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1945 Vol. 27 Janvier-Février

SUR LA MECANIQUE ONDULATOIRE
DES CORPUSCULES ELEMENTAIRES

PAR

Bernard KWAL?1

(sutte)

DEUXIEME PARTIE

RisuME.

Apres avoir développé dans la premiére partie de ce travail
la théorie des corpuscules de spin quelconque, caractérisée par
une seule fonction d’onde associée (& plusieurs composantes),
nous étudions maintenant les corpuscules, caractérisés par
plusieurs fonctions d’onde associée (chacune avec son cortége
de composantes). Conformément au plan adopté précédemment,
nous commencons par I'étude des équations primaires et tout
d’abord par celles relatives au corpuscule bi-ondulatoire de
spin 1, 3/, et j, ensuite celles relatives au corpuscule tri-ondula-
toire de spin 3/, et j, et celles relatives au corpuscule g-ondula-
toire de spin g/2 et j > g/2.

Nous étudions ensuite les équations secondaires: équations
composées du premier degré du corpuscule bi-ondulatoire de
spin 1 et du corpuscule g-ondulatoire de spin j; les équations
mixtes du corpuscule bi-ondulatoire de spin 1, du corpuscule
tri-ondulatoire de spin 3/, et du corpuscule g-ondulatoire de

! Mémoire rédigé dans le Stalag II A allemand et transmis par la
Croix Rouge Internationale, service de secours intellectuel.



6 SUR LA MECANIQUE ONDULATOIRE

spin j. Enfin, nous écrirons les équations mixtes composées
pour le corpuscule bi-ondulatoire de spin 1, pour le corpuscule
tri-ondulatoire de spin 3/, et pour le corpuscule g-ondulatoire
de spin j.

Parmi les propriétés des corpuscules multi-ondulatoires, il
convient de signaler les deux suivantes: 1° Le corpuscule & un
nombre impair des fonctions d’onde admet comme spin fonda-
mental (spin le plus bas possible) un spin demi-entier, tandis
que le corpuscule & un nombre pair des fonctions d’onde admet
comme spin fondamental un spin entier. 2° Les équations a
un nombre pair des fonctions d’onde sont insensibles a I’action
du champ électromagnétique et semblent convenir a la théorie
des corpuscules neutres. Cela étant, nous avancons I’hypothese
que la statistique basée sur le principe d’exclusion de Pauli
a trait aux corpuscules & un nombre impair des fonctions
d’onde associée, tandis que la statistique de Bose-Einstein a
trait aux corpuscules & un nombre pair des fonctions d’onde
associée.

3. EQUATIONS D'ONDE DES CORPUSCULES DE SPIN QUELCONQUE
A PLUSIEURS FONCTIONS D'ONDE ASSOCIEE.

Les corpuscules élémentaires de spin quelconque dont nous
avons étudié les équations d’onde dans la premiere partie de
ce travail, présentent deux traits caractéristiques essentiels. En
premier lieu, leur comportement a I’état stationnaire est définie
par la donnée d’une seule fonction d’onde associée, qui, d’ail-
leurs, possede un certain nombre de composantes, responsables
du spin et des propriétés relativistes. Deuxiemement, les équa-
tions d’onde, qui déterminent les états stationnaires, sont sen-
sibles a I'action du terme figurant le champ électromagnétique
extérieur, et qu’on introduit, en remplacant dans ces équations
les opérateurs différentiels d; par les opérateurs d; + €A, les
A, étant les composantes du potentiel-vecteur.

Dans ce qui suit nous allons essayer de généraliser la méca-
nique ondulatoire des corpuscules élémentaires afin qu’elle
puisse rendre compte des corpuscules dont le comportement
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a P'état stationnaire fait intervenir plusieurs fonctions d’onde
autonomes, chacune pourvue de son cortége de composantes.
Parmi ces corpuscules multi-ondulatoires, une classe, comme
nous le verrons, celle qui est caractérisée par un nombre pair
des fonctions d’onde associée, comprend des corpuscules essen-
tiellement neutres, c’est-a-dire insensibles intrinsequement a
I'action du champ électromagnétique. Les équations d’onde de
ces corpuscules sont telles en effet, que bien qu’on remplace
les opérateurs d; par d; 4+ €A;, les termes en A; n’y inter-
viennent point, car ils s’en trouvent automatiquement éli-
mines.

On comprend I'intérét de ce type d’équations pour la théorie
des corpuscules neutres, comme les photons, les neutrons, les
gravitons, etc.

3.1 Eguations primaires.

3.11 Equations primaires des corpuscules a deux fonctions
d’onde associée.

Le corpuscule a deux fonctions d’onde associée admet comme
spin fondamental (le spin le plus bas possible) le spin 1. Comme
dans la théorie du corpuscule uni-ondulatoire de spin 1, il
existe ici deux systémes d’équations, comprenant chacun deux
groupes. Nous allons les écrire explicitement, en supposant tout
d’abord nulle la masse au repos du corpuscule:

(0, — 04) 1% o (0 0g) 2y + 29y 9y + 105) Ty — 1y (0, + 10) Py =
21 (01— 00p) Thy 1y (O —70y) 2y + 2y (O + Og) Ty — 15 (0,4 0p) 2y =
(0,— 9, )1% Ty (0 0g) Pg + by (Og + 205) Thy—Tthp (01 4 10y) 2y =
(

P2 (0, —70y) My — 1y (9 —10y) 2y + 24y (3 4 Oy) by — 15 (3, + 0y) 2y =

By (0, — 0g) My — 1y (3, 05) 2y + 2y (31 4 £0y) 1y — My (31 + 10y) Py =
2y (07— 1 0,) Ty —1¢, (0, — 10,) 2y + 2, (Ot + 93) 1 — 1y (Ot + 05) 2y =

)
)

291 (0;— 0g) Mg — 0y (O — 3) 2y + 2 (Oy + 105) by — 13 (05 4 £05) Py =
)

2y (03— £0g) "y — g (8, — i0y) 2y + 2 (9 A Op) My — "5 (9, + 0g) Py =

(3.11a)

(3.118)
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—0g) My — 1y (0 — 05) Py + 2y 0y + 205) by — 195 (01 + 105) Py
— 10p) 1y — 1y (0, — i 0g) 2y + 2y (0, + 03) 19— (0, + 05) *Yy
— 0g) 1y — by (0;— 05) 2 + 25 (01 + £05) Ty — 195 (0; 4 20,) 2y
— 10) 1y — 1y (0, —£0p) P, 4 2y (0 - 05) 1y — 102 (0, + O5) Py

+ 03) by — 1y (0; + 0g) 2hy — g (9; + 20p) 1y +- 1y (9; + 105) Py

1 1’62) lq)l + 14)1 (61 —' 102) 2“1"1 _I_ 2"!’2 (at - a3) 1¢1 - 14)1 (at - o3) 24)2
+ 03) 1y — 105 (0, + Og) 2y — 2y (0y + £05) 2y + 13 (0; + 10p) 2y =
)

g (0, — 204) 2y + 2 (9, — Og) by — 12 (0, — 05) 2y

Nous allons condenser ’écriture de ces équations, en faisant
appel a la multiplication extérieure des matrices et en intro-
duisant deux sortes d’opérateurs différentiels: les uns 19; et
1% = 262 1), agissant sur les fonctions 1, les autres 2, et
28% — 26 2); agissant sur les fonctions 2{.

(40, + *8%) }] (24 x 4] = 0

[1 % { (20, + 287) — (3.11a")
[{(20, + 28%) — (13, + 18%) } x 1][24 x 1] = 0 (3.11¥)
(1 x {(0,+ 28%) — (19, + %) }][% x 4] = 0 (3.11¢)
[{ (20, —28%) — 10, —18%)} x 1][2¢ x Y] = 0 (3.11d)

Avec les notations introduites au § 2.1, nous pouvons écrire
encore:

[(o, +78) — ("o, + "8)) |29 x W] =0 (3.11a")
[(o, +78)) — (o, + "S)) ]2 x W] = 0 (3.11%")
[(o, 4+ °8) — ("o, + "8) | x W] = 0 (3.11¢")
[(Po, —78)) — "oy + "8)) ] [*¢ x W] = 0. (3.11d")

Nous avons écrit les équations d’onde du corpuscule avant
d’écrire I’hamiltonien correspondant.
suivante:

Celui-ci a la forme

524 = %[(s —’8) + (8. —8))] . (3.1¢)

(3.11¢)

(3.11d)
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Un complément de définition s’impose lorsque cet opérateur
agit sur des expressions contenant en plus des fonctions d’onde
1 et 2§ les variables z;, z,, 2, et ¢, explicitement. En cas d’une
dérivation ordinaire portant sur une fonction f(z;, ¢ (z;),

2 (2;)), on a

(=]
He

d S d d 924
3z, ~ Bz, T oy dz, | O oz,

-G

or dans la théorie du corpuscule bi-ondulatoire nous devons

poser
o _ 3 2 @y o oy
57, ~ 5z, | %oz, 910 vz,

et compléter la définition de ’hamiltonien de la maniére que
VOoicl:

1,240 h 1 241 141 wl 801 141 p
0 = —i[(xs2 + %5, —"8) + (W + 8 — $)]  (3.22¢)
avec
o= 1x "%, T§ = /% x1
xg¥ — 947 3 ) )
: Sxi

Nous sommes maintenant en mesure de montrer que "’hamil-
tonien (3.11e") correspond effectivement au corpuscule de spin 1.
Nous allons définir tout d’abord 1'opérateur « moment de la
quantité de mouvement » par les expressions suivantes:

NI, = (8 o+ 20y —20q) — g (B, + 20y —13y)
(3.11g)

On vérifie aisément qu’on obtient une « intégrale premiére »
L2, ¢’est-a-dire un opérateur qui satisfait a la relation J¢ 2 —
£29€ = 0, en posant

Mgy = Mo, + {1 x o] + [o% x 1]} /
( (3.114A)
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ce qui montre précisément que ’hamiltonien (3.11e’) est relatif
au corpuscule de spin 1.

Passons maintenant au corpuscule de spin 3/, dont les quatre
systemes d’équations d’onde s’écrivent de la maniére suivante:

) — (o + 59 J[3 4] = o

[0+ 7807 — (o + )] [0 el = 0 | o
\
/

2

— (0, + ) [ x 9] = 0

[ % gb] =0 5 (311))
[ (o, —7802) — (fo, — SV | [ x 9] = 0 3 (3.41K)

¢y
O x ab] =0 > (3110
Y

Dans ces équations les fonctions . et . sont a 2% et 2%
composantes respectivement, ¢; et ¢, étant des entiers non nuls,
tels que ¢; 4 ¢, = 3, ¢’est-a-dire pouvant prendre deux valeurs
1 ou 2. Dans le cas général du spin j, il existe (2j — 1)2%1
systémes d’équations primaires, comprenant chacun 2j groupes
de 2% équations, les deux fonctions d’onde o et b étant &
2% et 2* composantes, respectivement, c¢; et ¢, étant deux
entiers non nuls, tels que ¢; + ¢, = 2/, c’est-a-dire pouvant
prendre chacun une des 2j — 1 valeurs: 1, 2, ... 2j — 1.

Posons

Al =0, +8, Al =9, —S) . (3.11m)

n n
+ —
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Dans ces conditions, les équations du corpuscule bi-ondula-
toire de spin j s’écrivent de la maniére que voici:

0 (A= BT x 0] = 0 ("8 — "0 L x 28] -

€1
+ 1+ +
2 1 2 1
( AJZJ_IAJJJ') Engj X clkﬂ =0
e ‘i,

j 1 A5 2 1,7 2 A 147 2 1y
Ai’j—l - A'l]?l)l:czv = cfﬂ =0, ( A{‘}— Ajl]) [c-‘),('rJ X clq)j = 0

24 1 A4 2 ‘2 A 2 A4 2, :
- (A-’zH - A%m) [ % 9] 5 ( Ay — A ‘)cz"’ X o ¥] = 0

(223‘_1)*(2Af_1éi) ’:CZ‘I’ X ciq’] =0, .. (EAJ ou j-'4 —'Al j ') [c?’ X 01” = I,

ZAI __1Aj 2, 1, 2AG 1A 2, 1,7 '
( i<t ou g™ Afit ou j&!s) [ % 9] =0, - (2 jfsfj)[CzV X 9] =0 /

Quant au terme de masse, il peut étre introduit de la méme
manieére qu'en théorie uni-ondulatoire. Nous allons imposer
aux fonctions 2 et !{ la condition:

(8 a) (4 '8 1 = — 0, 10

,f,

* j et ;4 1 lorsque 2; est un nombre pair, j—1, et j +15
lorsque 2; est un nombre impair.

(3..‘1’1-n)
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¢’est-a-dire:

(an—IDn—zA?}LlAi—IALEA%) [d x W] = —»*[*¢ x 1] ,

(3.110")
ou encore:
(EDn_IEn_?‘ZOtiat —]—ZS?,L?S% +IS%QSZL) [qu % 14)] _— _xz[zq) % 14)2 i
(3.110")

On vérifie sans difficulté que cette condition nous fournit les
memes termes de masse que ceux qu'on a trouvés en théorie
uni-ondulatoire.

3.12  Equations primaires des corpuscules & trois fonctions
d’onde associée.

Le corpuscule tri-ondulatoire admet comme spin fondamental
(spin le plus bas possible) le spin 3/,. Soient ', 2 et 3 les
trois champs ondulatoires, associés au corpuscule, et "3,
hS% = 2/ ", les opérateurs différentiels n’agissant que sur
Pune des trois fonctions *{. Nous avons quatre systémes
d’équations du corpuscule tri-ondulatoire de spin fondamental,
qu'on peut obtenir en remplacant dans les quatre systémes
d’équations du corpuscule uni-ondulatoire de spin 3/, la
fonction ¢ par le produit extérieur 3 x 2y x 1y et les opéra-
teurs 9, + S" et d, — S, respectivement pour les opérations:

{— (0, +15%) + (o + %) — (0,4 °8%) )
ot {— (o, —s%) 4 (o~ — (o~ )} . (124

Pour le corpuscule tri-ondulatoire de spin 2 il y aura a

. . - 1 2 3 < c1 Cg C3 _

envisager les fonctions . ¢, . et S & 2%, 2% et 2% compo

santes, respectivement. Les nombres ¢;, ¢, et ¢; sont des entiers

non nuls, tels que ¢; + ¢y + ¢; = 4, donc pouvant admettre
les déterminations suivantes:

1 !-
clu'l ’1|2
c2!|1 2 | 1
a2 1]
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Dans le cas général du coypuscule tri-ondulatoire de spin

(2 —1) (2] — 2) 921
5 :

. ; . : 5 3 2 1

tions primaires admettant trojs fonctions d’onde ¢, .4, ¢

a 2%, 2° et 2% composantes respectivement, ¢y, ¢, et ¢; étant

trois entiers non nuls tels que ¢, + ¢, + ¢;3 = 2j, ce qui donne

(2 —1) (2j — 2)
2

Les systémes d’équations s’¢écrivent de la maniére analogue

aux systemes (3.11r). Ecrivons-en le premier systéme:
3 A1 2 ] 1 ] 3 2 1
(a0 " Sl e ] =
3A1T 2 A9 1A1 3 2 T |
(_ A?n_l_ qu_ Agt) [caqj X czq) X cl"I"] =0 > (3.42R)
+

+ +

.................

8 ] 2 ] 1 1 3 2 1
(— Ab; + AL — Agj) [ x ¥ cl‘l’] — 0 .
+ + -

] = 35, 1l existe systemes d’équa-

combinaisons possibles.

g "

Remplagons dans ces équations les opérateurs ™d; par les
expressions ™, + €A, les A; étant les composantes du poten-
tiel quadrivecteur électromagnétique. On vérifie aisément que
les équations du corpuscule tri-ondulatoire de n’importe quel
spin sont sensibles 4 'action du terme électromagnétique. 11 est
donc naturel d’attribuer a ce corpuscule une charge électrique.

3.13  Equations primaires des corpuscules ¢ un nombre quel-
conque des fonctions d’onde associée.

Le corpuscule multi-ondulatoire 4 g fonctions d’onde asso-
ciée admet pour spin fondamental le spin g/2. Soient 1, 2y,
. M, . 99, les g champs ondulatoires qui définissent les états
du corpuscule et *d;, "S* = 2¢j, *3; les opérateurs différen-
tiels n’agissant que sur P'une des g fonctions *{. 11 existe 2°¢*
systémes d’équations primaires, pour le corpuscule a g fonc-
tions d’onde associée de spin fondamental, systémes qu’on
peut obtenir en remplacant dans les systémes d’équations
primaires du corpuscule uni-ondulatoire de spin g/2, la fonction
d’onde ¢ par le produit

a
Wx2Wx..x™x..x9%=1I1™ (3.13a)
1
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et les opérateurs d, - S™ par les opérateurs
('o, £ '8%) — (%o, +78%) + (%o, & '8%) 4 ...

wA =™ (e, £ MRR) 4L+ (— 1) (%9 £ 98%) = (3.130)

g
= 2 (— )™t (Mo, M%) |
1

Dans le cas général du corpuscule g-ondulatoire de spin
] = g/2, il existe ng1 systémes d’équations admettant g
fonctions d’onde Ciy, cgg_ilq), e ey e Cidg, a 2%, 2%, 2°m
. 2°* composantes respectivement; les nombres ¢, étant g
g

entiers non nuls tels que X ¢,, = 2/, ce qui donne précisément
1

Cg"y possibilités. Ces systémes s’écrivent de la maniére que
voici:

[ N[ g : g
(z (—1)™ mAi) [H C%] =0, (2 (—1)m mAg) [H g“q,] =0, ...
AL Y 1 +/ L™
g _ g g Tag
? (Z (—1)™ TM;) [H g’"q)] =0, ... Z(—1)™ ™A [H i ] =
1 3 " 1 + Lt
g . Y . g
S (2 (—1)™ mAi) [II Lp] 0y s (2 (Pt mAz) [H J”¢] =0,
(2) ) 1 oft 1 + 1 "
g g g . g
( (E (—1)™ ™AL, 1) [H Jj;d»] =0, (2 (—1)™ ’"A%,-) [H 0724)] =
1 + 1 1 s 1
g Nog 9 A2
() [fias] =0, (Beummal)[fim] <o
@j+1) | o 1 o
g _ g i g
tosffz]-o- oz -
1 + r " %
g g g g
S (m iy mAz) [H m} e (E( 1y mAL 9/) [H ml =0,
(22j—1) 1 & . A "

g
(s )
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Dans le dernier groupe, on prendra jet j 4+ 1 lorsque 2j est un
nombre pair, j— 1 et j + 14 lorsque 2j est un nombre impair.
En imposant aux fonctions ™{ la condition:

g : g L ( g
(Z (—1)™ mA;) (Z (—1)™ mA;) + x2s [H mq;] =0 (3.13d)
) ) 1

1 = 1 +

on obtient les mémes termes de masse qu’en théorie uni-ondu-
latoire.

En remplacant les opérateurs ™o, par ™d; + €A;, on vérifie
que, lorsque g est impair, dans les équations subsiste, apres la
substitution, un terme en A; et que, lorsque g est pair, ce terme
est automatiquement éliminé.

3.2  Eguations secondaires.

3.21 Equations composées.

Comme en théorie uni-ondulatoire, nous obtenons les équa-
tions composées de degré k&, en considérant un systéme de
k + 1 équations primaires, écrites de maniére & faire apparai-
tre dans le terme de masse le produit de mémes fonctions ™,
qui figurent dans le reste de I’équation, et non pas leurs com-
plexes conjugués.

Ecrivons premiérement les équations composées du premier
degré, relatives au corpuscule bi-ondulatoire de spin 1. Nous
allons nous contenter de I'un des deux systémes:

L _1A1) 2 x 1* — 20 X lo*] = x[o X o’][2¢* x 1 —2o* x lo]

+ | (3.21a)
(2A: — 1AZ) [d* x 1o + 2p* x 1] = %[0’ X 6][2) X lp* + %0 X 1g*] |
(2Ai — IAi) [20* X 1o + 20* X Y] = x[o X ¢’][2Y X lop* - 2o x 1J*]
S & + '
(A )0 207 + 29 X H4] = o X gl[%Y X P + Yo X ]

[24* X Yo* + %% X 1¢*] = x[o X 6'1[*% X 1o + %o X 1] |
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Posons

W1 — 1) 4 g , 1‘“FZ=[GXG](1LIJ*+1:1CP*1

21
WL sy fite, W= [ox o] (44 itgr | T

et considérons les nouvelles fonctions d’onde suivantes:

131
1gr2

2y

W = 22

et ¥ =

Dans ces conditions les équations (3.21a) s’écrivent, compte
tenu des relations: ¢'c = — o6’ et o6* = — 1.

AL — AL , x[a’ax 1] \

2 2
T [FF x ] — 0

x[c'c x 1], 2Ai—1Az

( (3.21¢)

2A1—1Ai, x[1 X ¢’ o]

+ +

x[1 X o’a], "Al —"A]
= = /

[2F x ¥] = 0 .

Considérons maintenant le cas général du corpuscule g-ondu-
latoire de spin j(>=> g/2). Envisageons un systéme quelconque
et, appartenant a ce systéme, un groupe d’équations caractérisé
par l'indice n (place de 'opérateur S* dans le produit S!). Ce
groupe d’équations s’éecrit:

g . [ 9 N i
(Z (—1)™ mAf,,L) Z; I1, CT. ] = o, & [Hz CT:‘q)*J . (3.214)
| 1 1

1 v

-
(=1 ou 2), ou |II Cﬁ¢] est un produit de g facteurs pris
1

parmi ... %, lo... 9o, ... IU* lo*.. Jo*. X’ et X’ sont
g

g

des sommes des produits H: et H; contenant respectivement
1 1

un nombre pair p; et un nombre impair p, = 2k + 1 de

fonctions ¢ ou @*. Dans les sommes X’ les produits II. sont
affectés du signe + ou — suivant que p; est un multiple
pair ou impair de 2 et dans Z; les produits H; sont affectés
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du signe - ou — suivant que £ est un multiple pair ou
impair de 2.
En posant

o == [o/ K o X o ¥ 0D o % oY L % o]

le produit ¢!, contenant au total un nombre impair des matri-
ces o.
Posons :

o= 4 (Mo, M=o (M 4 i M) . (3.210)
En tenant compte des relations:
ool = —olc lorsque o, #a), oo* = —1,
les équations (3.21d) et (3.21d’) prennent la forme:
g o
Z(—1)™mmAL x[cgl X Hc]
1 1

-+

[IQI c’:l{”} —0. (3.215

NI g ,
% (— 1) {c; X Hc],- 2 (— 1™ mAY
1 1

3.22 Equations mixtes.

Considérons de prime abord les équations du corpuscule bi-
ondulatoire de spin 1. Nous avons deux systémes d’équations
primaires. Le premier est formé de deux groupes (3.11a) et
(3.11b), le second de deux groupes (3.11c) et (3.11d). Nous
allons former les deux systémes mixtes, en interconnectant par
les termes de masse soit le premier systeme avec le second, soit
le premier avec le complexe conjugué du second, et ceci de
la maniére suivante:

(8= "8\ x 9 = wlo X ol X
+ -

(1)

(2A2—1AZ) (24 X 1*] = —x[o X o][2* x 1¢*]
+ &
(3.22a)

(A=) = e X IR x )
&

(2Ai —~1A1) [34 x 1] = ix[1 x 112 x Y]

ArcHIVES. Vol. 27. — Janvier-Février 1945.
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(2A1 IN) 2Q x W] = ix[1 x 1][3* x Y] l
_|..
( 1A1)r2<la* W] = ix[1 X 1][% X 9]
(3.22b)
(gAi 1Ai) [Bg* X ] = »[o X o] [*) X 1¢*]
+ ;
(2Ai IAI)[%* W] = —x[oX o] [PY* X 1*].
+
"y
D’une maniére plus générale et, en posant ™F = . les
P

équations précédentes s’écrivent (mémes notations qu’en méca-
nique uni-ondulatoire):

0, —"0,+ [¢ x (’8, —'8,) }) [2F x 1¥] = x[¢® X 6 X ¢][*¥* X '¥*]

( :

;o (2.224a
; ; \ , .
(zot 0, + [ x (8, —"8) ]) ¥ x "] = in{o" x 1 x 1][¥ x 7] \
(%t—lat +[e" x (s, —'8,) D [2¥ x W] = ix[6" x1 X 1][2¥ x '¥]’ /

L (3.22b
*,— 10, + [o X (Qs;,—ls;,)]) [ X ¥] = x[o" X o X o][2F* x 2¥*] . |

Considérons maintenant les équations du corpuscule tri-
ondulatoire de spin fondamental. Nous avons quatre systemes
primaires auxquels correspondent quatre systéme‘mixtes. Nous
allons écrire explicitement le premier systeme:

Premier groupe:

3

A AT I R Y] = e e x [V YT ]
3f2 QAz/Z IAS/Z) |II 4)11 % 14)11} — x[6 X 6 X 6][24)1* « 2(1.)[* 1 |1 1
+
3A3/2 2A2/2 1A3/2> [ P 5 2PUT ¢ ¢111] — x[6 X & X G][ {Lnf* 2PV % 14,1"*] N

z + A-’fz 3/2 [“pw % Lva « dr,lv'l = x[6 X 6 X G][ YU % BUI* o T ]
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Deuxiéme groupe:

243/ r —
‘—— A2'2 + 2A:"2—1A23 P x y X 4:‘1 = %[6 X o X c][SlIJm* x TP 5 IL}JI”‘J

(—a

(A% +
\ _* =

A

(=
(—AR

Y g

QArS’l IA3/2

2

s )
e A’)

2 48/ TAB/\ [24T o 241
AYe— Alz)[z,b X *y

L!JW X 2L]J1v % 14)[v] —

x[6 X 6 X 6]

I
AL TAY U XY X T = s x @ x e[ Y ]

¥

[

Troisiéme groupe:

kpm X 24)111 % IqJI[I] — x[c X 6 % G] [34)1* % 2¢1‘ % 14',1*]

(3.22d)

[34)11' % ‘-’d.)u' % 14)11*] .

XIL.T«'I] x[c>’c><c][ I X P x 1”“]

21%3,'2 . IA;Z) [34‘11 X 3¢11 % 14)]1} o

x[6 X 0 X a] [34;”[' X

QA?Z—IA?Q)SL}JHI % 2¢III % JHIII] = %[0 X 6 X 6] |:3LPII* w 24)11* w lq)u‘}

AT AT AT O T ] = e e[

Nous pouvons écrire ces équations de la maniére condensée

suivante:

{ =0y + 70, =0, + o3 x 1] X [—353!2 + "3 2
f S 3
3 .2 1 2 133/
(=0, + 70 =" +[1 x 5] x [°8Y/a 4 "%z 72| } IiImd,J
1~3 3
( 3 2 33/ 2~3/ 3/51%
| =0, 4 70, — "0, + [6 % ay] x [ 7872 4 *8¥2— sy];}[{lmnp

3
'] M ™y =x;[1><c,]>< o | Ty
1 |

\ [ 3 (3
]=:~c/[cl><crl]>< Ila| |II™

Les trois autres systémes, nous les écrirons uniquement de

la maniére condensée:

‘-’dglll' % 1(’1}111":’

(3.22€)

e ——

= x:[clxi]x IIo| | IT™*
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{70, +%0,— "0, + [1x 1] x [78]/2  *g%

{3at+ 3at_1(3t—i— [0'3><c3]><[

{—%0,+%,— a+[1><c3]><[

{20, + %0,~ "0, + [0 % 05] X [—

{_sat+ 25r1°¢+ [1x1] % [_

{—70, 4 "9,— "0, + [o3x 1] X [—

{—"0,4+%8,— 0, + [1 X 55] X [—

{_ 3@£ .

{0,470, "0, + [1x1]x [—

1 1 |
(3.22 1)
. 3 3 T3 ]
382/2 +2S:/2~182/2]}[Hm¢} =x{[oyx1] X [H c] E [Hm"!’*
) 1 1 \ [ 1 ]
(3.22 )

i 4 %g%_TgPh] ) [n%} = B

0, =10, + [esX 1] X [—

SUR LA MECANIQUE ONDULATOIRE

Deuxiéme systéme:

1S2/2]}~1§Im4} = »{[1Xc]X [I:):[c][l%[mlp*
. 1 (3.122f) _
g = \ .
S 782 IR HIT™ [ = {0y x 1] ¥ [H1]€[Hm¢
a 1 (3.2;g) i
8%y gl S“/z_]}[l;[md;] - m;[cl><01]><[1 Hnml]
(3.22 1)

Troisieme systéme:

3 ’ 3 3
3s§“+232/2_15?2]}[ﬂm¢] = ixg[iml} % [H 1]5 ™y
1 .
3.2

3 3
fo, X o] % lH 1];[1—[’”4}
Al

(3.22k)
Quatriéme systéme:

. [ 3 3 1) 3 ]
382/2 s ZS:&*IS?@]} HmtEJ] = ix'[1xa]x |11 { ™y
[ 1 L1 1L ]

3.221)
3 3 1,13 T
382/2 L 282/2—182/2]} HmLp:l = 1% [01X1] % H 1 g I’[’de
[ 1 [ 1 | 1 i

(3.22 m)
3 \ 3 3 ]
“‘sjfz+ﬂsjfz—lsj/2]}’nmap]-= u-{[olxm X [Ho‘[ [H’%*

1 1 1

(3.22 n)
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Dans le cas général du corpuscule multi-ondulatoire a g fonc-
tions d’onde associée du spin j (> g/2), nous avons a distin-
guer deux types de groupes d’équations:

10 le type A:

g g " , 9
3 (—1)m™, + [2 T, ol (2 mms;)] é [ze Hemw} -
1 1 1

m=

25—1 g
= x[z II,6" x X, He HEGH“”;M] . (3.220)
1 1

(— 1 mSi;)]
, )

61] [EEHEC’:‘R } . (3.22p)
1

Comme en théorie uni-ondulatoire, pour une suite de nom-
bres ¢, (m =1, 2, ... g) donnée, il y a c;; systemes admettant
r groupes du type A et 2j —r groupes du type B. Les matrices
cl, o™, 6" et ' satisfont aux mémes relations de compa-
tibilité que les matrices correspondantes de la théorie uni-
ondulatoire.

20 le type B:

E

bM<

21
(—1)ym ™, 4 lze IT,6" x (

€
1 1

Y
[2; II, m\}f] =
1

Il

2%j-1
= ix Ee l—[er)‘hl X 2

e
1

3.23  Equations mixtes composées.

Commencgons par former les équations mixtes composées du
premier degré, relatives au corpuscule bi-ondulatoire de spin 1.
Partons tout d’abord du systeme mixte (3.225):

[(1)2¢ % (1)1¢_ (2)24_, > (2)14,} = x[o X 5] [(1)‘34,* (2)14‘,* 4 (1)1¢* (l)lq)*]

(3.23 a)

[_(1)2CD % (af)lCP o (2)24, % (1)2(4)] — x[oX o] [(1)24)* (Ulq)* _ (2)2¢,* (2)14,*]

1A1) [(1)24) w7 (1)1 ¥ (Q)QqJ % (2)1¢*J = %[6X 6] L(l $* (2)14) + (2)2¢* (1)14,]
) [(1)‘2 ¢ x (2)1¢* (2)2¢ « (1)14,*] = %[6% 5] [(1)24)* Wy, (2)1(;)* (2)14)]
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A 1A1> [(1)2dJ % (1 & — (4)24} < (2)14‘] P[4 % 1] [(1)2¢ (2)1¢ el (2)24) (1)14)]
1 lAl) [(1)2 U X (1)1{@%_(2)24) % (2)1¢*] = fe[1%x1] [(1)24) (2)14)* o (2)24_, (1)14)*]
1 IAI) [(1)% % (2)14) + (2)24! < (1)14,} ie[1%1] [(1)24‘| (1)1,4} . (2)14) (1)14)]

AN 1A1 [(1)24) % (2)1¢* e (Q)Zq) . (1)14)*] 1% [1 1][(1)2,1:) (1)1¢,* _(2)14, (2)14)*]

2

Et introduisons deux nouvelles fonctions d’onde ¥ des com-
posantes ¥ (DT gy of @@y (29" définies

comme suit:

Mg — W1y 4 (Oy o Ohp — g (Wgx 4 [BNy*)

(3.23 ¢)
Mg _ (1)21 A L(2)2¢ , @2 G((l)Zq,* + i(2)2¢*)

Dans ces conditions les équations (3.23a) et (3.23b) s’écrivent :

2

(Qat_lal 1 Toyx 1] X [“‘s;—lsi]) (29 % W] = i | oy x 1% TT1 | [2F x 1]
1]
| L

(255—15; + [1Xo5] X [252—181]) [T X W] = ix|1Xo X I11 | [2¥ % 1¥]
B 1 |

En appliquant le méme procédé aux équations (3.22a) on
aboutit aux équations que voici:

9 7

(26t—10t+ [1X65] X [Qsihlsi]) [PF X ] == ix [1x oy x T | [P/ % Y]
: 1

] 0
(‘-’aﬁlaﬁ[csxﬂx[Es:—Is;D [2Y X 1¥] = x| oy X 1 X 1111 [29 x 19™]

Les deux systémes composés sont-ils équivalents comme ce
fut le cas en théorie uni-ondulatoire ? Pour qu’il en fit ainsi,
il eit fallu qu’il existdt des transformations unitaires portant
sur les fonctions 2¥ et Y,

oo VAP TP — 1Y (3.23f)

(3.23 b)

(3.23 a")

13.23 %)

(3.23 d)

(3.23 ¢)



5
l

r

=

S0, 470,10, + [o5 X 05 X 05] x [ 7872 L 78 18Y2] —x[oy X 0y X 0] x | TT 1 :

)'~30[—+-20t-~l@t—!—[0'3X0'3X63]>< [—3SZf2+QS:/2—IS2/2]—M[1XG1><1] X LHi s Mm% |=0

).
?

3

)%

3

i 2
t .

(0, — 10, + [BX 1% 6y] X [— 7S] 4 2'S”"’z—-lszf‘d]—x[ol><crl>< 1] x| I11 {
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et amenant le changement d’un systéeme en ’autre. Mais alors,
étant donné la relation

o x DY = [V x W] x 7] (3.23 g)
il et da s’ensuivre que

WXW = (1 X111+ [o7 X 61] + [6 X 6] + [g3 X 63] X
X[1x1]) = U, (3.23 h)

égalité qu’il n’est pas possible de satisfaire, car la transforma-
tion U agit globalement sur le produit 2¥ x ¥, en échangeant
entre elles une partie des composantes du champ 2% avec une
partie des composantes du champ ¥, et donc ne peut pas étre
assimilable 4 un produit extérieur de deux transformations
agissant 1'une uniquement sur le champ ' et 'autre sur le
champ 2¥.

Nous allons écrire maintenant les équations mixtes compo-
sées du premier degré, relatives au corpuscule tri-ondulatoire
de spin fondamental.

Premier syvsteme:

3
d,— 9, + [65 X 65X 1] X [—382/2+2Sz"2—lsz/2]—x[ol><1><o-1]>< 1|11
- 1

2

Deuxiéme systéme:

3 13
3, 4 0, — "0, + [o5x 1 1] x [ "8Ye 4 °8%e 'S’ ] —x[o X 0% qy] % | TT1 i H”“FW=0

3 1,13
-3°L+205—10t+[1X1x°a]><[—Bsf/z+st/ﬁ_lsf/z]—x[cp(clx01]>< 111 i ™y |=0 |

3
g
I
=)

S
v
L

—

(3.231)

(3.23 )



3_361 + QOtulaz + [03 X 03X 03] X [Lgsz/g + QS:&ﬁng/z}_x[l X1 xo] x| 111 ‘ Iy

ERAE
3—3°¢ +70,— 19, + [og X 1 x 1] x [ =8} 4 *8]2— '8’ 2] —x[6 X 5y X 5] x | IT1 E ™y
' [ 1 | 1

F3 1)1 3
3—30t+2atelat+ [ Xayx 1] x [-"82 4-°8%2 8% | —x[63 % 0, X 0] X | IT 1 g ™y
1

3
1} Hmw]
1

;Jat + %0, — "9, + [1 x 1 X 05] x [— 8202 4 7872 18] —x[1 %1 X 6y] [ |
3
=, 40,— "3, + [1x oy x 1] x [ 872 4-"8]/2 — 83’2]—x[1>(51><1]><[l—[1] [Hm‘%]
1

‘
?

3
|0 1 [ 4 5 e | T T | =
1
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Troisieme systéme:

3

Quatriéme systéme:

»:im

Dans le cas général du corpuscule g-ondulatoire de spin j,
nous savons que d’une part on doit partir des groupes d’équa-
tions du type A:

g 2j—1 g9 X .9
T (—1)™ ™y, + [ I 6% x (2 (—1)™ msgl)] X, I, Ony =
1 1 / m=1

2j-1 2 g

= x[ II 6" x Hc] [2 Hl(t)cn,: ] ; (3.23m)
i=1 1

(ot = 1 et 2), et, d’autre part, des groupes d’équations du

type B, doublées d'une maniére analogue. En posant

(Dmyg . (Hm

1, ()m

(3.23 n)

nous obtenons, compte tenu des relations de compatlblhte les
relations suivantes:

|

/
2j—1 2j g

LK[G‘ x IT ¢®idn 6®iiny H’I}é[zéﬂlcﬁ?il = 0 (3.230)
1

1 1

g 2 g .
Z(—1mmy, + [63 x II on x ( z (—1nm mSgl)} —
1

1 m=1
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g 241 g ,
B(—1m ™y, + [1 x II o x (E (—1)™ msg,)] —
[ 1 1 1

251
—ix [1 x 11

1 1

5
cFidn x ﬁ 1] ‘ [E;ﬁlcﬁqf} = 0. (3.23p)
1

Remarque: L'emploi des sommes X; a pour but de pouvoir
former les équations composées de la forme Op [2¥ X T¥] =0,
sinon on aboutit au systéme Op[?¥ X ¥ =0 et
Op’ [2¥" X ™"*] = 0. Rien d’ailleurs actuellement ne permet
de choisir entre ces deux manieéres de voir.
" S
existe Cy; systémes admettant r groupes, dérivés des groupes
du type A et 2j — r groupes, dérivés du type B, donc, au total
2%7~1 gystémes. En tenant compte de toutes les déterminations
possibles des nombres ¢, , nous arrivons au total a ng_l grat
systemes. Tous les systémes relatifs au nombre pair g des fone-

tions d’onde associée sont insensibles au champ électromagné-

Pour une suite des nombres ¢, ¢, ...,

¢, donnée, il

tique et semblent convenir aux corpuscules neutres. Leurs
spins fondamentaux sont entiers, mais, par ailleurs, ils peuvent
avoir des spins entiers ou demi-entiers. D’autre part, on con-
nait le caractere purement conjectural de la liaison des statis-
tiques quantiques, celle de Fermi-Dirac et celle de Bose-Einstein
avec les valeurs de spins demi-entiers ou entiers, respectivement.
On doit se demander s’il n’est pas plus correct de lier les dif-
férentes statistiques avec I'imparité ou la parité des nombres
des fonctions d’onde associée, plutét qu’avec les valeurs de
spin. Dans ce cas les corpuscules chargés, caractérisés par un
nombre impair des fonctions d’onde et, par conséquent, par
les valeurs demi-entiéres des spins fondamentaux, satisferaient
a la statistique de Fermi-Dirac. Tandis que les corpuscules
neutres, caractérisés par un nombre pair des fonctions d’onde,
et, par conséquent, par les valeurs entiéres des spins fondamen-
taux, satisferaient a la statistique de Bose-Einstein.

(A suivre.)




	Sur la mécanique ondulatoire des corpuscules élémentaires [suite]

