**Zeitschrift:** Archives des sciences physiques et naturelles

Herausgeber: Société de Physique et d'Histoire Naturelle de Genève

**Band:** 27 (1945)

**Artikel:** Action des cations biothermiques en fonction du temps (anatagonisme

et synergisme sur le ventricule isolé d'hélix)

Autor: Bachrach, Eudoxie

**DOI:** https://doi.org/10.5169/seals-742482

# Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

# **Conditions d'utilisation**

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

### Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

**Download PDF:** 03.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

# ACTION DES CATIONS BIOTHERMIQUES EN FONCTION DU TEMPS

(Antagonisme et synergisme sur le ventricule isolé d'Helix.)

PAR

### **Eudoxie BACHRACH**

(Avec 6 fig.)

(Le présent travail a été réalisé en France occupée en 1941.)

# I. Introduction.

Nos précédentes déterminations de la température optimale pour l'activité automatique du ventricule isolé de l'escargot comportaient une part d'arbitraire; elles furent effectuées dans des expériences de durées relativement courtes.

Voici quel était notre mode opératoire: l'organe, après avoir été isolé, fixé au levier myographique et baigné par la solution à étudier, était stabilisé pendant environ une demi-heure à la température de la salle, puis échauffé assez rapidement pour parvenir à 44-45° en une heure environ. Sur le mécanogramme on inscrivait à chaque instant la température atteinte <sup>1</sup>. Cette façon de faire se justifiait

<sup>1</sup> Au cours de nos multiples expériences nous avons pu rencontrer, rarement d'ailleurs, un phénomène ayant probablement une analogie avec le « prépotentiel » sur l'E.C.G. d'Helix décrit par H. Cardot et A. Arvanitaki. Sur le mécanogramme à la température limite du fonctionnement automatique, avant la vraie contraction peuvent apparaître de petites secousses en groupe ou isolées. Dans la solution de NaCl ( $\Delta = -0.55^{\circ}$ ) c'est à la température  $-2^{\circ}$  que

ARCHIVES. Vol. 27. — Juillet-Août 1945.



par la nécessité d'opérer au cours d'une période, où le ventricule dans une solution â étudier, toutes conditions égales d'ailleurs, conserve une activité relativement régulière. Et ceci pour la raison que des solutions isotoniques non équilibrées ne peuvent être supportées sans dommage pendant des périodes très longues.

Néanmoins de telles déterminations comportent une part d'arbitraire. Il convient d'examiner dans quelle mesure la température optimum ainsi déterminée dépend de la procédure expérimentale. De voir notamment, si les différences constatées entre les diverses solutions salines pour la valeur de l'optimum se retrouvent dans les expériences où l'on opérerait plus vite ou plus lentement, ou encore dans celles où on stabiliserait d'emblée l'organe à une température élevée pour le refroidir progressivement. On peut se demander aussi si la température optimum pour la fréquence déterminée, comme il vient d'être dit, est ou non celle qui assure de façon prolongée à l'organe le meilleur et le plus stable fonctionnement automatique. De plus, la question se pose de savoir si l'action défavorable des solutions déséquilibrées ne se fait pas sentir avec moins d'ampleur aux basses et hautes températures qu'à celles voisines de l'optimum de fréquence.

## II. PARTIE EXPÉRIMENTALE.

Action prolongée, à différentes températures, de solutions isotoniques de  $MgCl_2$ , de  $CaCl_2$ , additionnées ou non de KCl.

Nous avons dû renoncer à réaliser des expériences identiques avec des solutions isotoniques de NaCl, additionnées de KCl à forte concentration à toutes les températures.

Lorsqu'il s'agit, par exemple, d'une solution Na/K = 7 ou 8, l'automatisme cardiaque ne peut pas se relever à la température basse de la salle d'expériences. Le ventricule ne com-

nous les avons perçues. Le fait se constatait soit pendant le réchauffement, soit pendant le refroidissement de l'organe isolé. Il est très vraisemblable que c'est le facteur température qui influence le phénomène.

mence à se contracter qu'à des températures très élevées, à 34° environ, comme nous l'avons montré dans nos publications (1, 2, 4, 5).

# Technique.

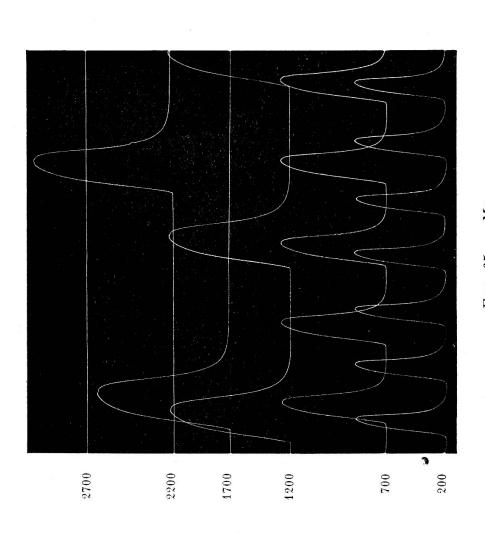
Les diverses solutions de perfusion utilisées sont préparées à partir d'une solution mère à  $\Delta=-0.55^\circ$ . L'emploi de MgCl<sub>2</sub> ou CaCl<sub>2</sub> seuls ne permettant que des marges assez étroites de fonctionnement, nous avons préparé des solutions d'alcalino-terreux à 15, 10, 6 et 5 volumes pour 1 volume de KCl destinées à l'étude des actions cationiques combinées.

Nos résultats ont été réunis dans un certain nombre de tableaux. Les rapports de l'ion alcalin à l'ion alcalino-terreux envisagé sont exprimés en milliéquivalents, compte tenu des coefficients d'isotonie.

Les temps à partir du début des expériences sont exprimés en millimètres mesurés sur les graphiques (100 mm = sec.). Les périodes absolues, correspondant aux différentes températures, sont exprimées par P, mesuré en millimètres (100 mm = 1 sec.). Nous avons opéré dans diverses zones de température. La période initiale est très différente pour chacune des zones. Si l'on déterminait l'optimum thermique dans ces conditions, on ne pourrait avoir des points de comparaison. C'est pour cette raison que nous avons jugé utile d'introduire la notion de la période relative qui élimine la diversité des périodes initiales absolues, due à l'action de la température et aux variations individuelles des préparations. Nous l'exprimons par le rapport  $P/P_0$ , rapport des périodes absolues au temps considéré sur la période initiale absolue.

# A. Etude du MgCl<sub>2</sub> seul à diverses températures.

La solution isotonique de MgCl<sub>2</sub> a pour effet général, sur le ventricule d'Helix, d'entraîner, en fonction du temps, un rapide abaissement du tonus diastolique avec des effets chronotropes négatifs et inotropes positifs. Ceux-ci se développent de façon graduelle et très régulière pour conduire à un régime de grandes systoles séparées par de longues pauses diastoliques, et finalement à un arrêt diastolique (voir Mg, fig. 1, 2, 3).


Notre premier tableau réunit les expériences faites avec la solution de  $MgCl_2$  ( $\Delta = -0.55^{\circ}$ ) à 11-12°, à 26-27° et à 40°.

On voit immédiatement d'après ce tableau et les figures des expériences 63, 65 et 67 que c'est aux températures extrêmes que la solution magnésique est le moins bien supportée et, que l'évolution vers l'arrêt en diastole est le plus rapide.

Cet arrêt survient déjà au temps 1000 pour 40°,5 et à 40° la

TABLEAU I.

| 11°,5                                     | 12°              |               | 26°,5 | ,5      | 270  | 0       | )7   | 40°     | 40   | 40°,5   |
|-------------------------------------------|------------------|---------------|-------|---------|------|---------|------|---------|------|---------|
| $ m P \qquad P/P_0 \qquad P \qquad P/P_0$ | P/P <sub>0</sub> |               | Ь     | $P/P_0$ | D    | $P/P_0$ | Ъ    | $P/P_0$ | Ь    | $P/P_0$ |
| 7.5 1 12.5 1                              | 1                |               | 2.65  | 1       | 3.7  |         | 61   | 1       | က    | -       |
| 9 1.19 13.3 1.06                          | 1.0              | 9             | 3.7   | 1.45    | 5.3  | 1.43    | 3.7  | 1.85    | 11   | 3.66    |
| 10.5 1.39 16.5 1.31                       | 1.3              |               | 4.8   | 1.81    | 6.5  | 1.76    | ಸಂ   | 2.5     | 29.8 | 66.6    |
| 11.5 1.53 18.3 1.46                       | 1.4              | 9             | 5.7   | 2.23    | 7.7  | 2.06    | 7.7  | 3.85    | 45   | 15      |
| 13 1.73 20 1.60                           | 1.6              |               | 6.5   | 2.45    | 6    | 2:43    | 12.5 | 6.25    | 06   | 30      |
| 13.6 1.81 21.5 1.63                       | 1.6              | က္            | 7.1   | 2.67    | 10   | 2.70    | 16.5 | 8.25    | 115  | 38.4    |
| 25.5 3.40 52 4.15                         | 7                | <del>بر</del> | 8.1   | 3.05    | 13.5 | 2.88    | 100  | 20      | 8    | 8       |
| 52 6.95 66 5.3                            | 5.3              |               | 9.1   | 3.43    | 14.1 | 3.81    | 250  | 125     |      | 2       |
| 8 78 6.2                                  | 6.2              |               | 10.7  | 70.7    | 14.5 | 3.92    | 270  | 135     |      | 45      |
|                                           |                  | -             | _     | 0)      |      |         |      | _       |      | _       |



Exp. 65. — Mg.

Exp. 74. — Mg/K = 6.

 $9-12^{\circ}$ 

550

50

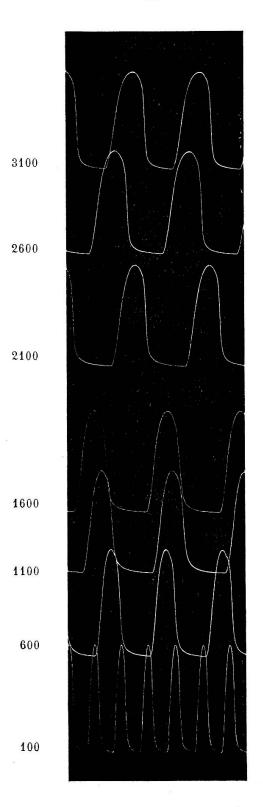
période est à ce même temps cinquante fois plus grande qu'initialement.

A basse température on pouvait supposer que les effets défavorables de MgCl<sub>2</sub> seraient moins ressentis qu'à 26-27°; or il n'en est rien. Au temps 2000, l'arrêt en diastole survient à 11°,5; les dernières périodes sont six fois supérieures à la période initiale (voir fig. 1, exp. 65), tandis qu'à 26-27° un fonctionnement parfaitement régulier subsiste avec une période qui n'est encore que le quadruple environ de l'initiale (fig. 2, exp. 67).

Ce sont donc les températures moyennes plus ou moins voisines de la température optimum précédemment déterminée qui sont optima pour le fonctionnement prolongé de l'organe dans la solution considérée.

L'excès de Mg++ conduit le myocarde à une complète hypotonie et à l'arrêt en diastole, mais, pendant toute la durée du fonctionnement automatique, l'amplitude des systoles reste très grande.

B. Etude de  $MgCl_2 + KCl$  (à diverses concentrations) à des températures variées (40°).


 ${
m K}^+$  a un effet contracturant sur le myocarde; il doit pouvoir contrebalancer, dans une certaine mesure, l'effet tonotrope négatif, rapide et manifeste de  ${
m Mg}^{++}$ .

Examinons maintenant les résultats obtenus par l'adjonction de  $K^+$  à diverses doses pour des préparations maintenues à des températures variables.

Le tableau II résume l'évolution de la période en fonction du temps, en valeur absolue et en valeur relative, à 40°.

Nous avons mis en regard les résultats obtenus avec  $\mathrm{MgCl}_2$  afin de les comparer.

1) On voit immédiatement qu'à la dose utilisée (Mg/K = 15) K<sup>+</sup> ne peut prévenir la rapide évolution vers l'arrêt en diastole; les résultats, aux variations individuelles près, sont voisins de ceux obtenus avec  $MgCl_2$  pur; 2) au contraire, aux doses plus élevées (Mg/K = 10 et 6) un fonctionnement prolongé est possible à 40° sur des périodes relativement plus courtes que celles observées aux mêmes temps avec  $MgCl_2$  pur; 3) l'effet optimum est obtenu pour Mg/K = 10, car la période au bout du temps 2000 a seulement



Exp. 67. — Mg.

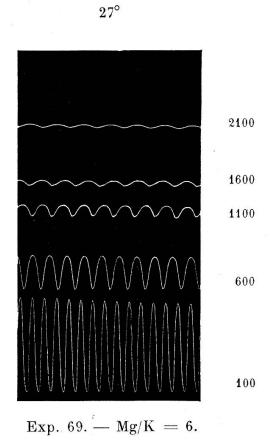
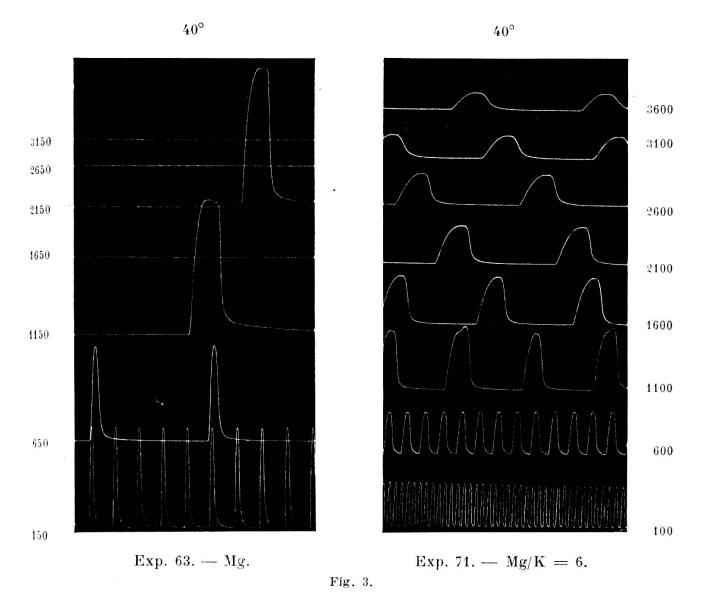




Fig. 2.

CABLEAU II.

|        | Mg scu. | Mg seul à 40°    | Mg seul                  | Mg seul à 40°,5 | $ m Mg/K = 15 \ (38^{\circ} - 40^{\circ})$ | $= 15$ $40^{\circ}$ | ${ m Mg/K} \ (40)$ | Mg/K = 10 (40°,5) | $\mathrm{Mg/K}$ | $Mg/K = 6$ $(40^{\circ})$ | $\mathrm{Mg/K} = (40^{\circ})$ | 0°)     | $Mg/K = (39^{\circ}, 5)$ | 5 = 5   |
|--------|---------|------------------|--------------------------|-----------------|--------------------------------------------|---------------------|--------------------|-------------------|-----------------|---------------------------|--------------------------------|---------|--------------------------|---------|
| mm     | Ъ       | P/P <sub>0</sub> | Ъ                        | $P/P_0$         | Ь                                          | $P/P_0$             | D.                 | $P/P_0$           | Ъ               | $P/P_0$                   | ď                              | $P/P_0$ | Ъ                        | $P/P_0$ |
| 0      | 23      | 1                | ಣ                        | 1               | 1.2                                        | <b>—</b>            | 7                  | 1                 | 6.0             | 1                         | 0.5                            | 1       | 0.88                     | 1       |
| 100    | 3.7     | 1.85             | 11                       | 3.66            | 3.3                                        | 2.75                | 19                 | 4.75              | 1.24            | 1.38                      | 0.72                           | 1.44    | 1.22                     | 1.39    |
| 200    | ಌ       | 2.5              | 8.62                     | 9.99            | 8.5                                        | 7.1                 | 29                 | 7.5               | 1.51            | 1.68                      | 1.26                           | 2.52    | 1.66                     | 1.89    |
| 300    | 7.7     | 3.85             | 45                       | 15              | 8                                          | 8                   | 32                 | ∞                 | 1.80            | 61                        | 1.65                           | 3.30    | 2.14                     | 2.42    |
| 200    | 16.5    | 8.25             | 11.5                     | 38.4            | Arrêt                                      | êt<br>Satolo        | 25                 | 6.25              | 2.76            | 3.06                      | 3.20                           | 07.9    | 5.13                     | 5.81    |
| 1000 1 | 100     | 20               | 8                        | 8               |                                            | ascore              | 25.5               | 6.35              | 12.3            | 13.7                      | 8                              | 8       | 11.3                     | 12.81   |
| 1500 2 | 250     | 125              | $\frac{1}{\text{Arrêt}}$ | rêt             |                                            |                     | 17                 | 4.25              | 19              | 21                        |                                |         | 11.5                     | 13.07   |
| 2000 2 | 270     | 135              | TI III                   | ascore          |                                            |                     | 16.5               | 4.12              | 23.5            | 27.2                      |                                | 2       | 11.7                     | 13.3    |



quadruplé; toutefois l'amplitude des pulsations a assez nettement diminué; 4) pour les doses plus fortes de K+ qui provoquent dès le début de leur action une pulsation de courte période, la variation relative de celle-ci est plus grande, et la diminution de l'amplitude ne parde pas à être considérable. L'arrêt survient rapidement aux plus fortes doses utilisées; le myocarde manifeste alors d'ultimes systoles très petites.

# C. $MgCl_2 + KCl$ à concentration Mg/K = 6 et à diverses températures.

Il nous a paru intéressant d'examiner l'effet de diverses températures (10°, 27°-27°,5 et 40°) pour un même rapport

Mg/K = 6. Les résultats obtenus sont consignés dans le tableau III. (Voir fig. 1, 2, 3, Mg/K = 6.)

| TA  |     |      |    |     | T T |     |
|-----|-----|------|----|-----|-----|-----|
|     | TOT | T7 4 | TT |     |     |     |
| I A | RI. | H. A |    | 200 |     | 021 |

| Temps | 1    | 0°      | 2'   | <b>7</b> ° | 27   | $^{\circ},5$ | 4(   | )°      |
|-------|------|---------|------|------------|------|--------------|------|---------|
| mm    | P    | $P/P_0$ | P    | $P/P_0$    | P    | $P/P_0$      | P    | $P/P_0$ |
| 0     | 4    | 1       | 1.6  | 1          | 1.2  | 1            | 0.9  | 1       |
| 100   | 7.26 | 1.81    | 2.39 | 1.49       | 1.84 | 1.53         | 1.24 | 1.38    |
| 200   | 7.72 | 1.93    | 2.60 | 1.63       | 2.17 | 1.81         | 1.52 | 1.68    |
| 300   | 8    | 2       | 2.8  | 1.75       | 2.61 | 2.17         | 1.2  | 2       |
| 400   | 8.8  | 2.2     | 2.96 | 1.85       | 2.82 | 2.35         | 2.25 | 2.5     |
| 500   | Arré | et en   | 3 34 | 2.08       | 3.12 | 2.60         | 2.76 | 3.06    |
| 1000  | sys  | tole    | 4.1  | 2.55       | 3.33 | 2.77         | 14.3 | 15.8    |
| 1500  |      |         | 4.56 | 2.83       | 4.47 | 3.71         | 19   | 21.     |
| 2000  |      |         | 5.29 | 3.30       | 5.26 | 4.38         | 23.5 | 27.2    |

En comparant ces résultats à ceux obtenus dans une solution de MgCl<sub>2</sub> pur, on voit nettement: 1° qu'à toutes les températures l'adjonction d'un sixième de solution potassique augmente la fréquence de départ et maintient la période plus courte tout au long de son action. 2° A basse température l'action tonotrope positive de K<sup>+</sup> s'ajoute à l'effet tonotrope positif du froid, ce qui conduit le myocarde à l'arrêt en systole (fig. 1, ex. 74). A cette dose et, dans ces conditions, K<sup>+</sup> exerce de façon prépondérante son effet antagoniste vis-à-vis de Mg<sup>++</sup> qui est diastolisant. 3° A température moyenne (27°) une activité aussi prolongée qu'avec MgCl<sub>2</sub> pur est possible.

L'augmentation relative de la période en fonction du temps est du même ordre de grandeur, mais en valeur absolue la période est en tous temps plus petite avec Mg/K=6 qu'avec  $Mg/K=\infty$ . L'action tonotrope positive de  $K^+$  se manifeste encore par une élévation graduelle du tonus et une réduction de l'amplitude, ce qui conduit finalement à l'arrêt du cœur en demi-contracture (fig. 2, exp. 69).

Le balancement des deux actions antagonistes est donc plus satisfaisant aux températures moyennes qu'aux températures basses, et hautes comme nous allons voir. 4º A température élevée (40°) l'effet de K<sup>+</sup> est doublement contrebalancé par Mg<sup>++</sup> et par la chaleur.

On n'a pas d'élévation notable du tonus, mais le délai d'arrêt du cœur est prolongé par rapport à celui observé en solution de Mg pur. Le ventricule continue à fonctionner sur un rythme qui va en se ralentissant, mais avec des systoles amples, par de francs relâchements diastoliques (fig. 3, exp. 71).

Le potassium atténue à cette température l'action nocive du magnésium.

A ce propos une remarque très intéressante s'impose. Nos expériences antérieures ont montré qu'en présence de MgCl<sub>2</sub> pur, l'optimum thermique de fréquence sur le ventricule d'*Helix* est situé très bas, vers 21° (1, 2, 4, 5, 6).

Or, nous avons constaté qu'en ajoutant à MgCl<sub>2</sub> du KCl à doses croissantes, non seulement on n'observait aucune élévation de l'optimum thermique qui restait à la basse valeur de 21° caractéristique du Mg<sup>++</sup>, mais au contraire qu'il y avait, en fonction de la dose de K<sup>+</sup> ajoutée un graduel abaissement de la température limite supérieure d'arrêt (de 33° à 26-27°) et, une élévation de la limite inférieure de température à partir de laquelle l'automatisme peut se manifester. De sorte que, finalement, pour la valeur de Mg/K = 6 l'organe ne présentait plus qu'une étroite marge possible de fonctionnement autour de 26-27°.

Nos présentes expériences confirment la nocivité des températures élevées en présence de  $\mathrm{MgCl}_2$  seul, et celle des basses températures en présence d'une forte dose de potassium.

Par contre, il y a une discordance entre cette série-ci et la précédente sur le point suivant: la présence de KCl assure le fonctionnement à haute température, tandis que dans la série expérimentale précédente, cette présence semblait au contraire lui nuire.

Cette différence pourrait tenir à ce que, tandis que nous opérons actuellement sur *Helix pomatia*, nos précédentes expériences portaient sur *Helix aspersa*, var. *major*, d'origine méridionale, dont le milieu intérieur peut correspondre à des équilibres ioniques plus ou moins dissemblables.

Il est cependant plus probable que la divergence des résultats tient à la différence des conditions expérimentales imposées: dans un cas, l'organe est soumis à une progressive élévation de température jusqu'à 40° ou 42°; dans l'autre, il est d'emblée placé à cette température élevée qui ensuite est maintenue.

# D. Etude du CaCl<sub>2</sub> à diverses températures.

Nous avons étudié le comportement du ventricule isolé d'*Helix* dans une solution isotonique de CaCl<sub>2</sub> pur aux températures de 12°, 15°, 15°,5, 25°, 26°,5, 39° et 40°, et réuni les résultats dans le tableau IV; \* indique les phases de fonctionnement par groupes rythmés.

Ici comme dans le cas de MgCl<sub>2</sub>, ce sont également les températures moyennes (26°,5 et surtout 15°) qui assurent le fonctionnement automatique le plus stable. A 12°, la période croît rapidement, avec quelques fluctuations dans son évolution qui indique une tendance vers un automatisme irrégulier. Cette tendance se marque davantage aux températures de 39 à 40°, et le fonctionnement par groupes rythmés survient dès le temps 900.

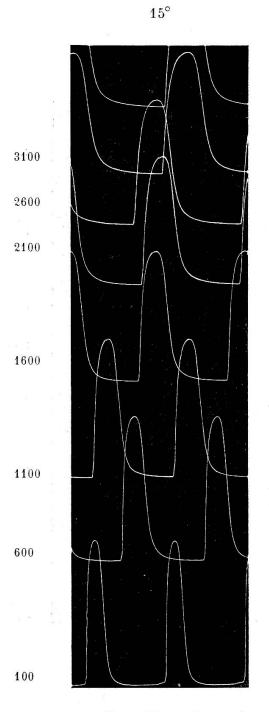
# E. $CaCl_2 + KCl$ dans le rapport Ca/K = 6 et à diverses températures.

KCl a une action tonique positive et nous avons vu que CaCl<sub>2</sub> a une action tonique positive par rapport à MgCl<sub>2</sub>. Quelle sera donc l'action de l'ion alcalin aux diverses températures ?

Nous l'avons examiné dans le cas d'une dose potassique relativement forte:  $\frac{Ca}{K} = 6$  (fig. 4, 5, 6).

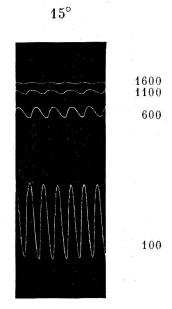
1º Comme pour Mg<sup>++</sup>, l'addition de K<sup>+</sup> 1/6 diminue la période de départ, mais l'évolution ultérieure de la période s'en trouve moins favorisée que par Mg<sup>++</sup>.

2º L'action tonotrope positive de K<sup>+</sup> se marque par une hausse graduelle du tonus diastolique conduisant à l'arrêt assez rapide en systole, particulièrement à basse température où les pulsations se présentent sous une forme pincée (fig. 4, exp. 82).

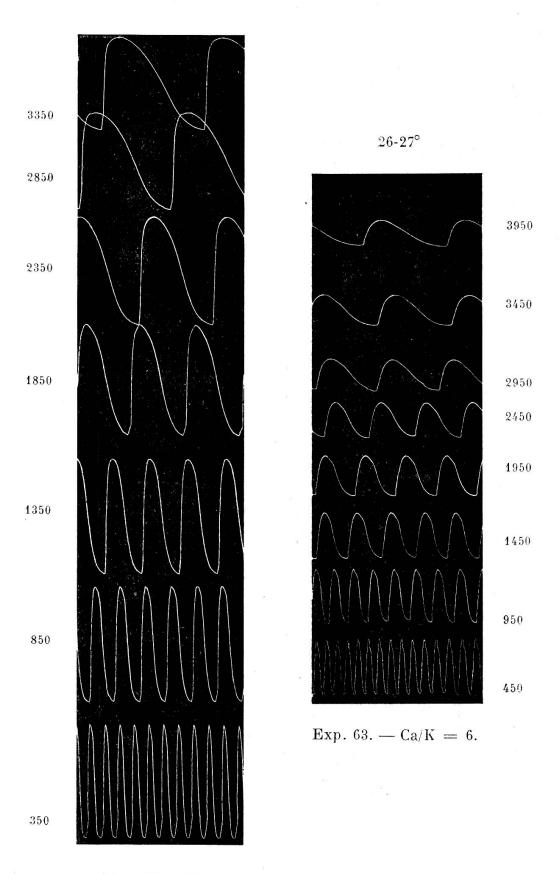

3º Cet effet va décroissant, il est encore net vers 27-29° (fig. 5) et faible vers 40° (fig. 6). Et cela en raison de l'action tonotrope négative de la chaleur. C'est vers les températures moyennes et élevées que K<sup>+</sup> a son action la plus favorable. Tandis qu'en son absence s'établissait rapidement un régime automatique, irrégulier par groupes rythmés, en sa présence le fonctionnement reste régulier pendant longtemps (régime

# TABLEAU IV

| 40°   | P P/P <sub>0</sub> | 1.75 1 | 1.72 0.97 | 2.29 1.31 | 2.48 1.42 | 2.9 1.65 | 3.5  | 11.7* 6.70* |      |       |
|-------|--------------------|--------|-----------|-----------|-----------|----------|------|-------------|------|-------|
| 39°,5 | $^{\rm P/P_0}$     | 1      | 1.06      | 1.12      | 1.53      | 2.06     | 2.40 | 7.25*       | 6.3* | *8.8  |
| 68    | P                  | 1.57   | 1.66      | 1.77      | 2.40      | 3.25     | 3.77 | 11.40*      | *6.6 | 13.8* |
| 26°,5 | $P/P_0$            | 1      | 1.27      | 1.34      | 1.45      | 1.57     | 1.65 | 2.9         | 4.45 | 6.35  |
| 26    | Ъ                  | 23     | 2.55      | 2.67      | 2.90      | 3.14     | 3.3  | 5.8         | 8.9  | 12.7  |
| 0     | $P/P_0$            | 4      | 1.46      | 1.71      | 1.95      | 2.15     | 2.47 | 3.36        | 4.36 | 5.7   |
| 25°   | Ъ                  | 3.9    | 5.70      | 6.7       | 7.7       | 8.4      | 9.7  | 13.1        | 17   | 22.3  |
| ,5    | $P/P_0$            | 4      | 1.29      | 1.3       | 1.47      | 1.51     | 1.53 | 1.57        | 1.70 | 2.10  |
| 15°,5 | Ь                  | 6      | 11.6      | 11.7      | 13.3      | 13.6     | 13.8 | 14          | 15.3 | 19    |
| 0_    | P/P <sub>0</sub>   | 4      | 1.14      | 1.21      | 1.26      | 1.25     | 1.23 | 1.07        | 1.21 | 1.32  |
| 15°   | Ъ                  | 14     | 16        | 17        | 17.6      | 17.5     | 17.2 | 15          | 17   | 18.5  |
| 13°   | $P/P_0$            | 7      | 2.8       | 4.3       | 5.65      | 6.15     | 6.7  | 7.55        | 6.8  | 8.1   |
| 15    | ď                  | 5.3    | 15.4      | 22.8      | 30        | 33       | 35.5 | 05          | 47   | 643   |
| Temps | mm                 | 0      | 100       | 200       | 300       | 005      | 200  | 1000        | 1500 | 2000  |

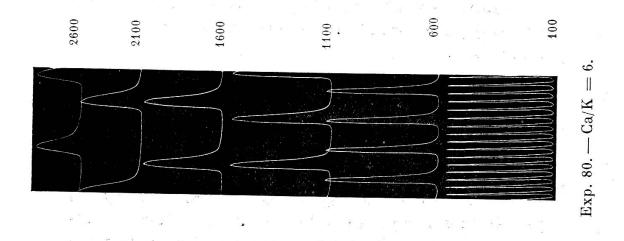

TABLEAU V

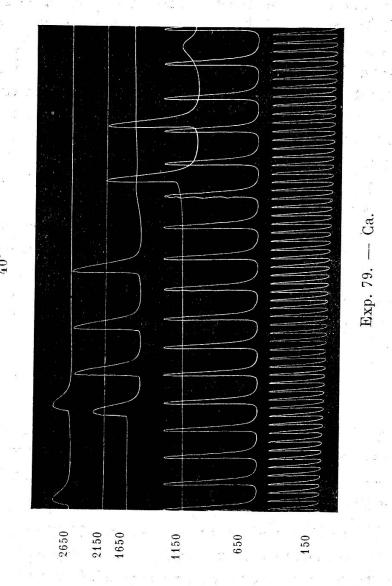
| $\mid P/P_0$     | 1                                                    | 2.1                                                   | 3.75                                                   | ಸ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10.8                                                   | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|------------------|------------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ь                | 0.7                                                  | 1.47                                                  | 2.64                                                   | 3.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 8.11                                                   | 11.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 16.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $P/P_0$          | 1                                                    | 1.29                                                  | 2.05                                                   | 2.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 8                                                      | 11.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 14.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| P                | 6.0                                                  | 1.17                                                  | 1.85                                                   | 2.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7.22                                                   | 10.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 13.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $P/P_0$          | 1                                                    | 1.02                                                  | 1.23                                                   | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4.7                                                    | 6.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Ъ                | 1                                                    | 1.02                                                  | 1.23                                                   | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4.7                                                    | 6.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $P/P_0$          | 1                                                    | 1.13                                                  | 1.34                                                   | 1.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | en                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ystole                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Ъ                | 1.35                                                 | 3.80                                                  | 4.5                                                    | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | arrêt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | aemi-s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| P/P <sub>0</sub> | 1                                                    | 1.02                                                  | 1.08                                                   | 1.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.05                                                   | 1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Ъ                | 6.9                                                  | <b>L</b>                                              | 7.5                                                    | 7.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7.2                                                    | 6`                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $P/P_0$          | 1                                                    | 1                                                     | 1.08                                                   | 1.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.36                                                   | 1.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\frac{\mathrm{en}}{\mathrm{ystole}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| P                | 2.5                                                  | 2.5                                                   | 2.7                                                    | 2.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3.40                                                   | 3.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | arrêt en<br>demi-systole                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $P/P_0$          | 1                                                    | 1.01                                                  | 1.03                                                   | 1.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.50                                                   | 1.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Ъ                | 5.5                                                  | 5.55                                                  | 5.7                                                    | 7.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7.91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 8.25                                                   | 10.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| mm               | 0                                                    | 100                                                   | 200                                                    | 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1000                                                   | 1500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                  | $egin{array}{ c c c c c c c c c c c c c c c c c c c$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P | P/Bo         P/Bo         P/Po         P/Po <th< td=""><td>Physical Probability         Physical Probability         Physical</td><td><math display="block"> \begin{array}{c ccccccccccccccccccccccccccccccccccc</math></td><td>Polymoth         Polymoth         Polymoth</td><td>5.5         1         2.5         1         6.9         1         1.35         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1</td><td>P/Po         P/Po         <th< td=""></th<></td></th<> | Physical Probability         Physical | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | Polymoth         Polymoth | 5.5         1         2.5         1         6.9         1         1.35         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1 | P/Po         P/Po <th< td=""></th<> |




Exp. 78. — Ca.

Fig. 4.





Exp. 82. — Ca/K = 6.



Exp. 77. — Ca.

Fig. 5.





. 9 . oi

de pulsations normalement espacées, séparées par de franches diastoles) (fig. 6, exp. 88). L'arrêt diastolique ne survient que tardivement.

# F. Action comparative de Mg<sup>++</sup> et de Ca<sup>++</sup>.

Notons tout d'abord que les solutions isotoniques pures de CaCl<sub>2</sub> sont mieux tolérées que celles de MgCl<sub>2</sub> aux températures extrêmes.

Les deux cations alcalino-terreux exercent des actions parallèles sur le myocarde d'*Helix* quant aux chrono- et inotropismes. Mais l'action tonotrope négative est moins marquée avec Ca<sup>++</sup> qu'avec Mg<sup>++</sup>; elle peut même être nulle dans certains cas.

Cette persistance de l'activité tonique en présence de Ca<sup>++</sup> se manifeste par l'allure même de la systole qui, aux températures moyennes et basses, présente généralement un tracé en dôme avec une phase descendante moins abrupte que cette même phase de la systole magnésique. L'ensemble du mécanogramme présente ainsi un relâchement diastolique moins franc en présence de Ca<sup>++</sup> qu'en présence de Mg<sup>++</sup>.

Ca<sup>++</sup> a, en outre, un autre effet pour ainsi dire dromotrope. Alors que dans l'action magnésique pure, rythme et amplitude varient jusqu'à la fin de façon régulière et continue, en solution calcique apparaissent fréquemment des irrégularités dans les courbes du rythme et de l'amplitude, notamment aux températures extrêmes.

# III. CONCLUSIONS.

- I. Mg<sup>++</sup> exerce sur le myocarde ventriculaire d'*Helix* de nets effets tono- et chronotropes négatifs, et inotropes positifs, conduisant de façon régulièrement progressive à l'arrêt en diastole par de grandes systoles espacées.
- II. K<sup>+</sup> exerce des effets inverses des précédents et, de ce fait, un balancement convenable des deux cations peut permettre un fonctionnement automatique plus prolongé dans certaines circonstances.

- III. Parmi les conditions de ce balancement, il faut tenir compte, avant tout, de la température: les hautes températures entraînent une prépondérance des effets de  $Mg^{++}$ , les basses, des effets opposés. De sorte qu'une dose de  $K^+$  compensant favorablement, à haute température, les effets nocifs de  $Mg^{++}$ , permet une prolongation de l'activité automatique; elle entraîne, au contraire, à basse température, un arrêt rapide, par prépondérance de l'action spécifique du cation alcalin.
- IV. Ce sont les températures moyennes, assez voisines de l'optimum thermique pour la fréquence, qui semblent les plus favorables au maintien de l'activité automatique, en solution magnésique pure ou additionnée de KCl.
- V. Les cations  $Mg^{++}$  et  $Ca^{++}$  ne sont pas absolument synergiques dans leurs effets sur le myocarde d'Helix. Les effets différents se manifestent dans leur action tonotrope négative. Celle-ci est bien moins marquée avec  $Ca^{++}$  qu'avec  $Mg^{++}$ . Elle est même le plus souvent nulle avec  $Ca^{++}$ .

Comme dans le cas de  $\operatorname{MgCl}_2$ , ce sont aussi pour  $\operatorname{CaCl}_2$  les températures moyennes (de  $27^\circ$  et surtout de  $15^\circ$ ) qui assurent le fonctionnement automatique le plus stable. On peut résumer l'action de  $K^+$  en fonction de la température en présence des deux alcalino-terreux de la façon suivante;  $K^+$  exerce une action chronotrope positive qui compense les effets chronotropes négatifs de  $\operatorname{Ca}^{++}$ . Mais les conditions de l'antagonisme sont moins favorables qu'avec  $\operatorname{Mg}^{++}$ , pour prolonger le fonctionnement automatique; car  $\operatorname{Ca}^{++}$  n'ayant pas comme  $\operatorname{Mg}^{++}$  une action tonotrope négative très marquée, les effets contracturants de  $\operatorname{K}^+$  se manifestent facilement. Ce n'est qu'aux hautes températures que  $\operatorname{K}^+$  agit de façon favorable pour différer l'apparition des groupes rythmés conditionnés par  $\operatorname{Ca}^{++}$  et la chaleur.

Dans les pages précédentes nous avons parlé du mode opératoire, de l'effet des températures — basses, moyennes et hautes — sur l'évolution du mécanocardiogramme sous l'influence des cations alcalino-terreux, additionnés ou non de potassium.

Cependant nous voulons mettre en relief d'autres actions synergiques et antagonistes des cations alcalino-terreux, inconnues jusqu'à présent.

Le schéma provisoire ci-dessous permet de se rendre compte de l'effet éclatant des sels combinés sur les caractéristiques thermiques — température limite inférieure, température optimum, température limite supérieure.

Voici le schéma de nos expériences personnelles sur le fonctionnement automatique du ventricule isolé d'Helix.

| 1 1 1   |                                  | A STATE OF THE STA | to the second                    |
|---------|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|
| Cations | Température<br>limite inférieure | Température<br>optima                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Température<br>limite supérieure |
|         |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |
| K/Na    | Elève                            | Elève                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Nul                              |
| K/Ca    | Elève                            | Nul                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Elève                            |
| K/Mg    | Elève                            | Nul                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Abaisse                          |
| Ca/Mg   | Elève                            | Elève                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Nul                              |

(L'effet le plus prononcé s'obtient en présence de fortes concentrations de K. Dans le cas Mg/Ca nous avons opéré avec une solution où le rapport des deux alcalino-terreux est égal à 1.)

# IV. NOTES ADDITIVES.

Ces résultats, comme nous l'avons annoncé au début du mémoire, furent obtenus au cours d'expériences réalisées en France en 1941, où ils ne purent être publiés. Nos travaux personnels, comme ceux de nos élèves, ont été poursuivis d'une façon fragmentaire en France occupée et en exil.

Nous les présentons ici très sommairement.

# A. Expériences avec NaCl pur à diverses températures.

Expérience 1941. — N. Guillot, dans des travaux inédits, sous notre direction, a étudié l'évolution du mécanocardiogramme du ventricule isolé d'Helix en présence de NaCl à

diverses températures, en fonction du temps. Il constate que la solution de NaCl ( $\Delta=0.55$ ) permet à toutes les températures, tant extrêmes qu'optimales, la manifestation d'un fonctionnement automatique satisfaisant. Na<sup>+</sup> est bien toléré seul, contrairement à Ca<sup>++</sup>, Mg<sup>++</sup> et K<sup>+</sup>. On doit le considérer comme un cation modérateur et ceci à toutes les températures.

B. Survie du cœur isolé d'Helix en fonction de la température et de la composition du milieu.

Travaux réalisés en France occupée, 1942-43. — Poncin, dans des travaux inédits et sa thèse de doctorat ès sciences, sous notre direction également, a cherché à montrer le rapport existant entre la survie du ventricule isolé d'Helix, la température et l'état ionique de solutions de perfusion. Ce travail est, à peu de choses près, la contre-partie de nos recherches sur l'animal entier. Chez Rana, la survie est écourtée à haute température, lorsque le milieu intérieur est déséquilibré en faveur de cations alcalino-terreux. Comme on pouvait le prévoir, c'est à basse température que la survie est la meilleure en présence d'un excès d'alcalino-terreux pour le ventricule isolé d'Helix.

- C. Interprétation physiothermique de l'action cationique pour le fonctionnement du myocarde.
- 1943-44. A. Reinberg, inspiré par les résultats exposés dans ce mémoire, guidé par nous, a réalisé une série d'expériences sur le ventricule isolé d'*Helix* qui l'ont conduit aux conclusions suivantes:

Si on admet un rapport constant entre les activités toniques et automatiques, tout facteur abaissant ou élevant le tonus devra être contrebalancé par un facteur à effet antagoniste du premier pour maintenir l'automatisme.

> Faculté des Sciences de Lyon. Laboratoire de Physiologie générale et comparée.

# **BIBLIOGRAPHIE**

- 1. E. BACHRACH, Optimum thermique et composition ionique. Science? 1941?
- 2. et N. Guillot, Influence des conditions ioniques sur l'optimum thermique des fonctions biologiques. C. R. Ac. Sc., 212, p. 929, 1941.
- 3. Déséquilibre ionique et survie des Grenouilles à haute température. C. R. Soc. Biol., CXXXVI, nº 15-16, p. 537, 1942.
- 4. La température des êtres vivants et la composition ionique du milieu. C. R. Soc. Phys. et Hist. nat. Genève, vol. 60, p. 190, 1943.
- 5. La température des êtres vivants et la composition ionique du milieu. *Archives* [5], 25, p. 123, 1943.
- 6. Evolution du mécanocardiogramme en fonction du temps. C. R. Soc. Phys. et Hist. nat. Genève, 61, p. 44, 1944 (supplément aux Archives [5], 26, 1944).
- 7. et A. Reinberg, Régulation thermique cationique du myocarde de Rana, I. Archives [5], 27, p. , 1945.
- 8. Régulation thermique cationique du myocarde de Rana, II. C. R. Soc. Phys. et Hist. nat. Genève, 61, p. 210, 1944 (supplément aux Archives [5], 26, 1944).
- 9. A. Reinberg, Action de la température sur les deux modes d'activité du myocarde. C. R. Soc. Phys. et d'Hist. nat. Genève, 61, p. 47, 1944 (supplément aux Archives [5], 26, 1944).