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1945 Vol. 27 Mai-Juin

SUR LA MECANIQUE ONDULATOIRE
DES CORPUSCULES ELEMENTAIRES

PAR

Bernard KWAL1
(sutte)

TROISIEME PARTIE

RisuMmE.

Cette troisieme partie de notre travail comporte deux cha-
pitres. Le premier est consacré a ’étude de la variance et de la
polyvariance des équations d’onde de la mécanique uni- et
multiondulatoire. On y démontre en premier lieu, grace & 'em-
ploi de T'algorithme matriciel, le théoréme fondamental de la
mécanique ondulatoire relativiste, et qui s’énonce de la maniere
suivante:

« Les équations d’onde primaires du corpuscule de spin 14

. W :
s’obtiennent en remplacant les composantes p;, et — du quadri-
vecteur quantité de mouvement-énergie par les opérateurs

h s :
— et =0 dans la formule PY* == m,c¥, représentant

la transformation de Lorentz, exprimée au moyen des demi-
vecteurs, et relative au passage d’un des reférentiels possibles
au reférentiel propre du corpuscule observé.» I algorithme

Pa—
spinoriel est employé plus spécialement pour écrire Tes™ équa-

A) &
4 v} .
1 Mémoire rédigé dans le Stalag II A allemand et transrms pa%‘s}!
Croix Rouge Internationale, service de secours mtelleetdel A
ARcHIVES. Vol. 27. — Mai-Juin 1945. * ‘i“'*m 4




96 SUR LA MECANIQUE ONDULATOIRE

by

tions secondaires. On montre a cette occasion que les équa-
tions composées de degrés supérieurs jouissent de la pro-
priété de polyvariance, c’est-a-dire qu’elles se laissent écrire en
faisant appel aux étres géométriques & variance relativiste
différente. Ainsi, par exemple, les équations composées du
septiéme degré du corpuscule de spin 14, qui sont équivalentes
aux équations de Whittaker, peuvent-elles s’écrire, soit au
moyen des huit spineurs de premier rang, soit au moyen des
quatre spineurs de second rang (auxquels, comme 1'on sait, on
peut faire correspondre des tenseurs complexes de l’espace-
temps), soit enfin au moyen de deux spineurs de quatrieme
rang.

Les équations de la mécanique multiondulatoire sont trai-
tées ensuite. On écrit, en notation spinorielle, les équations
mixtes et mixtes composées du corpuscule biondulatoire de
spin 1 et de spin 3/,, ainsi que celles du corpuscule triondulatoire
de spin 3/,.

Le deuxiéme chapitre de ce travail fournit quelques indica-
tions sur la théorie des ondes planes en mécanique uni- et multi-
ondulatoire. On montre que la solution « onde plane a énergie
positive » des équations composées de premier degré (pour
J] = V%) ou des équations mixtes composées de premier degré
(pour j > 1), s’obtient en adjoignant & une solution «onde
plane complete » des équations primaires (pour j = 1) ou des
équations secondaires mixtes (pour j > 1) respectivement, une
solution d’un second systéme d’équations identique au premier,
solution caractérisée par la méme amplitude, mais déphasée

de % par rapport & la premieére.

4, VARIANCE ET POLYVARIANCE RELATIVISTE
DES EQUATIONS D’ONDE.

4.1. L’équation primaire du corpuscule de spin 15
et le théoréme fondamental de la mécanique ondulatoire relativiste.

Deux voies s’offrent 4 nous pour poursuivre l'étude de la
variance relativiste des équations d’onde des corpuscules élémen-
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taires. L’une est celle de ’algorithme matriciel, 'autre est celle
des spineurs. Commencons par la premiére: elle conduit, en
effet, & formuler un théoréme important, qui semble devoir étre
érigé en théoréme fondamental de la mécanique ondulatoire
relativiste. .

Rappelons donc quelques définitions du calcul matriciel, dans
le but surtout d’en fixer I’écriture. Soit ¥" une matrice & une
colonne et & deux lignes. Nous poserons:

_ |

4 2 V= —de, Wil . (&14)

¢

ST

Dans le cas des matrices & deux lignes et & deux colonnes nous
écrirons de méme:

A — 11, g A — } Qoa> — Qg1 |
315 Qag — 12, an (

> (&10b)
1 Qa3 , — Qyp \

Al =

Q11 Ggp — Q19 Aoy | — dyy , a1y

Rapportons-nous maintenant & ce que nous avons écrit au
§ 1 au sujet de la représentation des matrices de rang multiple
de deux par des matrices planes, et convenons de représenter
la multiplication extérieure de matrices de la maniere que
voici: '

11 Q2 1 e
A xB= = (4.1¢)
Qg1 Qgg a1 Doz
1 i by bye . biy 12
11 ) 12
by bap by by
a by b1e “ b1 bml
21 3 22
bay by bia by
@y by s a1y b2 a2 byy 5 a2 b3
ayy by ayy by g by Ay boy
Ay by s Qg1 byg g9 byy Q9o by

Ay by . Ay by, Qg9 by Ugg byy
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Conformément & cette convention, on aura

—% %

= | RN, (s.14d)
?1 ¥y
?1 Yy

Cela étant, les équations primaires du corpuscule de spin 14
revétent la forme matricielle suivante:

A = ixd*,  x = m;f (4.1¢)
avec
& =2 N e Ot—~63, 61+i62 . 5t+53’“‘(61+i62)
= al—ibz, at—Q—as ’ - —(Ol—ibz),bt—%
(4.17)
aa= |2 © 0 =09 —d —0d—2 . (4.1g)
+ — O O 3 2 1

La variance relativiste de 1'équation (e2) s’exprime par les
relations suivantes, commandées par le groupe demi-vectoriel:

4’ = A", Midgg — Aty =1 ([1-1 h)
A= A*AAT A= AAA¥T (4.14)
+ - - -

Nous voyons que A se transforme comme le produit extérieur
+

J* x ¢! et A comme § x 1

= LP: LIJg’ — Ll): qJI S| (‘l)l q”l ’ !11)1 LI)2 I
% % d'H — . ) , !-IJ X 4}4: ey e
—§Y, e b b, datn
(4.17)

Soit un quadrivecteur V, des composantes V;, V,, V5 et Vy,
nous lui ferons correspondre la matrice

Vy— Vs, V41V,

V = : ,
V,—iVy, V,+V;

(4.1 k)
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=
et nous assignerons 4 V la variance relativiste de § x *71
c’est-a-dire la méme que celle de A. Nous aurons ainsi:

V=AV A*t (4.117)
AV = VA* (&.47)
Axvl — vl (4.117)

Prenons pour V le quadrivecteur quantité de mouvement-
. . W
énergie P(pl, Pas Pas ?)' Dans ce cas

%% .
e r Ps3 i (P1 + 1 py)

P_i =S

m c?
0

: W
— (p1 —ipy) ——Ps

A la place de la transformation générale de Lorentz exprimée
par (l), considérons la transformation spéciale de Lorentz,
relative au passage d’un des reférentiels possibles au reférentiel
propre du corpuscule observé. Pour la réaliser, nous devons
remplacer dans (/) la matrice de transformation A, a deux lignes

et & deux colonnes, par une matrice ¢ & deux lignes et 4 une
colonne

1
V=P, V' =1(0,0,0, me , v'*:(n,o,o,*z)

Mgy C
(4.1n)
P = el , P_i‘l’:mi’w:a* . (4d0)

Comme ¢~ = 0, il en résulte que
TP J* = 0. (51p)

On vérifie que Pexpression matricielle, qui figure dans le
membre & gauche de I’équation ci-dessus, est équivalente au

-

produit scalaire dans espace-temps de deux quadrivecteurs P

et ¢' x ¢*, qui, done, y sont orthogonaux.
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En remplacant dans (o) les composantes p, par — %bk et

— par —9,;, on obtient les équations primaires du corpuscule
¢ i v

de spin 14 et de la relation, qui exprime ’orthogonalité

Byl x 9*1=0, (:.1p")

I’équation de continuité.
Nous arrivons ainsi au théoréme annoncé: « Les équations
d’onde primaires du corpuscule de spin V5 s’obtiennent en rem-

placant les compésantes pr €l VC_V du quadrivecteur quantité de

mouvement-énergie, dans la formule P :L* = my ¢, représentant
la transformation spéciale de Lorentz, exprimée au moyen des
demi-vecteurs, et relative au passage d'un des reférentiels pos-
stbles au reférentiel propre du corpuscule observé . »

Ce théoreme nous parait avoir une signification plus profonde
que celle d’une régle formelle. Toute mesure physique qui porte
sur un objet mobile fait intervenir la transformation de Lorentz
qui relie le reférentiel de I’observateur au reférentiel propre de
I'objet observé. En théorie quantique 1’objet observable est
distribué sur I’ensemble de reférentiels propres, dans chacun
duquel il a une certaine chance de se trouver au moment de la
mesure. La théorie relativiste quantifiée nous fournit le moyen
de calculer cette distribution, c’est-a-dire de déterminer la
collection de reférentiels propres et les poids statistiques
correspondants.

4.2. Les équations primaires et secondaires du corpuscule
untondulatoire de spin supérieur @ Y.

La légitimité relativiste des équations primaires du corpus-
cule de spin > 1, sans masse s’établit aisément. Prenons, pour

1 Cf. le mémoire de ’auteur « Sur la description spatio-temporelle
des phénomeénes quantiques», paru il y a quelques années dans le
Journal de Physique, 1937, 8, p. 81. Le méme théoréeme y est
démontré pour I’équation de Dirac, grace a4 I’emploi des quaternions.
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commencer, les équations du corpuscule de spin 1. Le premier
systéme s’écrit:

[MxAlg=, [Ax1]4=0. (4.2 a)
+ -

Nous poserons: ,
§ =[A X AJY’ . (4.2 B)

Dans le cas du second systéme:

[1 X Ale=0, [A x 1]le =0, (4.2 ¢)
o =

nous poserons _
o = [A* X AJo’ . (4.2d)

Passons au cas général du spin j. Chacun des 2%~ systémes
d’équations demande une autre variance pour la fonction
d’onde. Ainsi dans le cas du premier systeme

MX1IX..xAlYy=0, [1x1X..XAXx1]y=20,
W[AX1X ... x1]d=0 (4.2 €)

satisfait-on au groupe de Lorentz en posant

"
$=[AXAX..xAXAlY = [T?[A] o . (e2])
1

Dans le cas du second systeme:

Mx1X..xAlg=0, [MIX1X..xXxAx1]ld=0,
w[AX 1T X .. X1]y=0 (4.2 g)

on posera
g =[A* x A X .. x A x A]{’ . (4.2 h)

La loi de formation de la formule de transformation, & laquelle
obéit la fonction ¢ dans les autres systémes, est évidente.

Des grosses difficultés surgissent lorsqu’on essaye de sou-
mettre & la réglementation relativiste les équations primaires

pourvues de termes de masse, ainsi que les équations secondaires,
non mixtes.
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Nous allons ici laisser de coté 1'étude de ces difficultés, étant
donné d’ailleurs qu’elles ne correspondent guére & une réalité

physique.

Les équations mixtes se plient par contre aisément & la
formulation relativiste.

Placons-nous dans le cas du spin 1. Nous avons:

[1 X Al = %x[o X c]o* , [A X 1]y = ix[1 X 1]9
+ +

4.2
[1 X Al = — x[o X 6]d*, [AX1]le=1ix[1 x 1]¢ ( )
+ —_—

La légitimité relativiste de ces équations résulte de leur
compatibilité avec les formules de transformation suivantes:

¢ =[A x Al , o =[A* x Al¢ . (4.2 )

Quant au cas général du spin j, nous nous contenterons de le
traiter un peu plus loin, lorsque nous étudierons 1’emploi de
I’algorithme spinoriel.

4.3. Emplot de U'algorithme spinoriel.
Equations secondaires composées et leur polyvariance.

Les équations primaires du corpuscule de spin 14 s’écrivent:
' s s B s
DBy = wgPf . (4.3 a)

Les équations composées de degré 1, ou équations de Dirac,
s’obtiennent en considérant le double systéme suivant:

Py = gk @@y = Ok (233

!
04
ou, en posant

b=My+ Dy, =Wy ;@ (4.3¢)
le systéme que voiei:

Dy, = wof , Do — x¢f . (434)

o
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Considérons de méme les équations composées du troisieme
degré, c’est-a-dire ’ensemble de quatre systémes primaires,
et appliquons leur le procédé ci-dessus, ce qui donne

L My = w gl b @y = % Db
(4.3 ¢)
P lEk (1)(Pa - x(l)¢ﬁ Db (Q)(Pa - K(Q)!,IJDC

On ne change rien a la nature de ces équations, exception
faite du point de vue relativiste, si 'on remplace le couple de
spineurs ‘D¢ et W d’une part, et le couple Dok et Pk
d’autre part, par des spineurs de second rang, ¢, . et of:
respectivement, ce qui conduit & écrire les équations (4.3e) de

oo ?
la maniéere que voici:

(Dfilocl g — xcpﬁ‘haz , g‘)éml cpaléz = xqjéﬂ.‘}z ) (4.31)

102

Nous dirons que les équations jouissent de la propriété de
polyvariance si elles se laissent écrire avec des étres géométriques
a variance relativiste différente. Les équations (4.3f), lorsqu’on
y sépare les grandeurs réelles des grandeurs imaginaires sont
équivalentes aux équations de Whittaker ou figurent les gran-
deurs tensorielles réelles (deux vecteurs, un tenseur anti-
symétrique gauche, un scalaire et un pseudo-scalaire). En
prenant un double systéme (4.3f), c¢’est-a-dire un quadruple
systéme (4.3d) ou octuple systéme (4.3a), on obtient les équa-
tions composées du septieme degré, équivalentes aux équations
de Whittaker entre les grandeurs tensorielles complexes (les
mémes que celles énumérées précédemment, mais complexes).
La polyvariance dont jouissent ces équations se traduit par le
fait qu’elles peuvent s’écrire soit au moyen de huit spineurs
de premier rang, soit au moyen de quatre spineurs de deuxiéme
rang, soit enfin au moyen de deux spineurs de quatriéme rang.

Passons maintenant aux équations mixtes. Les équations
primaires du corpuscule sans masse de spin 1 sont:

tersysteme: @R g — 0 @B% g — 0 (43¢

oy &2 oy oo

2e systeme:  @P% g Pr 0 @, g P =0 (43g)
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Les équations mixtes s’obtiennent en interconnectant Ise
deux systémes par le terme de masse:

() gy, = xoft, (B) DR, = xg,*
fer systeme:
(A) @frg Bt = ghfe (B) @, 0, = — %y,
(4.3R)
(B) b1 ¢0110!2 “‘Pslag . (A) @B q,alaz - ’”Palh
2¢ systéeme: _ o
(B) " CPﬁlaz - ""pawa , (A) DRz CPBlaz o K¢B132
(4.3R")
Nous saisissons sur cet exemple comme la variance relativiste
conditionne la formation des équations du type A et des équa-
tions du type B.
Ecrivons encore les équations secondaires mixtes relatives
aj=73,.
Premier systéme.
; B 5 . 05 55
M "I)a]ozzocg — % 10220[3 , (A) D1 4,&15233 — % 18283
B2 _ ' : Befs 8
i 4}41'120!3 o x('potl Bzas E (A) @0!282 LI')0€1 P e xq"%az ?
; B . ' e .
BUEEs medzota - }“I)Oilaz & ? (A) @as Bs qJGH PEPE = — MLPOQ B20t3
(.37
b s 8 Bife g
UDO!1B1{J" 10!2 P = xq)ﬁtlaa o (A) 051 31 P, = — xq)tﬁ 2fl!s
DBz %2 q_,(ha Bs _ x¢3132f33 ) (A) (Zg . ‘pBl (32 - xq)ﬁldzas
Ota by ‘_I)Ba B3 = — x¢ﬁla2a3 , (A) a)ﬁaaa ¢B1 B2a3 — x&.])Bl B2 B3
Deuxiéme systéme.
. . ; " 2w ow 4
MB1u Lpaa pow = x¢aaa2§1 . (A) Db 4,5 B2 v = )CKIJBS BaB1
; B . . A B ;
P20 %3 = % q,as B2 o (B) @azﬁg qJBq Bza — 5 Lpﬂaazal
B - B _ Ba
Fe % ¢a3a2a1 o JU.IJ 3‘120&1 ? (B) 063 3 qJGaBz - J“5)053'52&1
(4.3¢")
P11 Uy Bz - % %3 P2B1 0 (A) @Broa Bs —_— % 4,%53“2 £1
. B - . ] — 3a Be
(Daz B2 ana 20!1 - Kq”daazﬂq ? (B) Pz ¢ 30(20& _ xq)ﬁaﬁ o
B Be _ Bs B ; _
el 4)013 20€1 o x e 29!1 ? (B) J05333 ¢ 30(2051 o KLPOCSOCZOQ /



(B)
(A)

(B)
(B)

(A)

(B)

(B)

(B)

(A)
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Troisiéme systéme.
DUy = 2l (B @ %ﬁl % Ysgay
B frpans = Rl s 1) OB B g b
DB Yy = wbBr L, (B) @y B wpha, B
a161 qﬁa B] - x¢ésa2a1 ’ (B) @fhou ,\péaaz o y_‘_pﬁsazih
@Bzaz qﬁzazﬁl s x¢53 B2 B , (A) @ézaz ¢93a2 0t1 Kq,és('ﬂzal
Doy W0 = — b (B) @ VB, = — %l
Quatriéme systéme.
O i = WY B P b = — wh
O Yy = 2B, (B) @By B g, B
DS Y = xAF s (A) @R B g B
Db q’)oc:ngOll = ® Y Ba Br ,  (B) @alél ¢a3i32 By xq)ms'ﬁzal
D iy Voo = — %igmyey r (B) B b PP = — g P
(DPs o "Poc;; fa | = xn[;és Gzal . (A) (DPa s q_,aa.éa B1 )upﬂs Be By

Dans le cas général de spin j, nous avons & distinguer le cas
ol 2j est impair du cas ou 2j est pair. Dans le premier cas,
chaque systéme comprend un nombre » de groupes du type A
et r' = 2j — r groupes du type B, r pouvant prendre les
valeurs 1, 3,... 2] —2 et 2] et r’ les valeurs 2] —1, 2] —3, ...
2, 0. Dans le second cas, r et 7" prennent les valeurs 1, 3 ...
2j—1, 2j—3 et 2j— 1, 2j — 3 ..., 3, 1, respectivement.

Classons les formes que prennent, du point de vue spinoriel,
les fonctions d’onde relatives aux différentes déterminations du
nombre 7’ (ce qui revient au méme qu’avec celles du nombre r).
Plagons-nous dans le cas de 2j impair. Le nombre de systémes
admettant 7’ groupes du type B est égal & C25' ', Les systémes a

(.3 i)

(4.3417)

r’ groupes du type B font intervenir comme fonctions d’ondes
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S - . . A , .n
2~ spineurs de rang 2j qui peuvent étre classés de la maniere

suivante:
i !
1 spineur Valaz-..agj
: B .
r spineurs de la forme q;al L Mlay et 27— de la forme
Bz... o Boj
GrEy, A
my
n=r—1 o n=r’ 9; ,
(avec » C,,z. "1l X ng_n, I prenant C;j valeurs)
n=0 n=0
C? spineurs de la forme ¢ Bl”l Ql*t»
~ Sp o g
C3._ spineurs de la forme ¢ bl"n lmy
Qj_r p val sen ee see an
(avec n; + m; = 2j)
1 2 . By .- . s L0
G, Czj—r spineurs de la forme ™ any 2j
1
3 : 1 é‘l Bl Ql
i spineurs de la forme Voy. ™. 2" -
3 By e . Baj
C.z:';_r » » » LIJ 1 o a @ 29
my mo my
2 Br... . o e Boj
C; Cij~n » » » L % s ” 2]
ny ns my
Cg C%j—r » » » Lpdl- .Blm "Bl’ml - Blmz g
s o - v B B
G2 spineurs de la forme Coyo, ™. T -
s ! él ; .
C?j—r » » > v.!)al" tmy imy gy SLS est pair
By .. el o
ou ¢ % sis est impair
L .
CSt L. spincurs de la form B . - Byj
. 2j-n °F g / ¢ Fng gy Fmy Fmy ’

ou

si s étant quelconque ¢ est impair

by, e Prat Py Pl

s—t
-« Ogj

si t est impair
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Notons la relation facile & vérifier

8

st t S
b CT C%_r = CQJ-
t=0

qui montre que dans la classification ci-dessus le nombre total
2 _
de spineurs est bien égal & % Cj; = 2%,
s=1
Un tableau analogue des fonctions spinorielles peut étre

dressé dans le cas ot 2j est un nombre pair.

En partant de chaque systéme mixte, nous pouvons former
une suite de systémes composés. Les deux systemes composés
de premier degré pour j = 1 sont identiques et égaux aux équa-
tins de L. de Broglie. Pour j = 2 on est conduit aux équations
de Mme Tonnelat,.

4.4. Etude des équations de la mécanique
multiondulatorre.
4,41, Notation matricielle.

Commencons par écrire les équations du corpuscule biondu-
latoire, de spin 1 et sans masse:

QCM—%waW—O
) + +
Premier systeme < : (4.51a")
(CM—%wwxm=o
- -
g (2Ai —1Ai)[2cp X gl = 0
+ +
Deuxiéme systeme sis 1as (4.81a")
8 (Al— 1)[2<P><1<PJ:0

Les "y et les "o satisfont aux transformations de Lorentz
sulvantes :
o AL =AY

) ! (4.61 b)
2 = A*%, lp = Alyp’ )
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Considérons maintenant le cas du corpuscule biondulatoire
de spin j et de masse au repos nulle dont les équations ont été
consignées dans le tableau (3.11 n).

Dans le cas du premier systéme nous poserons:

Cz

&1
cikI-' = [I} A] ci\l)’ ; CZ‘P = [I}A} 024” (4.41¢)
du deuxieme systéme:
1 2 1 2 = 2
oY = ’Iil A} S = [A* = l;[ A} ¥ (4414
du troisiéme systéme:

2

C1 & ca—1
ci‘-l’ = [I;IA:l Ci@ 7 C2¢ _ [A w A* x TII A] CZ¢' (4.41e)
' 1

du 2] + 1*™€ gystéme

c1—1

Ce
H=Ax I, 9= [H A] VG (RAY)
1 !

FY

du 2% systéme:

10 2j est un nombre pair

a) cp = C € =] <]
; e1-J i ) C2
GV = | A* x ITA Y, G = [T A% 4 (4.41 g")
1 1 1
b) € < €y e < g Cy = ]

TN o ] c2—i -
Jy = [n A*} v, b= IHA x 11 x] Vo esg”)

1

20 2j est un nombre impair.

On remplacera j par j — 14 dans les relations a) et b).
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4.42. Notation spinorielle.

Equations miztes du corpuscule bi-ondulatoire de spin 1.

Premier systéme.

(@1 ") Wy — gy (@1 g ) = 7Y, WP

(OR0) =@ ) = (4.424")
(@ tg, )1y, — "0, (@ tg,) = x4y,

(P, *4%) "y, — 4% (@5, "00) = — %70,

Deuzxiéme systéme.

(@539, ) 10, — 0, (@B ,) = x|
(@, ) 0P — 0 (@5, 9% = — %°0,,70,, \ (44247
(@ g, )y, — 2 (@B y,) = gy,

(P2 24,,) "9 — g, (@F gh) = ety

Afin de simplifier les écritures, nous envisagerons les opé-
rateurs 1D qui agissent sur les fonctions ¢, 2(0) qui agissent sur
les 2y, etc. Avec cette nouvelle notation, il vient :

(Do —1phie)y, ty = xfy, My
(;’Dﬁ] o 1D310€1) qJBz 14}«11 — xﬁqj'@z 1¢B1
) (4.52b%)*

2 e 2,06y 1
(D 1 pf 1&1) ‘_paz Lpdl _ ” Lpﬁz q}al
2 ¢ 26,1 . 2 1
(Dazﬁz Dd-z 52) 4) ? 4)0‘1 = (‘1'1\12 ¢d1
2 B 2 1 2 1,0
(DBNL DBMI) q,mz q,ml o % 4,12 Lpi31
2 i 2 1,08, 2 1
( DQ] o DBI“I) q’,fxa P = x %2 4)11

. ) - (4.4207)
(Dfer TRy, T, = xR, \
(2D320t2 . 1D52 GCz) 24}0:2 14}51 — 224062 ILPBI )

* Pour des raisons typographiques on a di mettre depuis cette
formule, D% 4 la place de @P*,
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Equations mixtes composées du corpuscule biondulatoire
de spin 1.

lD 10C1) [(1)2

Dﬁa ) (1)"

) [
— D) [,
) [

Dﬁz o (1)2

D' 1 0C1 (1)2,

)
ng :xz) [(

ID oo [(1)2

Vaz
‘11"@2

o B1) [(1)‘24_, x2
) [

@

1 l

(1)1

(1)1¢B1

(1)14}’:1

(2)1
(2)1r

(2)1‘?51 1 (Q)Qq)a

+

+

@b o (@)
a T T,

_(2)2 2 1 1)2 01, B zz (2)1(3
)%2()4)OCIJ x[()¢a2()¢1_() 4111
_ (2)2 (2)1 . 15_[-3 1)1 225(11

)Lpaz )%J_ x[()ﬂbg()‘l’al ()4,2 ) 1]
(2)2%2 (2)1¢81J — M[(l)ﬂ%2 (1)14‘,0c1 _ (‘2)2 (2)1 ]

(2)24)OCZ (2)14)81] o o [(I)Qqﬁz (1)1¢31 _

(2)24,@2 (2)14,{%1]

(4.42¢)
(2)2%2 (1)1%;] s x[(lﬂ% (é)lq)c-q + (2)2‘1"@. <1)1¢é1]
T | (12,82 (2)1%1 1 @2y (1)14,&1}
. (1)1@1} . x[u)-z% (2)14JOCI s (2)2%2 (1)1%1]
(1)14)@1} _ | o[22 Wiy | @2gfs W1y b

(&.42¢")

Equations miztes du corpuscule biondulatoire de spin 3/,.

Nous avons deux cas a envisager suivant le nombre de
composantes de deux champs d’onde.

10

20

Nous allons écrire les équations d’onde

cas:

(QDéleI —
(9D520€2 _

(2])‘63 o3

(?Dﬁl 5 N

(ED‘BQ ag

(*D

1

o3 23

1y

11

Y

10 2,64 1
Dl2a2) q)f’aaz q)a‘

RS- ST
Dotsfﬂ:a) ¢ xz Yoy

W, et %
et

2¢Oﬁ3 Ao

2
Yoy °

2y =

o
9052 oy

relatives au premier

2 1,8
52 “Pagag el

Vagm Yoy = Qq,agfﬂz b (4.42 )
R S T
lDél 0:1) 2¢33 . 1“})@1 - ”“2‘1’:;312 14}:31 )
= wlghRy o (a42d7)

2 1
- % Lpa;;:lz ¢O€]
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(21)3111 _ 11)310!1) 2¢13 Ba 14’0:1 — xﬂq,aa Be 1¢B1

2 i 1 Y2 Qi’. 1 _ 9 1 )/ "

( D:x2 BZ - Dtxz BZ) qug "Pg_l = X Ll»’aa o LPI]_ (4-42 d )
2 f 1 s f 2 by g, B

( DPa¥s __ Dﬁaas) %3 B2 4)11 — ‘_pﬁa Ba 4)&1 3

a 2

2 1 . ) 1By 1
(D Dcufq) Yo ap 4) = ‘Ldaao qJOCl{

s ] .
( DPe*2 1D{3212) 2¢a3a2 14)5
K/

o B

Be 14){31 o (4.42 d1V)

]
_—_xvaa

1
Y L ;e - L
( Dhses Dﬁaaa) - kIJBl ——— Lpﬁsaz LIJBI ”

La formation des équations mixtes composées s’effectue
comme pour le corpuscule bi-ondulatoire de spin 1. Chacune
des équations précédentes va se dédoubler selon I’exemple
suivant, qui est celui de la premiére équation:

2., [ 1 - \
( pPia DB1°£1) [(1)9¢ (1)14)11 . (2)24',Jcaocz (2)1L]J | =

g g x1- —

T2 (11, B (2)2 (2)1,1,17
- K[ ¢130t2 g — L]'tha() ¢ l_J !

2

(&.42¢)
2 By 1 nBra 1)2 2)1 2)2 1
(D11 D11)[()!I32()¢1+()¢32((IJ

. 2)1 ) f 2)2 1)1, 8
g, ongh L @2y g

Equations mixtes du corpuscule triondulatoire de spin 3/,.

Nous poserons
['D]f* = —*phe 4 *phe_1pke (4.42 )

Nous avons affaire 4 quatre systémes d’équations dont voicl
le premier:

[31)]{31«1 34)“3 Qq)az 1%[1 _ x3%3 2%‘2 1@@1
[3D]B20ﬁ2 3¢a3 Qq)az 14)0cl s Ka¢a3 24)(32 llpal (442 gr)

3 Bsag 3) 2, 1 3By 2 1
[D] e 4)13 q)aa q)051 =S e 4/002 qJ051

ARCHIVES. Vol. 27, — Mai-Juin 1945. 8
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[SDJQI o 3, 2 Be 14,“1 = 3 PPs P 14_,31

3 3,85 2) By 1 3,0, 2 1 .
[D]dzbﬂ KIJBS q}az "poq = x Lpﬁa ‘Lllag %2 (4.42 g")
; 3 @Bg 2 F 3, 2, f, 1

D]y V% 4%y, = %0 WP,

807 . 8B ? 108; _ 8 [ 1

[DJiﬁu B1 v "’bag P = g ‘l’az q)ocl 2

l|:3D]£'3212 34'.33 24)12 14‘{31 — 234)52 Qqﬂ?’z 1¢;31 (5.42 g)
spl. . Cofe 2y o — sy g b

I:D:]Otaﬁs ¢ %2 ¢ = x Ll)otzs LI"acZ g 5

D BolifPy _ .38 21 [y 1

l: ]011 B q’“a T PN = "'baa Ul ¢ml 2

] w * 2By 1 By 8 2 1,0

[ :]052 Bz q)ots QU = % q—‘a;,. t‘!"az gt (4.42 g1v)
3 3 32 s : -i . §

[ ]Bs ag 4)“3 24,!32 1¢,B1 — x*qja 2,4_,132 14)31 S

Les autres systémes peuvent s’écrire aussi facilement, il
suffit dans les équations correspondantes du corpuscule uni-
ondulatoire de spin 3/, (4.3¢" & 4.37¢"Y) de scinder les spineurs
de troisieme rang en produits de trois spineurs de premier rang.

Pour obtenir les équations mixtes composées il faut prendre
comme fonctions d’onde les huit expressions suivantes:

(1)3 (1)2 (1)1 (1)3 (2)2 (2n
4’&3 ‘T‘r)az qjal - l‘pas (paz LPGC]_ -

(2)3 (1)2 (2n (2)3 (2)2 (n
— ¢a3 q)ocz df'ocl H 4’0(3 Lpag l‘I"al
(1)3 (1)2 (an (1)s (2)2 (1
"Locs Lpag ¢al T 4)13 qJOCz q}“l +
(2)3 (1)2 (1)1 (2)3 (2)2 (2n
< 4"0:3 q)ocg 4"11 o dHC!a ‘"Potg qJOCI

(1)84’0(3 (1)%52 (2)14)31 - {1)3"1"@, (2)‘24)!32 (2)14)91 .

@3y, (1)04,52 (2)1¢B1 @3y, (22,8 (mqﬁl
x3

@3y, (1)2¢faz (1)14,61_(2)34, (2)34}2 (2)14;'31 i
e 43 o3

@3y, (12,82 (21,8 @3, (22,82 (1,5
+ Y, Y L T, T
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(1)3%3 (1)2%2 (1)14,61 o (1)34,_13 (2)2%2 (2)14,@1 .

_ (2)3%1 (1)2% (z>1¢v.’al _ (2)3%1 (2)2%2 (1)14,@1

@3y W2y Wiyl __ @3y @25 @ik L
o3 2 %]

%3

+ (1)34, (1)‘/ldr,Ocz (2)14)51 + (1)3,\;,3Cl (2)2%:2 (1)14)81

o1

(1)3%‘3 (1)24)82 (1)1%:1 — (1)3(_})0(3 (2)24_,32 (2)1%‘1

L (1)24;'%2 @y @ (2)2¢£'32 Wy,
243 a3

e} x1

(1)‘0‘4)013 (1)24,{32 (2)14)QCI A (1)3¢a3 (2)‘2¢Bz (1)1¢OCI e

(l)ﬂqﬁ'ﬂz (l)lq)a

4 @y, — @y (2)24,82 (21,

x3 1 o1

La premiére et la deuxiéme expression doivent étre soumises
a I'action des opérateurs:

[SD]blal , [3D}Bzﬂz ot [3D"if330<3 ,

la troisiéme et la quatriéme & l'action des opérateurs:
Dty [Dlagp, ot ['D]
la cinquieme et la sixieme & celle des:
(Dl » [Dfr= et ['DJe=
et les deux derniéres a celle des:
o, (0]

ot [319]53“3 :

oy B
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5. APERCU DE LA THEORIE DES ONDES PLANES EN MECANIQUE
ONDULATOIRE SIMPLE ET EN MECANIQUE MULTIONDULATOIRE
DES CORPUSCULES DE SPIN QUELCONQUE.

5.1. Mécanique uniondulatoire.

5.11. Corpuscule de spin Y.

Prenons les équations primaires, écrites spinoriellement

B B
Dria ¢a1 _— )Ul) 1
et posons-y
b= a,e® + b e | Py =a,e5 + be™  (5114)
avec

l

5 A (Wt — py @y — pag — p3 ) (5.11 &)

I1 vient immédiatement que les amplitudes a, et b, satisfont
au systéme d’équations suivantes:

0\ ) . *
(? + Pa)al“" (p1 + Tps)as —imgeb, = 0

. \%% ) *
—(p1—1ipy) a; + (?_p3)a2 + Lmﬁc‘b1 = 0

*

. \%% ) *
— tmycay + (? + Pa) b1 — (p1— i py) b2 =0

1

. . * W *
Ly £ay — (pr + tpy) & + (“ _Ps) b2 = 1

dont le déterminant est égal a

w2 2 :
(?—pi~—p;—p:—mzcg) == (5.114d)
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Les coefficients b, et b, s’expriment en fonctions des a; et a,,
on a: '

. W y
. — (pr—ips)y + (T'—-Pa)az )
b = -
' . Fto € L (5.41e)
. - (? EE Pa) ay + (p1 -+ ipa) vy s
b2 - — tmgycC /

Pour obtenir 'onde plane a énergie positive W' de I’équation
de Dirac (solution qui n’est pas «compléte»), nous devons
associer les solutions ! et 2y de deux équations primaires,
solutions qui ne sont pas indépendantes. L’onde W', en effet,
doit &tre de la forme Ae'®; posons

o= 4 it = A6 =
= (la + i%a)e®™ 4+ (Wb + i2b) e
d’ou
2p — ;1p . (5.11f)

De méme, de la relation

W) = o[* + i2¥] = A,

on tire
20 = —tla . (5.11 )

La solution 2% g’écrit done

W = — jgetd + ibeS = g + pe 8" (5.11 )
avec
S’———S——;E = ‘%jtmplxl——pzxz——-p3x3m%. (5.11 h)

Posons maintenant

Oy = Yo (Mg + i2y) = g, | gy = 1 (W, + i2Q,) = ayeld
By = Yo (*y — i2y) = by e ™S, 0, = Y (W — i2¢y) = bye S
(£.117)
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et, ensuite

IFI = @, — Le: - (al_ Lb:)els - AleiS \
Yo=01+i0 = (g, + ib)e® = A,e®
. . (5.11))
¥y = 0s 4+ if): = (a2 4+ ib:)e’“s = Asets
‘F,; = g — i@: . (a2—~ ib:)eis — Aleis ,
Compte tenu de (5.11e), on trouve facilement:
W .
A, = (_Tc_ + ps — moC)a1 + (p1 + ips) @y
Mg
w .
A, = (? + ps + moc)al*‘“ (p1 + ipg) ay
myce
- (5.11 k)
Ay = — (p1 — ipa) ag + (“c-‘_ + moc'_Ps)az
meyc
. w
A4 = (p1— tps) a; — (?_Ps—moe) aa
Mg

En exprimant A, et A, en fonction de A, et A, on trouve bien

_ Py + ips) Ay — p3 Ay _ (pL—ipa) Ay + psAg )
A, = A, v

—+m00 W“}_mﬁc
c C

(5.111)

7

5.12. Corpuscule de spin 1.

Ecrivons explicitement les équations primaires de ce corpus-
cule, en nous bornant au premier systéme:

*

(6t — 03) dgy + (9 + 1 0y) Yy = — xa.,
(0 — 105) ¢y + (6t + 03) Yo = “‘P:l \
. (5.124a)
(0,— 0 Yo + (O + i0)) by = %), S
(0p— 10y) oy + (0, + Og) 9oy = — xcp;



DES CORPUSCULES ELEMENTAIRES 117

(0, — 0g) @11 + (0y + 70y) ¢y = % ‘1‘:2
(0 —id5) gy + (3, + ) @1z = — %,
. , (5.12a”)
(bt — O3) @y + (0 + £05) @y = — x ¢12
(0, — L 0y) Py + (63 + 03) pay = X 4’; |
(ac — 03) Y1 + (01 + 10y) Yy = L %y )
(0p — 1 0y) ¢y + (Ot + 0g) bgy = 1 % @y [
) (5.12a°")
(Ot — 03) Y1a + (0 + 2 05) gy = L% Py s
(0, — 1;62) Y1a + (Gt + Og) Yag = 1% Ppy
(ﬁt + 03) @11 — (01 + 1 0p) @gy = L % Yy
— (0, — i 0y) @y + (6t — 0y) ‘P21.= 1% Py
. _ (5.12 a1v)
(dt 4 03) 13 — (01 + 1 0y) Pag = & % Uy S
— (0p — 1 0y) Pyp + (bt — 03) Pop = T % gy
Cherchons les solutions de la forme:
b = ape’™ + by ™ e
(5.12 8)

is _is
P = cpe + dye \

Les coefficients a;q, a5, a5, €t ayy étant fixés arbitrairement,
tous les autres coefficients se trouvent déterminés. Il vient:

= Ymgye

%% ;
= 1myec (‘C— + Ps) a1 — (py + T pe) azl]

- W '
(_c_ o+ Ps) a2 — (p1 + L ps) azz]
) (5.12¢")

[ ) A% %
= 1myec|— (p — Lps) a1 + (—c— — Ps) am]

[ y \%%
= Ymge|— (py — i py) a3 + (_c- == p3) azz}
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4 + * W *
dyy = '”/moc [— (p1 + tpo) @y + (? o Pa) 0‘22]
. (W . ps) @,
o (2 i, |
) (5.12¢")
2 [ . * W :
dy = ”“'t/mnc — (P + ”pz)a11+ (?—Pa)a’u]
. [ (W . AL
dzz —_— 1/7??/06' L (? £x pa) all T (pl T Lpz) amjl /

27 . * W . ;¥ * W *
""l/mzcg [(Pl + lpz)zau _‘(T—‘P:;) (p1 + 1po) e, + a21) + (—C'_Pa)af ]

23

: W e (W2 : :
HYm2 e* [— (? + Pa). (pr + ips)a, + (———pif,)a + (. + p))a

c2 21 1 2

; w 2 o« ‘W . x * . *
- t/mic2 [? =+ Ps) an—(? + Pa) (P1— 1 ps) (am T a ) + P — LP2)2“2 ]

Pour obtenir la solution « onde plane a énergie positive » des
équations mixtes composées (équations du corpuscule de spin 1
de L. de Broglie), nous précéderons comme en théorie du cor-
puscule de spin 15. Aux équations (5.12a) nous allons adjoindre
un second systéme d’équations exactement pareil, mais dont
nous prendrons les solutions suivantes:

2y, = alkei(s_%) + blke_i(s_g) 2
, (5.124)
» K3 . ™
20, = clkel(s_a) + dlhe_l(s—i)

Posons [Cf. (2.23 )]

W0, = Yy (M, + 22y) = ay e

20, = Yy (loy + 20y) = ¢y e
. . . (5.12¢)
3@, = — Y3[6 X o] (Yo, + i%p) = — ils x cldy, ets

10, = ‘falo x ol(My, + i2y) = ils X olby e

(5.12¢")
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et ensuite

Yy, = 1/'\/-2“(1(1)11 + 1Dy) = 1/\/2—(0111 — b )
¥y = 1/\/2— (1D + 1@yy) = 1/'\/5(0"12 - ibm) e = Ags ¢S
( )

B _ ) (5.12 f)
Wi = VT (y + 10y) = 1V (4 + iba) e = Ayye®
Piy = V2 1Dy, + 4Dyy) = V2 (g — 1by) ™S = Agye®®
Wy = /T (D + %Dy) = VT (e + id)eS = Ay el
Vi = VI (0 +200) = VI (o — i) = A [
Ty = VT (g + 3By) = VT (e — id],) S = Ay &S

Ve )

Wy = 1/\/E (3Dgp + 2Dy,) = 1/ ¢S = A,, e’

Ty = V2 (20, —30,,) =1 / ¢S = A, el

\/

Py = V2 (¥, — 3B1y) = 12 (¢1q + id
V2 (e +
v

eiS = A, eiS 2
_ , (5.12f7)
‘Fas - 1/\/2 (2(1)21 - 3(1)21) = 1/

)
)
id*)eis i Rt
Wy = 1T 2Dy — 3Dy, — 1) )

eiS o A34 eiS

Yy = 1/\/5-(1(1311 —4Dy,) = 1/'\/2_(6"/11 + ib

Yoo = V2 (M0, — 40y) = 1/V/2( "

_ _ ' (5.12 f1iv)
¥y = 1/\/2 (g — 1Dy) = 1/\/2 (azl . ib;) S = Ay |
V¥ = 1/\/2—(1(1)22 — 10y,) = 1/\/2—(“22 o ib;) e = Ay e'®

rrr

En se servant des relations (5.12¢’, ¢” et ¢'”’) on exprimera
les seize amplitudes A, de 'onde plane a énergie positive en
fonction des quatre parameétres a;, ay et ay,.

La méthode s’étend sans difficulté a ’étude des ondes planes
des corpuscules de spin quelconque.
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5.2.  Mécanique multiondulatoire.

5.21. Corpuscule de spin biondulatoire de spin 1.

En cherchant les solutions de la forme

1, 1 i1 S 1 —il S
Yoy = @y &~ T bone

_ o (5.21 )
B, = "ay, e 2b,, o B 5
avec
*
S = ‘T?Vt — 'prxy — 'paxs — py 7,
b, (5.21 b)
p—
2B = '—c—t — 2p1 @ — Pppxy — PPy 7y \.

des équations (4.4d’), on trouve immédiatement les relations
suivantes entre les coefficients la et 16 d’une part, et les coeffi-
cients 2¢ et 2b d’autre part

W —1W
c

s (A, —— Ipa)} laz
< [2W _1W

! .
c + (zps_lps)] a; + [(2p1_1p1) =+ l(zpa_lpz):l laz z

oul=1o0u?2.

On voit donc que les coefficients 6 de la premiére fonction
d’onde ne dépendent que des coefficients la de la méme fonction
d’onde et, de méme, les coefficients 24 s’expriment uniquement
en fonction de 2a, les relations ne faisant intervenir que les
différences

\\% W W
_c_ P _c o _(;_ et Py = zpk _lpf{ p (521 d)

Dans le cas d’équations mixtes composées nous avons pour
fonctions d’onde les expressions suivantes:

(m)l

il ol
by = Mo, et 4 M S (5.21¢)

l

ou m = 1et?2
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avec

1,* " ; ; W .
mbl + O = Ymg el — (py + ipy) (Pay + i®a,) + (?_p3> (Vg + i Dlay) g

(
* - * ! W . (s ” . (2
(] )lbg _{__ (2)lb2 poes ]./'mo c ; - (_E_ - p3) ((1)la1 + L(Z)lal) + (pl + ) p2) ((1)10’2 _l_ L( )laz)

5.22. Corpuscule n-ondulatoire de spin "/,

Nous avons

n il l _;l
4 - laalel B L bale 8 , 1=1,2,..n (5.22q)

*l
avec
*

B = mge g —[py = ip2]a’i + {‘g —Pa] azl %
3
)

L * i %% .
Iy ﬁl/mocz—{?—i—ps]af—i—{pl—i— Lpz]a:
ou

n n
W=2X—1)''W p=3X(—0 . (523¢
=1 =1

5.23. Cofpuscule biondulatoire de spin 3/,
Nous poserons donc les équations (4.42d):

eils + 1 e—ils ez‘2S + 3b e—-iQS

1, =1 2 — 2
('Jm aoh ®1 ? Lptxa 5 &g Ao *x3 02

(5.23a)

By _ 2.3 ,i28 Ba 128
2 30(2 = 2 30:28 4 24 ® i © .

On trouve facilement que les coeflicients a, et b, satisfont
aux relations (5.11¢), tandis que les coefficients a, ., b, ,,,
¢, et d™ . aux relations (5.12¢), ol on a, dans celles-ci

comme dans celles-la:

W=:W_—"W et p=2p—7Ip. (523b)

(@ suiore)

{5.21 f)
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