avait au second membre 7 au

lieu du facteur 73;- de 9¢).

D’une fagon générale d’ailleurs, le dernier terme de (7) est
proportionnel &

[, =3K—1J

a; Poj 1

]

ce qui montre que 'anisotropie de I'effet Thomson se traduit
par une modification des coefficients de J et de K dans le second
membre de toutes les équations pour m impair > 1.

Ainsi I'équation pour m = 5, qui intervient dés la troisiéme
approximation, a pour second membre

—xp(%lm +4—36J—%K>

au lieu de
21 7

7
_‘P<?M+WJ_ZK>

en diffusion isotrope.

Remarquons aussi que la relation 3K — J = 0 du cas iso-
trope n’est autre que I'expression de la pression de radiation
p’, égale au tiers de la densité d’énergie u, le tenseur des pres-
sions étant sous forme diagonale. On vérifie en effet aisément
que K=c.p et ] =c.u.

LA SOLUTION DE SECONDE APPROXIMATION.

Le calcul sera ici pareil a celui de Chandrasekhar (V, p. 101
a 103); il ne peut d’ailleurs étre mené jusqu’au bout que moyen-
nant une hypothése sur la dépendance de xp & I'égard de r.
Par raison de simplicité, on adopte une loi du type

3

xp = cr (10)

¢ et o étant deux constantes. Toute autre forme de loi parait
en effet se heurter a des difficultés de calcul considérables.
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En prenant « > 1, on introduira la profondeur optique (opacité
radiale) 7, mesurée du bord r ™ o de P'atmosphére vers
I'intérieur:

y: c 1 ry a-1
-

ou r, est la valeur de r ou 7 = 1. Apres élimination de M entre
les équations 9 d) et 9 e), il reste une équation en J, K, L, H
qui, jointe & ’équation 9 ¢), permet 1’élimination de la fonction
Y = 5L —3H. Cest au cours de cette seconde élimination
que I'emploi de la variable indépendante = se révele avanta-
geux; on est alors naturellement amené & mesurer les inté-

grales J, K, L, H en unités du flux F;—" Nous obtenons finale-

i
1
ment une équation de la forme
d>® aod 21
Py ta— (@ + )0 = —z* (11)
ou
PR v = % + 5 . 3—
S A T 2a—1) *T e —1)
—EiE E
X=3K—J=g¢q 1720 _7 gy (12

3(ec —1)

V35
3

et \/g = 1,8708 dans le probléme examiné ici.

L’équation (11) est une équation de Bessel d’argument ima-
ginaire iv, avec second membre. Privée de ce dernier, elle
admet les deux solutions particuliéres réelles et linéairement
indépendantes, généralement désignées! par I (z), K, (2).
I, (z) s’exprime par une série de puissances croissantes de z,
z
2

g est un nombre qui vaut

= 1,9720 en diffusion isotrope

débutant par un terme ( )v, tandis que

I,(z) —1,(2)
K v v
K“(z) -2 sinvmw

1 G. N. Warson, Theory of Bessel functions, Cambridge, 1922,
p- 77.
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tend vers zéro comme ¢ ° lorsque z — o0 . L’application de la
méthode de variation des constantes permet d’écrire la solution
générale de (11) sous la forme
c1 z
®(5) = Iv(;)'fz“ K,(s)ds + K, (3) fz“ I(z)ds  (13)

z Cq

ou l'on fera ¢; = 0 et ¢, = 0, en vertu des conditions aux
limites d’apres lesquelles aucune des quantités observables ne
doit tendre exponentiellement vers I'infini quand z — o0, et
toutes les quantités doivent s’annuler a la limite extérieure de
I'atmospheére z = 0. ,

Sitét connue la fonction @ (z), nous revenons aux gran-
deurs X, donnée par (12), K par (94), J par (12):

z a+1
. 1 dz . «—1 1 (
— X = — =z 4
K x——lbfxs+4(a+1) (1ha)
J=3K—X (14 b)
4a
J — i) I Idp étant la densité de quantité de mouvement du
;|

rayonnement.

INDETERMINATION RELATIVE DE L'EXPOSANT 0.
CALCUL DU CAS o = 4.

Nous n’avons pour l'instant aucun moyen de déterminer
I'exposant o qui figure dans la loi (10) régissant la structure
de I'atmosphere. Il est vrai que certaines recherches sur les
systemes doubles a éclipses ! ainsi que sur les enveloppes en
expansion des nov¢a font porter l'attention plus particuliére-
ment sur les valeurs de o comprises entre 1 et 1,5. Cependant,
les conclusions de ces travaux sont encore trés discutables et
difficilement vérifiables, de sorte qu’aucune valeur positive
de « n’est a exclure a priori, bien qu'une valeur élevée soit

1 C. PaAYNE, S. GaroscHKIN, Ap. J., 101, 56, 1945.
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improbable puisque, d’apres (10), I'extension moyenne de
I’atmospheére est d’autant plus faible que « est grand.
Chandrasekhar et miss Herman ont calculé numériquement

la solution (13) pour « = 2, en donnant sous forme de table 1,
1
4
mation. Il se dégage de ces résultats que la seconde approxima-
tion corrige la premiére dans une mesure pouvant atteindre
10%.

Le cas o« = 1,5 met en jeu les fonctions 1'*/2(z) et K'/2(z)

les valeurs de K, J et —z% qui exprime J en premiere approxi-

e*® g %

: Vi multipliant des
puissances négatives de z pouvant aller jusqu’a la sixiéme.
Le calcul devient, déja pour @ (z), non seulement fastidieux,
mais pratiquement impossible a conduire avec précision si I'on
ne dispose que de tables de logarithmes a cinq décimales.

En adoptant « = 1%/;, on pourrait songer a profiter des
tables établies 2 pour I, (z) et K, (z), mais comme il faut
effectuer numériquement deux quadratures successives pour
obtenir les grandeurs physiques J et K, les causes d’imprécision
sont nombreuses.

Parmi les valeurs de o > 2, nous retiendrons o = 4 pour
laquelle les fonctions I, et K, ont une forme plutdét simple:

qui comportent des facteurs exponentiels

I%(z) = i(ch:—%shz) ;

s
Ky (s) = \/ g e (1 + 1) :
Le calcul de ®(z) conduit, pour (13), & la valeur suivante:
®(s) = gzl (chs — 57 shz) [35% e + Biy (s) — I‘(%)]

1 a1y, —» - d o
+ 3% 3 ¢ (1 + 3 1) [32 *la shz — Ctgla(z)] (15)

1 S, CHANDRASEKHAR, V, p. 104.
2 G. WarTsoN, loc. cit., p. 736.
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ou nous avons poseé

X (z) = %z% D (z) (16 a)
1 ! i 3 3 5
hK(E) =g [ X(5) = + 53 (16 6)
0
¢31(z) = 3¢"3K(z) —¢ X (3) . (16 ¢)

Les intégrales Ei,, et Ci% ont été calculées numériquement,
a partir des séries

, SA(—1)" 3 ;
Elzfs(z) = M { ) s

%1 n! 3n+1"

oo
S . v 1 3 o9 i1/
Ciy (2) = N - = gntlly

'/a(”) o o (2n)! 6n + 1

ou 1l faut prendre un nombre de termes toujours plus grand
a mesure que n augmente; nous avons fait les calculs avec
trois décimales, pour z allant de 0, de dixiéme en dixieme,
jusqu’a 2. L’intégrale en (16 b) a été évaluée par trapeézes; les
valeurs en sont peu précises quand l'intervalle d’intégration
est faible, aussi n’avons nous noté ici que les valeurs de J et
de K a partir de 0,5. La derniére colonne de la table ci-jointe

concerne le terme % z’ls qui donne ¢°/3 J (z) en premiére approxi-

mation (X = 0). Les résultats ainsi obtenus sont proches de
ceux de Chandrasekhar pour « = 2; J et K croissent un peu
plus lentement, dans notre cas, lorsqu’on va du bord z =0
de I'atmosphére vers l'intérieur, et la seconde approximation
de J introduit, vis-a-vis de la premiére, des corrections allant
jusqu’a environ 109, comme dans le cas « = 2; ceci du moins
jusqu’a z = 2.

ARCHIVES DES ScIENCES. Vol. 2, fasc., 1. 1949. 7
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z lax |PlsK | Plsy %25/5 z | ¥ X |3k | Py 2’;025,:3
0 0 0 0 0

0,1 | 0,0098 0,010 1,1 | 0,227 | 0,238| 0,488| 0,525
0,2 | 0,027 0,031 1,2 | 0,246 | 0,274| 0,577 0,610
0,3 | 0,049 0,061 ||§1,3 | 0,264 | 0,312] 0,671 0,697
0,4 | 0,073 0,098 1,4 | 0,281 | 0,351| 0,773| 0,788
0,5 | 0,094 |0,070(0,115| 0,142 1,5 | 0,296 | 0,393| 0,883| 0,884
0,6 | 0,417 |0,093|0,163| 0,192 1,6 | 0,310 | 0,437| 1,000] 0,985
0,7 | 0,142 | 0,118/ 0,203 0,248 || 1,7 | 0,322 | 0,482| 1,124] 1,090
0,8 | 0,164 | 0,146 0,272| 0,310 1,8 | 0,335 | 0,529/ 1,253| 1,198
0,9 | 0,485 | 0,175| 0,340| 0,377 ([ 1,9 ( 0,344 (0,578 1,395 1,312
1,0 | 0,206 | 0,206| 0,412| 0,450 [ 2,0 | 0,356 | 0,629| 1,531 1,429

En quoi la diffusion Thomson vient-elle modifier les valeurs
calculées ci-dessus ? Rappelons que le nombre ¢ vaut ¢ = 1,9720
dans le probléme isotrope et ¢' = 1,8708 avec I'effet Thomson.
Placons-nous en un point de ’atmosphére ou 7 prend une valeur
-donnée, a laquelle correspondront deux valeurs de z: z = ¢r,

z' = ¢’ 7. Le rapport des densités de courant d’énergie %((—:i)
est alors égal au rapport des valeurs données dans les

4

tables, multiplié par (%)s si @ =2, ou par <qE )613 si = 4

Nous avons calculé ce rapport pour z = 0,5; 1; 1,5 et 2; les
valeurs en sont toutes comprises entre 0,95 et 1, aussi bien
pour a = 2 que pour a = 4; et les rapports Il((_((:—’)) se comportent
de fagon analogue.

Il en résulte que 'effet Thomson n’exerce aucure influence
notable sur le courant d’énergie rayonnante, ce qui est en
accord avec la conclusion du méme probléme concernant une
atmosphére A stratification plane!. De plus, comme le laisse
penser la comparaison des deux cas o« =2 et o« = 4 sur ce
point, 'anisotropie de la diffusion par électrons libres parait

étre indépendante de la valeur de & dans la loi de structure (10).

1 S. CHANDRASEKHAR, III, p. 126.



	Sur la diffusion par électrons libres dans une atmosphère stellaire étendue

