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1947 S Vol. 29 Juillet-Aofiit

LE CHAMP PROPRE ET L’INTERACTION
DES PARTICULES DE DIRAC

suivant I’électrodynamique quantique

PAR

Jean PIRENNE
(suite) !

II. ’INTERACTION
DE DEUX PARTICULES DE DIRAC

§ 1. — L’EQUATION D'ONDE DES PARTICULES ET DU CHAMP.

1. Particules de méme signe.

- Suivant le formalisme de 1’électrodynamique quantique,
I'état d’un systéme constitué par deux électrons en interaction
avec le champ électromagnétique peut étre représenté par une
fonetion d’onde & énergie positive ¥ (;')1’ F;; 0; t) dépendant
des coordonnées des deux particules, des variables du champ
et du temps. Cette fonction d’onde posséde 16 composantes

W,, avec u,v =1, 2, 3, 4, et obéit a I'équation

h oY .
Twide o
dans laquelle Phamiltonien H a pour expression z/ QATHE f
i. Q7 pe & |
H = H® 4 g® 4 g® 4 g® 4 gl (R)L UL IVERSITE %
1 2 1 2 i -

NEUCHATEL
1.

! Premiere partie v. Archives, [5], 28, 233 (1946) et [5], 29,
(1947).
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avec
HO = — (ca,. 5, + By me?)
H(2p) — (ca. P + Byme?)
HO = — o (A, () + & . A7) (3)
HO = e (8 () + . A (7))
) = B(SNp + Nyx — No) -
R

H(lJD et HY () sont, formellement identiques aux hamiltoniens
de deux partlcules libres; H(” et H(l sont les termes d’inter-
action de chacune d’elles avec le champ et H™ est ’hamiltonien
des oscillateurs de ce dernier. «,, 8, et oy, (B, sont les matrices
de Dirac opérant respectivement sur le premier et sur le
second indice de " tandis que les opérateurs impulsions 31 et }32
ont pour expression

: o h d,_.;. . Ry
P11 = m(j gra (rl) ’ P2 — 9

Du point de vue énergétique

WSy )

) _ oxn A (r (n _
H1 eay A(r) et _ H2 eay A (r,)

représentent ’énergie cinétique (y compris mc?) de chacune des
particules tandis que

WM = e Ag(r) — eAg(ry) + HEY

est I'énergie du champ. Nous disons en principe, car il ne
semble pas que I'on puisse écrire I'énergie totale du systeme
sous la forme d’un hamiltonien décomposable de cette facon.
Nous avons montré (§ 1, 5) qu’en électrodynamique classique
une telle hypothese conduit a des contradictions et que notam-
ment il est nécessaire, si 'on veut ramener en premiere appro-
ximation 1'étude du mouvement du systéme & un probleme
purement mécanique, d’omettre certains termes dus a l'exis-
tence du champ propre des particules et dont il a déja été tenu
compte dans leurs masses. Ces difficultés subsistent en électro-
dynamique quantique et nous verrons que ce sont exactement
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~ les mémes termes qu’il faut supprimer pour déduire de cette
théorie 'équation de Schriédinger ou de Pauli du systeme.
Ces réserves étant faites, la décomposition en question de
I’hamiltonien H montre qu’il est nécessaire de compter toutes
les énergies avec le méme signe qu’en théorie classique (ou
toutes avec le signe opposé, a condition d’utiliser d’autres
opérateurs pour les potentiels (¢f. I, § 4). D'une facon plus
précise ceci signifie que si I'on fait tendre les interactions H(l
et H(l) vers zéro, V' se décompose en une somme de termes de la
forme Y7, 7) T ou T' est une fonction donde & énergie
positive du champ transversal, tandis que L{)(?l, 77;) est le
produit antisymétrisé de deux fonctions d’onde a énergie
positive { (r ) et Y (r ) produit dont les composantes s’écrivent

—

b (0 7) = o A ) 400 — 9, () () }

On peut de la méme facon représenter le systeme positron-
positron par une fonction d’onde & énergie positive
) (F;, 7";; 0; ¢) dépendant seulement des coordonnées des deux
positrons, des variables du champ et du temps. @ obéit a

I'équation (1) dans laquelle on aura remplacé e par — e.

2. Particules de signes opposés.

Si I'on néglige, en premiere approximation, la possibilité
d’annihilation, ’état du systeme électron-positron peut,
comme précédemment, étre décrit par une fonction d’onde a
énergle positive ne dépendant que des coordonnées des deux
particules, des variables du champ et du temps. Nous repré-
senterons celle-ci par V' (77, ?;, 0, t), si les particules 1 et 2 sont
respectivement 1'électron et le positron, et par (D(71, 72, b, s
dans I'hypothése inverse. ¥ et @ obéissent aux équations

h oW . - - >
“amiar — LI H HP — e (A7) + @A)
-+ e(A (ry) + oy A(rz)) + H(b) }IF (4 a)
h od - o
=T = { ng) + ng) + e (Ao(rl) + . A ()

— e (A (r) + &% A() + HM o . (4 b)
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Pour P'instant, I'une de ces deux équations est superflue,
chaque particule conservant son caractére électron ou positron.

Il n’en serait plus de méme si 'on ajoutait aux seconds
membres de (4a) et (4 b) des termes dépendant respectivement
de ® et W, ce qui indiquerait qu'un échange de caractére
peut se produire entre les particules. L’électron devenant
positron et le positron devenant électron. C’est parce que
nous serons amenés & envisager une telle éventualité que nous
considérons d’emblée les fonctions d’onde W' et @.

Nous voudrions maintenant tenir compte de la possibilité
d’annihilation et de création de paires tout en continuant a
n'utiliser que des représentations & énergie positive. Par suite
de D'existence de ces phénomenes le nombre de paires n’est
plus une intégrale premieére. Nous représenterons alors I'état
du systéme par un ensemble de fonctions d’onde

> x>

O, YOG, 7%;0:0, YOG, K, 00, .
: (5)
obéissant aux équations non homogeénes

('JL aﬂ H(O)) (o) _

_.e[(Ao(:q) 3 ZK(?;))G] 3 (F— 7). PO

——e/ [C(Ao(z)+a‘.K(?§))] 5 — 7). FW  dede,dryde,

yVy lhaVy

h 0O
2 @\ p@ —
[(2ni65+H )‘P‘ ] — , (6)

v tavy

la sommation étant effectuée sur les indices muets et C étant
la matrice I, § 2 (3). H®" est I’hamiltonien d’un systeme
de n électrons et n positrons, numérotés respectivement

1,3, ..., n—1 et 2,4, ... n :
HEY — sua® L syt L gl
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Nous exclurons toutes les transitions vers les états d’énergie
négative. Dans ces conditions, si les équations (6) n’avaient pas
de seconds membres, la suite

représenterait une configuration du systeme ou celui-ci est
constitué par un nombre connu et fixe n de paires. Au contraire
la présence des seconds membres, considérés comme de petites
perturbations, donne lieu & des transitions vers des états ou ce
nombre n’est plus le méme. On peut alors interpréter I'intégrale

lf%‘l}“(zn)lzdﬂd% ..... drgng}—:

comme la probabilité que la configuration ou existent n paires
soit réalisée. On peut d’ailleurs regarder W@, ¥® PO,
comme les composantes d’une seule fonction d’onde. L’intro-
duction de 'annihilation et de la création suivant notre forma-
lisme ressemble alors & celle du spin dans la théorie de Paul,
les différents nombres possibles de paires correspondant dans
cette image aux différentes orientations possibles du spin.

L’expression des seconds membres des équations (6) a été
déterminée de facon a donner pour I'annihilation et la création
les mémes éléments de matrice que la théorie des lacunes (tout
au moins dans I’approximation de Born).

Pour le vérifier, considérons par exemple une transition

d’annihilation avec émission d’un photon transversal k. Sui-
vant la théorie des lacunes ce processus est décrit comme
une transition effectuée par un électron d’un état d’énergie
positive ¢, (;) vers un état d’énergie négative non occupé
Yy (F;) le champ passant simultanément de 1'état fondamental
Iy = 1 & I'état excité I'; (0.7). L’élément de matrice corres-
pondant s’écrit: ‘

vy d GT:

o = — e T(0.3) () (F.XE) - 4a6) - dm 5
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ou encore, en introduisant le spineur conjugué

* —> —_ > — de{g
Hy, = — e[ THO.2) 0, () (CFX(R)) - ba () - d= 2=

* e SE o —> — = —> de'_b
S effl(ﬁr’g) (CE K ()3 F—7) - Yy () 0y () dmydy

Sous cette forme H,, fait intervenir les fonctions d’onde de
Pétat final, T'y(0), et de I'état initial, $,(r,) @,(r,), ainsi
quun terme d’interaction contenant la fonction 8(?1—?_2)
de Dirac précédemment définie (I, § 1 (12)). Cette fonction
indique que ’électron et le positron doivent se trouver au
méme endroit pour pouvoir s’annihiler.

Si la transition était accompagnée de l’absorption d'un
photon, I'élément de matrice s’écrirait de méme sous la forme

do_7

~f\r<°)*‘e(cz.K(;‘;) 3(h—7) YO, T, 0) dmdy 5ot

On obtient de fagon analogue les éléments de matrice relatifs
a la création d’une paire avec émission ou absorption d’un
photon transversal. Pour les photons longitudinaux, les calculs
sont tout a fait semblables. Ce sont la les seuls éléments de
matrice dont nous aurons besoin. Ils interviennent, comme on
s’en rend compte aisément, dans ’application de la méthode des
perturbations a la résolution des équations (6). Les différences
d’énergie qui figurent dans les dénominateurs des coeflicients
de Fourler des fonctions perturbées sont les mémes que dans
la théorie des lacunes. En effet, suivant celle-ci, I'annihilation
d’un électron d’énergie w avec un positron représenté par un
état d’énergie négative, — w’, non occupé, correspond & une
diminution d’ériergie w — (— w'), tandis que, suivant notre
représentation a énergies positives, cette diftérence est
(w + w') — 0.

Pour ne pas compliquer ’écriture, nous n’avons pas cherché
a symétriser les seconds membres des équations (6). En fait,
une telle symétrisation est nécessaire si I'on veut qu’il ne
puisse jamais apparaitre que des fonctions d’onde antisymé-
triques par rapport aux particules de méme signe. Notons la
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différence essentielle qui existe a ce propos entre les équa-
tions non homogenes (6) et les équations homogeénes utilisées
dans la mécanique ondulatoire des systémes de corpuscules
identiques. Ces derniéres admettent des solutions symétriques
et antisymétriques et on peut choisir librement I'une ou
Iautre de ces catégories, suivant la statistique a laquelle
obéissent les particules étudiées, puisque la symétrie de la
fonetion d’onde demeure automatiquement invariable au cours
du temps. Au contraire les équations non homogeénes (6) peu-
vent, étre symétrisées de fagon a n’admettre que des solutions
symétriques ou que des solutions antisymétriques; de plus il
est nécessaire de les écrire sous 'une ou l'autre de ces formes
si 'on veut que la symétrie des fonctions d’onde ne puisse se
modifier d’elle-méme.

§ 2. — LINTERACTION MUTUELLE DE DEUX ELEGTRONS.

La formule de Moller.

Considérons le systéme formé par deux électrons et négligeons
tout d’abord tous les termes d’interaction. Son état peut
alors étre représenté par une somme d’ondes planes ¢, (7, 7,)-
Introduisons maintenant l'interaction avec le champ et déve-
loppons la fonction d’onde W' (r, r,; 0) suivant les fonctions
propres non perturbées des particules et du champ; la partie
indépendante des 0 constitue en premiére approximation la
fonction d’onde du systéme matériel dans une théorie purement
mécanique. Elle est égale a4 la fonction d’onde non perturbée
augmentée des perturbations dues aux interactions avec les
ondes longitudinales et transversales. Ces interactions ne
conduisent qu’au second ordre a des termes perturbés indépen-

dants des 0. Ceux-ci peuvent s’écrire sous la forme:

v
W FA =% =¥
2 g — Yr (1, 1) (1)

¥ A F

N

ou I’élément de matrice du second ordre V,, a pour expression:

h{) 1)

Som— (2)
E, — E,

Vig = o,
I
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H®Y et H{) sont respectivement les éléments de matrice
relatifs & I’émission d’un photon virtuel par 'une des particules
et a absorption subséquente de ce photon par 'autre. E,, E,
et E, désignent les énergies de 1'état initial A, de I'état inter-
médiaire I et de I'état final F. Nous allons évaluer V,, en
choisissant, comme fonctions non perturbées, un systemes d’on-
des planes orthogonales a Dlintérieur du cube L3. Dans ce
cas, HY et H{) ne sont différents de zéro que s’il y a conserva-
tion de I'impulsion totale des particules et du champ, lors de
chacune des transitions virtuelles correspondantes. Les états A
et F ont donc la méme impulsion totale et 'on peut dire que V .
correspond & la transmission d'une certaine impulsion d’une
particule a I'autre, par I'intermédiaire du champ. En premiére
approximation, V,, joue le méme rdle en électrodynamique
quantique que l’élément de matrice de l'interaction coulom-
bienne dans la‘théorie de Schrodinger.

Nous allons maintenant évaluer V. Pour ne pas com-
pliquer inutilement les calculs, nous laisserons provisoirement
de coté la symétrisation de la fonction d’onde et nous écrirons

Gp (11 7) = don (7) 0o (72) 5 9 () = 40 (7) Ba(ra) - (3)

On obtient alors

(A 0 . I
Vi = Vi +VE + V) (4)
vl — _ g3 (bs e Ay dog) (Yrea ATR doy) }
7:5 ? u’j{ + Lvl - “;01
e (q‘;{ e ;"‘/\'TI{Xt L'I)()l) (LI'.2 8& :X;??? d')(]z) (7) )
Wy + Wy — Wy, '
Vv =3 (g e o Ay dyg) (b e Ay 3 ) S
g Wy, <t Wy, Wy

* x>
B (b1 e Ay doy) (Dg e A7 Q) 5 5l
i Wi + Wy — W, = S

VO — oy [ e A o) (41 Ao bo)

| — wy + W, — Wy

n (‘1’; e Agy Vo) (‘l‘; e Ay Yos) l

— Wy - Wy — Wy

(5¢)

[ S———
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La premiere et la seconde partie de chacune de ces sommes
correspondent respectivement aux deux processus suivants:

1o Un photon virtuel (transversal ou longitudinal) est émis
par la particule 1 et absorbé par la particule 2.

20 Un photon virtuel (transversal ou longitudinal) est émis
par la particule 2 et est absorbé par la particule 1.

Les seuls termes non nuls de ces séries sont ceux pour lesquels

';E:P01“Bi:_(l’02*lj>z)“_———k’> (6)

> h
294 2

Considérons le cas ou I'on a E, = E,_, c’est-a-dire:

Wop — Wy = — (Wyy — Wy) (7)

En écrivant les fonctions d’onde de chacune des particules
sous la forme

(]

Tl —>
h D-

$(F) = ue' (8)

—
7

et en effectuant les sommations sur les vecteurs de polarisation
dans les séries (5) nous obtenons la formule de M»ller 1

o € (u;= um) (u; uoz) — (u; ;um) (u; gu)}

V. e , . (9)

- H (%{EY { (Por — P1)* — (Wm;}; Wl)z }

Cette formule donne les éléments de matrice de I'interaction
de deux électrons pour les transitions entre états de méme éner-
gie, éléments qui interviennent notamment dans I’étude des
phénomenes de diffusion élastique. V,, constitue une extension
relativiste de 1'élément de matrice de I'interaction coulom-
bienne utilisée dans la théorie élémentaire.

Pour mettre en évidence le réle joué dans cette interaction
généralisée parles champs propres des deux particules, désignons

par A, AD ot AL A® Jeurs potentiels respectifs. En compa-

! M@LLER, Annalen der Physik, 14, 1932, p. 531.
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rant les expressions I, § 4 (9 et 6) des éléments de matrice
de ces potentiels aux formules (5), on voit que I'élément de
matrice de Meller peut s’écrire sous la forme

- -

Voo = [ (R, 1) VI —7) 4, (h, 1) dmds, (10)

en posant
—> - 1 — —_— > — — e —
Vip—r,) = — é-e{ (Aff) (r) + o . A (rl)) + (Af)l) (re) + o, . AW (rz)) }
= — (AP ) + 1. A0F) = —e (AP (7)) + % A0 ) .

Pour évaluer la fonction d’interaction V (7, — r,) nous avons
besoin de ’expression des opérateurs potentiels qui y figurent.
Comme nous ne considérons ici que des transitions entre états
d’énergie positive nous pouvons utiliser les opérateurs I, § 4 (13).

(11)

On peut les remplacer par les potentiels (A, K(l)), (AQ) K(ﬂ) W

qui se rapportent aux parties longitudinale et transversale de
chacun des deux champs (cf. I, § 4, 4). En effet, en groupant
séparément les termes de V,, qui proviennent de I'une et de
I’autre de ces parties, on obtient

vl + vO = | U Vo o, dr, d-, (12 a)
v = jjupf, V. ¢, drds (12 b)
avec
Vo = — ge (A7) + AP ) (134
L %fe (2. AV (7)) + % . K'® (m)) (13 b)

4

La vérification des formules (12 @) et (13 a) se fait de la méme
facon que celle de la relation I, §4 (8). L’interaction coulom-
bienne V, ne présente en fait qu'une analogie purement for-
melle avec I'interaction électrostatique de deux charges immo-
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biles (cf. 1, § 1, 6). Elle s’applique rigoureusement a toutes les
transitions ainsi que 1’a montré Fermi 1. Pour le voir, il suffit
de reprendre la démonstration classique de cette formule
(I, § 1, 6) en tenant compte des relations de commutation des
coefficients de Fourier [I, § 3 (10 a)] du champ, lesquelles ne
modifient pas le résultat final.

L’interaction V, représente 1’énergie de superposition des
champs longitudinaux des deux particules, tandis que l'inter-
action V_ est égale, comme en théorie classique, a I'énergie de
superposition des champs transversaux changée de signe. En
effet celle-ci est donnée par la formule I, § 1 (44 b) et en intro-
duisant les expressions I, § 4 (6) des éléments de matrice des
c.7 et c.7, la relation (5 a) s’écrit :

=) 1)+ (2) (2)- (1) .
v a7 S §{ (CTT{ )1,01 (CTK)2,02 + (CT,_?Z)z,oz (CT,-?:)l,m } #k

(14)

Notons que les formules (13 5) et (14) ont été obtenues dans
le cas ou E, —E, =0. Si E, — E, 5 0, les ¢éléments de
matrice du second ordre ne peuvent plus en général étre iden-
tifiés aux éléments de matrice de l'interaction. Ceci résulte
notamment du fait que les matrices H ve ||, H v |[ et
H v H formées au moyen des éléments (5) ne sont pas her-
mitiennes et que la somme des deux dernieres ne correspond
pas & 'opérateur V, exact (13 a).

Toutefois, si nous nous bornons & considérer le cas de vitesses
non relativistes, ces difficultés disparaissent et les formules (13 )
et (14) restent applicables pour toutes les transitions entre
¢tats d’énergie positive. Nous allons dans ce cas transformer
Pexpression de V_ de facon a mettre en évidence le magnétisme
du spin, ainsi que nous 'avons fait lors du calcul du champ
propre de I'électron. A cette fin, les coefficients de Fourier des
densités de courant intervenant dans les expressions (b a)
seront décomposés selon les formules I, § 4 (14 a) et I'on fera

Y K. Fermi, Reviews of Modern Physics, 4 (1932).
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les mémes approximations que dans ce paragraphe. On obtient
ainsi:

-‘\‘71_ —_— Vl], + VGl + VU (15)

. b A = S i (72) |

\f‘l = — g2 : SE (pl (1?:) (&a:)%fw—fl (160)
VL3 > \me me \/13

L7 b P — >
Voi= eu Vir SE{(%‘Z;) ([o1, ik].a),) —
k

(16 ¢)

En comparant ces formules a I'expression I, § 4 (44 b) de
I'énergie de superposition et aux développements en série 1, § 4

(16 a et 16 d) des potentiels ?&CT et KG, ont voit que V, corres-
pond & I’énergie de superposition (changée de signe) des champs
magnétiques de Laplace des deux électrons, V_, a celle du
champ de Laplace de chacun d’eux avec le champ de spin de
I'autre et V_ a celle des deux champs de spin. |
Enfin, effectuons les sommations sur les deux directions du

vecteur de polarisation @y et sur tous les vecteurs k au moyen
des formules I, § 1 (12, 48 b et 53).

En rassemblant tous les résultats nous trouvons que I'inter-
action globale de deux électrons animés de vitesses non relati-
vistes est la somme des interactions partielles indiquées dans le
tableau de la page suivante.

A part le dernier terme de l'interaction spin-spin, dont la
signification sera indiquée dans un instant, ces expressions sont
formellement identiques a celles de I'électrodynamique clas-
sique [ef. I, § 1 (38 et 47 b)] et ont été introduites par corres-
pondance en théorie quantique par Heisenberg ! et Breit 2.

1 HEISENBERG, Zeit. fur Physik, 39, 1926, 499.
2 Brerr, Physical Review, 34, 1929, p. 564-5.
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Interaction o2
électrique Vo = —
coulombienne r
Interactions
magnétiques
. e 193_5’1132) 1»(»?_1)}2}_\
Orbite — Orbite \l = —‘“—2‘3 { r (WLC me £ - 5{ M2 \rlg me/ me
12 °
Orbite — Spin | ’[al,ri—ﬂﬁ) . ([8:,?2413 A
Spin — Orbite ! ’ " e S
19 / \ 12 /
3. 5, o1 ") (327
Spin — Spin Vo = “2{(132) % 1)(5,2 w
PIZ ,12
8w /~> —
— 5 (01 02) 3(rys) }
1

Toutefois cette derniere méthode n’est pas entiérement uni-
voque car elle ne permet pas de déterminer avec certitude
Pordre dans lequel doivent étre écrits les différents opérateurs
qui ne commutent pas comme les grandeurs classiques aux-
quelles ils correspondent. Cet ordre est ici fixé sans ambiguité
(a part les permutations qui fournissent des opérateurs équi-
valents) et il est intéressant de noter qu’il coincide avec celui
que Breit a été amené a considérer comme le plus vraisemblable
apres discussions des divers résultats obtenus par correspon-
dance.

Quant au dernier terme de l'interaction spin-spin il a éga-
lement une origine classique; nous l’avons déja rencontré
en évaluant I'énergie de superposition moyenne de deux dipdles
magnétiques. D’apres l'interprétation que nous avons donnée
alors des différents termes de cette énergie, V_ résulte de
Paction sur le spin d’un électron du champ moyven da au spin
de Pautre électron, champ égal a I'induction si 'on admet que
le magnétisme du spin est analogue a celui d’un petit circuit
électrique. Les deux premiers termes de V_ représentent inter-
action de deux dipoles pontuels, tandis que le dernier donne la
contribution des petites distances (r < A) pour lesquelles le
champ de spin difféere notablement de celui d’un dipéle pone-
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tuel. Ce nouveau terme devrait, en toute rigueur, étre introduit
dans le calcul des niveaux singulets des atomes & deux élec-
trons. Un terme analogue a été trouvé par Fermi dans la
théorie de la structure hyperfine.

Enfin rappelons que le facteur 8 =/3 n’est valable que si
I'intégrale impropre de V_ est évaluée par un passage a la
limite bien déterminé, consistant a isoler le pdle 71 = 7'; par
une sphére de rayon infiniment petit (cf. I, § 1, 6; application),

Remarques.

I. Nous avons jusqu’ici laissé de coté la symétrisation des
fonctions d’onde de deux électrons. Il est aisé de voir qu'en
tenant compte de celle-ci la formule de M«ller devient::

V- bt 32{ (u: um) (u§ uoz) = (U: g:uoi) (uZ guoz) }
FA T E? 2 mw\2 — — 2 )W1*—W01‘2
2 G ol — ()

b 32{ (u; um) (uj Ugy) — (U; Eum) (U-I guoz) }

(18]

L3 2w\ [ - > 2 ‘wy — wor\2 ]

( h) {(Pzpnl) ﬁ( : c"‘m) }

Toutefols on s’apercoit sans difficulté que les expressions
des interactions indiquées dans le tableau précédent restent

applicables aux fonctions antisymétrisées.

IT. Nous n’avons pas tenu compte du cas ot le photon virtuel
est absorbé par la particule qui I'a émis. L’élément de matrice
V., relatif & ce processus est égal & I'énergie de perturbation
de la particule supposée isolée; il représente également la
différence entre les énergies des parties longitudinales et
transversales de son champ propre. Ces énergies, qui sont d’ail-
leurs divergentes, se trouvent déja comprises dans la masse de
la particule. En les supprimant, pour passer de I'électrodyna-
mique quantique a la mécanique ondulatoire non relativiste,
nous faisons disparaitre une contradiction qui se manifeste déja
en théorie classique lorsqu’on cherche a écrire sous forme
hamiltonienne les équations du champs et du mouvement d'un
systeme de particules (cf. I, § 1, 6).
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§ 3. — I INTERACTION ENTRE L’ELECTRON ET LE POSITRON.

1. L’annthilation virtuelle.

Nous avons vu précédemment (IT, § 1) qu’en utilisant que des
états d’énergie positive, il était possible de décrire I'état du sys-
téme électron-positron au moyen d'une fonction d’onde a
¢énergie positive dépendant seulement des coordonnées des deux
particules et obéissant a I'équation II, § 1 (4 a), & condition
toutefois de négliger la possibilité d’annihilation et de création
de paires. Cette possibilité a été introduite ensuite comme une
petite perturbation, en substituant & I'équation (4 a) le systeme
d’équations (6).

Dans la premiére hypothese, I'interaction entre I’électron et
le positron différe, uniquement par le signe, de celle qui existe
entre deux électrons. Par conséquent, les interactions dues aux
champs de Coulomb et de spin sont données par les formules 11,
§ 2 (17), changées de signe.

D’autre part, si 'on tient compte de la possibilité d’anni-
hilation et de création de paires, on voit apparaitre deux nou-
veaux phénomeénes que nous appellerons respectivement anni-
hilations réelle et virtuelle. Le premier est constitué par la
disparition définitive de la paire avec émission de deux photons
au moins si le systéme est 1solé, c’est-a-dire s’il n’est soumis a
aucune action extérieure. Le deuxiéeme phénomene correspond
aux deux processus suivants:

10 L’électron et le positron s’annihilent en émettant un
photon virtuel qui est ensuite absorbé en recréant une
nouvelle paire.

20 La deuxiéme paire est créée en premier lieu avec émission
d’un photon virtuel qui est ensuite absorbé lors de I’anni-
hilation de la premiére paire.
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Nous allons maintenant calculer I’élément de matrice du

second ordre relatif & ce phénoméne. Désignons par

2 2

i (Por 71— oy ) ;:l (Py vy —wy t)
Gy (;:-, z) = Up - \/fﬁ ) w1 (;;’: t) = “1 \/33

T (BoaTa=vos ) S Fas v )
D2 (;2.: t) = Ugy : '\/ﬁ 7 ® (7:;’1 t) = Uy = \/I?

les fonctions d’onde de I’électron et du positron dans Pétat

initial, d’une part, et dans I'état final, d’autre part.

Celles du systéme électron-positron, dans chacun de ces deux

états, s’écrivent respectivement:

Gr (;’; , ;_;, t) gz qJOA (;*1, ,’,;) 6*21L(w01 +Woa) ¢ ;

¥ (;)1, ;;’ ) — V (;;;, ’-_;) em%ﬁi(wﬁwa)t (2 a)
avec

Yov = o1, Poz,y 3 Yy = V1w P2,y (2 b)

Les éléments de matrice correspondant & P’annihilation de
la premiére paire avec émission d'un photon virtuel trans-
—

versal k£ et a I'absorbtion de ce photon avec création d’une

nouvelle paire ont pour expression

* = 0

= (e{ « K ;{) rl }uv rl_rf!) Vuv(r;’ ;;))

("1‘2;\*( 1, ;; E{KT?{) (T;) . ZC ®A 8(;':’_’_';’))

Ces éléments ne sont différents de zéro que si I'on a:

H, [ Yors (7 72) e (B + L A) C Ly 8 (" —13)) . Ty (6.3) dri dr,

do_;
L (0.7) . {L (Ao + «. A }u-v rlmrz) Ll)ut(rl r'z)d'ri dT2_2‘_‘—k

(3 a)

do

— — > — h —
e —_ — k. 4
Por T Pos P1 + P2 an ; (4)

—=

~h

i)
9

2
(

b)
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La différence d’énergie entre l'état initial et I'état inter-
mediaire est
E, — B, = wy + wpa —w, . (5)

D’autre part, les éléments de matrice relatifs a ’émission et

' —>
a I'absorption subséquente d’un photon virtuel transversal %',
suivant le second processus, s’écrivent:

— e -,

H, = [ 68 (7 7) 405 (7, RO TH0) e[ (A + ¥ A)C),

/ ! de‘[K
( 2) ‘I)w(":»"’v) dﬁdfzdﬂd%“ﬁ
= ($5" (7, 7)) - e{ Al . ¥C ), 8(R — R)) (3" a)
., = / W 7). e{ C(Ay + @ A) }u S(ry— 1)
do_7
- = —; =y ’ ‘ kR
. '@gﬁ("u ry) ‘I’Br('l s 2) FI(STZ) .dtidtydr dry —Q“TTT
= (e{ CLAZ ()} 8% — 7). 4o (0, 7)) (3"b)

Pour que H , et H, ne soient pas nuls, il faut maintenant
que

— — - — h — ¥
P1+Pz:P01+P02:_2"'{ (47)

La différence d’énergie entre I'état initial et I’état inter-
meédiaire est ici:
(5%)

E —E = —w, —w;—w,

Pour les photons virtuels longitudinaux, les calculs sont
tout a fait analogues. On voit que les impulsions des photons
émis et absorbés au cours des processus d’annihilation et de
création virtuelles de paires sont égales & 4 I'impulsion totale
du systeme électron-positron, alors que, d\ans les processus
d’interaction sans annihilation, elles représentaient, au signe
prés, Pimpulsion échangée par les deux particules.

ArcHIVES, Vol, 29. — Juillet-Aout 1947, 15
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En rassemblant les résultats, on trouve I’élément de matrice
du second ordre

VO = S (U (7)) - e{ Az (7). dC L, 807 — )
(e{Coa. Riq (P } o B(m—72) . 40A(7, 72)

| Wor + Woe — W),  —wy —wy — W |
\F(F?ﬁ = (90;* (?:’, ry ) e{l\ﬁ; (7’1 aC} rl mF;,))
(6{ C o. "\)“7{) (‘;)1) uy 8 (’11 ) l‘?f;f: (‘r; ’ r2))
! : + ! | 7b)
| Wor + Woa — Wy, —wy —wy —wy (78

Vﬂ = (V{/];*(?l” ;;’ E{AOR C‘}u 8 r1 r2 ))
(e{ CAGZ () b, 8(F — 1) 40a (7 s 72))
| 1 i 1 l

| Zop + Woa + @,  —wy —wy, + Wy |

Nous nous restreindrons comme précédemment aux transi-
tions entre états de méme énergie:

1 F Wog = wy -+ wy (8)

Dans ce cas V,, peut étre considéré comme l'élément de
matrice d’'un opérateur hermitien représentant une nouvelle
interaction due aux phénoménes d’annihilation et création de
paires. En tenant compte des formules (1) et (8), on peut
écrire V., sous la forme :

*{ice?{(uf 2; )(Cuvum ;1"02\,) (“1/‘23{“0} ) {C‘“ ;w“o;,gﬂ’oz,y)}

L3 (QTR) {(Pol + Poa) — (M—z) }

/ c

(9)

Cet élément de matrice s’ajoute a celui qui corresponds a un
échange d’impulsion entre les deux particules sans qu’il inter-
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vienne de phénomeénes d’annihilation et de création de paires.
Nous allons montrer que ces deux éléments de matrice sont équi-
valents 4 ceux qu’on obtient en appliquant la formule de Meller
a la théorie des lacunes.

Suivant cette théorie I'existence d’une paire est caractérisée
par le fait qu’un seul état d’énergie positive est occupé, tandis
que ceux d’énergie négative le sont tous sauf un. Désignons par

27l > = L.
—h}(pﬁl'r;"%xi) ‘ ‘Ht(gzh*wli)
bor (7)) = u Sv (") = u”
01\r1) = Ug — ) = u
VL3 v/ L3
\ (10)
277"(—> g . ) \ 2R’§(——>~—>/ . )
— 3, \PoeTe—Wozl — 5 (pary —w,!
Yos (Fa) = ttog =— /k’g(?’)*ue
a2\ Tg) = Uy = Ve = Uy —
VL3 : V13

la fonction d’onde de 1'état d’énergie positive occupé (électron)
et celle de la lacune (positron) dans I’état initial d’une part
et dans I'état final d’autre part. Nous avons écrit les fonc-
tions d’onde 4 énergie négative de telle sorte que Wy, Do
et w,, p, représentent I'énergie (positive) et I'impulsion du
positron.

En toute rigueur I’état du systeme est décrit par une fonction
d’onde antisymétrique dépendant des coordonnées de tous les
électrons d’énergie positive ou négative. Toutefois les états qui
restent occupés au cours des transitions que nous envisageons
ne jouent aucun role dans le calcul des éléments de matrice
relatifs a celles-ci. Il suffit donc de considérer le systéme
constitué par les deux électrons qui effectuent des transitions
d’annihilation et de création de paires. Avant le processus,
ceux-ci se trouvent respectivement dans les états d’émergie
positive et négative {, et ¢, et apres le processus dans les
états d’énergie négative et positive Y, et g ,.

"En raison de lantisymétrie de la fonction d’onde de ces
deux électrons, la formule de Mzller doit étre utilisée sous
la forme II, § 2 (18) en remarquant que pour l’application
actuelle les indices 02 et 2 doivent étre permutés et qu’il faut
remplacer Wy, Pos €t Wy, Pg PAr — Wy, — Pg €6 — Woay — Poo-
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Cette formule s’écrit alors:

U = b 32{ (U: Ugy) ("‘5;2 Uus) — (“: o?1*501) (“;z ;uz) }
FA L3 2717 2 [ = o WOI T Wi~2
(_hﬁ) '{l (Por — P1)” — (“““T**)

b 92{ (g2 ttoy) (U: us) — (gz € Ugy) (“:2”2)}

R Gt gl — ()]

L’élément de matrice U,, peut servir a étudier la diffusion
des positrons par les électrons. Cette application de la formule

de Meller a été donnée par Bhabha 1.
Afin de nous débarrasser des états d’énergie négative,
suffit d’utiliser les spineurs conjugués '

*

2 . / 2nij=> —
m(pozm‘“nof) ( o ;—:l(ﬁoz r ““(wt))
(12 @)
201 (> =2 ) / 2Tt‘i‘l—> = *
'T(pzrz 7“021) _"'T"\pzrz ‘\"-_),l))
0, €' =C !
En introduisant dans la formule (11)
Yoz = Cu':.z
. (12 b)
pe = G,
1l vient
i & s 62{ (it ths) (05 95s) — (g & Uo1) (05 & 042)
‘YA T T3 2 ] 2
L 27 5 = .9 “’01 — Wy
Yy (Pm — P1) —
* * — .
b€ { ul x()? l(‘x?) (uﬂl u_v()] V( u,)) _( l ’_v{ac}y,}_) ({CCC}

0 Y02,y

S (2;:1) { (P(u “F Pﬂz) o (\wm —(t_ wﬂ?)g}

Sous cette forme I'élément de matrice U, ,

en utilisant notre représentation & énergie positive; ce der-
nier est égal & la somme des expressions § 2 (9) changées de

L H. J. BuaBHA, Proc. Roy. Soc. (A), 154, p. 195 (1936).

_ qui découle de la
théorie des lacunes, peut étre comparé a celui qu’on obtient

(13)
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signe et § 3 (9). On voit que les deux éléments de matrice sont
identiques sauf que leurs signes sont opposés. Nous ne pouvons
pas dire & priori qu’on aboutit la & des résultats incompatibles,
étant donné que pour représenter une paire on emploie d’un
coté, les coordonnées d’une infinités d’électrons et, de I'autre,
celles de I'électron et du positron seulement. Cette difficulté
est intimement liée & celle que 1'on rencontre déja dans la
théorie du champ propre du positron lorsqu’on cherche & utiliser
la méthode des lacunes (cf. I, § 4).

En ce qui concerne les phénomenes de diffusion étudiés par
Bhabha les deux éléments de matrice conduisent au méme résul-
tat puisque c’est le carré de leur module qui intervient alors.

2. Linteraction V et la superposition des champs o.

Si nous continuons & ne considérer que les transitions entre
¢tats de méme énergie, I’élément de matrice V, relatif aux
phénomenes d’annihilation et de création virtuelles de paires
peut encore s’écrire sous la forme

A

/ q‘)]* PI,);:J) 1’ (1‘1 3’.2:’.13;12) LPA(?I’F:) dT:dT;dTldT2 )

(14)
dans laquelle \’, désigne I'opérateur hermitien:
V=80 —R) V(R =) =) (1)
avec
- >/ —> 2 Wh
\:x;‘/.)\.u.v(rl _—rl) = X 5 )
B 4 (wor + Woe) — W,
ez{S( L ) OLC);(? (C‘; P\Z(’i))uv (16)

+ (Kﬁ(?i’).&’c) (Ca. A} (7))

ﬁ(AOZ(’_’;,) )A (CAOR('))uv}

Si nous nous restreignons comme précédemment au cas des
¥ # - 2 ’ . . y -
vitesses non relativistes, w, est négligeable vis-a-vis de

(wo1 + wos)? puisque
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¢ étant la vitesse du centre de gravité du systeme. De plus, on
a alors sensiblement

1 Wk‘ e h
k wy + we  hmme

= A (Longueur d’onde de Compton).

En effectuant les sommations, il vient alors

+ — -7 1 >y — -7 g
Vs —7r1) = — ércy.g{bnlcwiz—- (xC),, . (Coc)w}é}(rl —r)
(16")

La présence des fonctions & (r; — F;) et 8(1"—;'—77;') signifie
que 'annihilation de la paire (1, 2) et la création de la paire
(1, 2) ne peuvent se produire que si I’électron et le positron
se trouvent au méme endroit dans chacune des paires. L’exis-
tence de la fonction 3(r, — r,) indique de plus que les deux
phénomeénes ont lieu au méme endroit.

Nous allons montrer maintenant que l'interaction UV, est
intimement liée a l'existence du champ o«. Les éléments de
matrice des coefficients de Fourier de ce champ sont donnés
par les formules générales I, § 4 (6) appliquées a des transitions
entre états d’énergies de signes opposés. Transformons ces
formules en introduisant les spineurs conjugués de facon & ne
plus faire intervenir que des états d’énergie positive. Nous
obtenons ainsi, pour une transition d’annihilation,

)y = — (ef X5 () . 9C}, 8 (L —70) - 4o, (L. 7))
Th/0A s Ao Woz — ), >
( G ) (E{KTT{) (;i) * EZC }!-LV 8 (;:I - ’?2) - L!J:j\) (';: 3 ;;))
(il o=
Th/0A oo + Wos + w,
PR G € VA GUEIS) PLIC St G
Al /0N Wor + Wog — W), 3 . )
- B iy S R 1/ aj)
( —:-u>) (e{A;\”ﬁ' (rl) ‘ G(C}_uv 3 (rl T r2) . H'J.L (rl ’ 7‘2))
C =
A R/0A W+ Wog —+ W,
R (e{ Aow (7) CJ B0 —7) - 45, (7L 7))
(co7)on = =+ :

Wor + Wop — Wy

(A ) Cha 34 ()

Wor + Woe + Wy

(Céf)(l_.\ =
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et pour une transition de création,

5y —> 7

(45 (r 1) e{Cg.K; (r }} (n—r)

(CTR)FO: w1 T Wy oWy, ;
* s/ s — - L -y s
oy (Bl ) e Ca R ()} 3= R)
T h/FO P — Wk
() W (7 ) efCa Bl (R Y800 —n)
\ .k /F0 By I W -h = :
5l =7 e (17 b)
(3 gy =— (4}*1(’11‘ {C 5 Axk i )}/; 3(ry—re ))
AR/FO EaE——
(g7) g = (45 (s ) -e{C AT (M } 5(r, _,.2)
0p/ro — ,

W + Wz + “'
(‘;’}:?( 1 ’2 {C Aoy (’"'1) x;.f‘?(?;'*?;'))

Wy + Wy — Wy

(COT;)F() =+

On arriverait exactement au méme résultat en partant du
systeme d’équations I, § 1 (6) et en se limitant au calcul de la
perturbation du premier ordre.

On déduit immédiatement des formules (17) et I, §43 (11 a)

les éléments des matrices (Ag)o,, CA)OA et (Ag)pos (A)p qui
sont les potentiels du champ d’annihilation de la paire (1, 2)
et du champ de création de la paire (1', 2). Grace a ces éléments
de matrice, on peut mettre V., sous la forme

25 1 i et e > =¥ / ’ ’ ’
Vi == 9 l / ’1’= 7'2’ {(A K (A)OA) o 8(r1— 1)« drydrs

=

+ e{( ¥0 + l A)}’O) uy 8(."1—-—? ) df‘iv (’_:17 F;) dTl dTZ] (18)

Le premier terme correspond a la création de la deuxieme
paire sous l'influence du champ d’annihilation de la premiére
et le deuxiéme & l'annihilation de la premiére paire sous
I'influence du champ de création de la seconde.
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Dans le cas des vitesses non relativistes, on a d’ailleurs:
- -

2 5 - 5%
f(Ca)WB(rl——rg) S(ry—r). b, () drydrs

- -

2 > - e -
f Cp  B(—2)Bly—7). l‘!”f:v("l 2 rg) Ay d

| el
S

l

(3.

TR g
— S— N

35

(19)
2 * =7 =/ - s sy Ly o , " \
f ]‘\(rlﬂrz).(ocC)y_).B(rllﬁrz)8(;114,-)0!11({,:2

— —r -7 >

2 k= ) 5 7 o £
f!])}d Py 1P ) C,, 3(ry—ry) 8(ry—r)drdr,

S N— S
o
S
I
s}
s /A\

M|> w1>

En introduisant ces expressions dans la relation (18), on
retrouve les formules (14), (15) et (16).

Montrons maintenant comment s’applique ici la notion
d’énergie de superposition. En tenant compte des expres-
sions (17) et en continuant & ne considérer que des transitions
entre états de méme énergie, nous pouvons écrire les relations (7)
sous la forme

Vid=—Z{ (D)o (Tos + (@T)oa ()ro foy (200)
i
7(% 0 — s —> -
\“(F:Z + Vi) = E{ (corr — 7)o (o — 7 Jos +
1

1 N - 7 \
+ (Cdf“c)ﬁ')m (COKAC?\?;)VO}W.Q (20 b)

La premiére de ces formules n’est valable que dans le cas ol
le centre de gravité du systeme est animé d’une vitesse non
relativiste; la deuxieme est valable indépendamment de cette
restriction. En comparant les expressions (20) et I, § 1 (4%)
on voit que V_, est égal a la différence des énergies de super-
position des parties longitudinales et transversales des champs
d’annihilation de la premiére paire et de création de la seconde.

S1 'on utilisait la théorie des lacunes, on obtiendrait au
lieu de la formule (18):

’

Vie =— Voo = | 40 (1)

—

ra) VL gy (1) by (r2) dvy dry
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avec

’ 1 — - > —> — - -
Ve = §{e (A(oclg (ra) + O‘E-AS) (”2)) + e(A{fg(’H) + “1-‘&22)(”1)) }

- - - —~

= (1 — .0 3(ry —ry)

Suivant ce point de vue, chacun des deux électrons d’énergie
positive et négative qui interviennent dans le phénomene
d’annihilation et de création virtuelles de paires est soumis &
'action du champa de I'autre. V, résulte alors de la différence
des énergies de superposition des champs « longitudinaux et
transversaux de ces deux particules. Nous nous sommes jus-
qu’ici restreints au cas de transitions entre états de meéme
énergie. Toutefois il est fort probable que les expressions hermi-
tiennes (14), (15), (16), (16") et (18) restent applicables aux
autres transitions. En effet, nous avons déja vu qu’en ce qul
concerne 'interaction coulombienne, les opérateurs hermitiens
§ 2 (11), déduits de I’élément de matrice du second ordre pour
les transitions entre états de méme énergie, restent applicables
en toute rigueur aux autres transitions, bien que cet élément ne
soit plus alors égal & P'élément de matrice de linteraction
correcte. Enfin, puisque nous nous bornons a étudier les phéno-
meénes d’interaction dans les cas non relativistes, il suffit
d’employer pour chaque particule des fonctions d’onde & deux
composantes. On vérifie alors sans difficulté que V, s’exprime
au moyen des matrices de spin de Pauli par la formule

1+ o,. 6')-2 l — -

5 | S(ry —ry) (21a)
:47:@2?8(1_';——1"2) (21 b)

[’expression (21 a) a été écrite de facon & mettre en évidence,
dans l'accolade, deux opérateurs dont I'un ne modifie pas les
spins tandis que 'autre les permute; nous reviendrons sur cette
propriété remarquable. D’autre part la forme (21 &), qui fait
intervenir le spin total

L4y
o
A

— —
:Gl+ 02 (
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des deux particules, nous montre que le phénoméne d’annihila-
tion et création virtuelle de paires ne peut se produire que
si I’électron et le positron ont leur spins paralléles.

3. Le caractére d’échange de Uinteraction V.

Suivant le formalisme de I'électrodynamique quantique, le
phénomene d’annihilation et de création virtuelles correspond
a la disparition de la paire initiale (1, 2) et & 'apparition
d’une nouvelle paire (1’, 2"), différente de la premiere. A ce
point de wvue, I'étude du systéme électron-positron nécessite
en toute rigueur, 'emploi d’une infinité de coordonnées, aussi
bien suivant la théorie des lacunes, que suivant notre repré-
sentation a énergies positives.

Nous nous proposons maintenant de rechercher comment il
est possible d’entreprendre cette étude, dans l'approximation
non-relativiste de Pauli, en n’utilisant que les coordonnées F; et
1?2 de deux particules seulement, tout en tenant compte des
phénoménes d’annihilation et de création virtuelles par I'intro-
duction convenable de I'interaction V.

Nous laisserons, pour l'instant, de coté D'influence des
transitions radiatives ordinaires ainsi que celle de I’annihilation
réelle.

Si I'annihilation virtuelle n’existait pas, I'état du systeme
électron-positron pourrait étre décrit par une fonction d’onde
L].)(?l, ;;) dans laquelle 71 et ’?2 désignent respectivement les
positions de I’électron et du positron, et qui obéirait a I’équation
de Pauli:

p? P
g O Ha= o7, Teprés
des deux particules et V(r, — r,) la somme de linteraction

[ 84

ou H, = représentent les énergies cinétiques

2
électrostatique de Coulomb, V, = — ;—, et des interactions
12

magnétiques indiquées dans le tableau du §2, 1.
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Nous pourrions également considérer le positron comme pre-
miere particule et 1'électron comme seconde. Dans ce cas la
fonction d’onde o(r., r,) obéirait a I’équation:

e ¢(ry, r,) obéirait a I’équation:
— —_ — — — —_
{Hl + Hy + V(rp —1y) }‘P("lv r) = Eo(r, 1)) (23 b)
1dentique a la précédente.

Dans le cas considéré ici, ou le champ extérieur est nul, les
fonctions propres sont symétriques ou antisymétriques par
rapport aux permutations simultanées des coordonnées et des
spins des particules,

- — -

Gij(res re) = & by (e 1) (24 a)
en raison de I'invariance de I’hamiltonien des équations (23)
par rapport & ces opérations. Si I'on néglige les interactions
magnétiques, ces deux permutations respectent séparément
I'invariance de I’hamiltonien. La symétrie de la fonction d’onde
se décompose alors en une symétrie d’espace

e - =
‘Pij("u”z) = gk ‘-Pij("z”'l) (24 B)

et une symétrie de spin

> —
I

'1"’53'(’7'\1: Ty) = =& ‘l’ji( ) (24 c)

Introduisons maintenant le phénomene d’annihilation et de
création virtuelles. Suivant l'électrodynamique quantique, la
paire créée est essentiellement différente de celle qui s’est
annihilée. Toutefois, il est possible d’utiliser les mémes coordon-
nées r:, 72 pour représenter ces deux paires, du fait que les
deux particules finales apparaissent & I’endroit méme ou ont
disparu les deux particules initiales. En effet, grace a cette
circonstance exceptionnelle, I'élément de matrice V_, peut se
transformer de la facon suivante:

ok S Sy

o
- £ 1 B )
Wy = Bapp? ‘ & (7.1’,,2)_,}[ 1+ i‘_;lﬂ].

—>7 — - = — —

S(r— 1) 8(r — 1) 8(r— 1) . U (7 1) d, d, dy d,

o - =)
— amp | Y0 ;Z).lli L1400l

2

3(ry—r2) . (f: : ’_:) dry d=, (25)
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. # . — — .
Mais la présence de la fonction 3 (r, — r,) nous permet égale-
ment de I’écrire sous la forme

o> o [ 1+ g c?l
V,, = bmp? [ch (r1, rz)l1 + MT__Z_EJ '
S(rp — 7o) . YA (ry s 72) A7y divy (25 b)

En d’autres termes nous pouvons supposer a priori qu'apres
un processus d’annihilation et de création virtuelle, chaque par-
ticule a conservé son caractére électron ou positron [élément
de matrice (25 a)], ou au contraire qu’il y a eu échange des
caracteres, I'électron étant devenu un positron et le positron un
électron [élément de matrice (25 b)]. Dans la premiére hypothese,
les équations (23) doivent étre remplacées par les suivantes:

(Hy + Hy + V+ V)¢ = E¢
(26)
(Hy + Hy, + V + V )o = Eo '
Si I'une des configurations (¢, 0) ou (0, ¢) est réalisée a un
instant donné, elle subsistera ultérieurement. On peut donc
assigner un caractére bien déterminé aux particules 1 et 2 et
résoudre I’équation correspondante.
Par contre, si I’on suppose que I'interaction V,_ correspond &
un échange de caracteres, les équations du systéeme électron-
positron s’écrivent sous la forme

(Hy + Hy, + V)¢ + Vo — B
H, + H, + V)o + V, 4 — Eg

Rien ne fixant jusqu’ici les signes de ¢ et ¢ on peut choisir
arbitrairement dans (27) soit le signe supérieur, soit le signe
inférieur. 11 est bien connu que des équations de ce type
représentent un phénomene d’échange: si & l'instant ¢ = 0
la configuration (¢, 0) est réalisée, un certain temps apres c’est
la configuration (0, ¢) qui le sera. Pour résoudre ces équations,
effectuons en la somme et la différence; il vient

(Hy = Hy + V£ V) (¢ +9) = E(d + 9)

(28)
(Hy + Hy + V F Va) (b — o) = E. (Y — ?) '
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Ces nouvelles équations admettent deux espéces de solutions

g 1

1

y— = = —

Y—g=d  p=gul

et

! - y 1
Y+e=0 9= 35

r 1
Y—g=1 ¢=—g57

Suivant que nous avons affaire a4 'une ou I'autre de ces
especes, nous disons que le systéme est dans un état symétrique
ou antisymétrique de caractere.

Si nous considérons V et V_ comme des perturbations, nous
sommes amenés a construire les éléments de matrice de V4V,
ouV— V_, selon la symétrie de caractere de I’état non-perturbé
et le signe adopté dans les équations (27). Nous avons vu
(§ 3, 1) que c’est le premier de ces éléments qui intervient dans
I'interaction entre électron et positron. Par conséquent I’anni-
hilation et la création virtuelles se produisent dans les états
svmétriques ou antisymétriques de caractére, suivant que nous
choisissons le signe supérieur ou inférieur dans les équations
précédentes (27) et (28).

D’autre part ce phénomene n’affecte que les états symétri-
ques d’espace et symétriques de spin, car les éléments de
matrice de V_ ne sont différents de zéro que si I'électron et
le positron ont une certaine probabilité de se trouver au
méme endroit avec des spins paralleles dans chacun des états
initial et final. Si pour fixer les idées nous choisissons le signe
inférieur dans les équations (27), ces états sont de plus anti-
symétriques de caractére. Dans ce cas particulier, la fonction
d’onde est antisymétrique au total:

- = - =

‘Pij (’11’ "2) = — ‘Pj-i(":ea 1)

Nous allons montrer, qu’il en est de méme dans le cas général.
A cette fin, nous devons considérer le cas ou le champ extérieur
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n’est plus nul, ainsi que nous l'avions admis jusqu’ici. En
désignant par — U et 4 U les interactions de I’électron et du
positron avec ce champ, les équations du systéme électron-
positron deviennent:

{H,+ Hy + V—U, (") + Us () }¥ — V0 = By
R N (29)
{H, + Hy + V + U (r}) — U, (1) }o — V, 4 = Eo

Ces équations admettent deux espéces de solutions, symétri-
ques et antisymétriques au total, L[./l-j(F;, F;) = fpji(r?;, s
mais cette symétrie globale ne se décompose plus en général
en trois symétries partielles, d’espace, de spin et de caractere.

D’autre part, I'interaction avec le champ extérieur est symé-
trique au total, mais antisymétrique par rapport aux coor-
données et aux spins. Il ne se produira donc jamais de transitions
entre états de symétries totales différentes, mais la symétrie
d’espace et de spin est susceptible de changer. Il en résulte
que le systeme doit nécessairement se trouver dans un état
antisymétrique au total, sinon, en faisant agir un champ exté-
rieur convenable, nous pourrions I'amener dans un état symé-
trique séparément d’espace, de spin et de caractére, ce qui
serait en contradiction avec ce qui précede.

On montrerait de facon analogue que le systeme électron-
positron se trouverait obligatoirement dans un état symétrique
au total sil’on adoptait le signe supérieur dans les équations (27).

Nous choisissons ici le signe inférieur de facon a pouvoir
étendre le principe d’exclusion de Pauli au cas de deux parti-
cules de Dirac de signes quelconques. Les équations (27) se
généralisent alors d’elles-mémes dans le cas d’un systéme
constitué d’'un nombre quelconque d’électrons et de positrons.
Au contraire, cette généralisation, se heurterait & de sérieuses
difficultés, si nous adoptions 'autre signe.

[l nous reste a voir maintenant si V, doit étre considéré
ou non comme une interaction d’échange. Il importe tout
d’abord de remarquer que dans les applications les deux points
de vue conduisent toujours a des résultats identiques, méme
lorsque le systeme est plongé dans un champ extérieur. lin
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effet, puisque dans Phypothese de ’échange, nous n’utilisons
que les fonctions d’onde antisymétriques, les équations (29)
peuvent s’écrire

{1+ Hy + V—Uy () + Us () } 0GR + V, § 7)) = B (3 7) |
(30

oS P e o

{ M+ Hy+ V4 Uy () — Uy (73) Fo(rar) + V9 (rar) = Eg (1)

En les comparant sous cette forme aux équations (26), qui se
rapportent & I’hypothése ou il n’y a pas d’échange, on voit
immédiatement que la fonction d’interaction V, conduit dans
les deux cas aux mémes éléments de matrice. Ceci résulte de
ce que V, contient la fonction o (F;l — ;7;) et du fait que

-{‘1+—1+(;1'°2)}¢=¢+$-

Cependant il semble plus logique de considérer V, comme
une interaction d’échange. En effet les équations (29) sont
mathématiquement équivalentes, dans le cas non-relativiste, &
celles de la théorie des lacunes, en ce sens qu’il existe une corres-
pondance biunivoque entre les solutions de méme symétrie des
unes et des autres. Au contraire, si 'on suppose que l'inter-
action V, n’a pas le caractére d’échange, on est conduit aux
équations (26) qui n’admettent aucune solution correspondant
aux solutions symétriques des équations de la théorie des
lacunes. On pourrait penser qu’il est plus satisfaisant d’écrire
ainsi les équations du probléme électron-positron de facon
qu’elles ne possedent que des solutions ayant un sens physique,
plutét que d’employer un principe d’exclusion. Toutefois le
probleme de deux particules de Dirac de méme signe ne se
présente pas sous cet aspect, tout au moins dans le formalisme
actuel, et 'application du principe de Pauli reste nécessaire.

Par conséquent, si nous n’attribuions pas & V_ un caractere
d’échange, nous serions conduits, dans le cas du probleme
général de n particules de Dirac de signes quelconques, &
un mélange peu satisfaisant des deux points de vue. Une
partie seulement des solutions symétriques des équations de
la théorie des lacunes n’aurait aucun correspondant dans notre



238 LE CHAMP PROPRE ET L'INTERACTION

théorie a énergie positive tandis que les autres solutions symé-
triques subsisteraient et devraient étre écartées par I'applica-
tion du principe de Pauli. :
Il est particulierement intéressant de remarquer que si I'on
considere V, comme une interaction d’échange, celle-ci est
du méme type que celles qui ont été introduites de facon
phénoménologique dans I'étude du probléme proton-neutron.
En effet, I'interaction due a P'annihilation et & la ecréation
virtuelle, peut s§’écrire symboliquement sous la forme:

ﬁPVa:—-{P—;—Pi

ou P est 'opérateur de permutation d’Heisenberg qui échange

les caractéres des deux particules mais conserve leurs spins,

autrement dit, qui remplace J(r , r,) par @(r;,r,) et vice

versa. D’autre part '
_

1+ (51 02)
2

P
est opérateur de Majorana, qui permute les caractéres et les
spins des deux corpuscules. Enfin, les interactions de Coulomb,
et de spin, sont analogues a celles de Wigner et de Bartlett.
Ainsi la simple application de I’électrodynamique quantique
fait intervenir de fagon bien déterminée, dans le probléme
électron-positron, les quatre types d’interaction utilisés plus
ou moins arbitrairement en physique nucléaire.

(@ suivre)
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