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1945 Vol. 27 Septembre -Octobre

SUR LA MECANIQUE ONDULATOIRE
DES CORPUSCULES ELEMENTAIRES

PAR

Bernard KWAL!
(suite)

QUATRIEME PARTIE

REsuME.

Des nouvelles équations d’onde sont étudiées, équations
applicables en particulier aux corpuscules se mouvant avec la
vitesse de la lumieére (les limitons chargés ou neutres).

On les obtient, en considérant la formule de transformation
relativiste, reliant les valeurs que possede le quadrivecteur
quantité de mouvement-énergie dans un des référentiels pos-
sibles a la valeur qu’elle posséde dans un référentiel galiléen
quelconque par rapport au référentiel propre du corpuscule.
On passe en revue les équations primaires et secondaires de
corpuscules uniondulatoires de spin 15, 1, ?/, et j, et celles,
mixtes et mixtes composées du corpuscule biondulatoire de
spin 1. Est ensuite examinée la théorie des ondes planes.
Enfin, les équations composées de premier rang du corpuscule
de spin 15 sont soumises & un examen plus détaillé, qui porte

1 Mémoire rédigé dans le Stalag II A allemand et transmis par la
Croix Rouge Internationale, service de secours intellectuel.
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168 . SUR LA MECANIQUE ONDULATOIRE

principalement sur les opérateurs matriciels, générateurs de
formes bilinéaires, composantes de divers tenseurs d’espace-
temps. Il est démontré que la divergence du tenseur de second
rang, qui jour le rdéle du flux de probabilité, est nulle lors-
qu’on se place dans le cas des ondes planes.

6. UNE GENERALISATION RELATIVISTE DES EQUATIONS D’ONDE
ET LA THEORIE DES CORPUSCULES LIMITES.

6.1 Egquations d’onde du corpuscule de spin Y.

Nous avons vu qu’en vertu du théoreme fondamental de la
mécanique ondulatoire relativiste, les équations primaires, sans
le terme de masse, et, secondaires avec le terme de masse, qui
définissent les états possibles du corpuscule de spin 14, s’éta-

blissent, en remplacant par les opérateurs %{.58,1 et %81 les

composantes p,, et V?V du quadrivecteur quantité de mouvement-

énergie dans la formule de transformation relativiste, reliant
a la valeur de la masse propre, les valeurs que posséde ce quadri-
vecteur dans un des référentiels possibles du corpuscule. Com-
ment ne pas se demander ce que deviennent les équations
d’onde, si au lieu du référentiel privilégié ou le corpuscule se
trouve au repos nous prendrions appui sur un référentiel
galiléen quelconque par rapport au référentiel propre ? Peut-
étre alors mainte difficulté qui s’attache a la formulation
relativiste correcte de la mécanique ondulatoire va-t-elle pou-
voir étre levée, et, une théorie des corpuscules se mouvant
avec la vitesse de la lumiére, pour lesquels le référentiel propre
n’est pas définissable, pourra-t-elle enfin étre édifiée sur des
bases solides.

Eecrivons donc, de la maniére suivante, la formule de trans-
formation relativiste du quadrivecteur quantité de mouvement-
énergie:

Py=1*P (6.1 a)
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ou I'on a posé

W - P W
— T Ps, p1+ ips | | — T Pss Py ipy)
4 : W ;
| Pr T P, ?“f‘Pq ‘_(P1_LP2)7*#P3 '
y (Tbl ’ 4)3 | B ‘ - L;)t} ) UJ?
v = | i , L o= (6.1¢)
W2, Y | Y3, — P
En notation spinorielle I'équation (6.1a) s’écrit
pheg 3 — B pro (6.1 d)
h h T
Remplacons-y %—V et p, par Tr op el — =y, 1l vient
b — Lgep bayg 5 _ Loypoprdy
A = PP (DF* ¢ =4, P ) (6.1e)
‘Gt"—os,alJriOz;
OI—LOZ,Ot—}—O:;: '
Explicitons les équations (6.1¢):
. L‘ W, / * *
O — 04+ 01+ e = — 5[+ ) 0] + (o) — 8 4]
. { ‘W’ \ = ’ | *
/01—502)¢1+(61+03)¢z: E[(c +P3)‘1b,,+ (PI_LPZ)'I]
/ | (6.12)
. | l ’ | ’ “’V ’ F*
O =0 bt O+ 0 = | (] + ip) ¥+ (- — ) ¥
/ . . , l N *® "W’ ’ *
(Or — 10y) b5 + (0, + 03) Yy = — " [(Pl an Lpz) '\;)4 Ea ( i —“Ps) Lpl]

Dans le dessein de supplanter les fonctions complexes con-
juguées dans les membres de droite des équations (6.1g) par
les mémes fonections qui figurent dans les membres de gauche,
nous allons former les équations composées de premier rang.
Soilent deux systémes simultanés d’équations primaires:

L p AZT:i‘Z['r::-F 16.1h
PR Y= (6.14)

Ay =
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et, commencons par poser

=i, 0 =1 — 3y, (6.1)

on obtient alors

*P . (6.1 )

-C-1

ALP:%B*_};, AO:%

En prenant pour fonction d’onde la matrice

4)1 LI":; - B: e: !
s Gy ) 6, —6
v ], G e , (6.1k)
61 63 ‘1!’4 _'4)2
* * i
62 64 - ‘;’3 L}»’1 i

. Lo,
(0, + @, 0) ¥ = = ¥ (p, — o, py) (6.11)
avec

0100] 0i0 0 L—io 00
1000 —i00 0] 01 00

oy = g8 == s Oy =
0001 000 —; 0010
0010 00 i 0] 00 01
(6.1 m)

Nous pouvons aussi écrire ces équations de maniére que la

fonction d’onde W soit colloquée a droite des opérateurs matri-

ciels. Nous poserons a cette fin:

=4 +0;, Ya=do+0;, ¥o=ts+6, F=d+0

=g —0,, W= —0;, Ye=1ds—0, ¥Vi=d—8

{6.1n)}
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ce qui conduit aux équations:
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Equation dont nous condenserons I’écriture comme suit:

(pa = tp) (610

et

L
h

(0, + B, 0,) ¥

Les matrices 3, et v, vérifient les relations que voiei:

(6.1p)
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On vérifie que 1'on a

Y = (0, — B, 0y) (0, 4+ B0 ¥ = % YrPr (9 + B0y

58 (6.1¢)
. 2 2 2 2
:—h'_gq' ) (pzzpt*plu“p‘z _])3) .

6.2 Equations d’onde des corpuscules uniondulatoires
de spin 1,3/, et j.

1. Spin 1.
(a) Premier systéme.
P — : S5 Sa Lo —
[1xAlg= F*[1xP], Dharg b o~ g 5 pab
— LB By o 8y 82 _ _l 8182, peade
[Axi]q) ﬁ %—@[PX'I-I ’ D q)al 112 - h‘PmII 252P2
| | (6.2a)
d g . ) P e o
[1x Alp = = o*[1 x P], phi q"oqslﬁ“‘:-’-z e —];LIJGIF:]_BZ".{Z perdy
[é X 1](“0 = _ELP[P - 1] 2 Dﬂtzéz l’!"9!1 1‘2+2 - -7_};(")0(1 10¢22 P€2Y2 /
(6) Deuxiéme systeme.
N _ i 5 Brag g 8y 82 L Bi. 8 pegd
[1xAJY =  —o[1xP], Dhorg b de_  yb 5 pud
s i B 8 L Bs.  pea
[Ax1[d = 5 o*[Px1], DPeeg, B B2 = g, Srfe peade
. , (6.2 b)
! B s 1 3; .
[1xAle = —F U1 X P], Dy ¢, 0= —o 45,0 Py
i &5 . . N . ]: . -0 -0
[Ax1]e = - O*[Px1], PPz oz q"gl"-fl-"izaz o %"Pﬁla}lgdég pe2da
Attendu que 'on a les relations, faciles a établir:
T]) = [6 X o]d[6 X o] , (6.2¢)
W ! e} W o
P=?—l—p%’, P:?—p% (6.2d)
— Py, 41
pl/” _ [.9.3 51 Pz! (6.2¢)
P1r— tp: D3 |

P*¥* = gPo , (6.2)
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la premiere des équations (6.2a) s’écrit

(5, + 8) ¢ = %[cxﬂ@*[sx(ﬂm <« P]  (6.2¢)

et les autres équations, d’'une maniére analogue.

Pour obtenir les équations composées, nous écrirons pour
chaque systéme une double série d’équations; I'une faisant
intervenir les fonctions 1§ et o et, 'autre, identique a la pre-
miére, avec les fonctions 2{ et 2p. Posons alors

W=, O = (o x ollg + ¥ 6 X o] |

(6.2 h)
W= i, ¥ = [o X o] (¥ + i3 [0 X o] |

I1 vient:

Premier systéme.
Ty Ly 1x1x1 IxAX1] Y [1x1 x g
{at+[63xi><sl]} = = ¥[o X 1 X 1 X 1-{03>< X 1 X ]7—[ X1 X pi]

{at+[1><ca><sg]}1}- =%W[i><cl><1><1]§[1><53><1><1]~C_—_[1><1Xp;jg

Deuxiéme systeme.

1
{6t—}—[1><a3><81]}‘£f’:—%‘{f’{lx@lxixi] [1><c3><1><1]¥———[1><1><p1]£

’

. | W
{at+'[csxle§]}‘I’“’:%‘F’[clxixixl]g[c:,,xixlxi}?—[ﬂ><1><p;]§

avec
p, = [ xp®l g, = [p* x 1] 6.2 k)

La transformation définie par la matrice unitaire
U = 1{[1x 1]+ o1 X o]+ X 6]+ [0; X 0] } x [1x 1] (6.21)

montre 1'équivalence de (i) et de (j).

(6.23)

16.27)
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2. Spin 3/,.

Premier systéme.

D ¢ 31 82 83 b q)”l . 82 33 pad
o] %Xz A3 ]1' g1 O3
Beaa g, &1 B2 B3 _ i S1%2. 83 peada ’
D ’\')Otl X2 o3 o h L])l] 93 P (6'2m )
Baas 8y 83 B3 .. ¢ 81 Bafs. £a83
D q)ag e 5] A3 ’}7 ('I}OC], o 3 P .
Bron g, B182. Ba. _ i'él. Bs. B3. 2181
D Yoy Yo Yz h Y v v P
8182. B3 L 81 eaBs. P - ”
. < bg . b 2m
g B2 Lpa-l Yz Ya h Ton o2 vz F2R (6.2m™)
Lo, SRl Ba. by 31B2. &3 :
a3 fi3 Yo Y2 Y3 h Yoy Yada Pss Y3
a 5o L e 8ol ‘
: 1. d2P3. __ % g1 283, »
Dﬂu &1 y Y1z Y3 A q)ou *2 Y3 T E1v1
Baaz g B 3202 L Bi. Ba. fa - s
- = = 2 Bda 282 6.2m
D !]J T1%2 s h Ll) Y1 &2 V3 P [ ( )
asPa g Br.  Ba2Ba. _ LB, B2 mp .
D qJ Y10z RE] h Y Y1, %3 23vYs3
D - ¢51 Bs . 33:__1";4) e1f . 83 p . \
oy P Y2 Y23 h T Yo 3 £17Y1
i . . Lo .

. B, Be. 83 _ _ b, e B2 p . v
D“z B2 Y Y1 vams h Y Tide o3 I c2Y2 (6.2m7)
Dhaxs dr‘ﬁl . Pa. 33 _ L qﬁx . B2. B3. pesds

Y1 YeXx3 h Y1 Yz E3 i
Deuxieme systéme.

Broa 8y 82 d3 __ i B, 32 B3 peidy |
D 4)11 Ay o3 - h ¥ €102 X3 I

Paas 81 82 83 __ * 8182. B3 peada ’
D (Locl A O3 B h ('I)ocl 29 03 B (6'2 e )

Paaxs 81 82 83 _ l_ 81 B2f. peads
D LIJOC: o2 oz h Yoy x &3 I



DES CORPUSCULES ELEMENTAIRES

Dfﬂlxl(_p 81B2. Ps.
@Y s

51 Bs .
Y2 o3

Diélml &}J 33

251

_ 8182, 33
x2 B2 Toy Y293

8103 .
1 Yo X3

Dfﬂa % ) 33
[+ 4

32 Bs.

th % ¢ 83
A1 Y3

o2

8283 .
Y3

piaoe o 31
| o

%2

; 51 2B,
Dda fs ('1)0!1 oo Y3

i ; . . . o
LB, Bz, Bs. €181
h Y €1 Y2 V3 P

— i ¢ 81 c2Bs. P -
h Tou a2 Y3 E2Y3a

Ly %, Sp .
h T* Y23 €373
U s
2B, Be 33 pe1dy
h k. €1 Ya2d3

_ ¢ 31 =2 & p .
h Tor o2 X3 E27va

il.l) 5182, Bs. }')5333
h o Yo gg ~

L 8y, 82P3. pe1d,
"Eq’ €1 @2 v F

iq) 31B2. Ba. pézaz
h T €2 Y3

b
o3

€3 P

__L_q, 81
h T %2 T €37Y3

Troisieme systéme.

83

By 81 5
Dl 14)“1 10(2 213

8z 83
%2 o3

Pieaxe ) 31
A1

83

B33 81 32
D LPO[}_ xg xX3

82 &3

. B
Dal B1 LIJ 171&2 a3

L6

1 8a 33
ht Y12

a3

DB20’-2

82 33
%3

DB?. %3 ,\P@l «

Y12

* (‘pﬁh . 32 83 pe1d1
h €102 A3
L ah 81Be. 33 pe2dz
h T E2 03
L By S -
il 1 2Ba. pesde
h LIJOH olg €3

] 4) ggr G2 &3 .
h T 22 a3 €1 Y1
Byl Be. 83 pcede
h ¥ Y1 Ez o3
i¢51. S203. pe3ds
h Y12 g3

175

(6.2n")

T —— eI T e ——— e

i

(6.2n"")

e

T —

s (6.2nIV)

(6.20)

(6.2 0”)
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. - . I: o .
. B, 8B, g1 J2f3. .
Ddl B Y e Y3 h LI)O!] o Y3 PE1 Y1
Poas 101, SaBs. _ i Br. B2. Ps. c2d2
D Y vy o vs h ¢ Y1 g2 Y3 P
- . i -
Lo B. 82Be. . F B1. 82 en .
‘Dota Bs ¥ Yroe Y3 h ¢ Yix2 oy P€3 €
B0y ;, S1 82 Ba. __ j’_ Br. 5283 . 2181
BEE Yoy as Y3 h ¢ E1 %2 T3 P
Beaa g, 51 BaPa. _ _L_ 51B2. Pa. c2d2
D Lf)al a9 C h Lpou €2 Y3 p
., 81 Bafa. _ Y 31 82 =3 .
Dza Bs Yor o 3 h Lpoq oz A3 €3 Y3
Quatrieme systeme.
Broag g, B1 B2 B3 _ i 1Bi. 82 8 peidy
D Val Az A3 o h 4 €1 %2 O3 P
Poxz 8; 82 83 _ r 31B2. 83 pe2de
D gI"cq ®y oz h L1)0:1 €g U3 E
(3 ctg 81 82 83 __ L3 81 S2Ps. peads
D "bocl oy o3 - h l'poq Ao £3 P
Lpf% 33 83 __ iq) g1 B2 8 :
ay (1 Yite a3 h T oz o3 1T
Boas 1 Br. B2 33 - B Ba 83 peady
D Y Yixe A3 h kl) Y1 f2 %3
Paos 101 d2 83 __ i Br. 8203 . 2233
2 Y vie a3 h ¢ Y1tz €3 P

(6-2 Olll)

(6.2 0m)

(6.2p")
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D'f31f11 ¢a181 éz_.m :,:383 — 72_4_,318.1 32;{2 1383 P-E“Sl
Osz LL 8162"21353 - _Evou a252a333 Psz"fz (6'2‘0’”)
Dﬁgla lellﬁl ﬁz;zhﬁs — %‘;’ 8182 fzﬁsés pésﬁs
. 081, Be. 4 _ _ ° e1f2. 83 .
arfy 7Y vexs h \Pal Yaots €171
Daa fiz ¢é1+1 E.32":’2053 2 H%q}él"r: 1252 Otsaa PEz “:’2 (G'QPW)
Déada ¢é1;{1 ..32:{201383 — —;;_qjé'lﬁéz:{z 538.3 Péasa

En se servant des matrices a huit lignes et a huit colonnes:
By 2 3 ¢ 528 .
LIJ(l) ( 61 2a383) , q)( 2) (q)alﬁl Ra. 23373) LIJ(i) (‘.I)Bz\.rlaz 233“) , et

o (@Bl{,lﬁz;m%%) dans le cas du premier systéme ;

Lp’(”( 11511252%53)7 4/(2)( alsl é2‘1’263“‘(3)’ LI.J’(3)( alslaz.yzagsa) ot

U (4,15, 22" ) dans le cas du second systéme; etc., les

équations (6.2m, n, o et p) peuvent s’écrire de la maniére
sulvante :

Premier systéme.

(O,Ar [03 X 1x Si’fﬂ) i === %{1 XA X [6PB]Y*[1 X o, X [0]?]

[03><1><m3 ‘Eﬁ[wwp”ﬂi

(3, +[1xosx827]) ¢ = %{1 %1 % [6P]4*[o, X1 X [c]*]

g[ixw(,[ﬂﬂv—fw[ixix;;;/ﬂ]%

(3¢ [oa 02 $34]) & = L[4 x [T 4* [0, X 53 X [0 ]

lfc3><63><['1]3]r—~—['1><'1\<p3/2]i

(6.29)
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Deuxiéme systeme.
(8, [1x1x8]2]) ¢ = Ly 3 Yr* e
. 8i%]) ¢ = S X 1x [6P]U™*[1 X 6, % [6 ]

/

%Y %
%[1><1><[1]3]7-— [1x1xp;?] %

(O +[osx 02 83]) & = — ¢ [1x 0 X [11°]

NV 3/
EG:;XG:;X[’IP%—[] x1 ijﬂ;’

3 ’ L ’ =
(bt+ [1 X Gy X bg'/z]) Y= % &' [6y X 5y X [1]7]
\ ‘V ' NS 3/ )
3[1><03><[113]? — [1x1x p3le] 5
Troisieme systéme.
(9,+ [0 % 0, x 87/2]) ¢ = % U1 X oy X 1]

fowx apx[1P) — [11xpi%] g

0+ [1x 1 8¥]) 4 = £ 11 X 1 X [oFI4* o x 1 X[

LW "
%[1><1><[1J3]7—[1><1><p2v’2}i

(8,4 [o5 X 1 X 84'2]) ¢ = % U [6, X 6 X [17%]

iy W
[oax 1 X [17°]— —[1x1 % pyi% ] g
Quatriéemeé systéme.

(3,4 [1x 00 5;2]) 4/"’:%4/”[1 X oy X [1]°] \

;[1X“8X[1]3]¥—— [1><1><pf/n”

l

(3 [oax 1 X 8,2]) 47" = — ¢ [ay X 1 X [1]°]

o

5 [63% 1% [1]317:— — 1 x1xpy?] \!

a3/ rrr I’ B 7
(0 [1x 1852 ]) 47 = (1 A X [0 14" *[01 X 01 X [0 ]?]

| W s
;[1 ><1><{1]3_1?[1><1><p3/2]£ }

(6.2 7)

(6.2 5)

(6.2
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ou l'on a posé
= |tx1xp%] ; plt=[1RpE¥1]. pr=]p®x11] |
[1P =[1x1x1], [o6] = [cXoXo] . \

Ecrivons les équations composées de premier degré pour le
premier et le second systéme, en posant

= 10 g0 s = R (1 4 i2g®) o
2= 10 2g® e = [ (1gW° 4 i29®°) [6]
o= 1@ 1 2g® P o e (1 4 20@%) [o]
ap 1“11(4) + i%(") , s [6]3(14)(3)* +- i2¢(3)*) [o]?

dans le cas du premier systéme et des relations identiques en
¢’ dans le cas du second:

Premier systeme.

(04 [oa % o x 1 x Si‘ﬂ)‘l’” = %‘F[o-1 X 1 % 6 X [1P]
W ,
{[o-3 X 63 X 1 X [1]3]-;— ['1]3[3?2}
(at+ I:/l X 1 X Gy X Sg/z:l)‘{" i %l{f[ct p4 Gy b 1 X [/1]3]

[ 1 o0 2 e

(0,4 [1 X 04 X 65 x 8N ¥ = %‘F[cl X 6; X 6, X [1]%]

{[i X 63 X 03 X [‘1]31¥m [1F p?“}
Deuxiéme systéme.
(9, + [oa x 1 X 1 x )W = %‘P”{cl X 1 % 6; X [17]
{[53 X1 X1 X% [1]3]¥~[1]3 pffz}

?

h‘F’[cl ¥ ooy ¥ 4% [P

(Ot =3 [1 X 63 X 63 X SZ"J"’])‘F’

{[1 X G5 X O3 X [1]3]V§—[1J3 pi”}

(6.2 u)

(Ot =+ ]:’.l X 1 X 63 X S.;'{Z:I)llw - —}i:‘F,[% X op X 09 X [11]

{[1 X 1 X a3 X [1]3]‘%*[113 pi’z} J

(6.2 w)

(6.2w")
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La transformation V définie par le produit V = UU’ avee
U = %[1x([1x1]+[o1 X 01]4 [0 X 6]+ 05X 05]) ] X [1]°

( (6.2 x)
U'= }/2([1><1><1]+[1><03>< 1]+[01><1><61]+[01><03><0'1])><[1]3 ‘

permet de prouver I’équivalence du systeme (6.2¢) et du sys-
téme (6.27). Par un procédé analogue on démontrera ’équiva-
lence de tous les quatre systémes (6.2¢q,r, sett). Par consé-
quence 1l n’existe qu'un seul systéme indépendant d’équations
composées de premier degré.

Dans le cas général du corpuscule de spin j, les équations
mixtes s’obtiennent en prenant celles écrites dans le para-
graphe 4.3, en y dédoublant les indices de chaque fonction

d’onde. Ainsi, par exemple, a la place de {, Bl + Pl

. 0t2j
€Crirons-nous
51 'f By . 89
q’)al mlvlm] Ms Ylm_g Ooj J
En outre, les termes de masse doivent &tre remplacés:
: L i c
a) Par les produits ¥ f.  P%% dans le cas du

h &f
groupe d’équations correspondant & Popérateur Dk “k;
b) Par les produits —72 ¥ % P

o .. Sk YR
groupe d’équations a opérateur D
o

dans le cas du

ok By

6.3 Equations mixtes et mixtes composées du corpuscule
biondulatoire de spin 1.

a) Equations mixtes.
Premier systéme.

(2D'B1a1 . 1D:’31fx1) 2%282 14}%81 . _;;2(’1)0‘282 14)5315,1 P'slr?]

(2Df31ai . 1_Dﬁ19c1) 24)32;"“ 1%‘181 — /iz¢82;,2 14)313.1 Pélﬁl .
2 3 y 3

apfeaz _ 1pBiary 2y, S210, 01 _ gy '32_ 1 51 ;252 ©

(D D ) 1)3{2 L’)dl - h {{J £ q)xl P

2 .1 .\ 2,82, 1,1 Sxﬁ_*f'_ﬂ 21y Sip .

(szﬂz Dazﬁz) Y ve Yoy T 5 Yo L']Jﬂﬂl vz |
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Deuxieme systéme.

- 3 ) < - . N \
(2DB’~°‘1 _ 1DB10C1) 2@{1032 1%(101 — %24}“062 14’6151 pe1d1 ‘1
2 TN | L) 24, B2 1B, ___i?. 21, €1 . .
( Dou 1 Dou Bx) q"dz Y vi h Yo q"n PEI Y1 3,
; R
apBaca _ 1pBaxa) 2,4, S214, O1 _ LagBe. 14 81 p2ds 5
( D D ) q)az L‘"ocl - h ¥ €2 ('i‘)ocl p
2)B2 %2 1 Paxa\ 24, d2 19B1. _ iz B2. 14P1. 2282
( D D ) Yoy W i h Y €2 v V1 P |

b) Equations mixtes composées.

Nous avons a distinguer deux types d’équations d’onde,
selon que nous déclarons admissibles les équations de la forme

Op[*Y X 9] =0 (6.3 0)
ou de la forme .
Op By x1Wl=0 |

Op 2% % 14] = 0 | J (6.3 ¢)

attendu que nous n’avons trouvé actuellement aucune raison
pour prédilectionner une forme plutét que I'autre.

Dans le premier cas, voici comment nous écrirons les équa-
tions:

A2

(2D91 o 1DB111) [(1)24', 32 (')2¢a181 . ('2)24,&232 (2)1L|'Ja1 81] .

@2y, 81 1y ]p'al 81

+5 1 €1

=1

Lor(zy, & 8
_ 3 [:(1)24,011 1 (1)14‘,« 1.

(2D32 Aag 1]_)[3212) [(1)'34)06232 (1)'(;,“151' _ (‘3)2(1!)1252 ('2)1(_[_,3“51] —

Lor(zy)f 5 22, B2, (¢ 517 piad
— _}_l ‘:(1) qJBZEa (1)14)“1(31 o (2)2¢6252 (2)14)&101] P22

(3.3d")

. . . 2y 82 (UL f. 22, e (2)1 0 .
(D 1D )[()4,122()¢B1Yl_()¢a2z()¢181]7

o1 P oy By

— Loz dz (1)1 2)2y 82 (1)1 .
= M']}_[()df'az ()¢a1€1_()¢a22( q)alaljpnyl

B ; 2, 8 ¢ : 5 '
(2]_){3212 - 1D820t2) [(1)2‘4)&2 2 (1)1&})(’11}1 . (3)2¢a262 (2)14)31;(1] =

I o ; e . ) .
_ E [(I)Zq)ﬁaéz (1)14)31 .;’1 _( )QLszég (2)1¢B1;’,1] peede
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(2D'ﬁ2 x2

(30,5,
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11 ) [ 82 Gy, 5

(2Dé’10'-1 .

82 (2)17,B1.
oo v <1

l ;
= [(1)2!

(2Db2a2 . ].DBIOH) {(l)%a 82 (9)1¢ 81

x1

Tz b, 1y, 8
- }_‘,[ L'b €9 q’otl !

P ) [z, B2 (1.
( Da]‘ Bl o lDal Bi) [ {‘!JOEZ : 4J 1'\(1

i D) N '_) £
- [(D2y, 2y, =

(2Df52az _ Ipbzaz) [(l)z-q)azc‘?z (2)14)@1:{1

i [(1)24}@»2 .

(2)1,, 61 .
h g2 Y

1
Et, dans le deuxiéme cas:
32 D1y, 81 _

%2 val

1D;'33'12) (k)?q_,agﬁz M, 81 _

!
Yy

1 :

(®2y 82 D1gf1. _
DO&] 91) q"az : &.l) 1“{1 -

2%z 1DC32012) (k)‘l('y)azﬁz (l)l¢31+1 _
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e (2)24; 89 (1)1{,[) 81} -
| ay

x2

i ('2)'24,&2?32 (1)1¢51 é1] pe1da

+ (2)‘34)1252 (')1¢11511 =

+ (2)2¢B2é2 (1)14)1181] PEgSg

X (2)24{12?’2 U)l,‘pﬁl%l:l _

e ('2)24)

i (2)2%: 82 (2)1¢51+ _
: a 1

2)2 B 2Ly f €28
4 )Hr).zéz()q)ﬁl:{l:lpz 2

L (kzy ds (D1gf1. pe1d
ﬁ. 4}0{2 LPIEIPI 1

L (k)2 f I 208
E( )Qq)BzE.Z ()lq)alSI peede

Lk, 8s (D1
ho Yo

1, f1 .
‘T}al £17Y1

L (k)2 Ba. (D1gf1. pegd
_}; “b €2 quYlez

89 (1)1 € : .
x2 Lpal 1] Psl i |

(6.3d”)

(6.3¢€")

(6.3¢”)

(6.3¢™)

(6.3 erv)

Pour ce qui est des équations du corpuscule multiondula-
toire de spin j, on partira des équations, développées au cha-
pitre 3, en faisant état de la remarque placée a la fin du para-
graphe 6.2, ainsi que de I’étude que nous venons de faire dans

le cas du spin 1.
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6.4 Les ondes planes.
La théorie des ondes planes va se dérouler comme au cha-

pitre 5, et rien d’essentiellement nouveau ne sera dit dans ce
qui suit.

6.41 Le corpuscule de spin Y.

Commencons par les équations primaires et posons-y

q}aﬁ _ aab‘ eiS + bas e—-‘iS (6.41 a)
o A fom / : /
S = ﬁ(vngplxlﬁp2x27p3xs) (6'416’)
R TR
} (6.41¢)
B=1b ., b = b P=b, b=15b |
1 1 2 a8 i 3 2 4

Il vient le systeme linéaire suivant:

R T (A DEN AT

— (0 —ir) e, + (S —#)e, = [(%+p,)0 = (o, —in)¥]) /

\,

(V:I+ p;) a,— (p. + ip)a, = l(p1 +ip) b, + (‘%ﬁps) b, \
— (= ip)a, = () a, = —[ (o, + im0+ (S —p,) 00
(VLY +p, )b, —(p. —ip) b, = — [ (“7 + ps) o+ (p, + )0,

(o i)+ (=)= (T e+, +in) g, |
(= r)n =)o, = (=it (S —n,)e,

— (p, + ip,) b, + (W~c——p3) b, =— [(?’1— ip,) a, + (‘V—j—p;)al !

ArRcHIVES. Vol. 27. — Septembre-Oclobre 1945, 13

(6.41 d)

(6.41¢)
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Pour les corpuscules a masse (m, = 0), si 'on se fixe les
~ coefficients a;, les b, se trouvent déterminés par les relations

que voici:

(6.411)

- (YCY - p3:) [— (p, + ip)) @, + ( s p;)as] }
by = 1/P2{(-;—p3) [~ (p, —1p,)a, + (‘Z—V—Ps)%] +
+ (o, — i) [ (0 = ip)a, + (5 —p})a| }
b, = 1/P2{— (p,—ip,) [(XZ— + ps)asm (o, + Lp')ai] —
[ et e}
avec
| 2 ‘i_i:—pj—pZ—pj (6.41 g)
Pour les corpuscules limites P2 — 0 et, dans ce cas,
b :b :b, : b, = rapport des dénominateurs correspondants

dans les expressions (6.41 f).

Occupons-nous maintenant des équations composées dans
le cadre desquelles on peut définir les ondes planes a énergie
positive (ou négative). Posons

Y, = g 'S =t ble—iS
(6.41 h)

©

gy — ape O7F) g (57F) - s e
by = + b = —ige” + iy

b= Yol + ) — ae, 8 — By — ity = b
(6.411)
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¥, = ¢, + 6: = A13is= ¥, = 4’1'—6: = A26’isa Ve = dp+ 0, = A3‘31LS s

*

q'"5 = ‘;’3 =+ 6; = A; eiS s q;‘ﬁ == Q;ng(:)g = As eis 5 ‘1"“7 = '.[14 -+ 61 — A7 eis 5

Ty = %‘“6: = Aq e

Les coefficients A;, A,, A;, A, peuvent étre exprimés en
fonction de A,, A;, A et A,

W ’ . ’ .7 .
(=) aes oy i) 20 + (0, + ) A
A, = v ’
o TP
W 7) z L7 <
N (? & P3’) Az + (Pl - Lpz) A, + (pl = Lpz) A,
4 T ‘V/ | ’
FEREE ~
-
| =
X —(Z 4P A+ (o4 i) A — (o —ip) A [ €
[ - p3
‘W ’ L .
_—(_(ump'a)A7 ™ (p1_Lp2)A6_(p]MLp2)A'"’
A, = -
8 W/
o Th
6.42  Corpuscule biondulatoire de spin 1.
a) FEquations mixtes.
Posons
1 .
"'gpala‘- = la,alal PR lbml81 i , l=1ou2 (6.42 a)

Pour les COPPUSCU]BS a masse
* v—v / A Ui 4 / i
l . l l
bl s 1/P2 { R (\_(,_ p3> {__ (pl R Lp?‘) as _l_. (.c_ s ps) a4J e

—(p, =+ in) [— ;= i0)) tay + (% — 5} 1a, |}

(6.42 b)

’ 2 7

p, = p,—"pi, W, = W, -'W,. (6.43¢)

(6.41 )
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b) Equations mixtes composées.
Posons

N Y . T
mly, & — (mly 8,08 4 (mly & =15 (6.43d)

Dans le premier cas [équations (6.3d)]:

[— (5 — ) (V= ) )

Dans le deuxieme cas, on retrouve les relations (6.42a).

6.5 Etude plus détaillée des équations composées de premier rang
du corpuscule de spin 15.

Nous devons reprendre I'étude des équations composées de
premier rang du corpuscule de spin 14 dans le dessein d’établir
le tableau des opérateurs matriciels, générateurs de formes
bilinéaires, en attribuant & ces opérateurs, comme en théorie
de Dirac, la variance relativiste des formes bilinéaires corres-
pondantes. Attendu que la fonction d’onde de I’équation pri-
maire est un spineur de second rang du type {7, les formes

bilinéaires sont de la forme %;f L}),,_S - 9['3:“ ﬂaa, 0. 4.° et
fo 0 *. 11 leur correspond dans I'espace-temps les tenseurs

réels AJ—"‘, thlm (antisymétrique en trois derniers indices) et

G;" = — GJ. Les équations d’onde peuvent s'écrire:

R ; Lk -
[aj? o, — 5 (YR + %" [’»{)] v=20

(6.43 e)
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ou les matrices ocjk', v et ij sont celles du tableau suivant:

o ~oco
ro oo
coo=
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|
co~ro
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i =100 0 0—-i 00
3 i 010 0 fi 0 00; "
L 001 0 0 0 0 i}
L 000 -1 0 0-70;
....................... O T PO UUUTIRS JUBIUR
100 0 * ‘0 -7 00
010 0 " 8 PP 0 00
001 0 {0 0 0 ¢
000—1] {0 0 -10,
0i0 0 1.0 00}
~200 0 " | -1 00} 0
000 —i| | 0 0-10;
00 i 0 | 0 0 01
Bl Saaaaaa N : ..................... i , =‘...' ......................
f0 -0 00 | -100 0
o i1 0 00, | . 010 0
i0 0 0 i | 001 0
0 0-40 | 000 -1

Les matrices génératrices des formes bilinéaires, qui four-
nissent les composantes du tenseur de spin Biml, peuvent
s’obtenir de la maniére que voici:

avec la correspondance suivante:

1 234 2 314 3 124 4 123
By =B, 4+ By =B B S B; et B, — B
On a du reste:

1 . 2 3 2 . 3 1 4 3 . 2 4

Bi = —rogepoy By = —ilwe g, Bixm”’aiai“i’)

4 . 1 2 3 g
B = — 1o a o o

On vérifie aisément que les quantités
My, + Y2 hBy 4y,

sont des intégrales premiéres au sens de la mécanique ondula-
toire.

Indiquons encore un théoréme important. Formons la
divergence quadridimensionnelle du tenseur B/*. Nous trou-
vons

9, Bt = —1rPEG
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avec
G =W¥ry¥ .

Placons-nous dans le cas de la solution « onde plane mono-
chromatique ». En tenant compte des relations (6.4%) on a
G = 0, donc d, B* = 0, dans ce cas.

Remarque: En mécanique quantique non relativiste les
équations d’onde (équations de Schrodinger) peuvent s’obtenir
de deux maniéres: 1° La méthode opérationnelle de Born et
Wigner, ou I'on remplace p, par —?9, et p, par ?,, dans I'ex-
pression de 1l'énergie. Ce procédé est étendu ici a la méca-
nique relativiste, en considérant la transformation de Lorentz,
que subit le quadri-vecteur quantité de mouvement-énergie.

20 La méthode matricielle des transformations canoniques
qui rendent diagonale la matrice d’énergie H. Les équations
étudiées dans le présent travail se prétent a la méme
interprétation, a condition de considérer, dans I’équation
U;' Py, = P, , toutes les grandeurs comme grandeurs hyper-
complexes.

(A suivre.)
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