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SEANCE DU b gurLrLer 1945

Séance du 5 juillet 1945,

Lucien Féraud. — Sur la distribution rectangulaire et les

nombres de Bernoullr.

1. — La distribution rectangulaire que nous écrirons, so
sa forme réduite
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B,, By, B,, ... étant la suite des nombres de Bernoulli écrite
dans la notation selon laquelle tous les nombres d’indice impair

sont nuls.

On sait que les moments et les semi-invariants d’une distri-
bution satisfont 4 un systéme de relations simples qui peut

étre résolu par rapport aux uns ou aux autres.
Par ailleurs, le développement
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a partir duquel on définit souvent la suite des B, conduit a
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On arrive ainsi a un deuxieme systéme de relations simples
entre la suite des B et la suite

1 (i
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on voit immédiatement qu’il ne se confond pas avec le premier.
L’existence de deux systémes de relations simples entre les
deux mémes suites de nombres parait curieuse, & premiere vue,
et appelle une explication et, tout au moins, la confrontation
des deux systemes.

2. — L’une et lautre découlent aisément d’une remarque
sur les nombres de Bernoulli.
En posant formellement,

1
2 3 =
1+hlw+h2x +h’3m +.--—1_a1x+a2x2_a3x3+...
(3)
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on définit un systéme de relations entre deux quelconques des
trois suites de nombres, £, a, s 1.
Dans le cas particulier ou la suite des 4 est la suivante:
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les relations entre les a et les s se réduisent aux identités
ak = Sk .

1 Lorsque
1 —az + a2 —a32® + .. + (—1)a 2" =
= (1 —z) (1 — o) ... (1 —a,2)

les @ sont les fonctions symétriques fondamentales des «, les s les
sommes de puissances semblables et les & les sommes de produits
homogeénes.
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En effet, en vertu de (1) et (2), la relation (3) s’écrit

x
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dont le second membre converge pour |x| < 2r. On en tire

1 1
* 1 E—i—i:i—al—l—azx—%ﬁ—i—...

e

et en intégrant

eX —1 ay a

log = (1 — —Bar B3 L.

0g — 1—a)zx + 5 & 5z +
De plus, en vertu de (1)

@ =3, aoppqg = 0
En comparant avec (4)
1 h+1 Bar
St =g, Soppq =0, Sgp = agy = (1) g5

La suite des s coincide bien avec celle des a. Ainsi s’explique
Pexistence de deux systémes de relations simples entre les a
et les h, lorsque les h ont les valeurs particulieres d’olt nous
sommes partis. Ces deux systémes sont condensés dans
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Il en résulte des relations de récurrence entre les nombres de
Bernoulli et des expressions explicites de ceux-cl. En élevant
a une puissance quelconque, on obtient de nouveiles relations
de récurrence et de nouvelles expressions explicites.
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2

3. — La distribution rectangulaire conduit précisément au
cas particulier que nous venons d’envisager. Il suffit de poser
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pour déduire des deux systemes de relations simples entre les a
et les i, deux systemes de relations simples entre les M et les .

4. — La distribution que I'on obtient en composant »n dis-
tributions rectangulaires R admet pour semi-invariants
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Ay =5 Ay =0, Ay = [(— 1) n

Cette distribution est symétrique par rapport & sa moyenne

n \ . .
- - Par rapport a cette moyenne, ses moments d’ordre impair

&

sont nuls et ses moments d’ordre pair donnés par la formule
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la sommation étant prise pour toutes les valeurs des.p entiéres
7
positives, qui satisfont a

2ps + &py + .. 4+ 2k py;, = 2k
avec

Zp=ps+ pst --- + Pyy
Z’p:p4+p8-}—...+p4j oun 27 <k .

En vertu d’une des relations de récurrence que P'on tire de (5)
elle coincide avec I'expression donnée par Philip Hall (Bio-
metrika, vol. XIX, déc. 1927, p. 243):
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ou la sommation est prise sur toutes les valeurs entieres et
positives des ¢ qui satisfont a

Gt gt g, =k

La formule (6) donne le résultat ordonné par rapport a n.
Les premiers moments sont
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Michel-A. Besso, — Le danger de panmizie dans les associa-
tions d’étre vivants & reproduction indépendante et les dispositifs
par lesquels ce danger est évilé.

La notion de panmixie, introduite par Weissmann lorsque
I’hérédité des caractéres acquis devenait improbable, pour
expliquer la régression organique d’espéces parasitaires, ainsi
que I'adaptation d’animaux cavernicoles a I'obscurité totale,
explique, suivant l'auteur, ces faits: il s’agit de l'absence de
sélection, du mélange sans préférences. En effet, on doit
s’attendre & ce que les mutations soient indépendantes soit des
exigences du milieu, soit des conditions d’harmonie interne, et
par la presque toujours léthales ou alors régressives. Sila descen-
dance de telles mutantes n’est pas éliminée, la régression va
s’étendre en raison des lois de I'hérédité. Un niveau élevé
d’adaptation est donc obtenu et conservé de haute lutte contre
une dégringolade toujours menacante, I’abondance normale de
la reproduction fournissant le matériel a la sélection.

Le danger de panmixie guette ainsi toute association d’étres
vivants, les individus biologiquement inférieurs étant protégés
comme les faibles qui sont tels, soit en raison du stade de déve-
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