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1944 Vol. 26 Septembre-Octobre

SUR LA MECANIQUE ONDULATOIRE
DES CORPUSCULES ELEMENTAIRES

PAR

Bernard KWAL1

PREMIERE PARTIE

Risumt.

On se propose d’édifier une théorie générale des corpuscules
¢lémentaires de spin quelconque et de masse au repos, finie
ou nulle. La trame mathématique du travail est basée essen-
tiellement sur la multiplication extérieure des matrices, opéra-
tion dont les propriétés sont examinées succinctement dans
I'introduction. On s’en sert pour construire les matrices de
spin ¢ et les matrices o, en nombre de 2! — 1, de 'hamil-
tonien.

I’étude de la suite, en complexité croissante, d’équations
d’onde des corpuscules élémentaires, conduit a distinguer les
équations primaires et les équations secondaires: composées,
mixtes et mixtes composées. Les plus simples, les équations
primaires, sont formées au moyen des matrices de spin de rang
le plus bas possible (2 pour le spin %4, 4 pour le spin 1, ete. ...,
2% pour le spin j). Au corpuscule de spin j et de masse au
repos nulle, on peut associer 27! systémes d’équations pri-

1 Mémoire rédigé dans le Stalag II A allemand et transmis p
Croix Rouge Internationale, service de secours intellectuel.
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136 SUR LA MECANIQUE ONDULATOIRE

maires. Il existe donc 2°7! espéces de cette sorte de corpus-
cules. Lorsqu’on introduit dans les équations primaires les
termes de masse, force est d’y faire figurer les fonctions com-
plexes conjuguées. Les équations composées de degré £, qui
s’obtiennent en considérant des systémes de £ 4 1 équations
primaires simultanées, peuvent revétir une forme dans laquelle
dans le terme de masse figure la méme fonction § que dans le
reste de ’équation, et non sa conjuguée complexe. Ainsi, les
équations de Dirac se présentent-elles dans notre théorie
comme les équations composées du premier degré pour j = 5.

liorsque j > 1, on peut former les équations mixtes, en
interconnectant, par l'intermédiaire du terme de masse, les
2°771 systémes d’équations primaires, de maniére 4 mettre en
jeu des fonctions d’ondes & 2%7! x 2%71 — 24 composantes.
11 existe d’ailleurs, 2%~! maniéres différentes d’interconnection
qui conduisent & autant de systémes d’équations.

Les deux systemes d’équations mixtes pour le corpuscule de
spin 1 donnent lieu aux équations composées du premier degré
qui sont équivalentes. Ce systéme unique est identique aux
équations du photon de M. Louis de Broglie. Pour terminer,
on forme les équations mixtes, composées du premier degré,
dans le cas général du spin j quelconque.

1. InrroDUCTION: MULTIPLICATION EXTERIEURE
DES MATRICES.

Soient A et B deux matrices quelconques de rang (c¢’est-a-dire
de nombre d’indices dont sont affectés les éléments de matrice)
1, et n,. L’opération de la multiplication extérieure, effectuée
sur les matrices A et B, dans lordre A — B, a pour résultat
la formation d’une matrice C = A x B derangn = ny + n,
dont Pélément de matrice ¢; ; est obtenu a partir des

é¢léments de matrice @, .. et b, ;. de la maniere que
: s Ty v sy

voicl:

¢ = 5 = b (1a)
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Nous nous bornerons dans la suite aux matrices de rang
multiple de deux. Dans ce cas, il résulte de la définition pré-
cédente la relation

([A x B]J[C x D]) = [(AC) x (BD)| (1b)

ou par (AC) ete. est symbolisée la multiplication ordinaire des
matrices, définie comme suit:

AC) . . . =

11y eaelpgiiy... Uy
Bl
_ a. . . - O i . 9 . . % 16
< 11,}{1,!2,k2,...1n,hn hl,’(,'],f?z,I"g,...kn,l'n ( )
hy,...kh,

Nous avons, en effet, en tenant compte de (1a) et de (1c),

| \
[(AC) X BD)];, 4 iin i = >0 @iy ke iy O Biry . we B i)
k R’
N\
= }_] _\_} [afl g h b ]’ 4 [Ck to d . 1'2] -

I

:EZAXB -y A[CXD]MQ R'i’a *
kR

Posons dans (16) C. = A"l et D = B!, on obtient alors

[AxBIAT!T xB1] =11 x17. (1d)

/

Considérons maintenant une matrice V qui transforme une
matrice donnée A en une matrice diagonale:

VAV = Ay (1e)

Nous allons montrer que la matrice V X V transforme
1 % A et Ax1 en matrices diagonales 1 X A, et A, x 1,
respectivement. S

Effectivement, en vertu de (14), nous avons:

Vix vl xvy=[vtx vtitar,

Vs (VIAIV x V] = [t x (VIAV)] = [1 x Al
C.Q.F.D.
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Remarque. — Les matrices de rang multiple de deux peuvent
étre représentées de plusieurs facons au moyen des matrices
de rang deux, en faisant correspondre a tout élément

¢; .~ un ¢élément c¢; ;., obtenu en association & toute

11, .."in, i'l vty

combinaison de nombres iy, ... 7, un nombre ¢ et & toute com-
. . o ot . . .

binaison de nombres ¢, ... 1, un dombre ¢". Si les i, prennent

toutes les valeurs entieres comprises entre 1 et [,, i prendra

toutes les valeurs entiéres comprises entre 1 et [, [, ... [,,.

i

2. EQuaTiONS D’ONDES DES CORPUSCULES DE SPIN QUEL-
CONQUE, A UNE SEULE FONCTION D'ONDE ASSOCIEE.

2.1 Equations primaires.

’ - o = 5
Pour que Popérateur JC = ?%W représente 1’hamilto-
T,

nien relatif au corpuscule sans masse, de spin quelconque y, il
faut, les o, étant les matrices de spin, que I'on ait

(0, si k=1

- 2.1
%H TV L oa, sl k£, (249

&; Op —

(le signe -}, lorsque les nombres i, &, [ forment une permu-
tation paire des nombres 1, 2, 3; le signe —, en cas d’une
permutation impaire).

Une solution particuliere des relations (2.1a) est donnée par
®; = ko;, k étant un coeflficient de proportionnalité, nombre
ordinaire, par ailleurs arbitraire.

Pour pouvoir résoudre les problémes qui puissent se poser
a l'occasion des corpuscules de spin quelconque, et, en parti-
culier, pour trouver les équations auxquelles satisfont les fone-
tions représentant 1'onde associée, nous devons construire:
10 les matrices de spin o}, 20 les matrices 'af, autres que les
matrices de spin, satisfaisant aux relations (2.1«). Nous pren-
drons comme base de départ les matrices de Pauli et nous
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allons montrer que les expressions qui suivent fournissent la
solution cherchée:

1

sj———1><1><...><1><6}"‘/-’—i—1><1><...><6'

[

pe i R

LI XK X 62X X1 e XXX,

n > (2.’11)
2] 2 ‘
P _ X\
= DI X1x..x6®x..X1x1= >
n=1 it n=+% ;
ld = 1 X1 X .. X1 X6% L 1X1X.oX6? X1+ .
eI X 1T X o X6 X XL —e? X1 X.ox1x1
T
2j
- _\/:ESn_Sl = o —2¢
n==2 !
i
, 2 b (2.¢)
Flod — E Sp— 8, = @ — 28, |
n=1
n#khy
23 g np
bd = o= N = o =13
n=1 Ny nq
n#EnNi, Na, ng,
s¢ étant un produit de 2j facteurs ot ¢ occupe la r'™™° place:

= 1X1X .. X1Xe%%x1X..x1, (21d)

n
n

Ny, Ay, ... n, sont k nombres parmi 1, 2,... 2, & étant un entier
de l'intervalle (0, j + %) 0 <k <] + Y.

D’apres la loi de formation des %', on voit que le nombre
de valeurs possibles pour [, est égal a ng et le nombre total
des valeurs de [ est égal &

k=1

Sk 1 — ¥y
k=0

Voici maintenant la démonstration annoncée que (2.15) et
(2.1¢) satisfont a (2.1a).
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I I N NN
Ci% — 2 (si)y E (Sp)ns = Z, Zl (i) (g}
n n’ n 4
or
'1><1:-<...><cr-’lf><...><cj XX 1 sin < n
x '
() (50),y = (1 X 1K o X (o;0,) X ... x1 sin = n
A B LR B ol Bow Fol Row L sim>n
\ n’ n
donc
(8i)n (SI{}?’i' — )y (sidn = 135, (s)y, (2.1¢)
avec
5 0 si n % n'
L |1 si n=n
Il en résulte que
Tal sl al — NS ([ J i 9
07 O, B9 = _\:_1 1 (si)n (sia)n.' - (Sk)n’ (Si)‘n}
n, n’
=t Z Snn' ("I)n - LE (’Sl)n’ = gy
1, n’“ n’
On a de méme
g \ np )
{7 ! O {
ko op — oy Foy = o, — 2 :_1 (“i)nm B, <= ; o, —2 > (Si)nm (
ny : n \
- —_—
= gy s 2) 218y o — 0 2 (s))y (
m m J
. < . .
= lGl—LfZZ(Si)ﬂ = io C.Q.F.D.
m

Ainsi les

équations (2.1a) admettent-elles 2%~1 solutions du

type (2.1b) et (2.1¢). Nous pouvons donc attribuer au corpus-
cule de spin quelconque 7, 2¥~! hamiltoniens primaires; ce qui
nous conduit, en nous restreignant de prime abord aux cor-
puscules sans masse, a écrire 2%7! systémes d’équations d’onde,
obtenus en faisant JC¢ = 0 et, en adjoignant au groupe
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d’équations ainsi engendré d’autres groupes complémentaires,
choisies de maniére a satisfaire la condition

e = 0. (2.1f)
On arrive a les déduire, ces groupes complémentaires dont

le nombre est égal 4 2j — 1, en raisonnant comme suit.
Commencons par poser

5 "y 0 iz O 1 0" :
8% = 26529, = 2(6 — L g2 —_ h 2.1g)
S;,° O, 2(‘0'1 S o, o, + B, 6%), (2.1g)
on a alors
(§%)2 = a‘i 4 a; " a';

g i |l _
= (0, + o) + 0 {11[ (1n)j .
Afin de simplifier les nota{;ions, nous poserons en outre

8= 1x1X..x8% x..x1x1; (2.1h)

S! est donc un produit extérieur de 2; facteurs dont 2j—1
sont constitués par la matrice unité et dont un, occupant la
7'M place, est la matrice — opérateur différentiel — S,
définie par (2.1g).

Cela étant, on vérifie aisément que la solution cherchée, pour
les équations d’onde primaires du corpuscule de spin j, se
présente sous la forme de 2% gystémes d’équations, com-
prenant chacun 2; groupes de 2% équations ‘(la fonction

d’onde {/ ayant 2% fois plus de composantes que la fone-



o, 4§
(0 +87) ¢

(0 +8) ¢ =

{0y + 87) ¢

(0, —S)g=0,(+8)¢ =0....... (0, +8,)9 =0 (2+1)
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tion * qui est & 2 composantes):

0. (8, +8)d=0.. (8, + ng) b=0 (1)
0 (4 8)d =0 (3 + 8y )b =0, (4—Sp)¢ =0 ()
0. (+8)b=0.. (8—8, )b=0,(+8)b=0 (3)

(2.14)

:O,-.. (at+Sj0u?_%)¢: 0’

B LT 251
O — Sjpt oujrn) ¥ =00 ((—8y)b =0 (297

(7 et 7 + 1 lorsque 2 est un nombre pair, j — % et j + 1%
lorsque 2 est un nombre impair).

. - . Dq-— 3
Nous pouvons donc dire qu’il existe 22! espéces de corpus-

cules sans masse de spin j et autant de corpuscules complé-
mentaires.

Quant au terme de masse, on peut I’ajouter formellement

aux équations que nous venons d’écrire, selon le procédé
suivant:

Posons

et imposons aux ¢ la condition
Oy = —x2d . (2.1k)
Ecrivons alors
(3, + 8% ¢ = no* (2.11)

¢ étant une matrice 4 déterminer. On a

1/2) g th*

¢ = (0, — 8% 10, + 8%) ¢ = x(3, —$
= —wd = %o (9, + (8%)7) ¢* .

D’ou les deux conditions auxquelles doit satisfaire o:

— 8% = g(S%)* (2.1m)
cgo* = —1 . (2.1n)
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La condition -(2.1m) conduit aux relations:

6,0 = — crcs;: (2.41m")

6, €étant une matrice quelconque de Pauli. On satisfait les
relations (2.1m) et (2.1n) en prenant pour ¢ le double de la
matrice de Pauli 4 éléments purement imaginaires.

Les équations primaires des corpuscules de spin j peuvent
de méme étre pourvues formellement d’un terme de masse. En
voicl un groupe d’équations :

(0; & Sjn)(b = %[0’ X ¢ X .. Xx 6"V x g x ™D % L x sGDY*
(2.10)
ou la matrice &, précédemment définie, figure comme r'®™®
facteur et ol 6" X ¢’ X ... X ¢‘*)) représente un produit de
n— 1 matrices unitaires & deux lignes et a deux colonnes,
ne contenant qu’un nombre pair des matrices a éléments pure-
ment imaginaires. A titre d’exemple nous allons écrire les
équations primaires relatives aux corpuscules de spin 1 et 3/,:

Spin 1
\ . (6t +[1 * Sl/z])‘!-’ = %[c’ X cl{* " (at 1 X S%]) O = x[o’ X o]U*
| (0 + 8% % 1) 4 = wlo x %% | (,—[8% x 1]) = nlo x o143
(2.1p)
Spin 3/,
(a¢+[1><1XS%])‘sz[c?xc’xc]@* (at_l‘[lxiXS%])";D:%[G,XC’XGJL'!)*

(1) ) (8,41 x 8% x1]) 4 =x[o" X 6 x o’T4* (2)¢ (8,-+[1 X 8% % 1])§ = x[¢" X 6 X &']$*

(8,48 X 1x11) b = x[o x o’ X o']* (0,—[8% x 1x 1]) ¢ = x[6 X o’ X o'}

(8+[1x1x8%])d = x[c’ X 6’ X 6]L* (9—[1 x 1 x 8%]) § = »[c’ X &’ x 6]¢*
(3) { (9;—[1 x 8% x 1) ¢ = x[o" X o X o’T¢* (&) { (8, +[1 8% x 1]) Y = u[¢’ X 6 X &) &* -
(bt—i—[Syz X1 X 1])@ = x[o X ¢’ X ¢"] ¥ 2(6t—1—{8% x 1 X 1])4} = ufa X ¢ X o'jU*

(2.1¢q)
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2.2 Equations secondaires.

2.21  Equations composées.

Les équations composées de degré & du corpuscule de spin ;
sobtiennent en considérant un systéme de & + 1 équations
primaires simultanées. L’intérét des équations composées réside
dans la possibilité de donner aux équations une forme ou dans
le terme de masse figure la méme fonction ¢ que dans le reste
de I’équation et non pas la fonction conjuguée complexe, comme
c’est le cas des équations primaires. Ces équations sont donc
compatibles avec 'existence d’un hamiltonien du type

h 0

s =0
t a‘r}{.

- oy myc .

Envisageons premierement les équations composées du cor-
puscule de spin 14:

S (at -+ S%>(1)<p kR 0%
(2.21a)

Posons

(l)qj - (1)@ £ L‘(‘l)tP , (2)4) o c((l)c_p* 4+ L'(Q)(P*) . (2.210)
et considérons une fonction ¢ & 4 composantes (V¢;, My,
g, B,). Les équations (2.21a) deviennent

s

st o0 o0 1 |0 —i
(at+ LY = x| b = ixn| i (2.21¢)
PP A IO PRI

ce qui n'est qu'une des représentations possibles de I'équation
de Dirac. D’une maniere plus générale nous écrirons pour cette
équation
(8, + [o' x 8™ = ixfe" x 11 (2.21d)
Or
O = ix(8,—[c' x 8%))[" x 11¢ =

= ix[s" X 1] (Ot+ [o! % Syz]){p = — 2 .
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- D’out les conditions:

(62 = ("2 =1, U L pp—— . L (2.21¢)
Done 6" et o' sont les doubles de deux matrices différentes
de Pauli (£ 5~ I). _

En formant les équations composées de degré supérieur &
un, pour le corpuscule de spin 1%, on aboutit aux équations
de Whittaker. Nous reviendrons encore sur ce point plus loin.

Pour le spin j > 14, chaque systéme d’équations va donner
naissance 4 une suite autonome d’équations composées. Pour
chaque groupe, on déduit, par exemple, les équations compo-
sées de degré 1 qui sont les suivantes:

: ng 0 0, [0 X o % ..xa" D xexeVx. . x Rl
e q, == Iy
0 — 8| — [’ X 0" X . x 6D x o 6D % L x 63D, 0
(2.21f)

ot ¢ est une fonction a 2¥°! composantes, définie par les
relations:

D

My = Wy 4 @y
DY =[x o”" X .. xs" D xsx0o
(2.21g)

Ces relations devant jouer simultanément pour les 2j groupes
d’équations du corpuscule de spin 7, il faut que I'on ait

o (P (o ) S ) B

On posera, d’'une maniére générale:

; 2j
(at + [of x S;’l])q; = ix{ck B IIGJL}J g (2.21A)
1 _

et I'on démontrera, comme précédemment, que les matrices
c' et o" satisfont aux relations (2.21e).

R Y G(Ej)] (('1)@*_|_ i(a)qo*) .

Y
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2.22  Equations mixtes.

Ce type d’équations peut étre formé pour j-> 15, en inter-
connectant par I'intermédiaire du terme de masse les 2% sys-
témes d’équations primaires (de 2%~! maniéres différentes, donc
il existe, pour le spin j, 27! systémes d’équations mixtes), de
facon a obtenir des systémes ou jouent des fonctions d’onde
a 2871 5 2%+t — 24 composantes. Avant de nous attaquer
au cas général, nous allons pour plus de clarté traiter le cas
particulier du spin 1.

Reprenons les équations (2.1p) en combinant les systémes
(1) et (2) de la maniére que voici: '

s (0,4 8) ¢ = x[o” X alo* , (8, + 8¢ = ix[1 x 1]e

(1) (2)

[ (3,4 8¢ = — xlo’ x a]¢* , (0, — 8o = ix[1 x 1]

(2.22a)
| (3 + 8) ¢ = ix[1 x 1]p, )b = x[o X o’]o*

(3 —8)e = ixl1 x 119,

(0 +8)e = —xlo x a'Jb* .
(2.22b)

Dans un groupe d’équations figurent aux termes de masse
des fonctions ¢* et ¢* tandis que dans un autre, les fonctions
¢ et ¢. Cela résulte des conditions de compatibilité des équa-
tions du type (1) et de celles du type (2), question dont il sera
question plus tard. L’étude de l'écriture relativiste de ces
équations conduit, par ailleurs, clairement a la méme consta-
tation. Quant aux matrices ¢’, leur structure résulte des con-
ditions:

O¢ = —x®d et [Odo = —x*q.

On a ainsi, par exemple:
O¢ = (Gt———S;) (ét -+ Si) g = u(ﬁt—S;) [6" X o]¢*
= %[¢’" X o] (Ot + Sl:) o* = —32[6¢' X 6][6’' X o ¥y = — 2 ;

d’olt I'on tire o'¢'* = — 1, relation qui est satisfaite en
prenant pour ¢’ la matrice ¢ & éléments purement imaginaires.
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Nous eondenserons les écritures en prenant une fonction
d’onde unique WV (¢, ¢). Ensuite nous écrirons d’une maniére
plus générale: '

(Oc + o' x S;]) ¥ = x[6" X 6 X 6]¥* ;
(8,4 [o" x 8, ) ¥ = in[a" x 1 x 1]¥  (2.220)

(0, + [o" x SINY = ix[c" x 1 x 1Y ;
(0,4 [o" x 8, ) ¥ = x[o" X o x o]¥* . (2.220))

On a alors

O = %(3,—[o' X 8,1)[" x 6 x 6]¥* = x[c" x o x o] (3, + [o! x 8, J%)¥*

= ¥ [o" X o X o][6" x o % o*Y = —»2¥ ;
dou o*c"* = —1, donc o* =5, et c'o” = 6" (c)*, done
ot =1

D’autre part

Y = ix (9, —[6" x ;1) [¢" x 1 x 1] = ix[d" x 1 X 17(9, + [6" x 8, 1) ¥

— — 2

\ 4 4 .
d’ott 6"’ 6" = — 6" 6", donc 6" et 6" sont deux matrices de

Pauli (avee I" £ E).
Passons maintenant au cas général du spin j. D’apres ce que
nous avons vu nous devons distinguer deux types d’équations:

10 Le type A:
2j—1 ] 2j-1 2 _ |
(at o I:lIi Gl X s;l])q» = K[Ill ot X ]1_'[ c] o (2.22¢)
1= — I
20 Le type B:

2j-1 ) 2j—1 25
(at+ I % S%J)‘{J = ix [][ i X ]’[1]‘}" . (2.224)
1 . 1

1
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La condition [J¥ = — %21 conduit aux relations sui-
vantes:

2j~1 2j—1 2j-1 21\ *
Il Gli IIcki = l[cki II sl . (2.22¢)
1 1 1 1

2j-1 \ /2

I l ofi i ) I[GG* A (2.22f)

1 / 1
2j-1 2j-1

]l aight = — Hcrh’icl’i . (2.22g)
; ;

1

Comme c6* = — 1, nous voyons que suivant que 2; est
impair ou pair, nous devons avoir, respectivement, un nombre
pair ou impair des matrices o"i satisfaisant & la condition
o"igh" = — 1, c'est-a-dire telles que o*i = g. Par ailleurs
nous devons avoir un nombre pair p de couples de matrices
satisfaisant & la relation

l

Gli G;‘f i

el 2/ — p de couples de matrices satisfaisant a
Gl,‘ O‘ki e Ghi(dli)*

ainsl qu’un nombre impair p’ de couples de matrices satis-
faisant a
!

£
"t

e RS

cici._ﬁ-«—_-ck'ig

et un nombre 2j — p” de couples de matrices satisfaisant a

P T ;,
o ighi — ¢"ig

I3
Lies relations (2.22e, [ et g) sont relatives aux matrices du
méme groupe d’équations. 11 existe des relations analogues qui

hi M et 6V, relatives aux
bl o)

relient entre elles les matrices 6%, ¢
groupes différents (caractérisés par les différentes valeurs de
I'indice n) d’'un méme systéme d’équations (caractérisé par
I'indice r). Nous appellerons I’ensemble de ces relations, les

relations de compatibilité.
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Voiei, par exemple, comment on en obtient une partie:

21 R
(Gt — ];[ stlidny x S;',Ll )

L i/

[~ 2j—1 ]
(at e H G(“)n? X S-)rlz )qj ==

1

I
/-C_V—\

[~ 2j—1 T ~2j—1 7
— 1T slins x Sg% ) (at .S IT iny x S?J” ) G ==

s 4 s & -
~2j-1 ] %1 2

= (9, — IT otidny % Sih .},_I: 11 G(h.i,)nlrx HGJ P
1 1 1

2j—1 j 29 T
= I:H sfidny x Hc:|< {H (o (li)nz)’!“' X haf:; D Uk
1 ;
2j-1 2 121 2
= '/.2[ IT o%ilny x T1 GJ[ I (cidna)x x T1 (c):"‘] Yy
o & 1 1 1 _
) 21 i1 2
= (—1)¥e [( IT o' )m b (c(*wnz)*) 4 HlJQJ :
- 1 1 1

Or les expressions précédentes doivent étre égales aussi a:

231 ‘ 251
at [ I o‘ )nl H ‘q’1’1 —’) l: I G(k Ing X H jl
| 5 1 1

291 110 2j-1
= LH GU i)”? X H ][6[ + IT (5(”)”1);: X8, IJ Y
1 1 1L

2j-1 2 | [ 2i-1 25 -
= [ 1 6%ia: x 1o T (6*dm)* x TTo* | ¢
1 1 111 1 -
e ] 21 9 -
= (—1)¥ y_z|: I o%idn, I (sWidm)x % T4 J O .
1 I 1 .

Des raisonnements analogues doivent étre faits a propos
des équations du type B, ainsi que pour un groupe A et un
autre du type B (appartenant tous au méme systéme d’équa-
tions). On aboutit ainsi & 'ensemble suivant de relations de
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compatibilité:
21
O 6Wn Me®ine = (— 1) 0n, 0 IT 6%dns T (6Uina)
1
IT Wim ITe®ine = (—1)%n1, ne [T6Wina [T 6 Iny
Il %) 1% = [T [[6
T s ITe®) — — JI6M) I (G(llé))::{
I o™ Molome  — 1o s T on,
T ¢ [Te®Pne = IMein: [[atny
IT &l 116" :_Hcl’i 16l
I % I1 (G(hl—)ng)fiz — [Te®ins [T (G(ki)”})*
I s®n T dns  — TTe®ilne [T6®idng
IT o"i II(s"iyx = —TIc*illc"i .

(2.22h)

Nous allons donner maintenant le nombre r de groupes du
type A et le nombre 2/ — r de groupes du type B dans chacun

Da_ N N7 . . - .
des 29! systémes d’équations relatives au spin j:

Nombre
Spin Tvyvpe A ? Type B total de
groupes
1 1 | 1 2
81y 1 ou 3 2 ou 0 3
2 1 ou 3 2 out 4 (2.221)
als 1, 3 ou 5 4 2 ou 0 5
9; impair | 1, 3, ... 2j-2 ou 2j | 2j-1, ... 2 0u 0 27
P pair |1, 3, ... 2/-30u2j-1] 2j-1, .. 3 ou 1 27

Lorsque les r groupes du type A sont pris d’'une maniere

uelconque parmi les 2/ eroupes:
quelconque parmi les 2 groug

2j—1 (l") o
: Viln
o, +1 Ills X SE Y
o .

n=1,2, ..2

1

25 r 29
ML s e
1

)
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alors que les 2j — r groupes du type B sont fixés, parmi les
2j groupes,

MA@y, S T
0, + | Mo nXS%;)LIJ:iKerGL " x II1|V¥,
1 ‘

par la condition n’ % n. Il y a ainsi C; systemes admettant

r groupes du type A et 2j —r groupes du type B, done, au

total, Z"Cg; systemes, la somme X’ étant étendue & toutes les

valeurs impaires de r, comprises entre 1 et 2j. Or, d’aprées une

relation 12)‘iein connue Cy; = Cj;y + C’E;ii On voit donc que
2j—

2'Cy = X Gy, ol la derniére somme est étendue & toutes
0

les valeurs entieres de r comprises entre 0 et 2j — 1. Elle est
donc bien égale 4 297!, Les 27! gystémes, obtenus en prenant
pour le nombre 2j —r de groupe B un nombre impair, sont
équivalents aux systémes complexes conjugués des systémes
précédents.

2.23 Equations mixtes composées.

Nous allons suivre la méme procédure qu’au § 2.21. Tout
d’abord nous allons former les équations mixtes composées du
premier degré pour le corpuscule de spin 1. Partons, par exem-
ple, des équations (2.225):

(2.235)

(3, +8)Wy =xlo xolVe*, (,+8)V ¢ =ix[1 x1]Ve

(0, +8) v =xlo x a1 e* , (3, +8)P ¢ =ix[1x1)%g

(Ot -t Si)(l) o = —x[o X a]M{* (C‘Jt—S;)(l)cp = ix[1 x 119

(Ot - Si)(z) o = —ulc X cr](z) Vi (Ot—S;)(E)cp = ix[1 X 1](2) ¢ )
et introduisons une fonction d’onde W (V¥, O, O ot (D),
formée de la maniére suivante:

O — Oy 4 @y g — — i[6 X o] ((1)(?* L i(2)<P*) )

Gy — We 4 i(g')cp Oy = + i[6 X o] ((1)4,* s L‘@)q)*) .

ARCHIVES, Vol. 26. — Septembre-Octobre 1944, 10

(2.234)
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Les équations (2.23a) prennent alors la forme suivante:

[~ ‘2'—‘
(at—'r[GinXSi])IF:ix clxlelli ‘I"e

(2.23¢)

/

(0, + 1 X o, x SN = ix[1x 6 x I1|¥
. t

ou les matrices o; et o5 sont les doubles de deux matrices
réelles de Pauli. |

En appliquant le méme procédé aux équations (2.22a) nous
aboutissons aux équations suivantes:
(0, +[1 x o, % Si])‘F’ = ix|1 X o X 1;[1 ki )

: g = ,
(0L+[63X1XS:])1F'2 i 61><1><H1 = \

| S

La transformation, définie par la matrice unitaire:
U = % ([1 x 1]+ [0y X 6]+ [0 X o]+ [05 X 65]) [1 X 1] (2.23¢)

permet de prouver I'équivalence de (2.23¢) et de (2.23d).
Done les équations composées du premier degré, auxquelles
donnent lieu les deux systémes d’équations mixtes pour le
corpuscule de spin 1, sont équivalentes. Ce systéme unique
d’équations mixtes composées pour j = 1 est d’ailleurs iden-
tique au systeme d’équations que M. Louis de Broglie a mis
a la base de sa théorie du photon.
Dans le cas général du spin j quelconque, nous avons:
(0, + [MIa" x NV = w[e" x Me)™ * ) .
(9, + [ITa" x NP4 = x[IIc" x o)™ y* \ 12230

et les équations du type B, doublées de la méme maniere.
En posant:

Wy (1)4) £ i(Q)d) Oy — i[Hc{*M)”G x o] ((1)4)* "3 i(2)¢*) ,
nous obtenons, compte tenu des relations de compatibilité, les
équations suivantes:

(9 + [0; x Ia™n x SINY = ix[o, x II (s n *ng) x IT11¥ ;
" ; . (2.23g)
(0 +[1 x W' x §ILNW = ix[1 x He"Dw x 1Y .

(@ suivre)
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