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1946 Vol. 28 Novembre-Décembre

LE CHAMP PROPRE ET L’INTERACTION
DES PARTICULES DE DIRAC

suivant 1’électrodynamique quantique

PAR

Jean PIRENNE

INTRODUCTION

La notion de quanta apparut au début tant en mécanique
(modeéle de 1'oscillateur de Planck, théorie des chaleurs spéci-
fiques des solides de Einstein) qu’en électrodynamique (notion
des quanta de lumiére d’Einstein). Toutefois c’est d’abord en
mécanique que les principes de la théorie quantique furent
posés de fagon cohérente et précise, en premier lieu dans
I’ancienne théorie de Bohr et de Sommerfeld, puis ensuite dans
la mécanique quantique ou ondulatoire, telle qu’elle a été
développée par L. de Broglie, Heisenberg, Schridinger, Pauli,
Dirac, etc. Grace & celle-ci, on a pu aborder en détail I'étude
de la structure atomique de la matiere et expliquer la plupart
des phénoménes de rayonnement en appliquant de facon
convenable la théorie électromagnétique classique de Maxwell.

C’est seulement apres que les principes de la théorie quan-
tique furent établis en mécanique, que Dirac, Heisenberg et
Pauli, Fermi, Bohr et Rosenfeld et d’autres les appliquérent a
la théorie du champ électromagnétique. 1.’électrodynamique
quantique, issue de ces recherches, a trouvé d’importantes
applications dans les problemes de radiation ou elle fait appel
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234 . LE CHAMP PROPRE ET L’INTERACTION

a la notion de photon. Elle a permis également d’aborder le
probléeme de l'interaction entre deux particules.

Toutefois aucune analyse approfondie n’avait été faite de
la facon dont se présente, suivant cette théorie, le champ
propre des particules élémentaires qui est a l'origine des
champs statiques macroscopiques de la physique classique.
Récemment G. Beck 1 a étudié & ce point de vue le champ d’un
électron de Dirac animé d’une vitesse non relativiste. Il trouve
que cette particule posséde au repos un champ statique consti-
tué” de trois parties: le champ de Coulomb, le champ de spin
et un nouveau champ qu’il appelle le champ «.

Dans le présent travail, nous nous proposons en premier lieu
de reprendre I’étude du champ propre de I'électron en nous
placant & un point de vue moins formel, respectant plus fidele-
ment la définition des notions introduites en électrodynamique
quantique. Ensuite nous examinerons en détail I'interaction
mutuelle de deux particules de Dirac, de méme signe ou de signes
opposés et animées de vitesses non relativistes, en mettant en
évidence le role joué par leurs champs propres. L’existence du
champ « nous ameénera a réserver une attention toute particu-
liere au cas de I'interaction entre I'électron et le positron, dans
laquelle ce nouveau champ intervient de fagon appréciable.

Le mémoire est divisé en trois parties. Dans la premiére
nous exposerons succinctement et de fagons paralleles 1'électro-
dynamique classique et ’électrodynamique quantique, suivant
une méthode analogue a celle de Fermi, afin de pouvoir compa-
rer et discuter les résultats qui nous intéressent spécialement.
Nous y rappellerons également 1'équation de Dirac, en présen-
tant la théorie du positron, sous une forme différente de la
théorie des lacunes et plus appropriée a I’étude de I'interaction
entre 1'électron et le positron. Enfin nous y développerons
Pétude du champ propre de I’électron. Nous retrouverons les
trois parties signalées par G. Beck, mais sous un aspect assez
différent. Le champ «, notamment, ne se présentera plus comme

1 G. Beck, Comptes rendus, 1938, 207, p. 528 ; Journal de Physique,
1939, 10, p. 200; Comptes rendus, 1941, 212, p. 850; Cahiers de Phy-
sique, 1941, n° 4, p. 1.
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un champ statique, mais comme un champ de transition, et la
fagon dont il dépend de la distance sera complétement modifiée.
Cette nouvelle forme apparaitra comme beaucoup plus satis-
faisante lors de I’étude du systéme éIectrononsitron.

Dans la deuxiéme partie nous montrerons que I'interaction
de deux particules de Dirac est liée trés simplement, comme en
théorie classique, a I’énergie de superposition de leurs champs
propres. Nous examinerons ensuite la contribution a cette
énergie de chacune des parties de ces champs. Nous verrons
ainsi que la superposition des champs magnétiques des spins
donne lieu 4 une interaction formellement identique a celle
de deux dipdoles magnétiques ponctuels lorsque la distance
entre les deux électrons est grande vis-a4-vis de la longueur
d’onde de Compton. Nous obtenons toutefois un terme supplé-
mentaire nouveau qui peut étre considéré comme une inter-
action intervenant a trés petite distance. L’existence de ce
terme provient de ce que le champ magnétique du spin corres-
pond plutdt & I'image classique d’une distribution de courants
électriques (courants particulaires d’Ampere) qu’a celle d’un
dipdle constitué de masses magnétiques ponctuelles.

Quant au champ «, il donne lieu & une interaction du méme
ordre de grandeur que celle des spins, mais qui ne se manifeste
qu’entre électrons de signes opposés. Elle n’'intervient qu’a
faible distance et correspond a l'annihilation et a la recréation
virtuelle de la paire. On peut l'interpréter comme une inter-
action d’échange entre les deux particules. On arrive alors,
pour le systéme électron-positron, a des équations analogues a
celles que Heisenberg a introduites de facon phénoménologique
dans I’étude du systéme proton-neutron.

Enfin la troisiéme partie du mémoire est consacrée a 1'étude
détaillée du systéme électron-positron. Celui-ci présente un
spectre de niveaux assez semblable & celui de ’atome d’hydro-
géne. Cependant ces niveaux sont élargis par suite de la proba-
bilité de dématérialisation définitive de la paire (annihilation
réelle) et déplacés par l'interaction magnétique des spins et
I'interaction d’échange (annihilation virtuelle). Toutefois la
stabilité des niveaux est suffisante pour qu’on puisse observer
le spectre optique du systéeme dans des conditions favorables.



236 LE CHAMP PROPRE ET L'INTERACTION

I. L’ELECTRODYNAMIQUE
ET LE CHAMP PROPRE DE L’ELECTRON

§ 1. — LELECTRODYNAMIQUE CLASSIQUE.

1. Les équations de Maxwell-Lorentz.

Suivant la théorie classique, le champ électromagnétique est
régi par les équations de Maxwell-Lorentz:

\rotEJrl@:o pot B = B s g
? ¢ Ot c Ot c 1)
divH = 0 div E = 4mp

Le champ électrique E et le champ magnétique H peuvent

se déduire d’un potentiel scalaire A, et d'un potentiel vecteur A
par les formules

|

|

A et A, forment

1 GK
¢ Ot
- (2)
= rot A

— grad A,

Ty =

un vecteur d’espace-temps satisfaisant aux

équations
= 1A o o 1Ay
A — = — — 4 — i g 200 2
AA— tme S + grad (de + - I) (3a)
1024, 10 (. + , 104,
| AAO*_EZ G[Z = — 4mp ——?a—t(leA-i- ? bt) (35)

La solution générale de ces équations est la somme de celle

—_

% - % 9
des équations homogénes obtenues en annulant p et p — et d’une
solution particuliére des équations non homogenes. La pre-
miére représente un systéme d’ondes se propageant avec la
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vitesse ¢ et constitue le champ de radiation dans le vide. La
deuxiéme solution correspond, si elle est convenablement
choisie, au champ créé par les charges électriques.
D’habitude on se débarrasse du dernier terme des équa-
tions (3) en imposant que la divergence du vecteur spatio-

temporel K, A, soit nulle:

divA + — =, = 0 (&)

Le champ di aux charges est alors donné par les formules
bien connues des potentiels retardés

— - —

g 0(—> r—rl)
S e\, t —
Alry 1) = / ¢ e ¢ d (5 a)
C r—r| '
R )p(rpt'—l—r—_;m)
Ao(r7 t) = — = dT]_ (5 b)
¢ r—rnr

Sip et p% sont indépendants du temps, ces formules défi-

nissent des champs statiques. Ces champs, qui sont essentielle-
ment différents du champ de radiation, sont intimement liés
a I'existence des particules élémentaires et sont mis en évidence
dans les expériences fondamentales de Délectro- et de la
magnéto-statique. Toute théorie électrodynamique doit néces-
sairement comprendre ces deux aspects du champ.
D’autre part on peut également imposer aux potentiels, que

nous désignerons alors par A’ A;, la condition de caractére non
tensoriel :

divA’ = 0 (6)

au lieu de la relation (4). On renonce ainsi & I'invariance du
formalisme vis-a-vis de la transformation de Lorentz ou a la

E —

possibilité de considérer A’, A’ comme formant un vecteur
0

d’espace-temps. Mais on arrive a une simplification remar-
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quable de ’équation: (3 ). En effet les équations (3) s’écrivent
alors:

~, 1 AT o 10 ’
AV —aTE = Thmer T oy emda, ()
AA’ = —&mp (7b)

0

Ainsi le potentiel scalaire est donné, comme en électro-
statique par la formule

NGy = [ Ll (5 B)
o ” r —rl‘ ‘

et le champ électromagnétique peut étre considéré comme la
somme d’un champ irrotationnel

E, — — grad A,
’ gradas (8.a)
H}‘ — O
et d'un champ sans divergence
> 104
b=
- = \Biby
H_ = rot A’

Cette décomposition n’est d’ailleurs pas invariante vis-a-vis
des transformations de Lorentz et chacun des champs () et (1)
ne satisfait pas isolément aux équations de Maxwell. D’autre

part le champ E, ne dépend que des coordonnées du point ou
on I'évalue et de celles des charges considérées au méme
instant. L’effet de la vitesse finie de propagation est reporté

entierement sur le champ (E_, FIT).

On peut également représenter les champs (A) et (1) par des
potentiels (A, A}\n) et (A_, ATD) satisfaisant chacun a la rela-
tion (4). Il suffit pour cela de poser

=

.\—}—K__; rotK)_——-O : divKT:l)

4

20 ;7 Ap=0.

=~ =
=

0:
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On a alors

=2 _ 1 OK}, 5 o 1 OKT

., (8"a) ; ) N (8D
| Hx = 0 H- = rot A-

2. Développement en série de Fourier du champ
électromagnétique.

Nous allons développer le champ électromagnétique en série
d’ondes planes & 'intérieur d’'un cube d’aréte L arbitrairement
grande. Ceci permet d’écrire les équations de Maxwell-Lorentz
sous forme hamiltonienne, puis de quantifier le champ par
Pintroduction des opérateurs. Le développement en série de
Fourier peut également étre utile dans certains problémes
classiques.

A un instant donné le champ électromagnétique est déter-
2K 04,
at’ ot~
représenter par les séries suivantes, A_, A, et A, ayant les
mémes significations que précédemment. |

—_
miné si 'on connait A, A,, . Ceci nous amene a le

A: = 8Z(c3 Az + 3 AR)
I
M= L7 AZ +af AZ) (9a)
3
Ao = Zlef Agi + aF Aok)
K
1 a—)A . T Y * %
c atT - S_? th(e; Ay — eonAop)
138 —  mik(e,3 K7 — e Kl3) (98)
¢ 0t A=A
10A B, s
?T{U = —  Zik(egy Agy — coF A7)
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avec

g 5 \/2 T Wy ei_h}?
A = af —
. k V13
e 7; f\/? T Wy, ei—k)-?
& ko /Te
) V2nw, g’ﬁ;?
9k ~ ko A/I3

AA

=
La suite des vecteurs d’onde & est déterminée par les condi-
tions

de fagcon que les fonctions PR /\/1,_3 forment un systeme

orthogonal, normal et complet a4 l'intérieur du cube L3. Le

signe § indique la sommation sur toutes les valeurs de n,,
K

ny, ng. Celle-ci se transforme en une intégrale si I'on fait

tendre L vers I'infini; pour effectuer ce passage a la limite on

remarquera que pour L suffisamment grand le nombre de vec-
—

teurs k£ contenus dans un angle solide dQ et dont le module
est compris entre k et k -+ dk est

, k2 dk

8 r3

i dQ (11)

Notons a ce propos les développements en série de Fourier
de quelques fonctions que nous rencontrerons:

o 1 SkT 2]
r omc > — a
) VI3 7 /I3
1 b 1 kT
r \/L3 5 k2 »\/ 3

1 b i?elk?
BT VO IR VD el
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3 (r) étant la fonction de Dirac satisfaisant aux conditions

SO si r = 0 est hors de @
S 3(r)dr = )
@

1 si r = 0 est dans @

-

Le vecteur de polarisation a- est unitaire et perpendiculaire

_ =
au vecteur d’onde k. Pour chaque vecteur £ nous choisissons

—_—— -
(1 2
deux vecteurs aﬁ) et a;:)

se rapporte a la sommation sur ces deux directions du vecteur
_— —

o e 5 . 1 @

de polarisation. De Porthogonalité des trois vecteurs A, @z

perpendiculaires entre eux. Le signe S

et k£ découlent les relations

- ky
S (a—ﬁ:) =1 — ]ﬁ- )
(13)
- - k. k
- > — e L}
> (ak )x (w;a )U 2

- -

Les ondes transversales et longitudinales A;,; et A,7 forment
un systéme complet ainsi que les ondes scalaires Agy. L’éner-
gie w, qui intervient dans leur facteur de normalisation reste
provisoirement arbitraire.

Des formules (8), (9) et (10) on déduit aisément les relations

1 -2 —2 *
ﬂf (E_+ H)dr = STy e w, (14a)
R
1 —2 — — o e o gy
g;f (B, + 2E, . grad A d= = I (53 3 — 7 coF) %
k

(14 5)

w,, représente donc I'énergie de 'onde transversale de vecteur k
lorsque I’amplitude correspondante {c;,; est égale & I'unité.
De plus (14 a) indique que DPénergie totale du champ trans-

versal est simplement la somme des énergies des ondes planes
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qui le composent. Celle du champ longitudinal ne jouit d’une
propriété analogue que lorsqu’il s’agit d’un champ électro-
statique véritable pour lequel on peut poser aa—At" =0; A=0.
Dans ce cas seulement I’équation (14 &) devient

o [Blds = chkc()k w, (14b)

D’une facon générale on déduit des tormules (14) que
I’énergie totale localisée dans ’espace peut s’écrire

pleh) 1

gm) (B + W) de = S(Seig e + % o5 —

— gt o) + [ eAede (15)

Le dernier terme differe seulement du second terme du
premier membre de (14 b) par une intégrale de surface qui
disparait lorsque la surface s’éloigne indéfiniment des charges
qu’elle entoure.

3. Le champ considéré comme un ensemble d’oscillateurs
harmoniques.

Portons dans les équations de Maxwell-Lorentz (1) et (4) les

expressions de A, _J;L :7&_' +7&}‘, E et _I:I, déduites des for-
mules (2), (9), (10), (11). En multipliant les deux membres de
chacune de ces équations par le conjugué complexe de 'une
des fonctions (11) et en intégrant sur tout I’espace on obtient
sans difficulté les équations différentielles suivantes:

R é;,;) PR i

¢k t "y Wy, = P?'Ark(")df (16a)
B = f o Arr (F)d= 16b
Ok T 7o/ ¥ = | e ME(r)ds (16 5)

< 007; N o '
co7 + v ) W = p Ay (r)dr (16¢)
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dans lesquelles on a posé: w = kc. La condition (17) résulte de
Péquation (4). Il suffit qu’elle soit remplie & I'instant initial pour
I’&tre ultérieurement car les équations (16 a) et (16 b) entrainent
la relation

Les équations (16) peuvent donc étre considérées comme
indépendantes. Notons en passant que des équations (16 b),
(16 ¢) et (17) découle la relation

*

(e — o) (af —aF)wy =
E
= Z(es o7 — con on) %y + S e Agds (4.5)
La formule (15) devient alors

*

h * ; e ’
Wl = 3 (con — &%) (e — &%) + Scg 3 E P (157)

=}

D’autre part, si le systéme est constitué par des charges quasi
ponctuelles e;, e,, ... e,, les équations (16) peuvent s’écrire sous
la forme

N ¢ R Y e
(Crk + im)wk — .Si_jei'g"rk(ri) (19a)
2 . - .
L 5% _ I G =g
(Cm +Tg)")wh = E;Jei“c_'Aﬂk(ri) (19 8)
(007{ + L—> Wy = Zei Aoz (ry) (19¢)
1

2w

pour les valeurs de £ telles que la longueur d’onde 7

soit grande

vis-a-vis du rayon des particules.
Ecrivons maintenant ces équations sous forme hamiltonienne.
Pour cela introduisons les couples de variables canoniques ¢_7,



244

P BF» DX doks Poy, définis par les formules

2w c**—{—c*‘> 2w
. k "tk TR o k
I o 2 \q’xh o 2
ram— * N
Y AL / VLT
Pz = © 23 Prw = I 21

e *
L 2wh o + G
Ton, 9

\/2Wk 0% _Cok

d’ou I'on tire

ek = \/%; (¢ +ip3)
o e /
%k =V 2w, @3 —ip3)
m -
ok ==V 2w, (907 ~iPok)
. o _
Cop = — '274;; (907 +1P07;)

Choisissons comme hamiltonien I’expression

H = H + HO
avec
H(Gh) — E (S C—Tk CT';? + 5 C)Ch»_> C;Z Cﬂ_h)wk
k
— E{Ste(p +a7) + +4,7)
= & g @ Py q-7) 2°’(P1k D)
R
— 5o (pe7 + %7) | wn
HO — z. ) Ag(r) ._?1- A (r)

LE CHAMP PROPRE ET L'INTERACTION

*
> =
Or T A%

(20a)

w
Gk = \/Q_WR (9,7 +im7%)

. /=
Gk — 2w, (o7

— %)

(20 b)

(21a)

(21 a)

(21 b)
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On vérifie 1immédiatement que le systéme d’équations
q ¥ q

canoniques

S OH _ oH K o H _

, 0 9% = — P 0BT PR ) 0407, = — Poy, 19
oH oH © ) oH _
dp7 — Tk |opy T D / dpgz = Yo

est équivalent a DIensemble des équations (16) et de leurs
conjuguées complexes. La condition (17) devient

W7 = — OPT Pop = ©%p (17%)

Suivant le schéma actuel, le comportement du champ se
trouve ainsi décrit par les mouvements d’une triple suite
d’oscillateurs harmoniques dont H(® représente la somme des
hamiltoniens, ceux des ondes scalaires étant comptés négative-
ment, et dont le terme d’interaction H” exprime le couplage
avec les particules. Il est d’ailleurs a remarquer que I’énergie
du champ n’est ni H ni HCY, D’apres (15) elle est égale a

W = 1O 4 e A7) 22
1

Quant a la solution générale des équations (16) ou (16'),
elle est la somme de celle des équations homogenes correspon-
dantes (oscillations libres) et d’une solution particuliere des
équations non homogenes (oscillations forcées).

La premiére est de la forme

c’r}; (t) — CT—}: (O) —iowt
67 () = o3 (0) et (23a)
copp (t) = cop (0) ¢ ot

avec ¢, = ¢y & cause de (17). Les formules (9) fournissent alors
la décomposition du champ de radiation en ondes planes se
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propageant dans la direction k avec la vitesse ¢ et cette décom-
position est physiquement réalisable, au moyen d’un prisme
par exemple, puisque chacune des ondes transversales et lon-
gitudinales satisfait séparément aux équations de Maxwell.
Toutefois les ondes transversales seules représentent effective-
ment des radiations lumineuses, les ondes longitudinales ne
donnant lieu ici qu’a un champ nul.

D’autre part la solution de (16) correspondant aux oscilla-
tions forcées fournit les coefficients de Fourier du champ di
a la présence des particules. En particulier s’il s’agit d’une
particule en mouvement uniforme, on a

?; "*_)
e g ? Ark (rl)
Tk T - 7>
h ¢ k
_(j T >
e— . A~
L c AR (1) (23b)
T o ¥
""k(i—zf)
. e Ay, ()

¢ = =
0k ; e T
“r\' T T F

Les formules (9) représentent alors le champ propre de la
particule. Mais, au contraire de ce qui se passe pour le champ
de radiation, le développement en série d’ondes planes ne
posséde ici qu’une signification purement mathématique,
chaque onde ne satisfaisant plus aux équations de Maxwell et
ne pouvant par conséquent exister isolément. Les composantes
de Fourier du champ de radiation et celles du champ propre
présentent donc un caractere essentiellement différent; elles
correspondent en électrodynamique quantique aux notions de
photons réels et virtuels.

Enfin calculons effectivement le champ propre d’une parti-
cule en mouvement uniforme. En portant les expressions (23)
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dans les formules (9) il vient:

247

On retrouve ainsi les potentiels du champ coulombien en
translation uniforme. C’est en suivant une méthode analogue
en tous points que nous déterminerons, au moyen de I'électro-
dynamique quantique, le champ propre d’un électron de Diraec.

(24°)

?)} * — — — / W(F):’ — - > —
KT:SZ(e; L 63 @) + (5 B2 6) %2
K w, |1 —ﬁl—f)

k c k
(X)) R G (L Ra @)K ¢
A = X £

TR w12k
k c k
o et () A (F) + edag () AGii (7)
Ay = ==
s v k
wh(i——?-?)
En tenant compte de (11) et (13) on obtient
. 9 . 1 1 ik (T-7) e‘ﬁ(?—?})} B
CVRER_(LE) YT VI
¢ k
L [
/1 ! (T 7)
A VAR B G
- - poe
4A == ..’X,: —i— A}\ = ?AD

4. Champ propre et dynamique de 'électron.

Du point de vue classique,-1’électron apparait comme une
charge e distribuée d’une certaine fagon a l'intérieur d’une
petite sphére de rayon r. L’énergie électrostatique de celle-ci
est égale 4 ’énergie au repos mc* de la particule lorsque r est

de lordre de grandeur r,= n%* — 2,80.107'3 em. Cette
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derniere longueur, qu’on appelle «rayon classique de I'élec-
tron », constitue donc une limite inférieure de la validité de la
loi de Coulomb. Nous verrons plus loin que les théories quan-
tiques conduisent déja a des modifications sensibles du champ

propre de I’électron pour des distances de 'ordre de grandeur

de la longueur d’onde de Compton, A = " 437 Liys
2T me

D’autre part le modeéle classique de la sphere électrisée
posséde des propriétés mécaniques assez semblables a celles
d’'un point matériel. Toutefois on sait que s’il est en trans-
lation uniforme, I'énergie et 'impulsion de son champ propre
ne se transforment pas comme les composantes d’un vecteur
d’espace-temps; pour les vitesses non relativistes, l'énergie
cinétique est bien de la forme km¢® mais £ = 1/2. On obtient
de méme un facteur discordant pour la force d’inertie qui
résulte en premieére approximation, dans le cas d'une faible
accélération, de l'action retardée de divers éléments de la
particule les uns sur les autres. Il est bien connu que ces diffi-
-cultés sont dues au fait que le modele classique proposé n’est
pas stable sans l'intervention d’une énergie de nature non
électromagnétique . Enfin I'influence de la durée de propaga-
tion du champ d’un point & un autre de la particule se marque
en deuxieme approximation par l'existence d’une force de
freinage tenant compte de I’énergie rayonnée par la particule.
Les théories actuelles ne considérent que le cas ou cette force
est faible vis-a-vis de celle d’inertie. Pour établir la dynamique
classique relativiste de I'électron, on peut éviter ces difficultés
en considérant d’emblée celui-ci comme un point matériel
doué d’une énergie et d’une impulsion

—
me? me

C 8y — B : E = B
Vi—p Vi—
englobant I'énergie et 'impulsion du champ propre, et soumis,
lorsqu’il est plongé dans un champ extérieur, a la force de

Lorentz
7=e(E g ]
c d

L Cf. W. HerrLer, The quantum theory of radiation. Oxford
Clarendon Press, 1936, §§ 2 et 4.
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appliquée & une charge ponctuelle. On néglige ainsi compléte-
ment I'influence de la structure de I’électron ainsi que le freinage
di & son rayonnement.

Pour écrire les équations du mouvement

~ dg
F=a
sous la forme canonique
oH . o H . oIl ¢
a—xl—*le ; gi/—l—"“}’yl ; 5‘;1*“—;%1 (25a)
oH . oH . oH . :
= T ; — = Wy i = 2 (25b)

0 P, 0 Py, 0 P,

il suffit d’introduire le vecteur d’espace-temps

2  A-a
p=e-+g¢
(26)
sz A'ﬂ
Po =€ + 8o
et de prendre comme hamiltonien H = ¢p,,, ¢’est-a-dire
A,
H=eA0+c\/mc—i— p—c | (27)

5. Champ et mouvement d’'un systéeme de particulés.

Les équations (19') fournissent le champ d’un systéme de
particules dont le mouvement est connu, tandis que les équa-
tions (25) régissent le mouvement d’une particule dans un
champ extérieur donné. L’ensemble de ces deux systémes
d’équations canoniques permet donc de déterminer a la fois le
champ et le mouvement du systéme. Toutefois I'influence du
freinage dii au rayonnement a été négligée. Afin de pouvoir
passer ultérieurement de la théorie classique & la théorie

ARcHIVES, Vol. 28. — Novembre-Décembre 1946. 17
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quantique nous devons arriver a cette détermination au moyen
d’un seul systéme d’équations cononiques:
q q

;o H : o H dH ;
= i e Bk = 4oz
5 a
dH - oH : dH : -
)—_+ = —DP3 — Pk ) - = —Pox
\ 047 L 07 0 9%
‘6H . B OH i foH
’ 0P, ¢ apyi ' s 0Py b
{ a (28 b)
oH : o H : /OH .
}a%‘“—%i 3y, v [y T T Pu

Dans ce but on est amené a choisir pour ’hamiltonien du
champ et des particules l'expression suivante

S iR\ i,
i = z\/ + (pi - L)) + e A (7) + 0
1

(29)

dans laquelle H®™, donné par la formule (21'a), est ’hamilto-
nien des oscillateurs du champ. L’ensemble des deux derniers
termes de H est égal, d’apres (22), 4 ’énergie du champ tandis
que le premier représente la somme des énergies mécaniques
des particules. On vérifie aisément que les équations (28 a) et
(28 b) sont formellement identiques aux équations (19) et (25).
Toutefois les équations (19") et (25) font intervenir, les unes
le champ total de toutes les particules, et les autres le champ
extérieur agissant sur chacune de celles-ci. Au contraire il ne
figure dans les équations (28) qu’un seul champ, celui de toutes
les particules. Pour que (19°) et (28 a) soient effectivement
identiques, il faut donc insérer ce dernier champ dans les
relations (26) définissant les p,. Par ailleurs I'introduction de
ce champ total dans ’hamiltonien (27) d’une particule a pour
effet d’ajouter & la force exercée sur celle-ci par le champ
extérieur, la réaction de son champ propre. Celle-ci donne lieu
a la force d’inertie (4 part un facteur voisin de 'unité) et a la
force de freinage. Cette derniére force avait été négligée dans
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les équations (25); son apparition dans les équations (28 b)
constitue donc un progrés. Par contre celle de nouveaux termes
d’inertie d’origine électromagnétique est certainement incor-
recte, puisque Il'inertie totale de la particule se trouve déja
entiérement contenue dans la masse m qui figure dans (25) et
(28 b). Ces termes doivent donc étre supprimés des équations
(28 b) avant de les intégrer. De méme, si aprés avoir déterminé
le champ et le mouvement du systéme, on veut calculer son
énergie au moyen de I’expression hamiltonienne H, il ne faut
pas tenir compte des termes apportant une contribution électro-
magnétique supplémentaire a I'énergie propre des particules,
puisque celle-ci est représentée complétement par le dernier
terme de H.

Le formalisme actuel est donc loin d’étre rigoureux et les
difficultés signalées subsistent dans la théorie quantique qui en
découle par la simple introduction des opérateurs. Il permet
néanmoins, moyennant les précautions indiquées, d’aborder
I'étude du champ propre et de l'interaction des particules
élémentaires, probleme qui nous intéresse tout particuliérement
ici, et de traiter un grand nombre de questions relatives aux
phénomeénes de radiation.

6. Interaction entre particules et superposition
de leurs champs propres.

Le champ électromagnétique joue un rble essentiel dans les
phénoménes d’interactions entre particules, puisque c¢’est uni-
quement par son intermédiaire que I'impulsion peut se trans-
mettre de I'une a l'autre, ce qui s’effectue avec la vitesse de
propagation c. Il n’existe donc pas d’interaction directe et
instantanée entre elles. Toutefois, si nous nous limitons au cas
de vitesses non relativistes il est possible de considérer I'étude
du mouvement d'un systéme de particules électrisées comme
un probleme purement mécanique, c¢’est-a-dire dans lequel le
champ n’intervient pas explicitement. Autrement dit on peut
représenter I’énergie du systéme par un hamiltonien ne dépen-
dant que des coordonnées des particules et de leurs moments
conjugués. Celui-ci est formellement la somme des hamilto-
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niens des particules supposées libres et de certains termes
d’interaction qu’il s’agit de déterminer & partir du formalisme
général de l’électrodynamique. Il faudra ensuite préciser les
rapports qui existent entre ces termes d’interaction et I’énergie
résultant de la superposition des champs propres des particules.
Ces deux problemes se posent en théorie classique comme en
théorie quantique. Leur étude détaillée, & ce dernier point de
vue et dans le cas des particules de Dirac, fera I’objet de la
deuxiéme partie de ce mémoire. Pour l'instant nous allons
rappeler les résultats que fournit a ce sujet 1'électrodynamique
classique afin de pouvoir les comparer aux résultats quantiques.

Tout d’abord, on sait qu’il est possible d’éliminer les ondes
longitudinales du formalisme, en choisissant comme hamilto-
nien l'expression indiquée par Fermi !:

’ 2 2 kg K": (;:) * % >
H :‘S.':C mi;c + \p;—¢€ . + Vg +§cr~k>cfrkwk
t ’ k
(30)
avec
O - R v N (31)
IR

L A_(7)

P = 8§ + ¢ —— (32)

Ceci parait particulierement évident si on représente le

champ par les potentiels K’, A; introduits précédemment
[équations (5), (6), (7)]. Bien que V,, représente une interaction
instantanée, la restriction des vitesses non relativistes n’est pas
nécessaire, l’effet de la propagation étant entierement contenu
dans la partie transversale du champ. On appelle d’habitude V,
I'interaction coulombienne des charges; en fait ’expression (31)
ne présente qu'une analogie formelle avec celle de I'électro-
statique. Conformément au point de vue que nous venons
d’indiquer, I’hamiltonien H’ peut s’obtenir & partir du forma-
lisme général de 1’électrodynamique développé précédemment

U E. FeErmi, Review of Modern Physics, 4 (1932).
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(§ 1,5) 1. H' se déduit de H. En effet, en tenant compte des
formules (9 a), (10) et (18) on obtient

(€57 e = eoi cor)wn + Deg o () = Zlerg —3) ok — k) i
k

4T 1 'tk(?‘l—- r:,l)

\/L3 K VIE

:"—Zez 32

Les termes (i, j # i) s’évaluent immédiatement par la for-
mule (12 6). Ceux pour lesquels i = j divergent, par suite de
I'hypothése de charges ponctuelles. Ils correspondent & la
contribution des ondes longitudinales a 1’énergie propre des
particules, laquelle est déja complétement représentée par le
premier terme de H (ou H'). L’élimination du champ longitu-
dinal de notre formalisme nous permet de faire disparaitre
cette contradiction signalée plus haut, en supprimant ces
termes divergents. En affectant de I'indice ¢ les coefficients de
Fourier du champ de la i particule, on obtient alors:

< : - . €. €.
Vo= I 3 — o) (D — D), =+ T i
i,j#ig Ok ARV O0R 2k % g o . L '
(317)

Pour passer de H & H’ il ne reste plus qu’a se débarasser
—

de A, en introduisant de nouveaux ;1- définis par (32) au lieu
de (26). Enfin on vérifie aisément que les équations canoniques
dérivant de H’ sont équivalentes aux équations (28) et que par
conséquent l’expression (30) présente effectivement la forme
hamiltonienne. ‘
Occupons-nous maintenant de I'élimination de la partie
transversale du champ. Celle-ci contenant 'effet de la propa-
gation, nous nous placerons dans le cas de vitesses non rela-

L E. Ferwm1, Review of Modern Physics, 4 (1932).
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tivistes. En le développant en série, le premier terme de H’
peut s’écrire

/e (> AV e R
e \/ mic“ — (pi — ¢, TC( 1)) . E /}mtc + mi P; e; >
1
1 e Kr (;:) '
- 8m:;cg_) pl = ei c + . % (34)
Par conséquent, si
L@ -
ei% K ‘Pi‘ (35)

I'interaction entre les particules et le champ transversal est
représentée en premiere approximation par le terme

pl —r —
i, = — S 50K ) 36

D’autre part nous admettrons que le champ des particules
est le méme que si celles-ci étaient en translation uniforme; nous
négligeons ainsi leur champ de radiation dont I’action compa-
rativement faible ne se fait sentir qu’a la longue. En tenant
compte des formules (23) et en négligeant ¢/c vis-a-vis de
I'unité on obtient en premiére approximation

HE = — 211 (37)

/ ;; — —_ I_;j —> ->
H(Ch) D S v ;¢ ) A-ﬁ: (ri) n_v,;—c ) AT—I; ('1;5)
T = “ £g € :

*
— S § Crk S Yr
R

(38)

Les sommations sur les deux directions du vecteur de pola-
risation a et sur tous les vecteurs k s'effectuent au moyen des
formules (13) et (12). Comme dans le cas du champ longitu-
dinal, le résultat est divergent lorsque ¢ = j. Les termes corres-
pondants de H™ fournissent cette fois la contribution des ondes
transversales a I’énergie propre des particules, contribution qui
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est déja contenue dans le premier terme de H'. Comme précé-
demment, on supprimera les termes divergents; en ce qui

concerne H{" ceci revient a considérer KT (r,) comme le poten-
tiel vecteur du champ transversal agissant sur la §i*™® parti-
cule, ce qui justifie la condition (36). En groupant les termes
restants de H et de H'™™ on obtient 'interaction V, due aux
ondes transversales:

L’ordre de grandeur de V, est ¢?/c® fois plus petit que celui
de V,, lequel est le méme que celui de ’énergie cinétique. Nous
devons donc développer celle-ci jusqu’au terme en p? afin
d’atteindre la méme précision que pour l'interaction.

En posant
2 4

HP) = m; e + PP (40)

' 3 27
2m; 8mj ¢

I’hamiltonien du systeme s’écrit sous la forme Indiquée par
Darwin !

H=ZHP +Vv,+V,. (41)
1

Afin d’interpréter les différents termes de H, introduisons
la notion d’énergie de superposition.

Soit (]?31, ﬁl) et (Ez, ﬁz) deux champs quelconques. Si nous
les superposons, I’énergie totale

a

W) — Sl_nf{ (B, + B,)* + (H, + H)’ }d=

est la somme de trois termes représentant respectivement les
énergies de chacun des champs

W = L@ s, W = L @ B

~ 8m.

I DarwiIN, Phil. Mag., 39, 1929, p. 537.
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et leur énergie de superposition

:—fﬁl E, + H,.H,)dx . (42)

Si (El, ﬁl) et (Ez, Ir—fz) sont les champs de deux particules,
I’adoption de modéles ponctuels pour représenter celles-ci rend
divergentes les expressions de w{™ et w{*™ alors qu’elle ne modi-
fie pas pratiquement la valeur de w'® pour autant que la dis-
tance 7, soit grande vis-a-vis du rayon des particules. L’inté-
grale de la formule (42) devient impropre. Son évaluation ne
requiert aucune précaution spéciale dans le cas actuel de parti-
cules douées simplement d'une charge électrique; il n’en est
plus de méme si celles-ci sont plus compliquées et présentent
par exemple des moments dipolaires électriques et magné-
tiques (voir plus loin).

D’autre part, w(™ est également donné quelle que soit la
complexité des particules étudiées par l'expression (15):

W(Ch 2{ — a3 7) (o7 — 7)) + ey 67 }Wh

Par conséquent 1’énergie de superposition est égale a la somme
de celles des champs longitudinaux et transversaux:

w8 = wgfq) + wis) (43)
avec
1 e 5
W(S) e *,i—chE]J EZ/ dT
— (1 (1)*y ¢ (2). (2
E{(CO? AE)(COK 7k)
k
@* _ @ 0, )
- (‘307; cﬁ) (607; c; h) }w,  (4ka)
Wl — .5 (ﬁ E + H, W )d
T bt 1t 27 1t 2c T
_ 1* (2 2* (1
=SZ{cp e} Tt (a4 8)

k
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Ces formules s’appliquent a des champs quelconques. Dans
le cas de champs statiques, leurs parties longitudinales et
transversales sont constituées par les champs électriques et
magnétiques. On a alors

s 1 = * (2 2)% (1
ng): W%):G By . B, dv = E(cg%cg%-{-cg%cg%)wh
k
(45 a)
© — o6 -1 (f1 1§ _ n* ), L 2,
We = Wy T h4g Hl.H?dT_SE(CT{crk+CTh, cﬂ:l{)wh
(45 )

Notons que dans ce cas

= C*—)
h -k

de sorte que les formules (9a) s’écrivent

-t
I

2 5% ez A

Cette remarque nous servira plus loin.

L’introduction de I'énergie de superposition permet d’écrire
le principe de la conservation de I’énergie en évitant les diffi-
cultés relatives & I’énergie du champ propre des particules.

En effet on peut montrer, en partant directement des équa-
tions de Maxwell et de I'expression de la densité de force de
Lorentz, que la somme des énergies mécaniques de particules
de structures quelconques et des énergies de superposition de
leurs champs propres est constante, si on néglige le rayon-
nement.

Dans le cas considéré précédemment, ou les particules sont
seulement douées d’une charge et ne possédent aucun moment
électrique ou magnétique, il est aisé de voir que cette énergie
constante est numériquement égale a H. En effet le terme H{”,
qui est formellement identique & hamiltonien de la i'*™¢ par-
ticule, représente en fait la somme de son énergie mécanique
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et de I’énergie de superposition de son champ transversal avec
celui des autres particules; V, est 1’énergie de superposition
des champs longitudinaux et V, celle des champs transversaux
changée de signe, mais cette derniere a été comptée deux fois
déja dans la somme des H{P.

Enfin, dans le cas non relativiste, E_ est de I'ordre de gE;_

(champ quasi statique). Comme nous avons calculé l'inter-
: : g e
action correctement jusqu'aux termes de I'ordre de E =

inclus, V,, se confond, & la méme approximation, avec I'énergie
de superposition des champs électriques et V, avec celle des
champs magnétiques.

Remarque : Les potentiels A;m et A’U) des champs longitu-

dinaux et transversaux de la j**™° particule, ont pour expression

é.

. >
AWy = 2
o=
il
‘_> —> — - — >
TG (7 1 % Yi I T
A(])(r):§_+ — /_+ — > —> - —
|r—rj|[c ¢ |r~—rj} r—r;l)

(Ia derniére étant seulement valable pour .v/c (< 1). L’hamilto-
nien (41) du systeme peut alors s’écrire sous la forme

A
H = 1ZH?O) s _Z_i’i;iei AO{J) (r) — ?' . AG) () g

Ceci permet de vérifier immédiatement que les équations
canoniques dérivant de H sont bien identiques aux équations
du mouvement de chacune des particules soumise au champ de
toutes les autres. On retrouve ainsi la possibilité d’étudier le
mouvement d’une particule élémentaire en interaction avec un
systéme macroscopique éloigné en considérant celle-ci comme
plongée dans un champ extérieur produit par le systéme.

(’est en suivant une méthode semblable que nous cherche-
rons & mettre en lumiere le réle joué en électrodynamique
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quantique par le champ propre des particules de Dirac dans les
phénomenes d’interaction mutuelle.

Application. — Energie de superposition de deux dipéles:
En vue de discuter les formules d’interaction quantique de
deux particules de Dirac, il est utile de calculer par les
formules (45 a) et (45 b) les énergies de superposition des
champs statiques de deux dipdles électriques et de deux
dipdles magnétiques immobiles et de dimension € arbitrairement
petite. _

Soient é_f’q, Efz et ﬁl, jﬁz leurs moments respectifs. Les coeffi-
cients de Fourier de leurs champs sont donnés par les formules
(16) qui peuvent s’écrire ici sous la forme

)

. * =2 3 *a-
C(():?)T; Wy, :L/ pAO—g(r)dr = J.»j.grad(?j)Aﬂk

—> — >

(€. ik) ik 7;

k2 V13

= — \/,‘anh

pwy = [ o2 K5 (F)ar = M.vot

2 ; ...
pour autant que la longueur d’onde TTC soit grande vis-a-vis

de . En appliquant les formules (46) et (12) on trouve les
potentiels de chaque dipdle

A () (—r>) e " 411:_ Z‘J’ ik eik(T;Tf) . qj' (r——rj)
0 7 \/L >R £/ I3 ‘ [

in ([51:62, Lf] ; ;k) N ei?(?_?})_ [ﬁf’ vl ;:]

VI ; VS gt

RO (7) = —
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et les énergies de superposition

1)* (2 2)% (1
o = DS+ L e,
_ in (€, . ik) (£, . ik) em(r:F;) sl
VIF 3 k2 \/L3
() — * A2, 4 2% ()
Y =D LF Ry TR R %
_ b S ([fﬁ:fl’ Lr]:]—a_,)h) ([:7—??2 1,]{] ah) el—f?(;:—::;)
VL3 Fi k2 VaE
_ l”i 5 (M. 2k) (M. ik) +‘1f1m?2< ih(r:rz)
VL i \ \/13
(48 b)

Ces expressions ne sont exactes que pour les grandes distances
(rio >> €) puisque les coefficients de Fourier ne sont corrects que
pour les petites valeurs de &k (k {{ 1/g).

Effectuons les sommations en laissant provisoirement de
coté le terme 5]?1 . jﬁz qui n’apporte aucune contribution
a distance finie; nous obtenons:

g @ (Fy . Prg) (5. 7g)
=/ o I Lo lis
wff) _ 1 ’ 2 3 112 . 2+ ([tga)
I r r
12 12
—_—— .= —_— —_——> >
I LI NG, . r NG, . r
w(s) _ 1. 2 3( 1 12)( 2 12) (49b)
N r3 ,P
12 12

Comme on le voit, w{J est égale a1’énergie potentielle méca-
nique tandis que v_ri(;ﬁ% en differe par le signe. Ceci provient de ce
que les moments <2 et J1L n’ont pas la méme symétrie; le pre-
mier est un vecteur polaire et le second un vecteur axial ainsi

— —

que le sont respectivement E et H. De fagon plus précise

Pemploi dans notre calcul de potentiels A, et A continus et
uniformes dans tout I’espace implique nécessairement que les
dip6les électriques soient constitués par des charges électriques
et les dipdles magnétiques par des courants électriques et non
par des masses magnétiques libres.
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Revenons maintenant au terme JT(, . J1L, de la formule (48 b).
Par sommation il donne lieu & une énergie de superposition

G DT, . DL, 8 (ry) (50)

qu’il s’agit d’interpréter. Pour cela nous devons supposer que
ris puisse devenir du méme ordre de grandeur que e. L’expres-
sion de I'énergie de superposition est alors trés différente de
(49 b) et dépend essentiellement de la structure particuliére
des dipdles. Il est alors intéressant de déterminer la valeur
moyenne de cette énergie en admettant que ceux-ci ont une
certaine probabilité de se trouver en tout point de I’espace.
Ce probleme se pose en mécanique ondulatoire dans le calcul
de I'interaction des spins de deux électrons. Nous désignerons
par 5&1 et 5T_‘L>2 les densités probables de moment magnétique;
si nous supposons que celles-ci varient peu sur des distances
de lordre de ¢ I'expression (48 b) reste applicable, mais nous
ne pouvons pas lui substituer la somme des expressions (49 b)
t (50), la premiére donnant lieu & une intégrale impropre dont
la valeur dépend de la fagon dont on approche le pole ;71 = r;.

D’autre part, on peut également écrire I’énergie de super-
position moyenne sous la forme

W) = ’ 1) (7). 3, () d= (51)
H(L) (r) est le champ moyen produit au point r, par le
dlpole 1. Suivant Lorentz, H(L) est égal a Iinduction
B = H(M) -+ luri)TZ de la theorle de Maxwell, H‘M) étant le
champ cree par la densité de masse magnethue apparente

. s ’ - . I .
div J1L,. Pour évaluer celui-ci on peut le dériver du potentiel
scalaire

div 'HL 1 lh 7‘ i — ==
= lim / ———dt, = lim furZ / div L. e k71 ¢
0 ) |7 — 7] ¢ vee g R \/ s,/ SV o
V—tJ V__,;

r = . v AT 2 X
V désigne le domaine ou M, # 0 et S sa frontiére; ¢ est un
domaine de dimensions arbitrairement petites entourant le
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point r s sa frontiére et ds le produit de 'élément de surface
de s multlphe par un vecteur unitaire dirigé suivant la nor-
male extérieure au domaine ¢. Nous supposons que les inté-
grales sur S s’annulent. On déduit de @ le champ magnétique
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L’énergie de superposition s’écrit alors

e ~ff9]‘2 r2) H( () + am I () |

d, (52a)

j & T f)—? 3 T —— — 1—';:(;:‘_;;)

= nl Lk)( 1‘-2 Lk) -—:)TZ,I-DTE; e—_ dTI dT2

A\/La —> k2 \/L3

(52 b)
= , ——  ——> —_— > —_—— >

a L W [ 1 M, .r I,.r

_ i \\ / ; 1 - 2 _ 3 ( 1 1?)5( 2 12) dTl o
>0 r r
o/ 12 12

V-v

3
r
12

¥ /”‘ (912, - ds) (?I—FZ)] "

— [ [4= T () TG s dmdm (520

Dans ces trois expressions équivalentes de wg";% les premiers
termes se correspondent, ainsi que les derniers, ce qui permet,
de les interpréter aisément. D’autre part la limite de chacune
des deux intégrales du premier terme de (52 ¢) dépend de la
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fagon dont on fait tendre vers zéro le domaine ¢ tandis que la
limite de leur somme en est indépendante. En particulier, si
I’on choisit pour ¢ une petite sphére de centre ;;, I'intégrale de

bt > > .
surface tend vers —373 J‘r‘ll (r,). En d’autres termes, si I'on adopte

ce mode d’intégration, la somme de la série (48 b) doit s’écrire

ﬁf>1 5 '*TT‘: — 3 (51?1 ® ;;2)'(3]{; 2 ;12) & T (:T]:L': . D—ﬁ;) 8 (7’12)

() —
Y = e . & 3
12 12
— &7 (N I1T,) 8 (ry) f (53)

On peut voir que dans I’hypothése de 31‘(,: et 5’]’{; lentement,
variables, la majeure partie de I'intégrale du premier terme
provient des grandes distances pour lesquelles il représente
correctement wgg Les deux derniers termes donnent la contri-

bution des petites distances.

Pour deux dipoéles électriques, on trouve la méme formule
sans le dernier terme. Ceci correspond au fait que, suivant
Lorentz, le champ moyen a l'intérieur d’'un diélectrique est
égal au champ macroscopique de la théorie de Maxwell.

§ 2. — LEs PARTICULES DE Dirac.

1. Equations de Dirac de I'électron et du positron.

D’aprés Dirac le mouvement relativiste d’un électron dans
un champ extérieur donné est décrit par une fonction d’onde ¢
a quatre composantes satisfaisant a 1'équation

1 0 e >{ h ‘e~> ‘ .
[(*—saﬁz**ﬂ) + (g grad + T+ B’””]‘I’ =0

(1)
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o = . . .
ou les composantes du vecteur a ainsi que [ sont les matrices

0 0 0 1 0 0 -
{0 0 1 0 0 0 0
T o 1 0 o] T\o - 0
1 0 0 0 0

0 0 1 0 -1 0 0 0

0 0 0 -1 0-1 0 0
“=\1 0 0 o]0 P70 0 0 1 o
0-1 0 0 0 0 0 1

e représente la valeur absolue de la charge de I'électron. De
méme 'équation d’onde d’un positron peut s’écrire:

h 1 0 L -/ h e —

Vis-a-vis du groupe de la relativité restreinte, les équations
(1) et (2) sont invariantes de forme, tandis que les composantes
de chacune des fonctions d’onde ¢ et ¢ se transforment linéai-
rement entre elles comme celles d’un spineur d’espace-temps.

On trouvera dans le tableau Il (colonne réservée au cas de
Pénergie positive) les opérateurs représentant les principales
grandeurs mécaniques ainsi que les densités de probabilité et
de courant de probabilité, qui forment un vecteur d’espace-
temps, des densités de charge et de courant électriques, qui
jouissent de la méme propriété, et des densités de moments
magnétique et électrique qui forment un tenseur antisymé-
trique du second ordre. Les composantes du vecteur

g = —%[&*, ] sont les matrices de spin:
0O 1 0 0 0 -z 0 O 1 0
1 0 0 0 t 0 0 0 0 - 0
PGy == IO =
0 0 0 1 ¥ 0 0 0 -1 z 0 0
0 0 1 0 0 0 ¢ 0 0 0 -1

. = eh/4m mc est le magnétron de Bohr.



DES PARTICULES DE DIRAC 265

2. Les états d’énergie négative.

Les fonctions propres représentant les états stationnaires de
27

3\

I’électron de Dirac sont de la forme ¢ = u(x, y, 2) . e 7 on
w représente I'énergie totale de I’électron. Il est bien connu que
I’équation de Dirac admet également des solutions de la forme

o
| +—n—:t'wt 4 @

b=ul(x,y,2z).e h correspondant & une valeur propre
T ) p

négative, — w, de I'opérateur cp,. Si I'on admet que ces solu-

tions représentent un électron, celui-ci se trouve dans un état
d’énergie négative.

Pour arriver & une interprétation physique de I'existence de
ces états d’énergie négative, Dirac a supposé que I'espace vide
est caractérisé par le fait que tous ceux-ci sont occupés par des
électrons inobservables (électrons virtuels). S'il existe un
électron observable dans cet espace, il occupera donc nécessai-
rement un état d’énergie positive. D’autre part, si I'un des états
d’énergie négative est inoccupé, la lacune se comporte comme
un électron dont la charge, I'énergie, I'impulsion, le moment
cinétique et le moment magnétique sont de signe opposé aux
grandeurs correspondantes se rapportant a l'état d’énergie
négative considéré. La lacune représente donc un positron.

Sous l'influence d’un champ électromagnétique, un électron
d’énergie négative peut effectuer une transition vers un état
d’énergie positive. On verra alors apparaitre simultanément et
au méme endroit un électron et un positron: c’est la création
d’une paire par matérialisation d’énergie électromagnétique.
Le phénomene inverse ou annihilation se produit lorsqu’un
électron d’énergie positive tombe dans une lacune en émettant
un rayonnement électromagnétique.

Toutefois la théorie des lacunes souleve de nombreuses
difficultés. Notamment elle nécessite l’emploi d’un nombre
infini de particules (virtuelles), méme lorsqu’il s’agit de repré-
senter le vide ou un systéme constitué d’une ou de deux parti-
cules. Cependant nous allons montrer qu’on peut éviter dans
une certaine mesure ce dernier inconvénient en rattachant de
facon directe les états d’énergie négative au positron.

ARcHiIVES. Vol. 28. — Novembre-Décembre 1946, 18
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Nous entendrons par spineur conjugué de { I'expression C{*
ou C est la matrice

0 0 0 1
_ 0 0-1 0
C=1tmB=19_1 0 o (3)
N1 0 0 0

qui jouit des propriétés suivantes:
Cl=C: Ca*C=a; CBC=—8¢§ (4)

En tenant compte de ces relations, la conjuguée complexe
de I’équation de Dirac (1) peut s’écrire

3 h 1 0 e - [ h e —
T ¥ grad ——A)— O =
. [( 27w ¢ Ot cA") + a (Qnigmd CA) Bmc}(} C¢
ou encore

kR 1 0 e ->( h . "E*) g
[(——.————Ao)—l—m(ﬁigrad cA( +B.’TLC]C§[J =0

On retrouve donc I'équation (2) avec ¢ = C¢*. On voit que
I’on passe de I’équation (1) a I’équation (2) et réciproquement,
en posant:

o = Cd* ;¢ = Co¥ (5)

Cette transformation fait donc correspondre les états d’éner-
gie négative de chacune de ces équations aux états d’énergie
positive de 'autre. On peut donc dire que les fonctions d’onde
a énergie négative § et @ représentent respectivement le positron
et 'électron. Ainsi une particule de Dirac est susceptible d’étre
représentée de deux facons mathématiquement équivalentes
soit par le spineur ¢, soit par le spineur conjugué ¢. La signi-
fication de ¢ et ¢ dans chaque cas est donnée par le tableau

suivant:
TasrLeau I.

l Energie positive ‘ Energie négative

Electron ¢ ' ®

Positron l @ ‘ V]
i
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D’autre part, si un opérateur F correspond a une certaine
grandeur physique dans I'une des deux représentations,

I’opérateur

G = CG.F*.C

(6)

représente la méme grandeur dans la représentation conjuguee.
En effet, on voit aisément que I'on a

(‘P;.F%)* = C?;chi

TasrLeavu II.

(7)

Energie négative

Opérateurs Energie positive
Enerio . R 1 0 « k. 10
g Po = 21l c Ot Py = 9xi%¢ o:
Impulsi 'Y rad " d
0 = = = ———,
pulsion p 27”gra p 27”gra
Moment > - > 1 h — o 1 h —>
cinétique J_[r’p]+§ﬂc J- ["vl’]_fﬂ
Spin s —
Vitesse —cx e Bl
Densités de I Electron Posilron Electron Positron
sqe g # * ES * *
Probabilité $p, §; P P; P P; by O,
Courant de e P, & "
probabilité —peoy; TPRCXP; —gpeag; | —dpead;
Charge * L * *
électrique —ed ¥y TEPRP; —eQ,P; + ey, b
Courant L * = PR -
électrique redpad; | —ep, a9 TERRER | —edp oy
Moment T * = . . 5
magnétique | * mopo Py — “‘Pkcp@i +ugoBo; | —pdpoBY;
Moment e * . * .= ¥ .
' i
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Cette relation permet de définir les opérateurs relatifs aux
états d’énergie négative a partir de ceux qui ont été adoptés
pour les états d’énergie positive. Les résultats de cette trans-
formation, inscrits dans le tableau ci-apres, sont en parfait
accord avec la théorie des lacunes, ainsi qu’on peut le
vérifier.

De plus les éléments de matrice de F et de G sont conjugués
complexes I'un de l'autre. F,; = G,; = G,,. Par conséquent
si 'on appliquait aux états d’énergie négative le méme langage
que pour les états d’énergie positive, ainsi que le fait la théorie
des lacunes, on trouverait qu’a une transition (i — k) entre
états d’énergie positive, correspond une transition inverse
(k— 1) entre états d’énergie négative. Cette conclusion corres-
pond au fait que si un électron d’énergie négative fait une
transition (k — i), la lacune, c’est-a-dire le positron, effectue
la transition (z — k).

La transformation C permet done d’éviter le paradoxe des
énergies négatives sans avoir recours a la théorie des lacunes.
D’ailleurs I'utilisation de l'opérateur ¢p, montre que I’énergie
de ces états est en réalité une quantité positive.

L’emploi des spineurs conjugués permet ainsi de représenter
I’électron et le positron par des ondes & énergies de méme signe.
Cette représentation aura le grand avantage de nous permettre
d’étudier, en premieére approximation, le systeme formé par
un électron et un positron comme un probléme de Schrodinger
(ou de Pauli).

Cependant il n’est pas possible, dans un méme probléme, de
faire correspondre deux opérateurs différents & une seule gran-
deur physique. Cette éventualité ne se présentera jamais tant
que 'on pourra représenter 1’électron (ou le positron) soit par
par le spineur ¢, soit par le spineur ¢. Au contraire, il semblerait
qu’'on ne puisse 'éviter si I'on est obligé de considérer des
transitions entre états d’énergies positive et négative. Toute-
fois, comme il y a alors création ou annihilation de paires, on
n’a plus affaire au probléeme d’un seul corps. Ce cas sera étudié
ultérieurement.

Il est important de remarquer que Iensemble des fonctions
propres { (resp. @) & énergies positive et négative, forment un
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systéme orthogonal complet. Par suite les fonctions d’ondes ¢
& énergie positive ne forment pas & elles seules un tel systéme.

3. Lemploi de Délectrodynamigue classique
en mécanique ondulatoire.

En principe, la description du mouvement d’un systéme de
particules est intimement liée a celle de son champ. Toutefois,
il est généralement possible, en raison de la petitesse de la
force de freinage due au rayonnement vis-a-vis de la force
d’inertie, de considérer comme indépendants les deux problémes
suivants:

1o Rechercher I'influence d’un champ extérieur sur le mou-
vement d’une particule.

20 Déterminer le champ produit par une particule en mouve-
ment.

Le premier probleme repose essentiellement sur le choix des
termes d’interaction introduits dans 1’hamiltonien pour tenir
compte de Iaction d’un champ extérieur sur une particule.
Dans les théories de Schridinger, de Pauli et de Dirac, ainsi
qu’en électrodynamique quantique, ceux-ci sont tirés directe-
ment de la dynamique classique, les grandeurs cinématiques
classiques ayant été remplacées par des opérateurs. Ceci peut
étre considéré comme une premiére application du principe
de correspondance de Bohr. Ainsi le terme d’interaction de
Dirac
«.An)

€ Ao(;‘z) + -A("1

correspond au terme classique

e} 20() — 2R () |

intervenant dans ’expression suivante de 1’énergie
p

>

F,
¢po = €Ay + vkp—eé) + \/1 — BEme? .
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En effet I'opérateur — ca représente la vitesse de 1’électron.
Celle-ci constitue toutefois une notion plus complexe que celle
de la mécanique classique. En effet, si 'on représente le mou-
vement d'un électron en translation uniforme par celui d’un
paquet d’ondes, on trouve que ce dernier est animé d’une
vitesse de translation égale & la vitesse classique cp/p, de la
particule et d’une vitesse de rotation en rapport étroit avec le
magnétisme propre de I’électron L,

La solution du second probléme est fournie par I'électro-
dynamique quantique, grace a I'emploi judicieux des termes
d’interaction  introduits & l'occasion du premier probleme
(cf. électrodynamique classique, § 1, 5). Mais avant que cette
théorie ne fut développée, on avait déja pu le résoudre jusqu’a
un certain point en appliquant I’électrodynamique classique et
en faisant un nouvel appel au principe de correspondance.Pour
ce faire, on suppose que le champ moyen 2 produit par I'élec-
tron obéit aux équations de Maxwell dans lesquelles on remplace
les densités de charge et de courant électrique par leurs valeurs
probables. Ceci permet de calculer le champ statique moyen
produit par un électron dans un état stationnaire. D’autre part
les probabilités de transition entre deux états ¢ et &k et la nature
du rayonnement émis peuvent étre obtenus en considérant les
densités de charge et de courant de transition, — ey, ¢; et
ey ay;, et en admettant que I'intensité et la polarisation de
la radiation déterminées classiquement sont égales aux valeurs
probables des grandeurs quantiques correspondantes 3. Mon-
trons maintenant quelle est, suivant les considérations précé-
dentes, la structure du champ propre de I'électron de Dirac.
A cette fin, il est utile de décomposer de la facon suivante les
densités de charge et de courant électriques relatives a une
transition ¢ —- k :

L L. pE BroGLIE, L’électron magnétique.

2 LLa moyenne se rapporte ici aux différentes positions de la
particule. Elle n’a aucun rapport avec celle envisagée plus loin
(Cf. fin du I, § 4, 2) qui a trait aux fluctuations essentielles du
champ. ‘

3 0. KLEeIN, Zeit fur Physik, 41, 407 (1929).
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— et = —eg(UB 2 U — 4B R 4) + S te (4184

- dim(q;;‘;mgsq)i)
et = —eg (Wb G — 4B L)+ S e(Uied) +

+ 10t (4,0 B ;) —— 55w (VRinBY)

Ces relations, qui se déduisent directement de ’équation de
Dirac, sont & comparer aux formules classiques
S
Prot — P — div «
(9)
“I

] ] 19¢
2) = g2 i Nt
(Pc)t P + rot O + P

ot

qui indiquent que le champ produit par un milieu présentant

des densités de charge g, de courant p% et de moments magné-
tique et électrique jr_‘(: et & est le méme que celui que crée une
répartition de charges et de courants totaux équivalents de
densités p,,, et (p%)m.

Supposons que ¢, et ¢, soient des fonctions propres & énergie
positive. On voit alors que le champ moyen produit par 1’élec-
tron est le méme que si ce dernier était doué d’une charge — e
et d’'un moment magnétique — p. donnant lieu respectivement
par suite de la vitesse classique cp/p, de la particule & un cou-
rant de convection et & un moment électrique.

Suivant cette décomposition les densités de charge réelle
et de courant de convection sont données par les expressions

1 * 0 0 1 * A, *
p = 65(%3%%—%@%4’;3 + %0‘23(4‘1%34’1)

1 * p|,+€—— P +6_A; )
=eg | Bt hiB— U
(10)

o

ot = et(npl g —upl W) + ;fze(¢;6¢i)

me TR
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analogues a celles de Gordon dans la théorie relativiste d’une
particule & une seule fonction d’onde; les opérateurs

—

A - = A
o =pote"; g=pte_
représentant I'énergie et I'impulsion mécanique (cf. § 1 (26)).
Les densités de moments magnétique et électrique

W= wliFed) T =—ulhidey) 1)

sont précisément celles qui sont indiquées dans le tableau II
(page 267). Si les deux états ¢ et j sont non relativistes, la densité
de courant rot J1{ est du méme ordre de grandeur que celle
du courant de convection tandis que les densités de charge et

—
o

. o 1 0 ¢
de courant — div < et — 57 sont respectivement d’un ordre

—

2
de grandeur % fois plus petit que celui de p et p—vc—.

Le cas ou les énergies des ondes {; et ¢, sont de signes
contraires correspond a des transitions d’annihilation ou de
création d’une paire. Dans I’hypothése ou'les deux états ¢ et ;
sont non relativistes, la presque totalité des densités de charge
et de courant ne provient plus des premiers termes, mais bien
du dernier. Ceci est en relation avec le fait que de telles transi-
tions correspondent a des variations importantes du moment
électrique formé par les deux particules. Toutefois 'application
par correspondance de I'électrodynamique classique aux pro-
blemes d’annihilation et de création de paires serait trés déli-
cate; nous reprendrons 1’étude de ces phénoménes au moyen

de I'électrodynamique quantique.

(¢ suivre)
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