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1945 Vol. 27 Mai-Juin

SUR LA MECANIQUE ONDULATOIRE

DES CORPUSCULES ELEMENTAIRES

PAR

Iternard KWAL i
suite)

TROISIEME PARTIE

Resume.

Cette troisieme partie de notre travail comporte deux cha-

pitres. Le premier est consacre ä l'etude de la variance et de la

polyvariance des equations d'onde de la mecanique uni- et
multiondulatoire. On y demontre en premier lieu, grace ä l'em-

ploi de l'algorithme matriciel, le theoreme fondamental de la

mecanique ondulatoire relativiste, et qui s'enonce de la maniere
suivante:

« Les equations d'onde primaires du corpuscule de spin y2

Ws'obtiennent en remplacant les composantes pk et — du quadn-

vecteur quantite de mouvement-energie par les Operateurs

— b~i>keth~öt dans la formule PT* cT, representant

la transformation de Lorentz, exprimee au moyen des demi-

vecteurs, et relative au passage d'un des referentiels possibles

au referentiel propre du corpuscule observe.» Ij'algorithme
spinoriel est employe plus specialement pour ecrire les gqua-"

t
1 Memoire redige dans le Stalag IIA allemand et transmis parUi

Croix Rouge Internationale, service de secours intellectJell • W
i

Archive?. Vol. 27. —Mai-Juin 1945. *}



96 SUR LA MECANIQUE ONDULATOIRE

tions secondaires. On montre ä cette occasion que les equations

composees de degres superieurs jouissent de la pro-
priete de polyvariance, c'est-ä-dire qu'elles se laissent ecrire en

faisant appel aux etres geometriques ä variance relativiste
differente. Ainsi, par exemple, les equations composees du

septieme degre du corpuscule de spin y2, 9ui sont äquivalentes
aux equations de Whittaker, peuvent-elles s'ecrire, soit au

moyen des huit spineurs de premier rang, soit au moyen des

quatre spineurs de second rang (auxquels, comme l'on sait, on

peut faire correspondre des tenseurs complexes de l'espace-
temps), soit enfm au moyen de deux spineurs de quatrieme
rang.

Les equations de la mecanique multiondulatoire sont trai-
tees ensuite. On ecrit, en notation spinorielle, les equations
mixtes et mixtes composees du corpuscule biondulatoire de

spin 1 et de spin 3/2, ainsi que Celles du corpuscule triondulatoire
de spin 3/2.

Le deuxieme chapitre de ce travail fournit quelques indications

sur la theorie des ondes planes en mecanique uni- et
multiondulatoire. On montre que la solution « onde plane ä energie

positive» des equations composees de premier degre (pour
/ y2) ou des equations mixtes composees de premier degre

(pour j > 1), s'obtient en adjoignant ä une solution «onde

plane complete » des equations primaires (pour / y2) ou des

equations secondaires mixtes (pour j 1) respectivement, une
solution d'un second Systeme d'equations identique au premier,
solution caracterisee par la meme amplitude, mais dephasee

de ^ par rapport ä la premiere.

4. Variance et polyvariance relativiste
DES EQUATIONS D'ONDE.

4.1. L'equation primaire du corpuscule de spin y2

et le theoreme fondamental de la mecanique ondulatoire relativiste.

Deux voies s'offrent ä nous pour poursuivre l'etude de la
variance relativiste des equations d'onde des corpuscules elemen-
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taires. L'une est Celle de l'algorithme matriciel, l'autre est celle

des spineurs. Commencons par la premiere: eile conduit, en

effet, ä formuler un theoreme important, qui semble devoir etre

erige en theoreme fondamental de la mecanique ondulatoire
relativiste.

Rappelons done quelques definitions da calcul matriciel, dans

le but surtout d'en fixer l'ecriture. Soit Y une matrice ä une
colonne et ä deux lignes. Nous poserons:

+
+1 [

4^2
I ' 4-

— 4*2

+1
4

1
I — +2 >

4*1 I • f4-1«)

Dans le cas des matrices ä deux lignes et ä deux colonnes nous
ecrirons de meme:

A a.

«21 J «22

A"1

A

«11 a.io a, o a2

«22

- «21,

(4.16)

Rapportons-nous maintenant ä ce que nous avons ecrit au
§ 1 au sujet de la representation des matrices de rang multiple
de deux par des matrices planes, et convenons de representer
la multiplication exterieure de matrices de la maniere que
voici:

x B au
a21

«12

a22
X

6ll
bzi

fel2

bzz

an
hi
&21

6i2

622
' «12

fen

fe2i

fel2

b-zz

«21
bji
&21

612

b-iz
' «22

feu

fel2

b i2

biz

«11 fell > «11 fel2 ' «12 fell, a12 ^12

«11 fe21 ' «11 bzz ' «12 ^21 «12 ^22

«21 fell «21 fel2 > «22 ^11 » «22 ^12

«21 bzi > «21 bzz ' a22 ^21 ' «22 ^22
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Conformement ä cette convention, on aura

9* X ip

— 9* 41
2 T1

- 92
42

9i <W

9i +2

(4.1 d)

Cela etant, les equations primaires du corpuscule de spin %
revetent la forme matricielle suivante:

'S"

Ai(i i x tjj* y- -

avec

A A
+

^3 I ^1 "h ^2

ö, — i d2, d, + ö.
A

(4.1c)

df + ö3, — (öi + i ö2)

' (^1 i^2) > ^3

(4.1/)

AA
+ -

O

O
dt - - ö2 - ö> • ("e)

La variance relativiste de l'equation (e2) s'exprime par les

relations suivantes, commandees par le groupe demi-vectoriel:

A A* A' A~
+ +

A A A'A*-1

(4.1 h)

(4.1 i)

Nous voyons que A se transforme comme le produit exterieur
_L

<S>
'

<s>

X ^Jr1 et A comme ^ x

<4* X 4~
O,- -Oi

-O' O
4j x 4*

1
<h +1 ^2

42 4*1
>

4^2 4J2

(4.1 j)

Soit un quadrivecteur V, des composantes V1; V2, V3 et V4,

nous lui ferons correspondre la matrice

V V4-V; Vj + 1V2

v4 — i v2 v4 + v3
(4.1 k)
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<S>

et nous assignerons ä V la variance relativiste de tp X 'P*1)
c'est-ä-dire la meme que celle de A. Nous aurons ainsi:

V AV'A*~1 (4.11)

AV' VA» (4.11')

(4.1l")

Prenons pour V le quadrivecteur quantite de mouvement-

energie Pfp1; p2, Pg, Dans ce cas

1

m c2

W
— + Pi — (Pi + iPi)

— (Pi — i-Pt)
W
c

Pi

(4.1 m)

A la place de la transformation generale de Lorentz exprimee

par (l), considerons la transformation speciale de Lorentz,
relative au passage d'un des referentiels possibles au referentiel

propre du corpuscule observe. Pour la realiser, nous devons

remplacer dans (I) la matrice de transformation A, ä deux lignes
et ä deux colonnes, par une matrice a deux lignes et ä une
colonne

V P V' (0, 0, 0, m0c) V'-1 (o, 0, 0,

(̂4.In)

P m0c tji P_1 41
~~~~c "t* • (LI o)

Comme ijr1 cp 0, il en resulte que

^T1 P $ * 0 (4.1 p)

On verifie que l'expression matricielle, qui figure dans le

membre ä gauche de l'equation ci-dessus, est equivalente au

produit scalaire dans l'espace-temps de deux quadrivecteurs P
' <s>

et (Jr1 X tp*, qui, done, y sont orthogonaux.
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En remplagant dans (o) les composantes pk par — % et
W h
— paryö(, on obtient les equations primaires du corpuscule

de spin % et de la relation, qui exprime l'orthogonalite

>

P .[r1 X 4*] 0 (4.1p')

l'equation de continuite.
Nous arrivons ainsi au theoreme annonce: «Les equations

(Vonde primaires du corpuscule de spin y2 s'obtiennent en rem-
W

plaQant les composantes pk et — du quadrivecteur quantite de

mouvement-energie, dans la formule P(|>* representant
la transformation speciale de Lorentz, exprimee au moyen des

demi-vecteurs, et relative au passage $un des referentiels
possibles au referentiel propre du corpuscule observe P »

Ce theoreme nous parait avoir une signification plus profonde
que celle d'une regle formelle. Toute mesure physique qui porte
sur un objet mobile fait intervenir la transformation de Lorentz
qui relie le referentiel de l'observateur au referentiel propre de

l'objet observe. En theorie quantique l'objet observable est

distribue sur l'ensemble de referentiels propres, dans cbacun

duquel il a une certaine chance de se trouver au moment de la
mesure. La theorie relativiste quantifiee nous fournit le moyen
de calculer cette distribution, c'est-ä-dire de determiner la
collection de referentiels propres et les poids statistiques
correspondants.

4.2. Les equations primaires et secondaires du corpuscule
uniondulatoire de spin superieur ä %.

La legitimite relativiste des equations primaires du corpuscule

de spin > y2 sans masse s'etablit aisement. Prenons, pour

1 Cf. le memoire de l'auteur « Sur la description spatio-temporelle
des phenomenes quantiques », paru il y a quelques annees dans le
Journal de Physique, 1937, 8, p. 81. Le meme theoreme y est
demontre pour l'equation de Dirac, grace ä l'emploi des quaternions.
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commencer, les equations du corpuscule de spin 1. Le premier
Systeme s'ecrit:

[1 X A]+ [A x 1]+ 0 (4.2a)
+ +

Nous poserons:
<P [A x A]f (4.2 b)

Dans le cas du second Systeme:

[1 X A]<p 0 [A x 1] <p 0 (4.2 c)
+ —

nous poserons

<p [A* x A] 9' (4.2 d)

Passons au cas general du spin /'. Chacun des 22j_1 systemes

d'equations demande une autre variance pour la fonction
d'onde. Ainsi dans le cas du premier Systeme

[1 X 1 X X A] i|i 0 [1 X 1 X X A X 1] i[> 0

...[A x 1 X X 1]^ 0 (4.2 e)

satisfait-on au groupe de Lorentz en posant

[A x A x X A x A] <]/

Dans le cas du second Systeme:

21
'

IIA
1

¥ • (4-2/)

[1 x 1 x x A] 0 [1 x 1 x x A x 1] ^ 0

...[A x 1 X X 1]i}j 0 (4.2 g)

on posera
[Ä* X A X X A X A] (J/ (4.2 h)

La loi de formation de la formule de transformation, ä laquelle
obeit la fonction dans les autres systemes, est evidente.

Des grosses difficultes surgissent lorsqu'on essaye de sou-

mettre ä la reglementation relativiste les equations primaires
pourvues de termes de masse, ainsi que les equations secondaires,

non mixtes.
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Nous allons ici laisser de cöte l'etude de ces difficultes, etant
donne d'ailleurs qu'elles ne correspondent guere ä une realite

physique.
Les equations mixtes se plient par contre aisement ä la

formulation relativiste.
Pla<jons-nous dans le cas du spin 1. Nous avons:

[1 X A]iJj x[a x a]<p* [A x 1]i|i ix[l x I]?
+ +

[1 X A]<p — x[o Xo]f [A x 1]<p ix[l x l]t)i
+ —

La legitimite relativiste de ces equations resulte de leur
compatibility avec les formules de transformation suivantes:

<J* [A x A] t]/ 9 [A* x A] 9' (4.2 /)

Quant au cas general du spin /', nous nous contenterons de le

traiter un peu plus loin, lorsque nous etudierons l'emploi de

l'algorithme spinoriel.

4.3. Emploi de Valgorithme spinoriel.
Equations secondaires composees et leur polyvariance.

Les equations primaires du corpuscule de spin y2 s'ecrivent:

fflß« X (Jj® (4-3 a)

Les equations composees de degre 1, ou equations de Dirac,
s'obtiennent en considerant le double Systeme suivant:

K(iy x (2V (4.3 b)

ou, en posant

(p 0)^ _|_ j(2)^ j (p — — j(2)^ f (4.3c)

le Systeme que voici:

x9ß ä)ß'a9a x<]> (4.3 d)
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Considärons de meme les equations composees du troisieme

degre, c'est-ä-dire l'ensemble de quatre systemes primaires,
et appliquons leur le procede ci-dessus, ce qui donne

__ XU)(pß (2)__ x (2)^3

(4.3 e)

xo)+ß (oi*v)9a x<2y

On ne change rien ä la nature de ces equations, exception
faite du point de vue relativiste, si l'on remplace le couple de

spineurs et (2)^a d'une part, et le couple (1)cpßi et (2)cpßä

d'autre part, par des spineurs de second rang, ip et cpiha„,

respectivement, ce qui conduit ä ecrire les equations (4.3 e) de

la maniere que voici:

^ 4V* 9a/2 (4.3/)

Nous dirons que les equations jouissent de la propriäte de

polyvariance si elles se laissent ecrire avec des etres geometriques
ä variance relativiste differente. Les equations (4.3/), lorsqu'on
y separe les grandeurs reelles des grandeurs imaginaires sont

äquivalentes aux equations de Whittaker oü ligurent les

grandeurs tensorielles reelles (deux vecteurs, un tenseur anti-
symätrique gauche, un scalaire et un pseudo-scalaire). En

prenant un double Systeme (4.3/), c'est-a-dire un quadruple
Systeme (4.3 d) ou octuple Systeme (4.3 a), on obtient les equations

composees du septieme degre, äquivalentes aux äquations
de Whittaker entre les grandeurs tensorielles complexes (les

memes que Celles änumärees präcädemment, mais complexes).
La polyvariance dont jouissent ces äquations se traduit par le

fait qu'elles peuvent s'äcrire soit au moyen de huit spineurs
de premier rang, soit au moyen de quatre spineurs de deuxieme

rang, soit enfin au moyen de deux spineurs de quatrieme rang.

Passons maintenant aux äquations mixtes. Les äquations
primaires du corpuscule sans masse de spin 1 sont:

1« Systeme: ^ 0 co'^ ^ 0 (4.3»')

2esvsteme: a)&-Kl dj^2=0 0 cp ~ ^
Yai v a2ß2 rai
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Les equations mixtes s'obtiennent en interconnect ant lse

deux systemes par le terme de masse:

(A)
1er Systeme:

2e Systeme:

r «i a2 T a2

(A) ^ai9 ^

(B) *9aih

(B) ®3l0tl4'aia x 9
ßl

(B) 93la2 —

(B) ®a232 <2

(A) ^ia2+aia2

(A) <©*'"'9*1«,

X c

(4.3 h')

xcp.
C'8

x^P»
(4.3 Ä")

Nous saisissons sur cet exemple comme la variance relativiste
conditionne la formation des equations du type A et des equations

du type B.
Ecrivons encore les equations secondaires mixtes relatives

ä /= 72-
Premier Systeme.

ß)ßiai d
7a

Ta

a^cc3 x
T a

*4fl
a2«3 '

X<f>(
ß2

x^

ai a3

ßs
7ai«2

(A) ai ^ x tjA ^ ®3 ]

(A) tO a d — xd ®3
' ' Ä2ß2 «aja2

(A) (® Ä d ^ — xd ^
' ' asß* >ai 7a) aa

(4.3 i')
(X)

p
d13* i:3

aißi T a2 — — x ip (A)

,ß! S3
7 a2

(D h
d133 133

«3 ß3 Y <*2

d
r a<j

aia2 '

X(j,ßlß2ß3 ;

x d;^1
7 a2 «3 '

Deuxieme Systeme.

ßl ß2 t!l ß3

ßl(A> - **
(A) CD®3"3 ^^2a3 x<^^3

«2
T«

(D^013 d
7 a

^ +0

ßl

ß2

a2a!

,ß3ß2 _ai x ^ß3ß2ßl

,ß3 ßa

«i
xd/3Y a2ai

|ß3 ßä —
ai — x <p

Ya3 <*!

^ßiai <!, ßa
Ya3 ai

a> h d ^
a2 ß2 Ya3 «i

tfjßs «3 A ß2
Y a3 ai

itd p2pi
~a3

Xt|I

X tp1

a3 a2 aj '

ß3 ß2

ai >

^ a2ß2

(B) ^3ß3^

(A) x+'V1

(B)

(4.3 i")

(B)

a2ai

ß3 _
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Troisieme Systeme.

(B) 03^*1 dl
Y <*3 a2 ai x dY a3 a2 ' (B) 03 A d — — x 4*

«lßl Y 0(3 0(2 Y «3 0(2 011

(A) 03$*a* dY a3 a2 ai x tb
Y a3 ai ' (A) <®ß2«2 a xd ^Y a3 a2 T a3

(B) 03&» «S1
Y as a2 ax x Y a2 ai ' (B) ,®ß3 0(3 J, ßl x Aßs ßl

Y a3 a2 Y a2

(B) 03 h d^3 ßj
ai ßi Y a2 — xd^3Y a2 aj ' (B) <X)ß xd^3 ^

i a2 aj T a2

(A) ^2«2 Jjß2 ßl _Y a2 x ^ß3 ß2 ßl
^ (A) (Dß2 0(2 .ß3 xd^3ßä

Y a2 ai Y ai

(B) (X) h dl®3 Pi
«1 ßl Y t*2 — xdi^3

Y a2 ai ' (B) CO • — x ib
ß3 Y a2 ax Ya3a2ai

Quatrieme Systeme.

(B) dt a2 ai x tL ^
Y a3 a2 > (B) CO • ^ — — x iL

«l ßl a3 a2 Y a3 a2 ai

(B) 03^ Y a3 a2 ai xdYa3 ai ' (B) ^ß2a3^ Öi <l ß2ßi
Y a3 a2 Y a3

(A) <00» dY a3 a2 ai
xd^3

Y a2 ai ' (A) ^ßsas J, ßi xtbßs ßi
Ya3 a2 Y a2

(B) <X)Piai dY a3 at xd ^~a3 ' (B) 03 id ^ — xdajßi Ya3 Ya3 ai

(B) 03 x d
^2

a2 ß2 Y a3 ai — x d>
Ta3 a2 <xi ' (B) 03 A d ^ — xd ^

a2 ß2 Y a3 Y a3 a2

(A) 03@3 aa d ^
Ya3 ai *d^2ai. (A) dD08"3 da/2^ xd^
Dans le cas general de

oü 2/ est impair du cas

spin /, nous avons ä distinguer le cas

oü 2/ est pair. Dans le premier cas,

(4.3 i"

(4.3 i")

chaque Systeme comprend un nombre r de groupes du type A
et r' 2j — r groupes du type B, r pouvant prendre les

valeurs 1, 3,... 2/ — 2 et 2/ et r' les valeurs 2/ — 1, 2/ — 3,...
2, 0. Dans le second cas, r et r' prennent les valeurs 1, 3

2/ — 1, 2/ — 3 et 2/ — 1, 2/ — 3 3, 1, respectivement.
Classons les formes que prennent, du point de vue spinoriel,

les fonctions d'onde relatives aux differentes determinations du
nombre r' (ce qui revient au meme qu'avec Celles du nombre r).
Placons-nous dans le cas de 2/ impair. Le nombre de systemes
admettant r' groupes du type B est egal ä Cf^~r'. Les systemes ä

r' groupes du type B font intervenir comme fonctions d'ondes
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2"0 spineurs de rang 2/ qui peuvent etre classes de la maniere
suivante:

1 spineur <1^«,...«^

r spineurs de la forme ^ ^ini...a2j et 2/ — r de la forme

(LPs Paj* <V
n r'-1 n r' \

avec £ n + 1 < Z < £ C^~n, I prenant valeurs J

n= o
'5

n= o
3 '

C2 spineurs de la forme i]jai ••• ••• 2...

C23_r spineurs de la forme ^ ®lm2...

(avec nt + ml 2/)

C2,__ spineurs de la forme <]Ar *' r a"i almi

Cj! spineurs de la forme 4>ai
^l"s

Cl „ » » » dÄ Psj
Zi-r t a/ a? ai

tm1 lm2 lmj

Gr'cU » >' » ^-ai -ai -aitn1

CrC2j-r » » '»

C® spineurs de la forme ®l"i
ai *" "* 2J

c!j-r » » » j sis est pair

J 3l 02l • A •

/ ou w „
J si 5 est impair

almi alms

Of' C'„ spineurs de la forme I d^1 ^T 2,_n "S a"s-t ml Xmt

si s etant quelconque t est impair

1 P» ß[ ß;
OU ill s *~t ml mITa±... ...«23

si t est impair
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Notons la relation facile ä verifier

107

S

Sns-t rt rsS- Wj-r ~ Wj
t=0

qui montre que dans la classification ci-dessus le nombre total

de spineurs est bien egal ä Ii C|j 22K

S — 1

Un tableau analogue des fonctions spinorielles peut etre
dresse dans le cas oü 2/ est un nombre pair.

En partant de chaque Systeme mixte, nous pouvons former
une suite de systemes composes. Les deux systemes composes
de premier degre pour j 1 sont identiques et egaux aux equa-
tins de L. de Broglie. Pour / 2 on est conduit aux equations
de Mme Tonnelat.

4.4. Etude des equations de la mecanique

rnultiondulatoire.

4.41. Notation matricielle.

Commencons par ecrire les equations du corpuscule biondu-

latoire, de spin 1 et sans masse:

ÄJ — [2+ x 0

Premier svsteme <, (4.41 a')
'

/2A? - 2A2\ [2^ x 0

Äl-'AiU'q» X l9] 0

Deuxieme svsteme < (4.41 a")
X>?] 0

Les h<]i et les kcp satisfont aux transformations de Lorentz
suivantes:

24> A 2^' t A1^'
> (4.41 b)

2cp A * 2<p' ^cp — A1?'
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Considerons maintenant le cas du corpuscule biondulatoire
de spin / et de masse au repos nulle dont les equations ont ete

consignees dans le tableau (3.11 n).
Dans le cas du premier Systeme nous poserons:

cft
Ci

n a
i

«v 'j,
C2

n a (4.41c)

du deuxieme Systeme:

Cl

IIA
1

2

C2

Co-l

a* x n a
i f (4.41 d)

du troisieme Systeme:

Cl

nA
i

«>'. Jf
^ ca-l

A x A* x n A
1

V (4.41c)

du 2/ + lierae Systeme

A*
Cl 1

x n
i

yCiY ^
C2

n a
i

>' (4.41/)

du 22j 1

Systeme:

1° 2/ est un nombre pair

a) cx > c2 > / c2 < /

<1*

ClY

b)

CiY

Ci-J 3

n a* x nA
i i

C2
M

n a*
1

y (4.4i g')

Cl

n a*
1

< c2 cl < / c2 > j
3 C2-J wn a x n a* V (4.41g")

2° 2/ est un nombre impair.

On remplacera / par / — % dans les relations a) et b).
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4.42. Notation spinorielle.

Equations mixtes du corpuscule bi-ondulatoire de spin 1.

Premier Systeme.

x\2V j

((001«! ^ßa) ^ ^3i«i x2^32 x^3I
/

(O&«. "
+J ^ ^ ^al) ^

Deuxieme Systeme.

K1011X) Xt -X Kiai >J x\V i

; (4.42 a

K2«2 X) X -X K2"2

((03s«a 2(|jaJ ^ßi — 2^ (<£)ß2*2 ^ßi) x2^2Vßl ]

Afin de simplifier les ecritures, nous envisagerons les

Operateurs HD qui agissent sur les fonctions 1^, 2(D qui agissent sur
les 2y, etc. Avec cette nouvelle notation, il vient:

(2£>ßi«i — l2)3i«il 2^3a ^ xV32 Vßl
\ (4.42 6')*

(2^2«2 __ ^ßlOU) „^2 ^ [

]

x2^1^1 j

/ (4-42 6

(22>32=<2 _ *
j-,31«.) ^ x2<|>2 ^ i

^jp3a«2 __ *,[, '^ßi x2i>^ ]

* Pour des raisons typographiques on a du mettre depuis cette

formule, D®a ä la place de cO®a.
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Equations mixtes composees du corpuscule biondulatoire
de spin 1.

_ 'zA"!) p)2^ _ t2)2,!^ OO^J x[(1)1ty (1)1 +ßl — (2)1<|Ä]

(2jr,ß2«2 _ 1D{i2°^ 0)1^ _ (2)2^ y.[(1)2ljjß2 (l)1lJjai — <2>2t]A (l)1^aJ

(Xßx -XÜ PX (1)1^ -X (2)1^SlJ - XX X -X <2)1^J

_ 'z^2"2) [(1)2i)ja2 (1)1i|Ä — (2)2^a (2)X] x[(i)24I02 — (2)2^»2 (2)^ßiJ

(4.42 c)

(>jM _ ^ßx-1) [M2^ <2)^ + (2)2^ x [(^ (i^ßi + l2)2^ W^ßi]

-x-) [(ix <2>X + (2x wix xx <2)x + <2X (i>i4,aj

(Xk -Xü [(1X (2)X + (2X (1X] - XX (2)X + (2X (1Xl

^ßs«, _ l£ß2a2) ^(O2^ W^ßj. + (2)2^ (l)l+ ßxl x[(1)2+S2 (l)l^ßl + (2)2^3, (1)1^3,]

(4.42 c")

Equations mixtes du corpuscule biondulatoire de spin 3/2.

Nous avons deux cas ä envisager suivant le nombre de

composantes de deux champs d'onde.

10 1(1; X et 2 iL 2<L
T Tax r Ya3a2

2° x X et 26t Ya2ai r Ya3

Nous allons ecrire les equations d'onde relatives au premier
cas:

(4.42 d')

(2Z»ßi«i _ Tai
x2d; V1

Taßas T

^2^)32«2
2

/ Ta3ao T̂ai x 2<li 1d>

^2)3 3 «3 1!^ ~Tai xX 'ib
T a2 TÄ1

(2zAai — T̂ai *2X X
'Z^2«2) 2<lX2 T̂ai xV'®' X

(Xß, - Xß3) V',, ^ "
Tai — x. X ^Ta3a2 a]

(4.42 d")
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fflßi-x _ ^ x'^3. ^ \

(Xß2 -Xü V2 X *Xc2 <4-42rf'">

^8X)3s*s — ^ß««») x2^3^2 ^
Cd h —1D i)2il 1d.^ x2iL 1i>
V ai ßi ai ßx/ *0:3 o<2 Y • cc$ ao Y«x j

(2£>ßü*2 _ 24,ao(X2 ^ß! (4.42 d)
(*>* - 'D^3) \tat "Vß'oc2 V1 ;

La formation des equations mixtes composees s'effectue

comme pour le corpuscule bi-ondulatoire de spin 1. Chacune
des equations precedentes va se dedoubler selon l'exemple
suivant, qui est celui de la premiere equation:

fßßiai — ^ßmUWU W'A — <2>2m W'J, ] I
\ / L Ya30C2 Yax Ya3a2 YaxJ I

• (4.42 e)
I

["X«. "X + "X«"XI - l

- «["X„|!"t6' + '*X«"V']

Equations mixtes du corpuscule triondulatoire de spin s/2.

Nous poserons

[3D]ß<* _ 3Z)ßa + 22)ß« — lD^ (4.42/)

Nous avons affaire ä quatre systemes d'equations dont voici
le premier:

W-IW
x (4 42 gt)

[*D]^\3\3^X1
Archives. Vol. 27. — .\Iai-Juin 1945. 8
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[»2)]Pl«l ^3 «^P« ^ ^ßa "^P, ^ßl

['*>]«, ß, V3 V' X X^ '< X } (4'42 gl
Ma.P.V1 V'X *30"2 X

Ppjßa*! 3^fe ^ i^Pi x3^ß2 ^ßa »^Pi \ (4.42g'")

M^ßs^ "'O-V1 l

[^kßx^V21^1 V*1^ ]

[3jD]«2 ßa X V2 Vßl X^X V< (4.42 giv)

p_Djßs =<3 3^ ä^ßa i^ßi x3^ßs 2^ßa ^ßi j

Les autres systemes peuvent s'ecrire aussi facilement, il
suffit dans les equations correspondantes du corpuscule uni-
ondulatoire de spin 3/2 (4.3 i' ä 4.3 i") de scinder les spineurs
de troisieme rang en produits de trois spineurs de premier rang.

Pour obtenir les equations mixtes composees il faut prendre
comme fonctions d'onde les huit expressions suivantes:

(I)3a WA (1)1,1, — <2>2<L <2>1<L —ra3 rct2 Y*i y«3 Ya2 Y^i

— (2)3A <2y — (2>3<t <2>2d;
Ya3 Yaa Yai Ya3 Ycc2 Y<*i

W3,!, (1)2 A (1)U (1)3A (2)2j, (l)lx
Ya<* Yx» 1 Y3t3 Ya2 Y<*i 1

(2)3 (1)2 (1)1 __ (2)3 (2)2 (2)1
roc3 Ya2 Y*i Ya3 Ya2 Yai

(1)3+a3 (2)1+ßl — <1)3+aa <2)1+ßl —

_ (2)3^, (l)^ß2 (2)l^ßl _ (2)3^ (2)2^ ßa (l)l^p!

(2)3^, (1)2^,02 (!)l^Pl _ <2)3^
^

(2)3^ßa (2)l^ßi +

+ (2)3y (i)y2 (2)i+ßi + (2)y3 (2)y2 (i)i+ßi
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(1)3j, (I)*J, (l)U3l _ (1)3J, (2)2 (2)1 ,3! _Ya3 Y<%2 Y yÄ3 Ya2 Y

— <2>3d, «2x — <2>3Ji (2)2<L (1)1<L^
Yai Ya2 Y Y«i Y(*2 y

(2)3x (1)2 (1)1 3l ___
(2)3 (2)2 (2)1 ,ßx +Ya3 Ta2 Y Y X3 Ta2 Y

+ (1X + {1)tK ("X^
«3x (1)2^32 (1)1 [N __ (l)3i (2)2x32 WU _yC<3 y Yai Ya3 Y Y<%i

— (2)3x (l)2xßa (2)1 _ (2)3 (2)2 ,32 (l)lx
Yas Y Yai Ya3 Y Yai

(1>^a3 M2^ (2)1<];i[ + T)3^ <2>V* +

+ (2)3<l'3[3 (1)V2 (1)1+ai — (2)S+a3 (2)24'^ (2)14ai

La premiere et la deuxieme expression doivent etre soumises

ä Taction des Operateurs:

[3Z)fi*i [3Dlfeo:2 et ["S^-jßaas >

la troisieme et la quatrieme ä Taction des Operateurs:

l3^!' et [3jD]"3013

la cinquieme et la sixieme ä celle des:

' ['»I^ ^ [3jD]"3a3

et les deux dernieres ä celle des:

j>f«i, [3-D]a2 ßa
et [Id]*««".
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5. ÄPERQU DE LA THEORIE DES ONDES PLANES EN MECANIQUE

OND ULATOIRE SIMPLE ET EN MECANIQUE MULTIOND ULATOIRE

DES CORPUSCULES DE SPIN QUELCONQUE.

5.1. Mecanique uniondulatoire.

5.11. Corpuscule de spin %.

Prenons les equations primaires, ecrites spinoriellement

aie'S + he lS
>

<^2 a2elS + b2e lS (5.11 a)

II vient immediatement que les amplitudes ah et bh satisfont
au Systeme d'equations suivantes:

D&i*i ^
et posons-y

avec

S ~h^Wt~ Vtxi — PaX3) (5.11 b)

(5.11 c)

dont le determinant est egal ä

(5.11 d)
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Les coefficients bx et b2 s'expriment en fonctions des a± et a2,

on a:

— (Pi — ip») ai + —
b*

i + (-y — Pa) «2 |

IJUn C 1

/w \- - + «1+ iPl + lPa)»a
b* — 1

2 — i m0 c i

(5.11 e)

Pour obtenir l'onde plane ä energie positive XF~ de l'equation
de Dirac (solution qui n'est pas «complete»), nous devons
associer les solutions ^ et 2,j; de deux equations primaires,
solutions qui ne sont pas independantes. L'onde Y+, en effet,
doit etre de la forme AelS; posons

Y- ^ 4- i2^> Ax elS

(Ja + i 2a) erS + (*& + i 2b) e~S

d'oü
2b ixb (5.11/')

De meme, de la relation

T+ oPf + i2i>* ] A2etS

on tire
2a — i^a (5.11/")

La solution 2VF s'ecrit done

2Y — iae^ + ibe~lS aelS' + be~'s' I5'11 g)

avec
71 W 7tS' S —- — t — P1x1 —p2x2 —p3x3 —- (5.11 A)

Posons maintenant

?1 MtMi + i2+i) «i ctS
<p2 1A(1i's + i2<W a2ejS

Si % Mi ~ i »<M bx <TlS 62 % (^2 - i2<W b3 e~lS

(4.11 i)
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et, ensuite

Ti 9l — i 6* (% — i bl) eis A1 eis
j

^2 «Pi + i6* (% + ib*)elS A2etS

/ (5.11/)
T3 ?2 + je; (a2 + ib*)eis A3 e*s

Y4 <p2 — i e; (a2 — i b*j e*® Aj e*® ]

Compte tenu de (5.11 e), on trouve facilement:

A l W \ \

Ai + p3 — m0cl öi + (Pi + ip2) a2

m0 c

A2 (~ + Pg + TO0 c) cq — (Pi + ip2) a2 j

m0 c
* (5.11 Ä)

/W \
Ag — (Pl — ip2) ai + ^ — + m0c — pA a2 I

m0 c I

A4 (Pi — ^2) «1 — (y — Pa — w0 a2

7?i0 C /

En exprimant Ax et A4 en fonction de A2 et A3 on trouve bien

» _ (Pi + ipi) Ag — p3 A2 _ (Pi — ip2) A2 + p3A3
1 W 1 W

— + rn„ c 1- ra0 c
c c

(5.11 Z)

5.12. Corpuscule de spin 1.

Ecrivons explicitement les equations primaires de ce corpuscule,

en nous bornant au premier Systeme:

(Ö( — Ö3) <>11 + (Ö1 + i Ö2> +12 — K 92*2 ]

(öj — i ö2) i]^ + (öt + ö3) ^12 xcp*

; (5.12 a')
<ö( — Ö3) ^21 + (öt + i a2) +22 I

(öx— j ö2) t>21 + (dt + ö3) ^22 — x<?u '
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(Ö, — ö3) 9n + (Ö1 + i ö2) <p12 x <]/ \

(öi — i ö2) 9n + (öf + ös) 9i2 — * C
(öt — d3) <pal + (öj + i d2) 922 — x 4/

(öx — i d2) 921 + (ö( + ö3) 922 x <1*

(5.12 a")

(ö( — ö3) + (öj + i ö2) i\i21 ix 9n

(öx — i öa) 4»n + (ö, + ö3) 4>21 ix 921

(d( — ö3) 4i12 + (di + i ö2> +22 i* 9i2

(Öx — i ö2) 412 + (Öj + Ö3) 4^22 iy- 922

(ö( + ö3) 9n — (öj + i ö2) 92! in 4'n

— (\—i ö2) 9u + (ö( — ö3) 9 21 i x 4^21

(öt ~t~ ö3) 912 (öi + i Ö2) 922 i x 4^12

(Öl i Ö2) 4^12 ~1~ (Ö, Ö3) 922 i X 4i22

Cherchons les solutions de la forme:

hh aihelS + hke ,s

9ift c(ftetS + dlke~lS

(5.12a"

(5.12 aiv)

(5.12 6)

Les coefficients an, a12, a21 et a22 etant fixes arbitrairement,
tous les autres coefficients se trouvent determines. II vient:

cn V»o c [ (7" + -Ps) «11 — (Pi + ipi) «2i| I

C12 VmoC [ (~ + p3) «12 — (Pi + ipz) «22] f

i

(5.12c')
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<*n l/m0c |— (pt + ip2) a*2i + — Ps)a*2]

<*12 ~llm0C[i~ + Ps) % — (Pl — < P*) «22

> (5.12 c")

<*2i — llm0e | — (pi + ipa) — Ps) <7]

<*22 llmo c [ (7 + Ps) % — (Pi — * Ps) «*„]

*<11 — l/"V2[(Pi + *p2)2«*1 —(y—p3)(Pi + *p2) («*a + %) + (7 — Ps)<t

6l2 v»; «2 [— (7 + ps) (pi + * p.) <7 + (5- — *>!) ah + (p! + p|) ai,—

— (Pl — *p2) (-7— Ps)«^]

*<21 V»<2 c2 [— + Ps) (Pl + *P2) <7 + (p2 + P2) <7 +(j — P2) <7 -
— (Pl — *p3)(7—Ps)a*a]

*>22 — V2 «2 [7 + Ps) % — (7 + Ps) (Pi — *P2) (<7 + oai) + (Pi — * P2)2 <7]

Pour obtenir la solution « onde plane ä energie positive » des

equations mixtes composees (equations du corpuscule de spin 1

de L. de Broglie), nous precederons comme en theorie du
corpuscule de spin y2. Aux equations (5.12a) nous allons adjoindre
un second Systeme d'equations exactement pareil, mais dont
nous prendrons les solutions suivantes:

(5.12 d)
2hk aike^s 2' + bike l^s 2

9
»(s—5)

7
-i(s—£

<?ift clke ^ 2* + dlhe ^ 2

Posons [Cf. (2.23 *>)]

1(% V.(l+Ife + Wlk) ViS
2®(ft VA^ik + Wik) ctkelS

3®Ift — Va[=f x °] (^ik + W\h) — *[<J x <y]d*he

4®lft= VaO x a](7*ft + *7*0 W x ajOfte'8

iS
(5.12 e)
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et ensuite

Vi '/V2" (»®u + 4®ll) 'IVZ (% -idVs22/ An

T„ W2" (4®12 + 4®12) 'lV% (a42 — i &21) e,S — A #»tS
— A12 e

V* Va/2" 9®21 + 4®2l) VV2"(«21 + i 512) el8 A12 elS

^14 'jV2 (i®„ + 4® 22> 1/\//2 («22 — i 6U) etS A14 etS

'IV2" (2®u + 3®ll) VV2" (cu + A21 eis

Tb 'IV2" (2®12 + 3®12> 'IV2" (c12 — id*) etS
21/

A22etS

V3 VV2" (2®21 + 3® 2l) 'IV2(C21 -y>tS A23 e's

^24 'IV2 (2®22 + 3® 22) 'lV% («22 + id*)etS
11/

— A ^lS— A24 e

Vi 'IV2 (2®n 3®ll) '/V2 (c„ — jd*ys22/
A31etS

^32 'IV2" (^42 - 3®12> 'lV2 (c12 + id* )etS
21'

A32etS

^33 VV2" (2®2X - 3®2l) VVä" («2i + id*ys12/
A33e,s

^34 'IV% (2®22 3®22> 'IV2" (e2i — id* etS
11/

— A elS— A34e

^41 V Vä" l1®!! — 4®ll) 'lV^ (®n + i6*)e*s
22/

— A plS— A41 e

^42 'IV 2" p®,, - 4®12) 1jV2 (®12 -i&*ys21/
— A elS

-^-42 e

V. 'IV2" (4®21 - 4®2l) 'lV% (®21 — i 5* elS
12/

— A PiS— A43 e

Y44 l/VT 9® 22 4®22) '/V% («22 + i &* etS
11/

— A «olS

(5.12 /')

(5.12/"

(5.12/"

(5.12/iv)

En se servant des relations (5.12 c', c" et c"') on exprimera
les seize amplitudes AeJ( de l'onde plane ä energie positive en

fonction des quatre parametres au, a21 et a22.

La methode s'etend sans difficulte ä l'etude des ondes planes
des corpuscules de spin quelconque.
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5.2. Mecanique mnltiondulatoire.

5.21. Corpuscule de spin biondulatoire de spin 1.

En cherchant les solutions de la forme

^ laa ßtl S + 'K e'Ü S

Tai «i 1 ai

2tL *-a ei2S + 2b e~i2S
*ct2 a2

1

a>

avec

(5.21 a)

1W
XS — t — 1p1x1 — lp2a:2 — 1p3x3

2w.
(5.21 b)

2S —
c

des equations (4.4 d'), on trouve immediatement les relations
suivantes entre les coefficients 1a et V d'une part, et les coefficients

2a et 2b d'autre part

1lmo e j — [(Vi ~ Vi) — i (Va — Va)] ^
c

W
— (Va — Va) j 'a2

F
r2w !w 11

1lm0c J — I

: h (2/>s — Va) ] % + [(Vi —Vi) + »(Va —1

oü l 1 ou 2

On voit done que les coefficients V de la premiere fonetion
d'onde ne dependent que des coefficients 1a de la meme fonetion
d'onde et, de meme, les coefficients 2b s'expriment uniquement
en fonetion de 2a, les relations ne faisant intervenir que les

differences

W 2W *W
Y — — — et Pk 2Pk — Vft • (5.2i d)

Dans le cas d'equations mixtes composees nous avons pour
fonetions d'onde les expressions suivantes:

(m)U (m)la eilS + (m)lb e~ilS (5.21 e)

oü m 1 et 2
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avec

0 V + r/m0c j - [p, + ip2) (W'fl, + l^a1) + (y-/>.) ((I)la, + i^\)
ov + <*v 1/lMoC j (W'fl, + ;<2%) + (Pl + l?2) («^ + i<a>!aa)

5.22. Corpuscule n-ondulatoire de spin n/2.

Nous avons

% '«V*'® + \e+l8 1= 1, 2, n (5.22a»

avec

Vwq c | — [Pl — ip2] a[ + [ y — Pal | I

(5.22 b)

lb[ 1lmo c | — [y + psj a[ + [p! + ipi~\a[ | |

ou

W 2 (— 1)' lW p 2 (— l)1 lp (5.23 c)

(=i i=i

5.23. Corpuscule biondulatoire de spin 3/2.

Nous poserons done les equations (4.42 d):

% e,is + H e"tlS 2tL 2a e,2S + 36 e~t2S
Yai ai <*i ' Yasa2 «3 «o

1

0*3 0(2
'

(5.23a)
ß3 2cß3 el2& + Z^ßs e~l2S

(Xo &2 «2

On trouve facilement que les coefficients aa et bx satisfont

aux relations (5.lie), tandis que les coefficients «a3(X2, ^a30L2j

cß2 et d®3„ aux relations (5.12c», oü on a, dans celles-ci
0C2 CC2 ' V / 7 7

comme dans celles-lä:

(5.23 b)

(ä suivre)
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