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LE CHAMP PROPRE ET INTERACTION

DES PARTICULES DE DIRAC

suivant l'electrodynamique quantique

Jean PIKENNE
(suite) 1

II. L'INTERACTION

DE DEUX PARTICULES DE DIRAC

§ "1. L'EQUATION D'ONDE DES PARTICULES ET DU CHAMP.

1. Particules de m'etne signe.

Suivant le formalisms de l'electrodynamique quantique,
l'etat d'un Systeme constitue par deux electrons en interaction
avec le champ electromagnetique peut etre represents par une
1'onction d'onde ä energie positive XF (/•*, r'2\ 0; t) dependant
des coordonnees des deux particules, des variables du champ
et du temps. Cette fonction d'onde possede 16 composantes

avec p., v 1, 2, 3, 4, et obeit ä l'equation

h dT Hf2 n i dt

dans laquelle l'hamiltonien H a pour expression

H H(p> + H(p) + H(i> + H(i) + H<oh)

1 Premiere partie v. Archives, [5], 28, 233 (1946) et [5], 29,
(1941).
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avec
H'p> — (c aq pi + ßj mc2)

H'p) — (ca2.p2 + ß2mc2J

HW — e(A0(rJ) + ^.A(iq)) (3;

H<1) — e (A0 (a,) + a2 A (a,))

n(oh)= s(s NTt + N>.t--vr)«'/£-
k

H|p' et H^p' sont formellement identiques aux hamiltoniens
de deux particules libres; et H^' sont les termes d'inter-
action de chacune d'elles avec le champ et Hch est l'hamiltonien
des oscillateurs de ce dernier. a1; et a2, ß2 sont les matrices
de Dirac operant respectivement sur le premier et sur le

second indice de tandis que les Operateurs impulsions p± et p
ont pour expression

2TI grad(A) ; P* 2Vt 8"rad'^) "

Du point de vue energetique

H h'' — e A (i\) et 11^' — e a2 A (rj)

representent l'energie cinetique (y compris mc2) de chacune des

particules tandis que

w(ch) _ _ eA0(iq) — eA0{r2) + H(ch)

est l'energie du champ. Nous disons en principe, car il ne

semble pas que Ton puisse ecrire l'energie totale du Systeme

sous la forme d'un hamiltonien decomposable de cette fagon.
Nous avons montre (§ 1, 5) qu'en electrodynamique classique

une telle hypothese conduit ä des contradictions et que notam-
ment il est necessaire, si Ton veut ramener en premiere
approximation l'etude du mouvement du Systeme ä un problemc
purement mecanique, d'omettre certains termes dus ä l'exis-
tence du champ propre des particules et dont il a dejä ete tenu

compte dans leurs masses. Ces difficultes subsistent en

electrodynamique quantique et nous verrons que ce sont exactement
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les memes termes qu'il faut supprimer pour deduire de cette
theorie l'equation de Schrödinger ou de Pauli du Systeme.
Ces reserves etant faites, la decomposition en question de

l'hamiltonien H montre qu'il est necessaire de compter toutes
les energies avec le meme signe qu'en theorie classique (ou

toutes avec le signe oppose, a condition d'utiliser d'autres

Operateurs pour les potentiels (cf. I, § 4). D'une fagon plus
precise ceci signifie que si Ton fait tendre les interactions H*1'

et H<«> vers zero, Y se decompose en une somme de termes de la
forme oil T est une fonction d'onde a energie

positive du champ transversal, tandis que ^ (/•*, est le

produit antisymetrise de deux fonctions d'onde ä energie

positive et ^(a,), produit dont les composantes s'ecrivent

V ft> -^= {(^) ft) — <h ft) ft ft)} •

On peut de la meme fagon representer le Systeme positron-
positron par une fonction d'onde ä energie positive

r~2': 6; t) dependant seulement des coordonnees des deux

positrons, des variables du champ et du temps. <E> obeit ä

requation (1) dans laquelle on aura remplace e par — e.

2. Particules de signes opposes.

Si l'on neglige, en premiere approximation, la possibility
d'annihilation, l'etat du Systeme electron-positron peut,
comme precedemment, etre decrit par une fonction d'onde ä

energie positive ne dependant que des coordonnees des deux

particules, des variables du champ et du temps. Nous repre-
senterons celle-ci par Yft, ft, 6, t), si les particules 1 et 2 sont

respectivement l'electron et le positron, et par ft* ft, ft, 6, t).
dans l'hypothese inverse. Y et ® obeissent aux equations

- ä {Hip) + Hlp) -e (A° £) +^ •A ft))

+ e (A0 (r,) + a2 • A (ft)) + H<ch> } Y (4 a)

~ 2T; TT HiP) + e (A° ft) + A ft))

— e (A0 (ft + a2 A (ft) + H(ch) }® (4 ft)
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Pour l'instant, l'une de ces deux equations est superflue,
chaque particule conservant son caractere electron ou positron.

II n'en serait plus de meme si l'on ajoutait aux seconds

membres de (4a) et (4 b) des termes dependant respectivement
de O et Y, ce qui indiquerait qu'un echange de caractere

peut se produire entre les particules. L'electron devenant

positron et le positron devenant electron. C'est parce que
nous serons amenes ä envisager une telle eventualite que nous
considerons d'emblee les fonctions d'onde Y et O.

Nous voudrions maintenant tenir compte de la possibility
d'annihilation et de creation de paires tout en continuant ä

n'utiliser que des representations ä energie positive. Par suite
de l'existence de ces phenomenes le nombre de paires n'est

plus une integrale premiere. Nous representerons alors l'etat
du Systeme par un ensemble de fonctions d'onde

Y<°>(0 ; t) Y<2> ß, ; 6 ; t) Y<4> £, ^; 6 ; t)

(S)

obeissant aux equations non homogenes

(Jl A + H(°)W°)
12 Tti dt ^ j

~ Cf [C ^A° ^ + " A 8 ^ ~ ^ ^ dXl AZ%

ifil)c] spi-rj.T»J !*lvl

/ [c (A„(^) + a A(^))l 8(^ — rit) -Y(b ^)J,-:1d^dx3d-i
L J i/

(6)

'IM)

[i2v2

h d
+ H'4my'4'

\2 7zi dt^ 1

lijV1 n2v2

la sommation etant effectuee sur les indices muets et C etant
la matrice I, § 2 (3). H(2n) est l'hamiltonien d'un Systeme
de n electrons et n positrons, numerotes respectivement

1 3 n — 1 et 2,4 n :

H<2n> S H(p> + S H'b + H<oh)
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Nous exclurons toutes les transitions vers les etats d'energie

negative. Dans ces conditions, si les equations (6) n'avaient pas
de seconds membres, la suite

0 0 0 0 T'2', 0

representerait une configuration du Systeme oil celui-ci est

constitue par un nombre connu et fixe n de paires. Au contraire
la presence des seconds membres, consideres comme de petites
perturbations, donne lieu ä des transitions vers des etats oil ce

nombre n'est plus le mcme. On peut alors interpreter l'integrale

J" j T<2n) |2 dxldxz d,i2n ^
comme la probabilite que la configuration oil existent n paires
soit realisee. On peut d'ailleurs regarder T'0', T'2', T'4',
comme les composantes d'une seule fonction d'onde. L'intro-
duction de l'annihilation et de la creation suivant notre forma-
lisme ressemble alors ä celle du spin dans la theorie de Pauli,
les differents nombres possibles de paires correspondant dans

cette image aux differentes orientations possibles du spin.
L' expression des seconds membres des equations (6) a ete

determinee de fa$on ä donner pour l'annihilation et la creation
les memes elements de matrice que la theorie des lacunes (tout
au moins dans l'approximation de Born).

Pour le verifier, considerons par exemple une transition

d'annihilation avec emission d'un photon transversal k.
Suivant la theorie des lacunes ce processus est decrit comme

une transition effectuee par un electron d'un etat d'energie
positive cpa (^i) vers un stat d'energie negative non occupe
+(,(/• le champ passant simultanement de l'etat fondamental

r0 la l'etat excite rx(0T-J). L'element de matrice
correspondant s'ecrit:

—ef ri(0Tt) +h(D) (a-A(rl))
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ou encore, en introduisant le spineur conjugue

=: — eJr*(exft) 9ö(^i) (c® A(^)) • i>a{K) -dti -y~

— eJ r*(6Tfe) • v 8(^ — ^2) • ^(^i) fhv(^) ~y

Sous cette forme H6a fait intervenir les fonctions d'onde de

l'etat final, ri(0), et de l'etat initial, ^„(r^) 9b (a,), ainsi

qu'un terme d'interaction contenant la fonction S (F^ — a,)
de Dirac precedemment definie (I, § 1 (12)). Cette fonction
indique que l'electron et le positron doivent se trouver au

meme endroit pour pouvoir s'annihiler.
Si la transition etait accompagnee de l'absorption d'un

photon, l'element de matrice s'ecrirait de meme sous la forme

e (C a A (F^v S £ - Ft) hf > ß £ 6) dx, dx2 ^
On obtient de fagon analogue les elements de matrice relatifs

k la creation d'une paire avec emission ou absorption d'un
photon transversal. Pour les photons longitudinaux, les calculs

sont tout ä fait semblables. Ce sont lä les seuls elements de

matrice dont nous aurons besoin. lis interviennent, comme on
s'en rend compte aisement, dans l'application de la methode des

perturbations ä la resolution des equations (6). Les differences

d'energie qui figurent dans les denominateurs des coefficients
de Fourier des fonctions perturbees sont les memes que dans

la theorie des lacunes. En effet, suivant celle-ci, l'annihilation
d'un electron d'energie w avec un positron represents par un
etat d'energie negative, — w', non occupe, correspond k une
diminution d'energie w — (— w'), tandis que, suivant notre
representation ä energies positives, cette difference est

(w + w') — 0.

Pour ne pas compliquer l'ecriture, nous n'avons pas cherche
ä symetriser les seconds membres des equations (6). En fait,
une telle symetrisation est necessaire si Ton veut qu'il ne

puisse jamais apparaitre que des fonctions d'onde antisyme-
triques par rapport aux particules de meme signe. Notons la
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difference essentielle qui existe ä ce propos entre les equations

non homogenes (6) et les equations homogenes utilisees
dans la mecanique ondulatoire des systemes de corpuscules

identiques. Ces dernieres admettent des solutions symetriques
et antisymetriques et on peut choisir librement l'une ou

l'autre de ces categories, suivant la statistiqüe ä laquelle
obeissent les particules etudiees, puisque la symetrie de la

fonction d'onde demeure automatiquement invariable au cours
du temps. Au contraire les equations non homogenes (6) peu-
vent etre symetrisees de faijon a n'admettre que des solutions

symetriques ou que des solutions antisymetriques; de plus il
est necessaire de les ecrire sous l'une ou l'autre de ces formes
si l'on veut que la symetrie des fonctions d'onde ne puisse se

modifier d'elle-meme.

§ 2. — L'interaction mutuelle de deux Electrons.

Considerons le Systeme forme par deux electrons et negligeons
tout d'abord tous les termes d'interaction. Son etat peut
alors etre represente par une somme d'ondes planes 4a ('i' ^)-
Introduisons maintenant l'interaction avec le champ et deve-

loppons la fonction d'onde *F(r^, 6) suivant les fonctions

propres non perturbees des particules et du champ; la partie
independante des 0 constitue en premiere approximation la
fonction d'onde du Systeme materiel dans une theorie purement
mecanique. Elle est egale ä la fonction d'onde non perturbee
augmentee des perturbations dues aux interactions avec les

ondes longitudinales et transversales. Ces interactions ne

conduisent qu'au second ordre ä des termes perturbes independents

des 0. Ceux-ci peuvent s'ecrire sous la forme:

La formale de Meiler.

y V.
FA (^, ^)E E

(1)

F A F

oil l'element de matrice du second ordre VFi a pour expression:
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et H'flj sont respectivement les elements de matrice
relatifs ä remission d'un photon virtuel par l'une des particules
et ä l'absorption subsequente de ce photon par l'autre. EA, Et
et Ef designent les energies de l'etat initial A, de l'etat inter-
mediaire I et de l'etat final F. Nous allons evaluer V,,, enFA

choisissant, comme fonctions non perturbees, un systemes d'on-
des planes orthogonales ä l'interieur du cube L3. Dans ce

cas, et ne sont differents de zero que s'il y a conservation

de l'impulsion totale des particules et du champ, lors de

chacune des transitions virtuelles correspondantes. Les etats A
et F ont done la meme impulsion totale et l'on peut dire que VFA

correspond ä la transmission d'une certaine impulsion d'une
particule ä l'autre, par l'intermediaire du champ. En premiere
approximation, VFA joue le meme role en electrodynamique
quantique que l'element de matrice de l'interaction coulom-
bienne dans la'theorie de Schrödinger.

Nous allons maintenant evaluer VFA. Pour ne pas com-
pliquer inutilement les calculs, nous laisserons provisoirement
de cöte la symetrisation de la fonction d'onde et nous ecrirons

V (K) ^02 (^) ; • 13 >

On obtient alors

V V(t) 4-FA FA ~ FA ~ FA

V<d — S S { (^2e * ^02) (^1 g * ATft" ^01)

7T.fl «7t + «7 — «7>i

(^1 e « Axf V) (^2 e « Kh' ^02)

«V + ~ W02

vPl y \ (^2e a a?JT 4*02) (<W e a Ax7T ^01)
FA i (-

~h,k- I «'ft + Wl — «-01

('id e « \h' ^01) (^2e « Axt' ^02)

«V + — W02

VW — 2 1 (^2 e A0fe ^02) (<W e Aot "Hi)

h, k' 1 — «7t + «7 — «'01

(^1 e Aof 4oi) (^2 e A0 k- ^02)

— WV + — Wq2

(4)

(5 b)

[• (5c)
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La premiere et la seconde partie de chacune de ces sommes

correspondent respectivement aux deux processus suivants:

1° Un photon virtuel (transversal ou longitudinal) est emis

par la particule 1 et absorbe par la particule 2.

2° Un photon virtuel (transversal ou longitudinal) est emis

par la particule 2 et est absorbe par la particule 1.

Les seuls termes non nuls de ces series sont ceux pour lesquels

^ Poi — Pi= — (Pot — Pz) — ^ k' > (6)

Considerons le cas oil Ton a Et Er, c'est-a-dire:

»oi — — («'02 — w2) (7)

En ecrivant les fonctions d'onde de chacune des particules
sous la forme

2 TU -y ->

4i(r) ue
h (8)

et en effectuant les sommations sur les vecteurs de polarisation
dans les series (5) nous obtenons la formule de Miller 1

4 TZ e"{ ("I M0l) (»2 «02) — («1 ("2 }
Vv - u ,2-kY I, „ ("Ol — »'A2! ' '

(x) I

Cette formule donne les elements de matrice de l'interaction
de deux electrons pour les transitions entre etats de meme ener-

gie, elements qui interviennent notamment dans l'etude des

phenomenes de diffusion elastique. VF4 constitue une extension
relativiste de l'element de matrice de l'interaction coulom-
bienne utilisee dans la theorie elementaire.

Pour mettre en evidence le role joue dans cette interaction
generalisee paries champs propres des deux particules, designons

par Af,1', A'1' et A{,2', A*2' leurs potentiels respectifs. En compa-

1 M0ller, Annalen der Physik, 14, 1932, p. 531.
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rant les expressions I, § 4 (9 et 6) des elements de matriee
de ces potentiels aux formules (5), on voit que l'element de

matriee de Miller peut s'ecrire sous la forme

VFA 1
V (''l — ('l > d~l d~* 10>

en posant

- K) ~je{ (ao2)(^) + "i• a(2)(n)) + {Ao}(^) + «a•A<1)Q) } I11)

— e (A<2) (^) + A(2) £)) — e (aJ,1' (r2) + a2. A*1* (!•,))

Pour evaluer la fonction d'interaction V — r2) nous avons
besoin de l'expression des Operateurs potentiels qui y figurent.
Comme nous ne considerons ici que des transitions entre etats
d'energie positive nous pouvons utiliser les Operateurs I, § 4 (13).

On peut les remplacer par les potentiels (A^1', A*1'), (Ajf, A*2')

qui se rapportent aux parties longitudinale et transversale de

chacun des deux champs (cf. I, § 4, 4). En effet, en groupant
separement les termes de VFA qui proviennent de l'une et de

l'autre de ces parties, on obtient

Vi\' + VS J" Vo dT.dz, (12 a)

VT (12 b)

avec

V0 — ~e (Ao(1)(^2) + A„(2)(^)) (13 a)

VT - ±e A'P) f2) + a,. A'« ft)) (13 b)

La verification des formules (12 a) et (13 a) se fait de la meme

fajon que celle de la relation I, § 4 (8). L'interaction coulom-
bienne V0 ne presente en fait qu'une analogie purement
formelle avec l'interaction electrostatique de deux charges immo-
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biles (cf. I, § 1, 6). Elle s'applique rigoureusement ä toutes les

transitions ainsi que l'a montre Fermi h Pour le voir, il suffit
de reprendre la demonstration classique de cette formule
(I, § 1, 6) en tenant compte des relations de commutation des

coefficients de Fourier [I, § 3 (10 a)] du champ, lesquelles ne

modifient pas le resultat final.

L'interaction V0 represente l'energie de superposition des

champs longitudinaux des deux particules, tandis que l'interaction

V. est egale, comme en theorie classique, ä l'energie de

superposition des champs transversaux changee de signe. En
effet celle-ci est donnee par la formule I, § 1 (44 b) et en intro-
duisant les expressions I, § 4 (6) des elements de matrice des

cet cj-j, la relation (5 a) s'ecrit :

h
(14)

Notons que les formules (13 b) et (14) ont ete obtenues dans

le cas oil Et — Ep 0. Si EA — E,„ =£ 0, les elements de

matrice du second ordre ne peuvent plus en general etre identifies

aux elements de matrice de l'interaction. Ceci resulte
notamment du fait que les matrices || ||, || |j et
11 ^fa 11 formees au moyen des elements (5) ne sont pas her-

mitiennes et que la somme des deux dernieres ne correspond

pas ä l'operateur V0 exact (13 a).

Toutefois, si nous nous bornons ä considerer le cas de vitesses

non relativistes, ces difficultes disparaissent et les formules (13 b)

et (14) restent applicables pour toutes les transitions entre
etats d'energie positive. Nous allons dans ce cas transformer
1'expression de V. de fapon k mettre en evidence le magnetisme
du spin, ainsi que nous l'avons fait lors du calcul du champ

propre de l'electron. A cette fin, les coefficients de Fourier des

densites de courant intervenant dans les expressions (5 a)

seront decomposes selon les formules I, § 4 (14 a) et Ton fera

1 E. Fermi, Reviews of Modern Physics, 4 (1932).
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les memes approximations que dans ce paragraphe. On obtient
ainsi:

V, Vi + Val + (15)

-t- »
4 71 a v CP:i "*• \ / Ps -> \ 1

<16o)

v— s f {(^--r) a-., a].«.) —

1161,1

Va ^ S ^ (£?1 ' ^ * "ft) ^ * "ft) F
e

(16 0

En comparant ces formules ä l'expression I, § 4 (44 b) de

I'energie de superposition et aux developpements en serie I, § 4

(16 a et 16 d) des potentiels Acx et A0, ont voit que V, correspond

ä I'energie de superposition (changee de signe) des champs

magnetiques de Laplace des deux electrons, Va( k celle du

champ de Laplace de chacun d'eux avec le champ de spin de

l'autre et Va ä celle des deux champs de spin.
Enfin, effectuons les sommations sur les deux directions du

vecteur de polarisation et sur tous les vecteurs k au moyen
des formules I, § 1 (12, 48 b et 53).

En rassemblant tous les resultats nous trouvons que l'inter-
action globale de deux electrons animes de vitesses non relati-
vistes est la somme des interactions partielles indiquees dans le

tableau de la page suivante.
A part le dernier terme de l'interaction spin-spin, dont la

signification sera indiquee dans un instant, ces expressions sont
formellement identiques ä Celles de l'electrodynamique clas-

sique [cf. I, § 1 (38 et 47 b)] et ont ete introduites par corres-

pondance en theorie quantique par Heisenberg 1 et Breit 2.

1 Heisenberg, Zeit, jür Physik, 39, 1926, 499.
2 Breit, Physical Review, 34, 1929, p. 564-5.
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Interaction
electrique
coulombienne r

Interactions
magnetiques

Orbite — Orbite V,
1

| r \mc mc) ,,3 ^ 12 \ 12 mcj mcj j
Orbite — Spin

et
Spin — Orbite

Spin — Spin V3 3

r
12

r
12

5

(17)

Toutefois cette derniere methode n'est pas entierement uni-

voque car eile ne permet pas de determiner avec certitude
l'ordre dans lequel doivent etre ecrits les differents Operateurs

qui ne commutent pas comme les grandeurs classiques aux-
quelles ils correspondent. Cet ordre est ici fixe sans ambiguite
(ä part les permutations qui fournissent des Operateurs
equivalents) et il est interessant de noter qu'il coincide avec celui

que Breit a ete amene ä considerer comme le plus vraisemblable

apres discussions des divers resultats obtenus par correspon-
dance.

Quant au dernier terme de l'interaction spin-spin il a egalem

ent une origine classique; nous l'avons dejä rencontre
en evaluant l'energie de superposition moyenne de deux dipoles
magnetiques. D'apres l'interpretation que nous avons donnee

alors des differents termes de cette energie, Va resulte de

Taction sur le spin d'un electron du champ moyen du au spin
de l'autre electron, champ egal ä 1'induction si Ton admet que
le magnetisme du spin est analogue ä celui d'un petit circuit
electrique. Les deux premiers termes de Va representent l'interaction

de deux dipoles pontuels, tandis que le dernier donne la

contribution des petites distances (r A) pour lesquelles le

champ de spin differe notablement de celui d'un dipöle ponc-
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tuel. Ce nouveau terme devrait, en toute rigueur, etre introduit
dans le calcul des niveaux singulets des atomes ä deux
electrons. Un terme analogue a ete trouve par Fermi dans la
theorie de la structure hyperfme.

Enfin rappelons que le facteur 8 nß n'est valable que si

l'integrale impropre de V0 est evaluee par un passage ä la
limite bien determine, consistant ä isoler le pole ß par
une sphere de rayon infiniment petit (cf. I, § 1, 6; application),

Remarques.

I. Nous avons jusqu'ici laisse de cote la symetrisation des

fonctions d'onde de deux electrons. II est aise de voir qu'en
tenant compte de celle-ci la formule de Miller devient::

_
4 u e2 { ("* uoi) («2 "02) -(»!« "01) ("2 « "02) }

(¥/{(?.-?..)•-(=^n
e2{ (4 it0i) (it* u02) — (ul a«»i) (u* au02) } ^~~ YJ I 2 7T\2 f /<v2 ~ '

(x) {(P. -Pox) — }

Toutefois on s'aperijoit sans difficulte que les expressions
des interactions indiquees dans le tableau precedent restent
applicables aux fonctions antisymetrisees.

II. Nous n'avons pas tenu compte du cas oil le photon virtuel
est absorbe par la particule qui l'a emis. L'element de matrice
VFA relatif ä ce processus est egal ä l'energie de perturbation
de la particule supposee isolee; il represente egalement la
difference entre les energies des parties longitudinales et
transversales de son champ propre. Ces energies, qui sont d'ail-
leurs divergentes, se trouvent dejä comprises dans la masse de

la particule. En les supprimant, pour passer de l'electrodyna-
mique quantique ä la mecanique ondulatoire non relativiste,
nous faisons disparaitre une contradiction qui se manifeste dejä
en theorie classique lorsqu'on cherche ä ecrire sous forme
hamiltonienne les equations du champs et du mouvement d'un
Systeme de particules (cf. I, § 1, 6).
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§ 3. — L'interaction entre l'electron ET LE POSITRON.

1. Uannihilation virtuelle.

Nous avons vu precedemment (II, § 1) qu'en utilisant que des

etats d'energie positive, il etait possible de decrire l'etat du
Systeme electron-positron au moyen d'une fonction d'onde ä

energie positive dependant seulement des coordonnees des deux

particules et obeissant ä l'equation II, § 1 (4 a), ä condition
toutefois de negliger la possibilite d'annihilation et de creation
de paires. Gette possibilite a ete introduite ensuite comme une

petite perturbation, en substituant ä l'equation (4 a) le Systeme
d'equations (6).

Dans la premiere hypothese, l'interaction entre l'electron et
le positron differe, uniquement par le signe, de celle qui existe

entre deux electrons. Par consequent, les interactions dues aux
champs de Coulomb et de spin sont donnees par les formules II,
§ 2 (17), changees de signe.

D'autre part, si Ton tient compte de la possibilite
d'annihilation et de creation de paires, on voit apparaitre deux nou-
veaux phenomenes que nous appellerons respectivement
annihilations reelle et virtuelle. Le premier est eonstitue par la

disparition definitive de la paire avec emission de deux photons
au moins si le Systeme est isole, c'est-ä-dire s'il n'est soumis ä

aucune action exterieure. Le deuxieme phenomene correspond
aux deux processus suivants:

1° L'electron et le positron s'annihilent en emettant un
photon virtuel qui est ensuite absorbe en recreant une
nouvelle paire.

2° La deuxieme paire est creee en premier lieu avec emission

d'un photon virtuel qui est ensuite absorbe lors de

1'annihilation de la premiere paire.
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Nous allons maintenant caleuler l'element de matrice du
second ordre relatif ä ce phenomene. Designons par

Vol (ri > 0

902 (r2 0

les fonctions d'onde de l'electron et du positron dans l'etat
initial, d'une part, et dans l'etat final, d'autre part.

Celles du Systeme electron-positron, dans chacun de ces deux

etats, s'ecrivent respectivement:

V(W t) ;

2Tri a)
t) 4»°' r„)e~ T(w'+w»)t

avec

+01, n 902, v ' +^v +1, (t ?2, v

Les elements de matrice correspondant ä 1'annihilation de

la premiere paire avec emission d'un photon virtuel transversal

k et ä l'absorbtion de ce photon avec creation d'une
nouvelle paire ont pour expression

^ 0 _>

niA J rl(eTfe) .e{C(Ao + a. A)

(e{ Ca. A."J ft) 8 £ — r2) ^ £ ^2)) (3 a)

H. i / +r S') • e{ (A0 + a A) C }xX S ft - ft rx (8Tt) dx[ dr, d-~±

(+°fß'> ^') — ft) (3 b)

Ces elements ne sont differents de zero que si l'on a:

Pol + Po2 Pi + Pi 7T~ k (4)
L 7T

2m

2 m

Vl5
(p02 r2—u02

Vi?

+l(^', t) Ki-

2m/->-,

Vl3
2rci \

lp2ra _u,2 l)

Vi?9i (V, t) u2-

(1)
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La difference d'energie entre l'etat initial et l'etat inter-
mediaire est

Ea — E, iv01 + »02 — wh (5)

D'autre part, les elements de matrice relatifs ä l'emission et

ä l'absorption subsequente d'un photon virtuel transversal k',
suivant le second processus, s'ecrivent:

fC 6 '*) '*) r* e ((A» + «I)c }xx

— ' r2) ,dxldx2dx[dx'2

s£'—^')) (3'a)

"n «l)}p S(r\ rj)

•
'•1'°

v (''i' ra) (l', ''2') E! (0T-J) dr1 dx2 dx[ dx2 -^
(e { C a AT£ (r*) }^v 8 (?[ — r2) t|i^ (r[, r2)) (3' 6)

Pour que H[t et Hrl ne soient pas nuls, il faut maintenant

que
~s -> -> -> Ii
Pl + P2 P01 + P02 — 2^ « (4

La difference d'energie entre l'etat initial et l'etat inter-
mediaire est ici:

E — E — w1 — w2 — Wfr (5')

Pour les photons virtuels longitudinaux, les calculs sont

tout ä fait analogues. On voit que les impulsions des photons
emis et absorbes au cours des processus d'annihilation et de

creation virtuelles de paires sont egales ä + l'impulsion totale
du Systeme electron-positron, alors que, dans les processus
d'interaction sans annihilation, elles representaient, au signe

pres, l'impulsion echangee par les deux particules.

Archives. Vol. 29. — Jmllel-AouL 1947. i5
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En rassemblant les resultats, on trouve l'element de matrice
du second ordre

V,-A VS^ + ^ (&>

V<FA S (+"5* (^' ^') «{-Vft (^') • «G}K> '"2'))

(e{CoT.A;-j(^)}livS(^ —ry2))
— <" °>

v!°)

«'01 + ^02 — whVfr wx »>2 n-^ I

V£2 &'-%))
(e{ C oT. A^ ß) },xv 8 — ?2). ^ß ^))

1 1 I

«"oi + «'02 Wh — wx — k>2 — U>k j

^') •«{Aot ('4)c ix?.s (^'—^'))
(e{ CAot(rJ) r,))

1 1 I

x„, + w.
+

02 T- W/j - Wj + <Vh

(7 6)

Nous nous restreindrons comme precedemment aux transitions

entre etats de meme energie:

»Ol + »02 ~= "A + w-i (8)

Dans ce cas VFA peut etre considere comme l'element de

matrice d'un Operateur hermitien representant une nouvelle
interaction due aux phenomenes d'annihilation et creation de

paires. En tenant compte des formules (1) et (8), on peut
ecrire V,.A sous la forme :

4TT e (^nv "01,11. ^02,7) ("l.x (,2,x{ aC}xx)- "Ol, 'j. ^02.v) }

(¥)' {(?#i + ^ ~ l~
(9)

Cet element de matrice s'ajoute ä celui qui corresponds ä un
echange d'impulsion entre les deux particules sans qu'il inter-
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vienne de phenomenes d'annihilation et de creation de paires.
Nous allons montrer que ces deux elements de matrice sont
equivalents ä ceux qu'on obtient en appliquant la formule de Melier
ä la theorie des lacunes.

Suivant cette theorie l'existence d'une paire est caracterisee

par le fait qu'un seul etat d'energie positive est occupe, tandis

que ceux d'energie negative le sont tous sauf un. Designons par

TT (p

«kltö) Mo

^02 (r2) un

\/h3
2t-A

(Po2r2 u'o2^)

v L1

^1 (^ Mi
a/l3

(10)

t>2(r2 =«2- Vl3

la fonction d'onde de l'etat d'energie positive occupe (electron)
et celle de la lacune (positron) dans l'etat initial d'une part
et dans l'etat final d'autre part. Nous avons ecrit les fonc-
tions d'onde ä energie negative de telle sorte que w02, p02

et w2, p2 representent l'energie (positive) et l'impulsion du

positron.
En toute rigueur l'etat du Systeme est decrit par une fonction

d'onde antisymetrique dependant des coordonnees de tous les

electrons d'energie positive ou negative. Toutefois les etats qui
restent occupes au cours des transitions que nous envisageons

ne jouent aucun role dans le calcul des elements de matrice
relatifs ä celles-ci. II suffit done de considerer le Systeme
constitue par les deux electrons qui effectuent des transitions
d'annihilation et de creation de paires. Avant le processus,
ceux-ci se trouvent respectivement dans les etats d'energie
positive et negative ^01 et et apres le processus dans les

etats d'energie negative et positive ijq et tji02.

En raison de l'antisymetrie de la fonction d'onde de ces

deux electrons, la formule de Miller doit etre utilisee sous

la forme II, § 2 (18) en remarquant que pour l'application
actuelle les indices 02 et 2 doivent etre permutes et qu'il faut
remplacer w02, p02 et w2, p2 par — w2, —p2 et — w02, —- p02.
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Cette formule s'ecrit alors:

^ _ 4tt «2{ («* «01) («02 «2) — (u* 1%) (u'otaus) }
FA

4 IT e2{(«02 "oi)("*"2) — («02 Su0l) (u*au2)}
17

(¥)" {<?.,+w - (234^yy
(ii)

L'element de matrice UFi peut servir ä etudier la diffusion
des positrons par les electrons. Cette application de la formule
de Maller a ete donnee par Bhabha 1.

Afin de nous debarrasser des etats d'energie negative, il
sufflt d'utiliser les spineurs conjugues

^02 e

2tu

^2

1

(po2^2~u'O2 0 (pi>a~r-woal)

~ C \Wq2 o /

C \u2 e ' •

En introduisant dans la formule (11)

(12 a)

h
e, e

C'l(2 — C

(»2 Ctt*

il vient

4 7T ®2{ («1 «Ol) {vlv02) — («I a «Ol) ("2 ««02) }
et

(126)

4 TT e2{ («l,xt'2,X^xx) («01,11 «0), v ^qv) («1.x (,2.v{ g^}x/.) ({ "oi.q ('02,v)

(¥)' {(?.. + - poi^)"}
(13)

L3

Sous cette forme l'element de matrice UFi, qui decoule de la
theorie des lacunes, peut etre compare ä celui qu'on obtient
en utilisant notre representation ä energie positive; ce
dernier est egal ä la somme des expressions § 2 (9) changees de

1 H. J. Bhabha, Proc. Boy. Soc. (A), 1Ö4, p. 195 (1936).
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signe et § 3 (9). On voit que les deux elements de matrice sont

identiques sauf que leurs signes sont opposes. Nous ne pouvons
pas dire ä priori qu'on aboutit lä ä des resultats incompatibles,
etant donne que pour representee une paire on emploie d'un
cote, les coordonnees d'une infinites d'electrons et, de l'autre,
Celles de l'electron et du positron seulement. Cette difficulte
est intimement liee ä celle que l'on rencontre dejä dans la

theorie du champ propre du positron lorsqu'on cherche ä utiliser
la methode des lacunes (cf. I, § 4).

En ce qui concerne les phenomenes de diffusion etudies par
ßhabha les deux elements de matrice conduisent au meme resul-

tat puisque c'est le carre de leur module qui intervient alors.

2. Uinteraction Va et la superposition des champs a.

Si nous continuons ä ne considerer que les transitions entre
etats de meme energie, l'element de matrice VFA relatif aux
phenomenes d'annihilation et de creation virtuelles de paires

peut encore s'ecrire sous la forme

VFA j +F* ^') "Vol F'' ri' F) +A F ' F dF dF dTl dx2 >

(14)
dans laquelle LVa designe l'operateur hermitien:

avec

Va;x.A.;iv Fl— F)

Si nous nous restreignons comme precedemment au cas des

vitesses non relativistes, w\ est negligeable vis-ä-vis de

Ki + «"o2)2 puisque
wk — e

Vol + «"02 C

M7! — 8 — F (15)

ft (»01 + <Co2)2 —F

e2{s(KtFi) «c)x>,(c * F))v.v
(16)

+ (\h (^') • «C)xA (C « <• Ft F)) HV

(A0~k F G)x/. (GA0ft" r))iLV }
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v etant la vitesse du centre de gravite du Systeme. De plus, on

a alors sensiblement

\ wh h
A (Longueur d'onde de Compton).

k «V + w02 4 7t mc

En effectuant les sommations, il vient alors

Vz;*>.,rv (a' — A') — 4^^{C^.ClivL (a>c)x?,- (c«):,v}8(A' — K)

(16')

La presence des fonctions 8(r^—r~0) et 8 (r^' — r^) signifie

que 1'annihilation de la paire (1, 2) et la creation de la paire
(1', 2') ne peuvent se produire que si l'electron et le positron
se trouvent au meme endroit dans chacune des paires. L'exis-
tence de la fonction 8()q — r~) indique de plus que les deux

phenomenes ont lieu au meme endroit.
Nous allons montrer maintenant que l'interaction 'v^ est

intimement liee ä l'existence du champ a. Les elements de

matrice des coefficients de Fourier de ce champ sont donnes

par les formules generales I, § 4 (6) appliquees ä des transitions
entre etats d'energies de signes opposes. Transformons ces

formules en introduisant les spineurs conjugues de fagon ä ne

plus faire intervenir que des etats d'energie positive. Nous

obtenons ainsi, pour une transition d'annihilation,

i It )o \

(e{ Kt (a) •« c }^v s (?x — ?2). ^))
_

(Vol + W02 — (Vk

(a) • «G}p.v 8 (a — r2) <J4 £ i^))
Lx hJOA

hior

(col)ov — +

(elAt (a) • «C }^ 8 {r[ — (F* r\))
(Vol + »^02 — vvk

{ -A (e{tö) • "G}qy 8 (a — r2). 44 (r[, rt))
0A

<V0i + + vvk

(e{ Ao k (A) C L 8 • C (A » ?*))
_

(Vol + W00 — Wj,

^ WKufö) gLv8(^~
iC° '0a

<V21 + (r02 + (Vk

(lla)



DES PARTICULES DE DIRAC

et pour une transition de creation,

229

(C (%' ^') e{ c a A;^ (i^) }xA 8 r2'))

w\ + (e2 +

(C. £' rt) • e{C " • AX ft fi') }xA 8 (^ — ^))
«>! + wa + nyt

'

_ _
(«C (y e { Gl AXft £') }*A 8 ('"i — ^))

(C.(^,-,,2')-e{c Aot(^')U8(^'-^).
W1 + + <*'k

^ (C. ('-1
> ''*) • e{ C-AOfc (O }xl 8(^~ ^'))

,C° ft'F° «>! + W2 tvk

On arriverait exactement au meme resultat en partant du

Systeme d'equations II, § 1 (6) et en se limitant au calcul de la

perturbation du premier ordre.
On deduit immediatement des formules (17) et I, § 3 (11 a)

—^ ^

les elements des matrices (A0)0i, (A)0a et (A0)f0, (A)f0 qui
sont les potentiels du champ d'annihilation de la paire (1, 2)

et du champ de creation de la paire (1', 2'). Grace ä ces elements
de matrice, on peut mettre VFA sous la forme

VFA —j\,l C. ^') • «{ C (A»)0A + « (A)()A) }XX 8 (''1 — ' d^ d^

+ J e{((A»)F0 + ='(A)Fo)C},Jv8(^"~'f2)-^v(^ ' (18)

Le premier terme correspond ä la creation de la deuxieme

paire sous l'influence du champ d'annihilation de la premiere
et le deuxieme ä l'annihilation de la premiere paire sous

l'influence du champ de creation de la seconde.
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Dans le cas des vitesses non relativistes, on a d'ailleurs:

^))oa — e(y) J (c ") j*v8 (d — ^) 8 (D —r) • +£„ (D ' ^) dri d~i

^))oa= «(t) f S(d — K) S(^ — ^)-^v(^'^)dTlrfT2

7))f0 —e(y) J+!Ia(^^V(«c)x>.8(d'—^a') S(^'-"?)dT(dT»

^))f0= e(y) J+xxß'.'V) Cy.A s(d'—^')

En introduisant ces expressions dans la relation (18), on
retrouve les formules (14), (15) et (16).

Montrons maintenant comment s'applique ici la notion
d'energie de superposition. En tenant compte des expressions

(17) et en continuant ä ne considerer que des transitions
entre etats de meme energie, nous pouvons ecrire les relations (7)

sous la forme

V(ft]=—s{ (<-j)r0 forw + (ctt)oA (cTft)Fo}wk (2°«)
k

^FA + ^FA (C0~k CX7T)F0 (CO7T CXfe)oA +
k

+ (coit cx~k)oa (coiT (20 6)

La premiere de ces formules n'est valable que dans le cas ou
le centre de gravite du Systeme est anime d'une vitesse non
relativiste; la deuxieme est valable independamment de cette
restriction. En comparant les expressions (20) et I, § 1 (44)

on voit que VFA est egal a la difference des energies de

superposition des parties longitudinales et transversales des champs
d'annihilation de la premiere paire et de creation de la seconde.

Si Ton utilisait la theorie des lacunes, on obtiendrait au
lieu de la formule (18):

VFA — VFA | +02 (^) +1 (^) ' Va +01 (D) +2 (''») A ^ A T2



DES PARTICULES DE DIRAC 231

avec

< + i{e (Al1» ß) + 2,. A«1» ß)) + e (A<?>ß) + Oi. A<f>(rt)) }

e2 (1 — ^ a2) S (r[ — r2)

Suivant ce point de vue, chacun des deux electrons d'energie

positive et negative qui interviennent dans le phenomene
d'annihilation et de creation virtuelles de paires est soumis ä

Faction du champoc de l'autre. resulte alors de la difference
des energies de superposition des champs a longitudinaux et

transversaux de ces deux particules. Nous nous sommes jus-
qu'ici restreints au cas de transitions entre etats de meme

energie. Toutefois il est fort probable que les expressions hermi-
tiennes (14), (15), (16), (16') et (18) restent applicables aux
autres transitions. En effet, nous avons dejä vu qu'en ce qui
concerne Finteraction coulombienne, les Operateurs hermitiens
§ 2 (11), deduits de l'element de matrice du second ordre pour
les transitions entre etats de meme energie, restent applicables
en toute rigueur aux autres transitions, bien que cet element ne

soit plus alors egal ä l'element de matrice de Finteraction
correcte. Enfin, puisque nous nous bornons ä etudier les pheno-

menes d'interaction dans les cas non relativistes, il suffit

d'employer pour chaque particule des fonctions d'onde ä deux

composantes. On verifie alors sans difficulte que Va s'exprime
au moyen des matrices de spin de Pauli par la formule

V« £ - ?,') 4 TT ;x2 1 +
1 + °» j 8 £ - r.') (21a)

v'2
4tt}t2— 8(i\ — r2') (21 b)

L'expression (21 a) a ete ecrite de fagon ä mettre en evidence,
dans l'accolade, deux Operateurs dont l'un ne modifie pas les

spins tandis que l'autre les permute; nous reviendrons sur cette

propriete remarquable. D'autre part la forme (21 b), qui fait
intervenir le spin total
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des deux particules, nous montre que le phenomene d'annihila-
tion et creation virtuelle de paires ne peut se produire que
si l'electron et le positron ont leur spins paralleles.

3. Le caractere d'echange de Vinteraction Va.

Suivant le formalisme de l'electrodynamique quantique, le

phenomene d'annihilation et de creation virtuelles correspond
ä la disparition de la paire initiale (1, 2) et ä l'apparition
d'une nouvelle paire (1', 2'), differente de la premiere. A ce

point de vue, l'etude du Systeme electron-positron necessite

en toute rigueur, l'emploi d'une infinite de coordonnees, aussi

bien suivant la theorie des lacunes, que suivant notre
representation ä energies positives.

Nous nous proposons maintenant de rechercher comment il
est possible d'entreprendre cette etude, dans 1'approximation
non-relativiste de Pauli, en n'utilisant que les coordonnees r et

r de deux particules seulement, tout en tenant compte des

phenomenes d'annihilation et de creation virtuelles par l'intro-
duction convenable de l'interaction Va.

Nous laisserons, pour l'instant, de cote l'influence des

transitions radiatives ordinaires ainsi que celle de 1'annihilation
reelle.

Si l'annihilation virtuelle n'existait pas, l'etat du Systeme

electron-positron pourrait etre decrit par une fonction d'onde

^(r1,r2) dans laquelle r1 et r2 designent respectivement les

positions de l'electron et du positron, et qui obeirait ä l'equation
de Pauli:

{Hj + II2 + ?2) E^, ?t) (23 a)

P2 P2
oü ~ et H2= representent les energies cmetiques

des deux particules et V (r1 — r2) la somme de l'interaction
e2

electrostatique de Coulomb, V0 et des interactions
r12

magnetiques indiquees dans le tableau du §2, II.
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Nous pourrions egalement considerer le positron comme
premiere particule et Felectron comme seconde. Dans ce cas la
fonction d'onde <<5(7^,7^) obeirait ä l'equation:

{iL + H2 + Vfä-?2)}<pß, rt) E9(ri,rt) (23 b)

identique ä la precedente.
Dans le cas considere ici, oü le champ exterieur est nul, les

functions propres sont symetriques ou antisymetriques par
rapport aux permutations simultanees des coordonnees et des

spins des particules,

± ^(^2^1) (2M

en raison de l'invariance de l'hamiltonien des equations (23)

par rapport ä ces operations. Si l'on neglige les interactions
magnetiques, ces deux permutations respectent separement
l'invariance de Phamiltonien. La symetrie de la fonction d'onde

se decompose alors en une symetrie d'espace

i'ijin, ^2) ± (^> D) (24&)

et une symetrie de spin

^2) ± ('N - nd (24c)

Introduisons maintenant le phenomene d'annihilation et de

creation virtuelles. Suivant l'electrodynamique quantique, la

paire creee est essentiellement differente de celle qui s'est

annihilee. Toutefois, il est possible d'utiliser les memes coordonnees

r*, r~2 pour representee ces deux paires, du fait que les

deux particules finales apparaissent ä l'endroit meme oil ont

disparu les deux particules initiales. En effet, grace ä cette
circonstance exceptionnelle, l'element de matrice VFi peut se

transformer de la fagon suivante:

+1

S(r\'— r\) 8(t{'—/*() 8(r1 — r2) 6A(r1, r2) drl dr2 dr^^dr.,

4 7tu2 f rt) j 1 +
1 + ** I

8 (K — ''2) • (r* r2) drx dr., (25)
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Mais la presence de la fonction 8 (r1 — r') nous permet egale-

ment de Fecrire sous la forme

8(''i ~ ''2) • ''2) dt1 d-r2 (25 h)

En d'autres termes nous pouvons supposer ä priori qu'apres
un processus d'annihilation et de creation virtuelle, chaque par-
ticule a conserve son caractere electron ou positron [element
de matrice (25 a)], ou au contraire qu'il y a eu echange des

caracteres, Felectron etant devenu un positron et le positron un
electron [element de matrice (25 6)]. Dans la premiere hypothese,
les equations (23) doivent etre remplacees par les suivantes:

(H, + H2 + V + Va)<t E<>

(II, + H, + V + Va)9 E9
(26!

Si l'une des configurations (cp, 0) ou (0, 9) est realisee ä un
instant donne, elle subsistera ulterieurement. On peut done

assigner un caractere bien determine aux particules 1 et 2 et
resoudre l'equation correspondante.

Par contre, si l'on suppose que l'interaction Va correspond ä

un echange de caracteres, les equations du Systeme electron-
positron s'ecrivent sous la forme

(Hn + It2 + V)+ ± Va<? Ei
(Ht + H2 + V)<p ± Va+ E9

{2/)

Rien ne fixant jusqu'ici les signes de ip et qs on peut choisir
arbitrairement dans (27) soit le signe superieur, soit le signe
inferieur. II est bien connu que des equations de ce type
representent un phenomene d'echange: si ä l'instant t — 0

la configuration (cp, 0) est realisee, un certain temps apres e'est
la configuration (0, 9) qui le sera. Pour resoudre ces equations,
effectuons en la somme et la difference; il vient

(Hi + H2 + V ± Va) (i[i + 9) E. (4> + 9)

(Hi + H, + V " Va) (<1 - 9) E. (+ - 9)
(28/
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Ces nouvelles equations admettent deux especes de solutions

i 9 5 4 U

et

1
9 0 9 -5

1
^ + <p o i\> —7)

"0

Suivant que nous avons affaire ä l'une ou l'autre de ces

especes, nous disons que le Systeme est dans un etat symetrique
ou antisymetrique de caractere.

Si nous considerons V et Va comme des perturbations, nous

sommes amenes ä construire les elements de matrice de V + Va

ou V — Va, selon la symetrie de caractere de l'etat non-perturbe
et le signe adopte dans les equations (27). Nous avons vu
(§3, 1) que c'est le premier de ces elements qui intervient dans

l'interaction entre electron et positron. Par consequent l'anni-
hilation et la creation virtuelles se produisent dans les etats

symetriques ou antisymetriques de caractere, suivant que nous
choisissons le signe superieur ou inferieur dans les equations
precedentes (27) et (28).

D'autre part ce phenomene n'affecte que les etats symetriques

d'espace et symetriques de spin, car les elements de

matrice de Va ne sont differents de zero que si l'electron et
le positron ont une certaine probability de se trouver au

meme endroit avec des spins paralleles dans chacun des etats
initial et final. Si pour fixer les idees nous choisissons le signe
inferieur dans les equations (27), ces etats sont de plus
antisymetriques de caractere. Dans ce cas particulier, la fonction
d'onde est antisymetrique au total:

<h,-(D. — "PjiOv D)

Nous allons montrer, qu'il en est de meme dans le cas general.
A cette fin, nous devons considerer le cas oil le champ exterieur
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n'est plus nul, ainsi que nous l'avions admis jusqu'ici. En
designant par — U et + U les interactions de l'electron et du

positron avec ce champ, les equations du Systeme electron-
positron deviennent:

{ H, + H2 + V - U^) + U,ß) - Va<p E (Jj

(29)
{ h, + Ii, + v + - r.w }9 - vai e9

Ces equations admettent deux especes de solutions, symetri-
ques et antisymetriques au total, rj.) ± r\),
mais cette symetrie globale ne se decompose plus en general
en trois symetries partielles, d'espace, de spin et de caractere.

D'autre part, l'interaction avec le champ exterieur est syme-
trique au total, mais antisymetrique par rapport aux coor-
donnees et aux spins. II ne se produira done jamais de transitions
entre etats de symetries totales differentes, mais la symetrie
d'espace et de spin est susceptible de changer. II en resulte

que le Systeme doit necessairement se trouver dans un etat
antisymetrique au total, sinon, en faisant agir un champ exterieur

convenable, nous pourrions i'amener dans un etat syme-
trique separement d'espace, de spin et de caractere, ce qui
serait en contradiction avec ce qui precede.

On montrerait de fagon analogue que le Systeme electron-

positron se trouverait obligatoirement dans un etat symetrique
au total si l'on adoptait le signe superieur dans les equations (27).

Nous choisissons ici le signe inferieur de facon ä pouvoir
etendre le principe d'exclusion de Pauli au cas de deux parti-
cules de Dirac de signes quelconques. Les equations (27) se

generalisent alors d'elles-memes dans le cas d'un Systeme
constitue d'un nombre quelconque d'electrons et de positrons.
Au contraire, cette generalisation, se heurterait ä de serieuses

difficultes, si nous adoptions l'autre signe.
11 nous reste ä voir maintenant si Va doit etre considere

ou non comme une interaction d'echange. II importe tout
d'abord de remarquer que dans les applications les deux points
de vue conduisent toujours ä des resultats identiques, meme
lorsque le Systeme est plonge dans un champ exterieur. En
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effet, puisque dans l'hypothese de l'echange, nous n'utilisons

que les fonctions d'onde antisymetriques, les equations (29)

peuvent s'ecrire

{ ll! + Hj + V —Ujß) + U2(^2)}^(^/^) + Vaip(F2^) E +

(30)
{ J Ix + H2 + V + u, (?\) - U2 ß) } <p £ r2) + Va 9" (U2 r,) E <p ß r,)

En les comparant sous cette forme aux equations (26), qui se

rapportent ä l'hypothese oü il n'y a pas d'echange, on voit
immediatement que la fonction d'interaction Va conduit dans

les deux cas aux memes elements de matrice. Ceci resulte de

ce que Va contient la fonction 8 (r — r^) et du fait que

j i + ii&S) j 4 4 + j.
Cependant il semble plus logique de considerer Ya comme

une interaction d'echange. En effet les equations (29) sont

mathematiquement äquivalentes, dans le cas non-relativiste, ä

Celles de la theorie des lacunes, en ce sens qu'il existe une corres-

pondance biunivoque entre les solutions de meme symetrie des

unes et des autres. Au contraire, si l'on suppose que l'inter-
action Va n'a pas le caractere d'echange, on est conduit aux

equations (26) qui n'admettent aucune solution correspondant
aux solutions symetriques des equations de la theorie des

lacunes. On pourrait penser qu'il est plus satisfaisant d'ecrire
ainsi les equations du probleme electron-positron de facon

qu'elles ne possedent que des solutions ayant un sens physique,
plutot que d'employer un principe d'exclusion. Toutefois le

probleme de deux particules de Dirac de meme signe ne se

presente pas sous cet aspect, tout au moins dans le formalisme

actuel, et l'application du principe de Pauli reste necessaire.

Par consequent, si nous n'attribuions pas ä Va un caractere

d'echange, nous serions conduits, dans le cas du probleme
general de n particules de Dirac de signes quelconques, a

un melange peu satisfaisant des deux points de vue. Une

partie seulement des solutions symetriques des equations de

la theorie des lacunes n'aurait aucun correspondant dans notre
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theorie ä energie positive tandis que les autres solutions syme-
triques subsisteraient et devraient etre ecartees par l'appliea-
tion du principe de Pauli.

Ii est particulierement interessant de remarquer que si l'on
considere Va comme une interaction d'echange, celle-ci est

du meme type que Celles qui ont ete introduites de facon

phenomenologique dans l'etude du probleme proton-neutron.
En effet, l'interaction due ä l'annihilation et ä la creation

virtuelle, peut s'ecrire symboliquement sous la forme:

-PVa - (P + P
1 + ^ | 4 —

oü P est l'operateur de permutation d'Heisenberg qui echange
les caracteres des deux particules mais conserve leurs spins,
autrement dit, qui remplace tjj r^) par cp(rpj^) et vice

versa. D'autre part
i + (<Z ?2)

2

est l'operateur de Majorana, qui permute les caracteres et les

spins des deux corpuscules. Enfin, les interactions de Coulomb,
et de spin, sont analogues ä Celles de Wigner et de Bartlett.
Ainsi la simple application de l'electrodynamique quantique
fait intervenir de fagon bien determinee, dans le probleme
electron-positron, les quatre types d'interaction utilises plus
ou moins arbitrairement en physique nucleaire.

(ä suivre)
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