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1946 Vol. 28 Novembre-Döcembre

IE CHAMP PROPRE ET L'UVTERACTION

DES PARTICUIES DE DIRAC

suivant 1' electro dynamique quantique

PAR

Jean P1HENNE

INTRODUCTION

La notion de quanta apparut au debut tant en mecanique
(modele de l'oscillateur de Planck, theorie des chaleurs speci-
fiques des solides de Einstein) qu'en electrodynamique (notion
des quanta de lumiere d'Einstein). Toutefois c'est d'abord en

mecanique que les principes de la theorie quantique furent

poses de fa§on coherente et precise, en premier lieu dans

l'ancienne theorie de Bohr et de Sommerfeld, puis ensuite dans

la mecanique quantique ou ondulatoire, telle qu'elle a ete

developpee par L. de Broglie, Heisenberg, Schrödinger, Pauli,
Dirac, etc. Grace ä celle-ci, on a pu aborder en detail l'etude
de la structure atomique de la matiere et expliquer la plupart
des phenomenes de rayonnement en appliquant de fatjon
convenable la theorie electromagnetique classique de Maxwell.

C'est seulement apres que les principes de la theorie quantique

furent etablis en mecanique, que Dirac, Heisenberg et

Pauli, Fermi, Bohr et Rosenfeld et d'autres les appliquerent ä

la theorie du champ electromagnetique. L'electrodynamique
quantique, issue de ces recherches, a trouve d'importantes
applications dans les problemes de radiation oü eile fait appel
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234 LE CHAMP PROPRE ET L'INTERACTION

ä la notion de photon. Elle a permis egalement d'aborder le

probleme de l'interaction entre deux particules.
Toutefois aucune analyse approfondie n'avait ete faite de

la fagon dont se presente, suivant cette theorie, le champ

propre des particules elementaires qui est ä l'origine des

champs statiques macroscopiques de la physique classique.
Recemment G. Beck 1 a etudie ä ce point de vue le champ d'un
electron de Dirac anime d'une vitesse non relativiste. II trouve

que cette particule possede au repos un champ statique consti-
tue"de trois parties: le champ de Coulomb, le champ de spin
et un nouveau champ qu'il appelle le champ a.

Dans le present travail, nous nous proposons en premier lieu
de reprendre l'etude du champ propre de l'electron en nous

plagant ä un point de vue moins formel, respectant plus fidele-

ment la definition des notions introduites en electrodynamique
quantique. Ensuite nous examinerons en detail l'interaction
mutuelle de deux particules de Dirac, de meme signe ou de signes

opposes et animees de vitesses non relativistes, en mettant en

evidence le role joue par leurs champs propres. L'existence du

champ oc nous amenera a reserver une attention toute particu-
liere au cas de l'interaction entre l'electron et le positron, dans

laquelle ce nouveau champ intervient de fagon appreciable.
Le memoire est divise en trois parties. Dans la premiere

nous exposerons succinctement et de fagons paralleles l'electro-
dynamique classique et l'electrodynamique quantique, suivant

une methode analogue ä celle de Fermi, ahn de pouvoir comparer

et discuter les resultats qui nous interessent specialement.
Nous y rappellerons egalement l'equation de Dirac, en presen-
tant la theorie du positron, sous une forme differente de la
theorie des lacunes et plus appropriee ä l'etude de l'interaction
entre l'electron et le positron. Enfm nous y developperons
l'etude du champ propre de l'electron. Nous retrouverons les

trois parties signalees par G. Beck, mais sous un aspect assez

different. Le champ a, notamment, ne se presentera plus comme

1 G. Beck, Comptes rendus, 1938, 207, p. 528; Journal de Physique,
1939, 10, p. 200; Comptes rendus, 1941, 212, p. 850; Cahiers de

Physique, 1941, n° 4, p. 1.
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un champ statique, mais comme un champ de transition, et la

fagon dont il depend de la distance sera completement modifiee.
Cette nouvelle forme apparaitra comme beaucoup plus satis-
faisante lors de l'etude du Systeme electron-positron.

Dans la deuxieme partie nous montrerons que l'interaction
de deux particules de Dirac est liee tres simplement, comme en

theorie classique, ä l'energie de superposition de leurs champs

propres. Nous examinerons ensuite la contribution ä cette

energie de chacune des parties de ces champs. Nous verrons
ainsi que la superposition des champs magnetiques des spins
donne lieu ä une interaction formellement identique ä celle

de deux dipöles magnetiques ponctuels lorsque la distance
entre les deux electrons est grande vis-ä-vis de la longueur
d'onde de Compton. Nous obtenons toutefois un terme supple-
mentaire nouveau qui peut etre considere comme une
interaction intervenant a tres petite distance. L'existence de ce

terme provient de ce que le champ magnetique du spin correspond

plutot ä l'image classique d'une distribution de courants
electriques (courants particulaires d'Ampere) qu'ä celle d'un
dipöle constitue de masses magnetiques ponctuelles.

Quant au champ oc, il donne lieu ä une interaction du meme
ordre de grandeur que celle des spins, mais qui ne se manifeste

qu'entre electrons de signes opposes. Elle n'intervient qu'ä
faible distance et correspond ä l'annihilation et ä la recreation
virtuelle de la paire. On peut l'interpreter comme une
interaction d'echange entre les deux particules. On arrive alors,

pour le Systeme electron-positron, ä des equations analogues ä

Celles que Heisenberg a introduites de fagon phenomenologique
dans l'etude du Systeme proton-neutron.

Enfin la troisieme partie du memoire est consacree ä l'etude
detaillee du Systeme electron-positron. Celui-ci presente un
spectre de niveaux assez semblable ä celui de l'atome d'hydro-
gene. Cependant ces niveaux sont elargis par suite de la proba-
bilite de dematerialisation definitive de la paire (annihilation
reelle) et deplaces par l'interaction magnetique des spins et

l'interaction d'echange (annihilation virtuelle). Toutefois la
stabilite des niveaux est süffisante pour qu'on puisse observer
le spectre optique du Systeme dans des conditions favorables.
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I. L'ELECTRODYNAMIQUE
ET LE CHAMP PROPRE DE L'ELECTRON

§ 1. L'ELECTRODYNAMIQUE CLASSIQUE.

1. Les equations de Maxwell-Lorentz.

Suivant la theorie classique, le champ electromagnetique est

regi par les equations de Maxwell-Lorentz:

\ A 1 d H \ifr 1ÖE v
1 rot EH — 0 rot H — 4 7t p —
' cot < cot c

- (1)
div H 0 div E 4 rep

Le champ electrique E et le champ magnetique H peuvent

se deduire d'un potentiel scalaire A0 et d'un potentiel vecteur A

par les formules

7 1 dA iE ~71u ~gradA»
-* (2)
H rot A

A et A0 torment un vecteur d'espace-temps satisfaisant aux
equations

1 ö2 A v I~t 1 ö A„\-4,p- + grad(divA + 717j (3a)

AA0 — - AA ~ 4 n: p — i A [div A + -^-°) (36)0 c2 d(2 ^ c dt\ c dt

La solution generale de ces equations est la somme de celle
—>

des equations homogenes obtenues en annulant p et p et d'une

solution particuliere des equations non homogenes. La
premiere represente un Systeme d'ondes se propageant avec la
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vitesse c et constitue le champ de radiation dans le vide. La
deuxieme solution correspond, si eile est convenablement
choisie, au champ cree par les charges electriques.

D'habitude on se debarrasse du dernier terme des equations

(3) en imposant que la divergence du vecteur spatio-

temporel A, A0 soit nulle:

div A + - 0 (4)
c dt

Le champ du aux charges est alors donne par les formules
bien connues des potentiels retardes

Si p et p-^sont independants du temps, ces formules defi-

nissent des "champs statiques. Ces champs, qui sont essentielle-

ment differents du champ de radiation, sont intimement lies
ä l'existence des particules elementaires et sont mis en evidence
dans les experiences fondamentales de l'electro- et de la

magneto-statique. Toute theorie electrodynamique doit neces-
sairement comprendre ces deux aspects du champ.

D'autre part on peut egalement imposer aux potentiels, que

nous designerons alors par A', A^, la condition de caractere non
tensoriel:

div A' 0 (6)

au lieu de la relation (4). On renonce ainsi ä l'invariance du
formalisme vis-ä-vis de la transformation de Lorentz ou ä la

—>

possibility de considerer A', A^ comme formant un vecteur
d'espace-temps. Mais on arrive ä une simplification remar-
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quable de l'equation (3 b). En effet les equations (3) s'ecrivent
alors:

t, 1 ö2 A' ~l Id J ./A A — 4 p 1 — grad A 7 a)
c- dt2 r c c dtb o

* '

AA — 4 7r p (7 6)

Ainsi le potentiel scalaire est donne, comme en electro-

statique par la formule

A'(7, t) / (5-6,r p(^, o

J 17 — ^

et le champ electromagnetique peut etre considere comme la

somme d'un champ irrotationnel

E, — grad A0
(8 a)

Hx 0

et d'un champ sans divergence

c d t

H_ rot A'

Cette decomposition n'est d'ailleurs pas invariante vis-ä-vis
des transformations de Lorentz et chacun des champs (X) et (t)
ne satisfait pas isolement aux equations de Maxwell. D'autre

part le champ Ex ne depend que des coordonnees du point oil
on l'evalue et de Celles des charges considerees au meme
instant. L'effet de la vitesse finie de propagation est reporte

entierement sur le champ (Ex, Hx).
On peut egalement representer les champs (X) et (t) par des

potentiels (Ax, AXo) et (Ax, AXo) satisfaisant chacun ä la relation

(4). II suffit pour cela de poser

A Ax + A_ ; rot Ay 0 : div Ax 0

A0 A>0 ; Ax0 0
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On a alors

Ex —

Hx 0
(8'«) ;

HT

I
c dt

(8 'b)

2. Developpement en serie de Fourier du champ

electromagnetique.

Nous allons developper le champ electromagnetique en serie

d'ondes planes ä l'interieur d'un cube d'arete L arbitrairement
grande. Ceci permet d'ecrire les equations de Maxwell-Lorentz
sous forme hamiltonienne, puis de quantifier le champ par
l'introduction des Operateurs. Le developpement en serie de

Fourier peut egalement etre utile dans certains problemes
classiques.

A un instant donne le champ electromagnetique est deter-

d A d Amine si Ton connait A, An, -r—L Ceci nous amene ä le
' °' dt ' dt

representer par les series suivantes, A_, Ax et A0 ayant les

memes significations que precedemment.

At — S S (c_| K,~l + cT-% ATt)
h

(9 a)
k

A„ S(e0t Aot + colAot)
k

1 ölx
c d t

— SS ik(cAt-|
k

i_ dAx
c dt
1 ÖA0 £ ik (c0-J A0~J Cq-J A0~J)

s ik(cÜ Axfe — cXft AXft (9 b)

c dt
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avec

_y -y/2 7T eih
at ;h k y'u
t V2 71 wk

(10)

i/2 nivk eihr
k VL5

La suite des vecteurs d'onde k est determinee par les conditions

de fa<jon que les fonctions elhr / \/~L3 forment un Systeme
orthogonal, normal et complet ä l'interieur du cube L3. Le
signe S indique la sommation sur toutes les valeurs de nt,

n2, «3. Celle-ci se transforme en une integrale si l'on fait
tendre L vers 1'infini; pour effectuer ce passage ä la limite on

remarquera que pour L suffisamment grand le nombre de

vecteurs k contenus dans un angle solide dQ. et dont le module
est compris entre k et k -\- dk est

kz L
~2tT~

nx n2, n3 0 ± 1 ± 2

k

(11)

Notons ä ce propos les developpements en serie de Fourier
de quelques fonctions que nous rencontrerons:
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S (r) etant la fonction de Dirac satisfaisant aux conditions

(0 si r / 0

«M ;

oo si r 0

(0 si r 0 est hors de 03

f8(r)d-r
& f 1 si r 0 est dans CO

Le vecteur de polarisation a-* est unitaire et perpendiculaire
—^ ^

au vecteur d'onde k. Pour chaque vecteur k nous choisissons

deux vecteurs aC et CS perpendiculaires entre eux. Le signe S

se rapporte ä la sommation sur ces deux directions du vecteur

de polarisation. De l'orthogonalite des trois vecteurs aC, aJ

et k decoulent les relations

kl

(13)
s(-); =1-^

Les ondes transversales et longitudinales A_-£ et Ay£ forment
un Systeme complet ainsi que les ondes scalaires A0-j. L'ener-
gie wh qui intervient dans leur facteur de normalisation reste

provisoirement arbitraire.
Des formules (8), (9) et (10) on deduit aisement les relations

8^ f <E + Ht) dt S S cTt »-ft (14a)
k

iv. f (Ex + 2 Ex grad A„) d-z S (cx"J c0c0^)(vk

(14 b)

wh represente done l'energie de l'onde transversale de vecteur k
lorsque l'amplitude correspondante [ c_-j | est egale ä l'unite.
De plus (14 a) indique que l'energie totale du champ
transversal est simplement la somme des energies des ondes planes
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qui le composent. Celle du champ longitudinal ne jouit d'une

propriete analogue que lorsqu'il s'agit d'un champ electro-
d A

statique veritable pour lequel on peut poser 0; A 0.

Dans ce cas seulement l'equation (14 b) devient

$co! cot wh (14&)'
k

D'une fafon generale on deduit des formules (14) que
l'energie totale localisee dans l'espace peut s'ecrire

^ Li (E2 + W)dX S'SCTft Crk +

~cokcot)wk +j pA0dr (15)

Le dernier terme differe seulement du second terme du

premier membre de (14 b) par une integrale de surface qui
disparait lorsque la surface s'eloigne indefiniment des charges

qu'elle entoure.

3. Le champ considere comme un ensemble d'oscillateurs

harmoniques.

Portons dans les equations de Maxwell-Lorentz (1) et (4) les

expressions de A0, A A, + A?, E et H, deduites des

formules (2), (9), (10), (11). En multipliant les deux membres de

chacune de ces equations par le conjugue complexe de l'une
des fonctions (11) et en integrant sur tout l'espace on obtient
sans difficulte les equations differentielles suivantes:
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dans lesquelles on a pose: co kc. La condition (17) resulte de

l'equation (4). II suffit qu'elle soit remplie ä l'instant initial pour
l'etre ulterieurement car les equations (16 a) et (16 b) entrainent
la relation

a+1'°>) o**+7^)=°

Les equations (16) peuvent done etre considerees comme

independantes. Notons en passant que des equations (16 b),

(16 c) et (17) decoule la relation

5 ~ CXfc) (c0~h cXfe wh
k

s(cxtcxt — c0fe + J'pa»dT <18>

La formule (15) devient alors

"(ch) 5 j (cot - cxt)* (<*>t - cxt) + S clt Cxt j (15')
h

1

D'autre part, si le Systeme est constitue par des charges quasi

ponetuelles ev e2, en, les equations (16) peuvent s'ecrire sous

la forme

(cT! + wh ^ei 7 ' ß) (19«)

(c>-* + ji)Wh ??' A°* (19 b)

(cot + 5^") wh 2>i Aot (L) (19C)

pour les valeurs de k telles que la longueur d'onde ~ soit grande

vis-ä-vis du rayon des particules.
Ecrivons maintenant ces equations sous forme hamiltonienne.

Pour eela introduisons les couples de variables canoniques qz~%,
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« » CO

P-1; ?xt' Pxf> ?ot> Pot definis Par les formules

4 /2«t tt + c*t I _ J^k cxt + cxt
V "V 2 V 2

t/2(*tCTft—CTfe /
y ./Vv—tc 'pxt v-

[ ^ /2«t cot + cot
J ?ot - V ~oT 2

/2«-fe c0t —c0t
V co 2i

2w<> cxt—cxt
p-h V « 9..: ''Xft V <a 2 i

(20 a)

Pot

d'oü Ton tire

/ 44 / CO

<Vt V 2«^ (?-rt + lPxt) ^ CXft V 2«^ + lPxt)

* / w / / 05

c-~h V 2«^ (?T-t 'P-rt) cxt V 2«^ (?xt 'Pxt)

| cot — \/2wk (?ot ~ 'Pot)

| cot ~ \/2wk (?ot + 'Pot)

Choisissons comme hamiltonien l'expression

H H(ch) + H(i)

(20 6)

avec

H<ch) S (S c*f cT~J + c*-£ cxt — c*^ c0t) »t <21">
k

| { S |co (p't + ?'t) + ^"(Pxt + ?xt) —
x

2

— Yw(Pot + ?ot) }wk (21'®)

H(" SCijAo^-J-A^)! (216)
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On verifie immediatement que le Systeme d'equations
canoniqües

est äquivalent ä l'ensemble des equations (16) et de leurs

conjuguees complexes. La condition (17) devient

Suivant le schema actuel, le comportement du champ se

trouve ainsi decrit par les mouvements d'une triple suite
d'oscillateurs harmoniques dont represente la somme des

hamiltoniens, ceux des ondes scalaires etant comptes negative-
ment, et dont le terme d'interaction Hw exprime le couplage

avec les particules. II est d'ailleurs ä remarquer que l'energie
du champ n'est ni H ni D'apres (15) eile est egale ä

Quant ä la solution generale des equations (16) ou (16'),
eile est la somme de celle des equations homogenes correspon-
dantes (oscillations libres) et d'une solution particuliere des

equations non homogenes (oscillations forcees).
La premiere est de la forme

(19')

lot ~ ~ ^Py.h ' Pot — "K (17')

,(ch) H(ch) + ^A^) (22)

czk W C-Ä (°>e "0t

«ol W c0h (°) e~lat

(23 a)

avec c}j* ä cause de (17). Les formules (9) fournissent alors
la decomposition du champ de radiation en ondes planes se
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propageant dans la direction k avec la vitesse c et cette
decomposition est physiquement realisable, au moyen d'un prisme

par exemple, puisque chacune des ondes transversales et lon-
gitudinales satisfait separement aux equations de Maxwell.
Toutefois les ondes transversales seules representent effective-
ment des radiations lumineuses, les ondes longitudinales ne

donnant lieu ici qu'ä un champ nul.
D'autre part la solution de (16) correspondant aux oscillations

forcees fournit les coefficients de Fourier du champ du
ä la presence des particules. En particulier s'il s'agit d'une

particule en mouvement uniforme, on a

"-T h

e7' Art W

V ~K
e — A%k

^Ah
v k

1
c k

(23 b)

e Aot (^)

»l 1
v k
c k

Les formules (9) representent alors le champ propre de la
particule. Mais, au contraire de ce qui se passe pour le champ
de radiation, le developpement en serie d'ondes planes ne

possede ici qu'une signification purement mathematique,
chaque onde ne satisfaisant plus aux equations de Maxwell et

ne pouvant par consequent exister isolement. Les composantes
de Fourier du champ de radiation et Celles du champ propre
presentent done nn caractere essentiellement different; elles

correspondent en electrodynamique quantique aux notions de

photons reels et virtuels.
Enfin calculons effectivement le champ propre d'une particule

en mouvement uniforme. En portant les expressions (23)
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dans les formules (9) il vient:

At SS.
k

6) ATt + [ ^ • At £) K?
i a v k

«M1 "'Ä
K= lk

e 7 ' A>* ft ('i) A>.! (7) + e 21 Ä?7 £) Ä*7 (r)

i ^ A

A„ 5
eA0ft (^) AoT + eA0ft {C) Kh

i A v kM1"'*
En tenant compte de (11) et (13) on obtient

2tt ^ 1 1 | e*hCr-'r'j) g~it{7-^)
A°= t¥ t _ ^. r)

1 ^ + ^
V'-y+d-D"

—y

A AT + Ax A A0

On retrouve ainsi les potentiels du champ coulombien en

translation uniforme. C'est en suivant une methode analogue
en tous points que nous determinerons, au moyen de l'electro-
dynamique quantique, le champ propre d'un electron de Dirac.

4. Champ propre et dynamique de Velectron.

Du point de vue classique, l'electron apparait comme une

charge e distribute d'une certaine fagon ä l'interieur d'une

petite sphere de rayon r. L'energie electrostatique de celle-ci

est egale ä l'energie au repos mc2 de la particule lorsque r est

de l'ordre de grandeur r0 2,80 10~13 cm. Cette
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derniere longueur, qu'on appelle «rayon classique de 1'elec-

tron », constitue done une limite inferieure de la validite de la
loi de Coulomb. Nous verrons plus loin que les theories quan-
tiques conduisent dejä ä des modifications sensibles du champ

propre de l'electron pour des distances de l'ordre de grandeur

de la longueur d'onde de Compton, A — 137 rn.
2 TT IYIC U

D'autre part le modele classique de la sphere electrisee

possede des proprietes mecaniques assez semblables ä Celles

d'un point materiel. Toutefois on sait que s'il est en translation

uniforme, l'energie et l'impulsion de son champ propre
ne se transforment pas comme les composantes d'un vecteur
d'espace-temps; pour les vitesses non relativistes, l'energie
cinetique est bien de la forme kmv2 mais i / 1/2. On obtient
de meme un facteur discordant pour la force d'inertie qui
resulte en premiere approximation, dans le cas d'une faible
acceleration, de faction retardee de divers elements de la

particule les uns sur les autres. II est bien connu que ces diffi-
cultes sont dues au fait que le modele classique propose n'est

pas stable sans l'intervention d'une energie de nature non
electromagnetique L Enfm l'influence de la duree de propagation

du champ d'un point ä un autre de la particule se marque
en deuxieme approximation par l'existence d'une force de

freinage tenant compte de l'energie rayonnee par la particule.
Les theories actuelles ne considerent que le cas oü cette force
est faible vis-ä-vis de celle d'inertie. Pour etablir la dynamique
classique relativiste de l'electron, on peut eviter ces difficultes
en considerant d'emblee celui-ci comme un point materiel
doue d'une energie et d'une impulsion

englobant l'energie et l'impulsion du champ propre, et soumis,

lorsqu'il est plonge dans un champ exterieur, ä la force de

Lorentz

mc2 — m p
cgo ; g

Vi — ß2 vi - ß2

1 Cf. YV. Heitler, The quantum theory oj radiation. Oxford
Clarendon Press, 1936, §§ 2 et 4.
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appliquee ä une charge ponctuelle. On neglige ainsi complete-
ment l'influence de la structure de l'electron ainsi que le freinage
du ä son rayonnement.

Pour ecrire les equations du mouvement

d g
d t

sous la forme canonique

öH • ÖH • öll •

ö^i ~ ;
diTx p«I ; dT, - {25a}

- i A» - v Ali _ ; (25 b)
*PX1 - 1' ÖPV1 - 2/1' - - (256)

il suflit d'introduire le vecteur d'espace-temps

-> Ä ^
p e- + g

(28)

Po e — + g0
c

et de prendre comme hamiltonien H cp0, c'est-ä-dire

/ /-> A \2
H eA, + c^/ m3c2 + (?— c —j (27)

5. Champ et mouvement ctun Systeme de particules.

Les equations (19') fournissent le champ d'un Systeme de

particules dont le mouvement est connu, tandis que les equations

(25) regissent le mouvement d'une particule dans un
champ exterieur donne. L'ensemble de ces deux systemes
d'equations canoniques permet done de determiner ä la fois le

champ et le mouvement du Systeme. Toutefois l'influence du

freinage du au rayonnement a ete negligee. Afin de pouvoir
passer ulterieurement de la theorie classique ä la theorie

Archives. Vol. 28. —• Novembre-Decembre 1946. 17
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quantique nous devons arriver ä cette determination au moyen
d'un seul Systeme d'equations cononiques:

/ öH öH [ öH
I q\ q^ ;' dPrt 1 dPxk dPot

öH dII • dH
I ~ /Vft T~Z — - POft
\

0 ?xt I 0 1)1 [ 0 Vol

Aä - 1 ÖH - ' ' - :
1 dPxi Xl

|dPj/t~
V%

\dPzi~~

)öH • ÖH • )öH
öx Pxl

[ dy Pyi l dz Pz

(28 a)

(28 b)

Dans ce but on est amene ä choisir pour l'hamiltonien du
champ et des particules l'expression suivante

Ii sc\/ml<? + {PI~~ ei~7^) + f eiA«(ri) + H(ch)

(29)

dans laquelle H(ch\ donne par la formule (21'a), est l'hamiltonien

des oscillateurs du champ. L'ensemble des deux derniers
termes de H est egal, d'apres (22), ä l'energie du champ tandis

que le premier represente la somme des energies mecaniques
des particules. On verifie aisement que les equations (28 a) et
(28 b) sont formellement identiques aux equations (19') et (25).
Toutefois les equations (19') et (25) font intervenir, les unes
le champ total de toutes les particules, et les autres le champ
exterieur agissant sur chacune de celles-ci. Au contraire il ne

figure dans les equations (28) qu'un seul champ, celui de toutes
les particules. Pour que (19') et (28 a) soient effectivement
identiques, il faut done inserer ce dernier champ dans les

relations (26) definissant les pv Par ailleurs l'introduction de

ce champ total dans l'hamiltonien (27) d'une particule a pour
effet d'ajouter ä la force exercee sur celle-ci par le champ
exterieur, la reaction de son champ propre. Celle-ci donne lieu
ä la force d'inertie (ä part un facteur voisin de l'unite) et ä la
force de freinage. Cette derniere force avait ete negligee dans



DES PARTICULES DE DIRAC 251

les equations (25); son apparition dans les equations (28 b)

constitue done un progres. Par contre celle de nouveaux termes
d'inertie d'origine electromagnetique est certainement incor-
recte, puisque l'inertie totale de la particule se trouve dejä
entierement contenue dans la masse rn qui figure dans (25) et

(28 b). Ces termes doivent done etre supprimes des equations
(28 b) avant de les integrer. De meme, si apres avoir determine
le champ et le mouvement du Systeme, on veut calculer son

energie au moyen de l'expression hamiltonienne H, il ne faut

pas tenir compte des termes apportant une contribution
electromagnetique supplementaire ä I'energie propre des particules,
puisque celle-ci est representee completement par le dernier
terme de H.

Le formalisme actuel est done loin d'etre rigoureux et les

difficultes signalees subsistent dans la theorie quantique qui en

decoule par la simple introduction des Operateurs. II permet
neanmoins, moyennant les precautions indiquees, d'aborder
l'etude du champ propre et de l'interaction des particules
elementaires, probleme qui nous interesse tout particulierement
ici, et de traiter un grand nombre de questions relatives aux
phenomenes de radiation.

6. Interaction entre particules et superposition
de leurs champs propres.

Le champ electromagnetique joue un role essentiel dans les

phenomenes d'interactions entre particules, puisque e'est uni-
quement par son intermediate que l'impulsion peut se trans-
mettre de l'une ä l'autre, ce qui s'effectue avec la vitesse de

propagation c. II n'existe done pas d'interaction directe et
instantanee entre elles. Toutefois, si nous nous limitons au cas
de vitesses non relativistes il est possible de considerer l'etude
du mouvement d'un Systeme de particules electrisees comme
un probleme purement mecanique, e'est-a-dire dans lequel le

champ n'intervient pas explicitement. Autrement dit on peut
representer I'energie du Systeme par un hamiltonien ne dependant

que des coordonnees des particules et de leurs moments

conjugues. Celui-ci est formellement la somme des hamilto-
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niens des particules supposees libres et de certains termes
d'interaction qu'il s'agit de determiner ä partir du formalisme

general de l'electrodynamique. II faudra ensuite preciser les

rapports qui existent entre ces termes d'interaction et l'energie
resultant de la superposition des champs propres des particules.
Ces deux problemes se posent en theorie classique comme en

theorie quantique. Leur etude detaillee, ä ce dernier point de

vue et dans le cas des particules de Dirac, fera l'objet de la
deuxieme partie de ce memoire. Pour l'instant nous allons

rappeler les resultats que fournit ä ce sujet l'electrodynamique
classique afin de pouvoir les comparer aux resultats quantiques.

Tout d'abord, on sait qu'il est possible d'eliminer les ondes

longitudinales du formalisme, en choisissant comme hamilto-
nien l'expression indiquee par Fermi x:

avec

V„ i £ OD
jt=» |— ') |

- u. /H9\Pi et + (32)

Ceci parait particulierement evident si on represente le

champ par les potentiels A', introduits precedemment
[equations (5), (6), (7)]. Bien que V0 represente une interaction
instantanee, la restriction des vitesses non relativistes n'est pas
necessaire, 1'effet de la propagation etant entierement contenu
dans la partie transversale du champ. On appelle d'habitude V0

l'interaction coulombienne des charges; en fait l'expression (31)

ne presente qu'une analogie formelle avec celle de 1'electro-

statique. Conformement au point de vue que nous venons

d'indiquer, l'hamiltonien H' peut s'obtenir ä partir du formalisme

general de l'electrodynamique developpe precedemment

1 E. Fermi, Review of Modern Physics, 4 (1932).



DES PARTICULES DE DIRAC 253

(§ 1, 5) x. H' se deduit de H. En effet, en tenant compte des

formules (9 a), (10) et (18) on obtient

k c)k — cot c0h) wk + Se, A0 (r,) S (c*-J — elf) (c0-£ — c}f wh

S e e. 2 A0ft ß) Aot fö)
*.) k K

_ i 4^ i_ eift (v-?3)
2

1 3

x VL3 VL5

Les termes (i, / 7t i) s'evaluent immediatement par la for-
mule (12 b). Ceux pour lesquels i j divergent, par suite de

l'hypothese de charges ponctuelles. Iis correspondent ä la
contribution des ondes longitudinales ä l'energie propre des

particules, laquelle est dejä completement representee par le

premier terme de H (ou H'). L'elimination du champ longitudinal

de notre formalisme nous permet de faire disparaitre
cette contradiction signalee plus haut, en supprimant ces

termes divergents. En affectant de l'indice i les coefficients de

Fourier du champ de la ileme particule, on obtient alors:

Z 2
1.3*1 X oft

-*«*)(.
Ah

,Ö)
Oft 1,3^1 r.

(31'

Pour passer de H a H' il ne reste plus qu'ä se debarasser

de Ax en introduisant de nouveaux pt definis par (32) au lieu
de (26). Enfin on verifie aisement que les equations canoniques
derivant de H' sont äquivalentes aux equations (28) et que par
consequent l'expression (30) presente effectivement la forme
hamiltonienne.

Occupons-nous maintenant de l'elimination de la partie
transversale du champ. Celle-ci contenant l'effet de la
propagation, nous nous placerons dans le cas de vitesses non rela-

1 E. Fermi, Review of Modern Physics, 4 (1932).
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tivistes. En le developpant en serie, le premier terme de H'
peut s'ecrire

At W\ _ y m c» _L
Pi ei c

^ | 1 2 m Pi~ei

at£)'
+ (34)

Par consequent, si

atW « \Pi (35)

l'interaction entre les particules et le champ transversal est

representee en premiere approximation par le terme

II ei mc At (rt (36)

D'autre part nous admettrons que le champ des particules
est le meme que si celles-ci etaient en translation uniforme; nous

negligeons ainsi leur champ de radiation dont Taction compa-
rativement faible ne se fait sentir qu'ä la longue. En tenant
compte des formules (23) et en negligeant vjc vis-ä-vis de

Tunite on obtient en premiere approximation

H<1) 2 Illch'

H<.ch> SSc;t czh <vk= SSSeiC)
k 1>1 k

(37)

Pi -* ->\f Pj

n c t"ft (ri) j\m c T~k ('j)

(38)

Les sommations sur les deux directions du vecteur de pola-
—^

risation a-+ et sur tous les vecteurs k s'effectuent au moyen des

formules (13) et (12). Gomme dans le cas du champ longitudinal,

le resultat est divergent lorsque i j. Les termes corres-

pondants de H^ch) fournissent cette fois la contribution des ondes

transversales ä l'energie propre des particules, contribution qui
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est dejä contenue dans le premier terme de H'. Comme prece-
demment, on supprimera les termes divergents; en ce qui

concerne H['' ceci revient ä considerer A_ (^) comme le poten-
tiel vecteur du champ transversal agissant sur la i^me parti-
cule, ce qui justifie la condition (36). En groupant les termes
restants de et de H^.ch) on obtient l'interaction Vj due aux
ondes transversales:

v, ' s„l39i
L'ordre de grandeur de V( est e2/c2 fois plus petit que celui

de V0, lequel est le meme que celui de l'energie cinetique. Nous
devons done developper celle-ci jusqu'au terme en pl afin
d'atteindre la meme precision que pour l'interaction.

En posant

H{P> c2 + p- ^ (40)
1 1 8m-c2

l'hamiltonien du Systeme s'ecrit sous la forme indiquee par
Darwin 1

H 2 H(D + Y0 + Y; (41)

Afin d'interpreter les differents termes de H, introduisons
la notion d'energie de superposition.

Soit (Ej, H]) et (E2, H2) deux champs quelconques. Si nous
les superposons, l'energie totale

^Ch) -Lfi + ^ + ®2)2

est la somme de trois termes representant respectivement les

energies de chacun des champs

<4ch) ^ / fil + H?) dT <4ch) ~/ (EJ + Kl) d?

1 Darwin, Phil. Mag., 39, 1929, p. 537.
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et leur energie de superposition

<P(S) ~ J(A-% + St.3,)dT (42)

Si (E1; Hx) et (E2, H2) sont les champs de deux particules,
l'adoption de modeles ponctuels pour representer celles-ci rend

divergentes les expressions de <v$ch> et alors qu'elle ne modi-
fie pas pratiquement la valeur de pour autant que la
distance r12 soit grande vis-ä-vis du rayon des particules. L'inte-
grale de la formule (42) devient impropre. Son evaluation ne

requiert aucune precaution speciale dans le cas actuel de particules

douees simplement d'une charge electrique; il n'en est

plus de meme si celles-ci sont plus compliquees et presentent

par exemple des moments dipolaires electriques et magne-
tiques (voir plus loin).

D'autre part, w(ch) est egalement donne quelle que soit la

complexite des particules etudiees par l'expression (15):

W<°h) ^ { — °h) (C0k — CXh) + CTft CTfe } wh
k

Par consequent l'energie de superposition est egale ä la somme
de Celles des champs longitudinaux et transversaux:

w(s) w(*) + Js) (43)

avec

4S) EU.E2. rfx

s{- cm (c(2L - cm1 V 0 k UM0ft X k '
k

-f — Z2Z) (c'1^ — c(1L) } wh (44 a)v 0 h A h' V o h A h' > h K '

w^) h J (K-K + K-K)**
s2{c(1':a + ^c(1'}^T ft T k T k rk * K

k
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Ces formules s'appliquent ä des champs quelconques. Dans
le cas de champs statiques, leurs parties longitudinales et
transversales sont constitutes par les champs electriques et

magnetiques. On a alors

4S) «iS) ^ / E1.%d^= 2 (<££ cfl + „h

(45 o)

-ls) ^ f% ö, dt s 2 Ä + cm cm) *k

(45 b)

Notons que dans ce cas

de sorte que les formules (9 a) s'ecrivent

A0 — 2 2 e0-j A0 £

k

Cette remarque nous servira plus loin.
L'introduction de l'energie de superposition permet d'ecrire

le principe de la conservation de l'energie en evitant les diffi-
cultes relatives ä l'energie du champ propre des particules.

En effet on peut montrer, en partant directement des equations

de Maxwell et de l'expression de la densite de force de

Lorentz, que la somme des energies mecaniques de particules
de structures quelconques et des energies de superposition de

leurs champs propres est constante, si on neglige le rayon-
nement.

Dans le cas considere precedemment, oü les particules sont
seulement douees d'une charge et ne possedent aucun moment
electrique ou magnetique, il est aise de voir que cette energie
constante est numeriquement egale ä H. En effet le terme H^p),

qui est formellement identique ä l'hamiltonien de la ileme par-
ticule, represente en fait la somme de son energie mecanique
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et de I'energie de superposition de son champ transversal avec
celui des autres particules; V0 est I'energie de superposition
des champs longitudinaux et V, celle des champs transversaux
changee de signe, mais cette derniere a ete comptee deux fois

dejä dans la somme des

Enfm, dans le cas non relativiste, ET est de l'ordre de ^Ex
(champ quasi statique). Comme nous avons calcule l'inter-

action correctement iusqu'aux termes de l'ordre de -5- —
C R

inclus, V0 se confond, ä la meme approximation, avec I'energie
de superposition des champs electriques et V, avec celle des

champs magnetiques.

Remarque: Les potentiels A^(3) et A'(3) des champs longitudinaux

et transversaux de la /leme particule, ont pour expression

(la derniere etant seulement valable pour vjc «1). L'hamilto-
nien (41) du Systeme peut alors s'ecrire sous la forme

H Z H<p> + i 2 et j A'ö) _ !l J''3' j

l 2 1,3^2 0 C WM

Ceci permet de verifier immediatement que les equations
canoniques derivant de H sont bien identiques aux equations
du mouvement de chacune des particules soumise au champ de

toutes les autres. On retrouve ainsi la possibilite d'etudier le

mouvement d'une particule elementaire en interaction avec un
Systeme macroscopique eloigne en considerant celle-ci comme
plongee dans un champ exterieur produit par le Systeme.

C'est en suivant une methode semblable que nous cherche-

rons ä mettre en lumiere le role joue en electrodynamique
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quantique par le champ propre des particules de Dirac dans les

phenomenes d'interaction mutuelle.

Application. — Energie de superposition de deux dipöles:
En vue de discuter les formules d'interaction quantique de

deux particules de Dirac, il est utile de calculer par les

formules (45 a) et (45 b) les energies de superposition des

champs statiques de deux dipöles electriques et de deux
dipöles magnetiques immobiles et de dimension s arbitrairement
petite.

Soient et JTL^ JYl2 leurs moments respectifs. Les coefficients

de Fourier de leurs champs sont donnes par les formules
(16) qui peuvent s'ecrire ici sous la forme

pour autant que la longueur d'onde ^ soit grande vis-ä-vis
k

de s. En appliquant les formules (46) et (12) on trouve les

potentiels de chaque dipöle

0 a/l3i ä2 VL3

»<) —Ac s % ''EßL
Vl3 J k2 V^L3 | r — r- |
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et les energies de superposition

v® 2 (PK PI + PK PK) «v1 ^ V 0 ft 0 I; 0 ft 0 k> »-ft Oftk

4 re „ ßfc-?*)-pi 7=— 48aj\/l3 -j /c3 VL3

«-(I» SS(ÄA + Ä (1^K^
T ft T k T k T k' *

k

KpP S 2
°fe) (' '*]

"XXL3 ^ /r2 -y/L3

4 TT
i (t • i*) (^2 • it) - ^ ~r>

Zj < + .'ILj.ntj y=—\/L3 k A:2 ' vL3
(48 6)

Ces expressions ne sont exactes que pour les grandes distances

(rig >> z) puisque les coefficients de Fourier ne sont corrects que

pour les petites valeurs de k (k « 1/s).
Effectuons les sommations en laissant provisoirement de

cote le terme ,7Tt2 qui n'apporte aucune contribution
ä distance finie; nous obtenons:

(O o ,,nwK> — 3 49 a

.711, ,711, (,71c, (,71c, r,,),P _ 3
V

12j; (49 6)
11 r r

12 12

Comme on le voit, w$ est egale ä l'energie potentielle meca-

nique tandis que en differe par le signe. Ceci provient de ce

que les moments <£ et Jit n'ont pas la meme symetrie; le
premier est un vecteur polaire et le second un vecteur axial ainsi

—>• —>-

que le sont respectivement E et H. De fagon plus precise
—>

l'emploi dans notre calcul de potentiels A0 et A Continus et
uniformes dans tout l'espace implique necessairement que les

dipoles electriques soient constitues par des charges electriques
et les dipoles magnetiques par des courants electriques et non

par des masses magnetiques libres.
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Revenons maintenant au terme Jll1. Jll2 de la formule (48 b).

Par sommation il donne lieu ä une energie de superposition

4 TT S (r12) (50)

qu'il s'agit d'interpreter. Pour cela nous devons supposer que

r12 puisse devenir du meme ordre de grandeur que s. L'expres-
sion de l'energie de superposition est alors tres differente de

(49 b) et depend essentiellement de la structure particuliere
des dipöles. II est alors interessant de determiner la valeur

moyenne de cette energie en admettant que ceux-ci ont une
certaine probability de se trouver en tout point de l'espace.
Ce probleme se pose en mecanique ondulatoire dans le calcul
de l'interaction des spins de deux electrons. Nous designerons

par Jtlj et jft2 les densites probables de moment magnetique;
si nous supposons que celles-ci varient peu sur des distances
de l'ordre de £ l'expression (48 b) reste applicable, mais nous

ne pouvons pas lui substituer la somme des expressions (49 b)

et (50), la premiere donnant lieu ä une integrale impropre dont
la valeur depend de la fagon dont on approche le pole r1 rr

D'autre part, on peut egalement ecrire l'energie de

superposition moyenne sous la forme

<5 J,H(IL)Q.5ir,QdT. (51)

-> -> ->
H(L) (r2) est le champ moyen produit au point r2 par le

* —>.

dipole 1. Suivant Lorentz, H'L' est egal ä l'induction
B H(M) + 4tcJTL de la theorie de Maxwell, H(M) etant le111 7

1

champ cree par la densite de masse magnetique apparente
div JTtr Pour evaluer celui-ci on peut le deriver du potentiel
scalaire

r div5if i eikr r©(/•)= lim / p? rp d-r2 lim 4k E tj- —t=- / div .HR e_ihri dTjJ I r — rx j v^o -* K \/ L3, /
V-i) V-c

V designe le domaine oü 0 et S sa frontiere; v est un
domaine de dimensions arbitrairement petites entourant le
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point r s sa frontiere et ds le produit de l'element de surface
de s multiplie par un vecteur unitaire dirige suivant la
normale exterieure au domaine p. Nous supposons que les

integrales sur S s'annulent. On deduit de O le champ magnetique

L'energie de superposition s'ecrit alors

vzrt //^ (n) I H<M) Q + 4ti Q j di (52 a)

471 v) j dTi dXtVl3
(52 b)

f ^ \ •"'tL,. ,1R2 (OH,. ri?) (dlt2.r12) j jhm / ä o g a Tj +
/ v^o I r r

m " •' 10 10

V-c

(jxiy.ds) (r^ — rl)
d to

~ JJ 4tc Jlli W' (n) 8 (ri2) d^id-z (52 c)

Dans ces trois expressions äquivalentes de les premiers

termes se correspondent, ainsi que les derniers, ce qui permet
de les interpreter aisement. D'autre part la limite de chacune
des deux integrales du premier terme de (52 c) depend de la
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fa?on dont on fait tendre vers zero le domaine v tandis que la
limite de leur somme en est independante. En particulier, si

l'on choisit pour v une petite sphere de centre r,, l'integrale de

surface tend vers — Jfl^(r^). En d'autres termes, si l'on adopte

ce mode d'integration, la somme de la Serie (48 b) doit s'ecrire

„(6) _ 3
('11ci" ^ia) (-""Via)

+ ^ 8 ^

4 tt (dllj flt^) 8 (r12) (53)

On peut voir que dans l'hypothese de Oflj et Jll2 lentement
variables, la majeure partie de l'integrale du premier terme

provient des grandes distances pour lesquelles il represente
correctement vt>^. Les deux derniers termes donnent la contribution

des petites distances.
Pour deux dipöles electriques, on trouve la meme formule

sans le dernier terme. Geci correspond au fait que, suivant

Lorentz, le champ moyen ä l'interieur d'un dielectrique est

egal au champ macroscopique de la theorie de Maxwell.

§2. — Les particules de Dirac.

1. Equations de Dirac de Velectron et du positron.

D'apres Dirac le mouvement relativiste d'un electron dans

un champ exterieur donne est decrit par une fonction d'onde ^
ä quatre composantes satisfaisant ä l'equation

h
2 t. i

1

c dt
6

+ — A0) + aYz—. grad + — A) + ß mc
C / TU l C

o

(i)
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oü les composantes du vecteur a ainsi que ß sont les matrices

e represente la valeur absolue de la charge de l'electron. De

meme l'equation d'onde d'un positron peut s'ecrire:

Vis-ä-vis du groupe de la relativite restreinte, les equations
(1) et (2) sont invariantes de forme, tandis que les composantes
de chacune des fonctions d'onde tji et cp se transforment lineai-
rement entre elles comme Celles d'un spineur d'espace-temps.

On trouvera dans le tableau II (colonne reservee au cas de

l'energie positive) les Operateurs representant les principales
grandeurs mecaniques ainsi que les densites de probabilite et
de courant de probabilite, qui forment un vecteur d'espace-

temps, des densites de charge et de courant electriques, qui
jouissent de la meme propriete, et des densites de moments

magnetique et electrique qui forment un tenseur antisyme-
trique du second ordre. Les composantes du vecteur

a — [a, a] sont les matrices de spin:

Aid
2 tt i c dt

p. eh/in mc est le magnetron de Bohr.
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2. Les etats d'energie negative.

Les fonctions propres representant les etats stationnaires de
2TU ^l'electron de Dirac sont de la forme <\> u(x, y, z) e h oü

w represente l'energie totale de l'electron. II est bien connu que

l'equation de Dirac admet egalement des solutions de la forme

+
^71^

t
vjj u{x, y, z) e h correspondant ä une valeur propre
negative, — w, de l'operateur cp0. Si l'on admet que ces

solutions representent un electron, celui-ci se trouve dans un etat
d'energie negative.

Pour arriver ä une interpretation physique de l'existence de

ces etats d'energie negative, Dirac a suppose que l'espace vide
est caracterise par le fait que tous ceux-ci sont occupes par des

electrons inobservables (electrons virtuels). S'il existe un
electron observable dans cet espace, il occupera done necessai-

rement un etat d'energie positive. D'autre part, si Fun des etats

d'energie negative est inoccupe, la lacune se comporte comme

un electron dont la charge, l'energie, l'impulsion, le moment

cinetique et le moment magnetique sont de signe oppose aux
grandeurs correspondantes se rapportant ä l'etat d'energie
negative considere. La lacune represente done un positron.

Sous Finfluence d'un champ electromagnetique, un electron

d'energie negative peut effectuer une transition vers un etat

d'energie positive. On verra alors apparaltre simultanement et

au meme endroit un electron et un positron: e'est la creation
d'une paire par materialisation d'energie electromagnetique.
Le phenomene inverse ou annihilation se produit lorsqu'un
electron d'energie positive tombe dans une lacune en emettant
un rayonnement electromagnetique.

Toutefois la theorie des lacunes souleve de nombreuses

difficultes. Notamment eile necessite l'emploi d'un nombre
infmi de particules (virtuelles), meme lorsqu'il s'agit de

representor le vide ou un Systeme constitue d'une ou de deux particules.

Cependant nous allons montrer qu'on peut eviter dans

une certaine mesure ce dernier inconvenient en rattachant de

facon directe les etats d'energie negative au positron.

Archives. Vol. 28. — Novembro-Dfccenibre 1946. 18
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Nous entendrons par spineur conjugue de tji l'expression Ccj;*

oü C est la matrice

(0

0 0 1\
0 0-1 0 \
0-100 I <3>

1 0 0 0/

qui jouit des proprietes suivantes:

C ; C a* C CßC — ß (4)

En tenant compte de ces relations, la conjuguee complexe
de l'equation de Dirac (1) peut s'ecrire

h 1. A_ LA \ + a*
27zi c dt c 0' grad — — A) — ß mc2ni c ' C.C 0

ou encore

(— — — A0) + a grad — — a\ + ß mc C +* 0
\ 27ti c ö( c / \2 7ti c

On retrouve done l'equation (2) avec cp C^*- On voit que
Ton passe de l'equation (1) ä l'equation (2) et reciproquement,
en posant:

+ Ccp* (5)C<|i*

Cette transformation fait done correspondre les etats d'ener-

gie negative de chacune de ces equations aux etats d'energie
positive de l'autre. On peut done dire que les fonctions d'onde
ä energie negative et cp representent respectivement le positron
et l'electron. Ainsi une particule de Dirac est susceptible d'etre
representee de deux faijons mathematiquement equivalentes
soit par le spineur cji, soit par le spineur conjugue cp. La
signification de (J; et <p dans chaque cas est donnee par le tableau
suivant:

Tableau I.

Energie positive Energie negative

Electron

Positron
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D'autre part, si un Operateur F correspond ä une certaine

grandeur physique dans l'une des deux representations,

l'operateur
G C.F*.C (6)

represente la meme grandeur dans la representation conjuguee.
En effet, on voit aisement que Ton a

(^F+i)* 9^9, O

Tableau II.

Operateurs Energie positive Energie negative

Energie

Impulsion

_ h 1 ö

27t i c ö t

p grad
2i 7T I

* hid
Po 2izi c dt

—* * k
p — — grad

.Z 7T I-

Moment
cinetique

|——*--i 1 h —>

J 0'*] + 2 2^ °

Spin

Vitesse

a

->•
— c a

— a

— c a

Densities de Electron Positron Electron Positron

Probabilite

Gourant de
probabilite

O, 9^9 i

-<?*hca <?i

9ft 9;, O,
-+feca+i

Charge
electrique

Courant
electrique

+ r? ft<Pi

"e9ft a<Pi

"£9fe 9j

-i-ecp^atp;

+e ^

Moment
magnetique

Moment
electrique

+ H ß i>\ -!x<p*ä'ß(pi + p-cp^a ß<p;

-po/*iaß9i

-[x^aßi^
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Cette relation permet de definir les Operateurs relatifs aux
etats d'energie negative ä pärtir de ceux qui ont ete adoptes

pour les etats d'energie positive. Les resultats de cette
transformation, inscrits dans le tableau ci-apres, sont en parfait
accord avec la theorie des lacunes, ainsi qu'on peut le

verifier.
De plus les elements de matrice de F et de G sont conjugues

complexes Fun de l'autre. Fftj G*ki Gih. Par consequent
si l'on appliquait aux etats d'energie negative le meme langage

que pour les etats d'energie positive, ainsi que le fait la theorie
des lacunes, on trouverait qu'ä une transition (i —* ft) entre
etats d'energie positive, correspond une transition inverse

(ft—» i) entre etats d'energie negative. Cette conclusion correspond

au fait que si un electron d'energie negative fait une
transition (ft —>• i), la lacune, c'"est-a-dire le positron, effectue
la transition (i —<• ft).

La transformation C permet done d'eviter le paradoxe des

energies negatives sans avoir recours ä la theorie des lacunes.

D'ailleurs l'utilisation de l'operateur cp0 montre que l'energie
de ces etats est en realite une quantite positive.

L'emploi des spineurs conjugues permet ainsi de representer
l'electron et le positron par des ondes ä energies de meme signe.
Cette representation aura le grand avantage de nous permettre
d'etudier, en premiere approximation, le Systeme forme par
un electron et un positron comme un probleme de Schrödinger
(ou de Pauli).

Cependant il n'est pas possible, dans un meme probleme, de

faire correspondre deux Operateurs differents ä une seule grandeur

physique. Cette eventualite ne se presentera jamais tant
que l'on pourra representer l'electron (ou le positron) soit par
par le spineur <Jq soit par le spineur 9. Au contraire, il semblerait

qu'on ne puisse l'eviter si l'on est oblige de considerer des

transitions entre etats d'energies positive et negative. Toute-
fois, comme il y a alors creation ou annihilation de paires, on

n'a plus affaire au probleme d'un seul corps. Ce cas sera etudie
ulterieurement.

II est important de remarquer que l'ensemble des fonctions

propres (resp. 9) ä energies positive et negative, forment un
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Systeme orthogonal complet. Par suite les fonctions d'ondes
ä energie positive ne forment pas ä elles seules un tel Systeme.

En principe, la description du mouvement d'un Systeme de

particules est intimement liee ä celle de son champ. Toutefois,
il est generalement possible, en raison de la petitesse de la
force de freinage due au rayonnement vis-ä-vis de la force

d'inertie, de considerer comme independants les deux problemes
suivants:

1° Rechercher l'influence d'un champ exterieur sur le

mouvement d'une particule.
2° Determiner le champ produit par une particule en mouvement.

Le premier probleme repose essentiellement sur le choix des

termes d'interaction introduits dans l'hamiltonien pour tenir
compte de Paction d'un champ exterieur sur une particule.
Dans les theories de Schrödinger, de Pauli et de Dirac, ainsi

qu'en electrodynamique quantique, ceux-ci sont tires directe-
ment de la dynamique classique, les grandeurs cinematiques
classiques ayant ete remplacees par des Operateurs. Ceci peut
etre considere comme une premiere application du principe
de correspondance de Bohr. Ainsi le terme d'interaction de

Dirac

3. Uemploi de Velectrodynamique classique

en mecanique ondulatoire.

correspond au terme classique

e J a0K)-|A£) |

intervenant dans l'expression suivante de l'energie
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En effet l'operateur — ca represente la vitesse de l'electron.
Gelle-oi constitue toutefois une notion plus complexe que celle

de la mecanique classique. En effet, si l'on represente le mou-
vement d'un electron en translation uniforme par celui d'un
paquet d'ondes, on trouve que ce dernier est anime d'une
vitesse de translation egale ä la vitesse classique cp/p0 de la

particule et d'une vitesse de rotation en rapport etroit avec le

magnetisme propre de l'electron 1.

La solution du second probleme est fournie par l'electro-
dynamique quantique, grace a l'emploi judicieux des termes
d'interaction introduits ä 1'occasion du premier probleme
(cf. electrodynamique classique, § 1, 5). Mais avant que cette
theorie ne fut developpee, on avait dejä pu le resoudre jusqu'ä
un certain point en appliquant l'electrodynamique classique et

en faisant un nouvel appel au principe de correspondance.Pour
ce faire, on suppose que le champ moyen 2 produit par l'electron

obeit aux equations de Maxwell dans lesquelles on remplace
les densites de charge et de courant electrique par leurs valeurs

probables. Ceci permet de calculer le champ statique moyen
produit par un electron dans un etat stationnaire. D'autre part
les probabilites de transition entre deux etats i et k et la nature
du rayonnement emis peuvent etre obtenus en considerant les

densites de charge et de courant de transition, —
et en admettant que l'intensite et la polarisation de

la radiation determinees classiquement sont egales aux valeurs

probables des grandeurs quantiques correspondantes 3. Mon-

trons maintenant quelle est, suivant les considerations prece-
dentes, la structure du champ propre de l'electron de Dirac.
A cette fin, il est utile de decomposer de la faijon suivante les

densites de charge et de courant electriques relatives ä une
transition i —> k :

1 L. de Broglie, L'electron magnetique.
2 La moyenne se rapporte ici aux differentes positions de la

particule. Elle n'a aucun rapport avec celle envisagee plus loin
(Cf. fin du I, § 4, 2) qui a trait aux fluctuations essentielles du
champ.

3 O. Klein, Zeit fur Physik, 41, 407 (1929).
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- -4 (+<ß £ ß £ e (+* p +*)

+ divp(<]^iaß<!q)

-
'

<8>

e ^ a «fc -4 ß £ ^ ^ ß -£- ^ ^ ß ^ +

+ rot p(^?ß(|q) —i~[x(^iaß^)

Ces relations, qui se deduisent directement de l'equation de

Dirac, sont ä comparer aux formules classiques

Ptot P — div H'

(9)

/ V \ V -xr* 1 Ö H'
P — P h rot 71t H

V c / tot c c dt

qui indiquent que le champ produit par un milieu presentant

des densites de charge p, de courant p et de moments magne-

tique et electrique ,711 et est le meme que celui que cree une

repartition de charges et de courants totaux equivalents de

densites ptot et p ^
Supposons que (Jq et t);Ä soient des fonetions propres ä energie

positive. On voit alors que le champ moyen produit par l'elec-
tron est le meme que si ce dernier etait doue d'une charge — e

et d'un moment magnetique — p donnant lieu respectivement

par suite de la vitesse classique cp jp0 de la particule ä un
courant de convection et ä un moment electrique.

Suivant cette decomposition les densites de charge reelle
et de courant de convection sont donnees par les expressions

4 p» + e~ p* + e~ ^

p
c ~ e2 ~ ^ß£^) + äe(^ß'K

i -> A —A
1 P + eT P + eV
^Kß—+
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analogues ä Celles de Gordon dans la theorie relativiste d'une

particule ä une seule fonction d'onde; les Operateurs

—^
4. — A

go Po + e'y \ g P + e-

representant l'energie et l'impulsion mecanique (cf. § 1 (26)).
Les densites de moments magnetique et electrique

.111 7 — fr(<^iaßt|q) (11)

sont precisement Celles qui sont indiquees dans le tableau II
(page 267). Si les deux etats i et / sont nonrelativistes,la densite
de courant rot Jll est du meme ordre de grandeur que celle

du courant de convection tandis que les densites de charge et

de courant — div et sont respectivement d'un ordre

de grandeur ^ fois plus petit que celui de p et p-^-.

Le cas oil les energies des ondes ^ et sont de signes
contraires correspond ä des transitions d'annihilation ou de

creation d'une paire. Dans rhypothese oil'les deux etats i et /
sont non relativistes, la presque totalite des densites de charge
et de courant ne provient plus des premiers termes, mais bien
du dernier. Ceci est en relation avec le fait que de telles transitions

correspondent ä des variations importantes du moment
electrique forme par les deux particules. Toutefois l'application
par correspondance de l'electrodynamique classique aux pro-
blemes d'annihilation et de creation de paires serait tres
delicate; nous reprendrons l'etude de ces phenomenes au moyen
de l'electrodynamique quantique.

(ä suivre)
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