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1944 Vol. 26 Septembre-Octobre

SUR LA MECANIQUE ONDULATOIRE

DES CORPUSCULES ELEMENTAIRES

On se propose d'edifier une theorie generale des corpuscules
elementaires de spin quelconque et de masse au repos, finie

ou nulle. La trame mathematique du travail est basee essen-

tiellement sur la multiplication exterieure des matrices, operation

dont les proprietes sont examinees succinctement dans

l'introduction. On s'en sert pour construire les matrices de

spin er et les matrices a, en nombre de 2 23~1 — 1, de l'hamil-
tonien.

L'etude de la suite, en complexite croissante, d'equations
d'onde des corpuscules elementaires, conduit ä distinguer les

equations primaires et les equations secondaires: composees,
mixtes et mixtes composees. Les plus simples, les equations
primaires, sont formees au moyen des matrices de spin de rang
le plus bas possible (2 pour le spin %, 4 pour le spin 1, etc.
22j pour le spin /). Au corpuscule de spin / et de masse au

repos nulle, on peut associer 22'"1 systemes d'equations pri-

1 Memoire redige dans le Stalag IIA allemand et transmis
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136 SUR LA MECANIQUE ONDULATOIRE

maires. II existe done 225~1 especes de cette sorte de corpus-
cules. Lorsqu'on introduit dans les equations primaires les

termes de masse, force est d'y faire figurer les fonetions
complexes conjuguees. Les equations composees de degre k, qui
s'obtiennent en considerant des systemes de k + 1 equations
primaires simultanees, peuvent revetir une forme dans laquelle
dans le terme de masse figure la meme fonetion <]; que dans le

reste de l'equation, et non sa conjuguee complexe. Ainsi, les

equations de Dirac se presentent-elles dans notre theorie
comme les equations composees du premier degre pour / %.

Lorsque / > 1, on peut former les equations mixtes, en

inferconnectant, par l'intermediaire du terme de masse, les
2'3_1 systemes d'equations primaires, de maniere ä mettre en

jeu des fonetions d'ondes ä 223-1 x 223 2l] composantes.
II existe d'ailleurs, 22^1 manieres differentes d'interconnection
qui conduisent ä autant de systemes d'equations.

Les deux systemes d'equations mixtes pour le corpuscule de

spin 1 donnent lieu aux equations composees du premier degre

qui sont äquivalentes. Ce Systeme unique est identique aux
equations du photon de M. Louis de Broglie. Pour terminer,
on forme les equations mixtes, composees du premier degre,
dans le cas general du spin / quelconque.

1. Introduction: Multiplication exterieure
DES MATRICES.

Soient A et B deux matrices quelconques de rang (c'est-ä-dire
de nombre d'indices dont sont affectes les elements de matrice)
/i-, et n2. L'operation de la multiplication exterieure, effectuee

sur les matrices A et B, dans l'ordre A—> B, a pour resultat
la formation d'une matrice C A X B de rang n n1 + n2
dont 1'element de matrice c,'1 <n

elements de matrice a, ; et b,,Ii •• • Ii
\ oici:

est obtenu ä partir des

de la maniere que

b„l'z l'n (let)
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Nous nous bornerons dans la suite aux matrices de rang
multiple de deux. Dans ee cas, il resulte de la definition pre-
cedente la relation

([A x B][G X D]) [(AC) X (BD)] (1 b)

oü par (AC) etc. est symbolisee la multiplication ordinaire des

matrices, defmie comme suit:

a

~ ^ ah, III ; i°,k2-,...in,kn ' ck!, i't ; hz, i'z ;...kn, t'n '

111, l<n

Nous avons, en effet, en tenant compte de (la) et de (lc),

[(AC) x (BD)]ii( i2. ^ ,2 2 K, u ck, it) S (blV h.dK
ft ft'

2 2 K, Ii bi\, ft'J h, ;2 dk', i'J
II k'

2 ^[AxB],,,,[Cx D]fti2;ft.,„
ft ft'

Posons dans (16) C A^1 et D B_I, on obtient alors

[A x B] [AT1 x B"1] [lxl]. (Id)

Considerons maintenant une matrice V qui transforme une
matrice donnee A en une matrice diagonale:

y-'AV Ad (le)

Nous allons montrer que la matrice V X V transforme
1 X A et A X 1 en matrices diagonales '1 X Ad et Ad x 1,

respectivement.
Effectivement, en Arertu de (16), nous avons:

[V"1 X V"1] [1 x V] [V"1 x (V-1A)]

[V"1 x (\M A)] [V X V] [1 x (V^1 AV)] [1 X Ad]

C.Q.F.D.
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Remarque. — Les matrices de rang multiple de deux peuvent
etre representees de plusieurs fafons au moyen des matrices
de rang deux, en faisant correspondre ä tout element
C: ; uti element c,- obtenu en association ä touteU, ••• in 5

1 1 •••1- n 1, l 1

combinaison de nombres in un nombre i et ä toute com-
binaison de nombres i', i'n un dombre i'. Si les ih prennent
toutes les valeurs entieres comprises entre 1 et lk, i prendra
toutes les valeurs entieres comprises entre 1 et lxU

2. Equations d'ondes des corpuscules de spin qcel-
CON'QUE, A UNE SEULE FONCTION D'ONDE ASSOCIEE.

2.1 Equations primaires.

Pour que l'operateur PC =^ah-^— represente l'hamilto-
l O Xfa

nien relatif au corpuscule sans masse, de spin quelconque /, il
faut, les ak etant les matrices de spin, que Ton ait

[ 0, si h i

j dz ; si k ^ i"-i — i i j. (2.1a)

(le signe +, lorsque les nombres i, k, I torment une permutation

paire des nombres 1, 2, 3; le signe —, en cas d'une

permutation impaire).
Une solution particuliere des relations (2.1a) est donnee par

Xj — Ugn k etant un coefficient de proportionnalite, nombre

ordinaire, par ailleurs arbitraire.
Pour pouvoir resoudre les problemes qui puissent se poser

ä l'occasion des corpuscules de spin quelconque, et, en parti-
culier, pour trouver les equations auxquelles satisfont les fonc-
tions representant l'onde associee, nous devons construire:
1° les matrices de spin aji, 2° les matrices 'ajj autres que les

matrices de spin, satisfaisant aux relations (2.1a). Nous pren-
drons comme base de depart les matrices de Pauli et nous
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allons montrer que les expressions qui suivent fournissent la
solution cherchee:

1 X 1 X X 1 X ö1- + 1 X 1 X X o"2 X 1 +

+ 1 X 1 X X CT54 X X 1 + + CT1'- X 1 X X 1 X 1

2j 2j

2 1 x 1 x -• x <*Vs x ••• x 1 x 1 2 Sn

n =1 n n=l

i i x l x x l x ct1/z + l x l x x ct
1/2 x l -f

+ 1 X 1 X X CT,/2 X X 1 + — CT1'2 X 1 X X 1 X 1

n

V,sn —S1 ~2si
12 2

23

lki j o — J 9ca bn sk-i a
n l

2j nfr nfr
'ka? 2 sn — 2 *«i a3 — 2 2 S"i

n=l n2 ui
n^trii. ri2, •••

s3n etant un produit de 2j facteurs oü a occupe la nleme place:

sjj 1 x 1 x x 1 x ct1/2 x 1 x x 1 (2.1d)
n

nl5 ra2) nk sonl ^ nombres parmi 1, 2, ...2/, & etant un entier
de l'intervalle (0,/'+%) 0 < A < / +

D'apres la loi de formation des ^oc5, on voit que le nombre
de valeurs possibles pour lk est egal ä C|3- et le nombre total
des valeurs de l est egal ä

7t 2j

y2 2 c2j — 1 22,H —1 •

fc 0

Voici maintenant la demonstration annoncee que (2.1&) et
(2.1c) satisfont ä (2.1a).
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Nous avons tout d'abord

alak Isih 2| ^n' y, y, (siK (slJn'
n n' n n'

or

^ ^ *k

(s,> («/,)»' \
1 X 1 X - X (GiGk) X X 1 si re re'

1 X 1 X X 4 X X a] X X 1 si re > re'
n' n

done

(si)n(sh)n' (sk)n'(siln '\n'(s/)n (2.1c)

avec
I 0 si re ^ re'

8 1

I 1 si re re'

II en resulte que

°i 4 — 4 4 >] { (4)n K)n' — (4)«' (sl)n }
n, 7i'

l' 4n'(4)n '4 '

n, n' n'

On a de meme

i "ft i i "ft
k*i °k — ak H — 2 S 4>rem ^fe — CTft °i — 2 S K)n„

' ni '

'

v (s.) __ yial — 2 2j °fe CTft 2j (4nro
/ m m

in; — i 2 y_. («;)„ icq. C.Q.F.D.

Ainsi les equations (2.1a) admettent-elles 22j_1 solutions du

type (2.16) et (2.1c). Nous pouvons done attribuer au corpus-
cule de spin quelconque /', 22,~1 hamiltoniens primaires; ce qui
nous conduit, en nous restreignant de prime abord aux cor-

puscules sans masse, ä ecrire 223"1 systemes d'equations d'onde,
obtenus en faisant 3C<b 0 ot, en adjoignant au groupe
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d'equations ainsi engendre d'autres groupes complementaires,
choisies de maniere ä satisfaire la condition

4 0 (2.1/)

On arrive ä les deduire, ces groupes complementaires dont
le nombre est egal ä 2/ — 1, en raisonnant comme suit.
Commencons par poser

g54 2<# 2(V 4 + ö^) ' {2Ag)

on a alors

(S5'2)2 ö2 + ö2 + (V
1 ' 12 3

(öt — S*2) (ö, + s'2) d2 — ö2 — d2 — ö2

[1 X lx X S^2 X X 1 X l]2

1 X 1 X X (ö2 + ö2 + ö2) X X 1 X 1

n

(ö2 + d2 -f ö2) [1 x 1 X X 1 X X 1 X 1]

lldn) •

1

Afin de simplifier les notations, nous poserons en outre

1 x 1 x x S[! x x 1 x 1 ; (2.1A)

est done un produit exterieur de 2/ facteurs dont 2j — 1

sont constitues par la matrice unite et dont un, occupant la
wieme p]ac6j es^ ja matrice — Operateur differentiel — S;%

definie par (2.1g).
Cela etant, on verifie aisement que la solution cherchee, pour

les equations d'onde primaires du corpuscule de spin /, se

presente sous la forme de 22'"1 systemes d'equations, com-

prenant chacun 2 / groupes de 22j equations (la fonction
d'onde ty3 ayant 2 25 fois plus de composantes que la fonc-

(d2 -f ö2 + ö2)
\ 1 '

2 3'
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tion qui est ä 2 composantes):

d( + SJ) 4 0 (öt + S?) 4 0 (d, + s523) 4- 0 (1)

at +- sj) 4» o (at + s>n) 4 o (at + s'2j_4) 4 0, (öt-s>3) 4, 0 (2)

at + SJ) 4 0 (at + s?n) 4 0 (a,-^) 4. 0, (at + s>3) 4 0 (3)

a, -sj) 4 0, ^at + s'a) 4. =0 (at + s|3) 4 0 (2/+1)

Öt + SJ) 4; 0 (dt + s3 ou 3_,/J 4» 0

(öt - Vi ou )t54) + 0,(at - sy 4, 0 (2«-»)

(/ et ; + 1 lorsque 2/ est un nombre pair, / — y2 et / + y2

lorsque 2/ est un nombre impair).

Nous pouvons done dire qu'il existe 22]~l especes de corpus-
eules sans masse de spin / et autant de corpuscules comple-
mentaires.

Quant au terme de masse, on peut l'ajouter formellement
aux equations que nous venons d'ecrire, selon le procede
suivant:

Posons

mc
h (2.1/)

et imposons aux ip la condition

4) — x24 {2.1k)

Ecrivons alors

(d, + Syj) 4 xa4* (2.1/)

ct etant une matrice ä determiner. On a

4, (öt — S^) :d( + s1/z) 4 =- x (dt — S5'2) CT

—x2 4 x<r(at + (S,/2)*) 4* •

D'oü les deux conditions auxquelles doit satisfaire ct:

— Si/2ct =- ct(S'/2)* (2.1m)

ct ct* — 1 (2.In)
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La condition (2.1m) conduit aux relations:

ct —ctct^ (2.1 m')

Gk etant une matrice quelconque de Pauli. On satisfait les

relations (2.1m) et (2.In) en prenant pour cj le double de la
matrice de Pauli ä elements purement imaginaires.

Les equations primaires des corpuscules de spin / peuvent
de meme etre pourvues formellement d'un terme de masse. En
voici un groupe d'equations :

(öj ± S3j «I; X[ct' X ct" X X CT*"-1' X CT X <j(n + 1> X X ct(23)]«J;*

(2.1o)

oü la matrice ct, precedemment definie, figure comme nlerae

facteur et oü ct' X ct" X X ct(23) represente un produit de

n — 1 matrices unitaires ä deux lignes et ä deux colonnes,
ne contenant qu'un nombre pair des matrices ä elements purement

imaginaires. A titre d'exemple nous allons ecrire les

equations primaires relatives aux corpuscules de spin 1 et s/2:

Spin 1

l (ö, + [1 X S54]) «I; x[ct' X ct](|I* (d, + [1 X S1/2]) 6 X[ct' X ct]«!;*
(1)

'
(2)

(ö( + [S'/2 X 1]) «^ x[ct X ct'Jv* (dt—[S1/2 Xl])i|) x[ct X ct']«);*

(2.1p)

Spin 3/2

i(dt

+ [1 X 1 X S1/2]) i); x[ct' X ct' X ct] ti* (dj + [1 X 1 X Sy*]) <)» x[o' X a' X ct] ];*

(öt+ [1 X S'A X 1]) «J< x[ct' X ct X ct']«];* (2) I (d( + [l X S54 X 1]) «]< x[ct' X ct X ct']«);*

(ö( + [S'4 XlXl])i) x [ct X ct' X ct']«);* [ (ö(—[S54 X 1 X 1]) ö x[ct X ct' X ct']«);*

(öt + [l X 1 X S1/2])«I; x[ct' X ct' X ct]«!;* (ö{—[1 X 1 X S54]) «J; x[ct' X ct'X ct]«);*

(3) < (öt—[1 X SI/2 x 1]) «J; x[ct' X ct X ct']«);* (4) < (öt + [1 x S'/2 Xl])«!i x[ct' X ct X ct') «!;*

(d,+ [S1/2 XlXl])«!i *[aXo'X o']'];* (öt + [S1/2 XlXl])«|i x[ct X ct' X ct']«);*

(2.1;/)
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2.2 Equations secondaires.

2.21 Equations composees.

Les equations composees de degre k du corpuscule de spin /'

s'obtiennent en eonsiderant un Systeme de k + 1 equations
primaires simultanees. L'interet des equations composees reside

dans la possibility de donner aux equations une forme oü dans

le terme de masse figure la meme fonction <£> que dans le reste
de l'equation et non pas la fonction conjuguee complexe, comme
c'est le cas des equations primaires. Ces equations sont done

compatibles avec l'existence d'un hamiltonien du type

h ö
A 7a*ö^ + a*m°c

Envisageons premierement les equations composees du

corpuscule de spin y2:

(d, S'/2)(1)<p xa(1)?>*
(2.21 a)

[ (f)j + S1/2)'2'a xa^o*
Posons

d)(i; I1)® _[_ j (2)(p
; =- (j(W<p* -f. t P'o*) (2.216)

et considerons une fonction cp ä 4 composantes (1)^2-

(2)i!q, (2)4'2)- Les equations (2.21a) deviennent

,öt + jS
2

S 0 -
0 1 '

-1 0

0 — i

+ i
(2.21 c)

ce qui n'est qu'aree des representations possibles de Vequation
de Dirac. D'une maniere plus generale nous ecrirons pour cette

equation

(d, ~ [ct' x S'2])T ixfo'1 x 1]A (2.2id)

Or

A jx(öt — [a! X S,/2j)[afe Xl]i
ix[a'! X t](ö,+ [a1 X S"'2])^ — y?b
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D'oü les conditions:

{cte)2 ((jft)2 1 ahal — aV (2.21e)

Done a11 et a1 sont les doubles de deux matrices differentes
de Pauli (k =4= l).

En formant les equations composees de degre superieur ä

un, pour le corpuscule de spin on aboutit aux equations
de Whittaker. Nous reviendrons encore sur ce point plus loin.

Pour le spin / > y2, chaque Systeme d'equations va donner
naissance ä une suite autonome d'equations composees. Pour
chaque groupe, on deduit, par exemple, les equations composees

de degre 1 qui sont les suivantes:

sjj 0 \ 0, [a' X o" X X c("_1) X a X a(n_1) X X <r(2s)]

± U iy
0 ~~ <J — !>' X a" X X XoX CT(n+1) X X <7(Zl>] 0

(2.21/)

oü ^ est une fonetion ä 225"1 composantes, definie par les

relations:

(lty (1)9 + £(2)?

D)([j [a' x a" X X X c X o«»-1) X X (P)q* -j-

(2.21 g)

Ces relations devant jouer simultanement pour les 2/ groupes
d'equations du corpuscule de spin /, il faut que l'on ait

a a" "+!) a -

T

On posera, d'une maniere generale:

(d, ± [a1 X SjjU iy
2j "I

<yh x J [ <7 I 4 (2.21 A)
1 J

et l'on demontrera, comme precedemment, que les matrices
al et ah satisfont aux relations (2.21e).
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2.22 Equations mixtes.

Ce type d'equations peut etre forme pour j > %, eil inter-
connectant par l'intermediaire du terme de masse les 22'-1

systemes d'equations primaires (de 22'-1 manieres differentes, done

il existe, pour le spin /, 2Z5_1 systemes d'equations mixtes), de

faijon ä obtenir des systemes oü jouent des fonetions d'onde
ä 22'-1 X 22j+1 245 composantes. Avant de nous attaquer
au cas general, nous allons pour plus de clarte traiter le eas

particulier du spin 1.

Reprenons les equations (2.1p) en combinant les systemes
(1) et (2) de la maniere que voici:

Dans un groupe d'equations figurent aux termes de masse
des fonetions (]>* et 9*, tandis que dans un autre, les fonetions

et <p. Cela resulte des conditions de compatibilite des equations

du type (1) et de Celles du type (2), question dont il sera

question plus tard. L'etude de l'ecriture relativiste de ces

equations conduit, par ailleurs, clairement ä la meme consta-
tation. Quant aux matrices <?', leur structure resulte des

conditions :

On a ainsi, par exemple:

4» (dt — Si) (dt + x(d( — S*) [a' X a]

x[a' X a] (öj + S1;) 9* — x2|V X cs] [a' X a]* "j1 — x2 ^ ;

d'oü l'on tire a'a'* — 1, relation qui est satisfaite en

prenant pour a' la matrice a ä elements purement imaginaires.

(2.22a)

(2.22 b)

—x241 et —x29
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Nous eondenserons les ecritures eri prenant une fonction
d'onde unique VF (i|>, cp). Ensuite nous ecrirons d'une maniere

plus generale:

(öt + [a! x Sjj]) Y x[aft X a X a]Y* ;

(öf + [</ X S^,]) Y ixfa'1' X 1 X 1]T (2.22a')

(df + [<j!' x S'j) Y ix[afe' X 1 X 1]Y ;

(d, + [a! X S^,]) Y x[aft X a x a] Y* (2.22b')

On a alors

x(dt — [a1 X S*])[afe X <7 X o]Y* x^ X a X a](ö(+ [ol X S^]*)Y*
x2 [ak X a X er] [o' X er X a]* Y — x2 Y ;

d'oü afec7ft* —1, done ak a, et GlGk =ok(o1)*, done
1.

D'autre part

ix(dt — [a1' X S^])[afe' X 1 X 1]Y ix[aft' X 1 X 1] (ö( + [cr!' X S*]) Y

— x2Y ;

d'oü o1'ah' —ah' g1', done a1' et ak' sont deux matrices de

Pauli (avec V ^ k').
Passons maintenant au cas general du spin /. D' apres ce que

nous axons vu nous devons distinguer deux types d'equations:

1° Le type A:

2j-l
df + n^xsj,

_i=1
Y

2j-l 2 j

Il^ixHa
1 1

vp* (2.22c)

Le type B:

II x sj, Y
2j-l

II'
1

2j "

xlli
1

Y (2.22c?)
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La condition —x2VF conduit aux relations sui-
vantes:

/2j-l \ (i}-\ \ /2j-l \ /2j-l \*iK')(ri^) • (2-22e>

Ii-1 \ / 2j

il^^'KHoo*) — i (2.22/)
1 / \ 1

-•j-l
_ _

2j-l
ak' i es1' i (2.22g)

1 1

Comme otj* —1, nous voyons que suivant que 2/ est

impair ou pair, nous devons avoir, respectivement, un nombre

pair ou impair des matrices ahi satisfaisant ä la condition
— 1, c'est-a-dire telles que ak'1 — a. Par ailleurs

nous devons avoir un nombre pair p de couples de matrices
satisfaisant ä la relation

a"' ~ahi(ali)*

et 2/ — p de couples de matrices satisfaisant ä

ab a'<< a'^fab)* ;

ainsi qu'un nombre impair p' de couples de matrices
satisfaisant ä

a ' esk ' ^ — ak < d i

et un nombre 2/—p' de couples de matrices satisfaisant ä

Les relations (2.22e, / et g) sont relatives aux matrices du

meme groupe d'equations. 11 existe des relations analogues qui
relient entre elles les matrices a1'1, ah\ ak ' et c''«, relatives aux

groupes differents (caracterises par les differentes valeurs de

l'indice n) d'un meme Systeme d'equations (caracterise par
l'indice r). Nous appellerons l'ensemble de ces relations, les

relations de compatibilite.
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Yoici, par exemple, comment on en obtient une partie:

-2j-i
n cs^ni X sj,

1
rix

21-1

n C7(l0n2 X n 2

1

2j-l
n CT(!iV2 x
1

2
ö, +

21-1

II x si
i

,dt-
"21-1

II X Sitil
1

2j-l 2j -

n x n a
i i

-0-1 21 -

IT a'^nx x II a
1 1

Ö, + n (a^a)* X Si*
1

2j-l
II CT^'bu x II a
1 1

-21-1

n x n (ct)*
1 1

(-1) 2j -X
>j-l 21-1 \ 2" -

n CT(ft,9«i n (a(fe9n2)*j X IT 1

1 1 / 1

Or les expressions precedentes doivent et re egales aussi a:

21-1

n CT((9nx x Si
1

"i
21-1 21 -

n CT^na X n CT

1 1

21-1 2j -

n a(,!^nP X n ct

1 1
-

2 f-1
a, + n (ct^'Vi)* x s*j

1

u*

2j-l 2j
n CT(ftdn2 X n ct

1 1

21-1 21 -

n (d^i'ni)* x IT CT*

1 1

1 )~>Y?

-21-1
11

1

21-1 21 -

ri (ct^i^I)* x ni
i i

Des raisonnements analogues doivent etre faits ä propos
des equations du type B, ainsi que pour un groupe A et un
autre du type B (appartenant tous au meme Systeme d'equa-
tions). On aboutit ainsi ä l'ensemble suivant de relations de
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compatibilite:
i

('On 1 IX — (—l)(1_snj, n2) Ü fj (a^'ni) *

n a

n a

n a

n a

n a

n

n a

n a

n a

m (—i)si, «2 nn<r'''|'r|i
na(ft'o na(,i'i)ria('o

na(ft,) — no^i'nfa^iV
II a(0)»2 na(!0n2na(y«i

»I n cj^'0n2 na(I'f)».n<T(,'f)ni

n/i =n/in^
"1 IT(a(ft0n2)f n (jV'^ns II

ni n a^f'0jj2

ri(Ao* — ri0fe'' no'*»

(2.22h)

Nous allous donner maintenant le nombre r de groupes du

Lype A et le nombre 2/ — r de groupes du type B dans chacun
des 2'^' systemes d'equations relatives au spin /:

Spin Type A Type B
Nombre
total de
groupes

1 1 1 2

sk t ou 3 2 ou 0 3

2 1 ou 3 2 ou 1 4

5/2 1, 3 ou 5 4, 2 ou 0 5

f impair
| pair 1, 3,

2/-2 ou 2j
2/- 3 ou 2/- 1

2/ - 1, 2 ou

2/- 1, 3 ou

0

1

2/
2/

(2.22 i)

Lorsque les r groupes du type A sont pris d'une maniere

quelconque parmi les 2/ groupes:

2,-1 (|

n a
i

-2,-1 („r.
II a1 X n a

-
1 1
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alors que les 2/ — r groupes du type B sont fixes, parmi les

2/ groupes,

(öf +

n' 1, 2, 2/

par la condition n' ^ n. II y a ainsi CJ- systemes admettant

r groupes du type A et 2/ — r groupes du type B, done, au

total, S'Cy systemes, la somme 2' etant etendue ä toutes les

valeurs impaires de r, comprises entre 1 et 2/. Or, d'apres une
relation bien connue C^- On voit done que

2j-l
E'Qj 2 oil la derniere somme est etendue ä toutes

o

les valeurs entieres de r comprises entre 0 et 2/ — 1. Elle est

done bien egale ä 223"1. Les 22,_1 systemes, obtenus en prenant
pour le nombre 2/ — r de groupe B un nombre impair, sont

equivalents aux systemes complexes conjugues des systemes
precedents.

2.23 Equations mixtes composees.

Nous allons suivre la meme procedure qu'au § 2.21. Tout
d'abord nous allons former les equations mixtes composees du

premier degre pour le corpuscule de spin 1. Partons, par exem-

ple, des equations (2.22b):

idt+K){1) +

(öt + s;)(i)9

(ö( + S;)«9

et introduisons une fonetion d'onde ,F((1)VF, et
formee de la maniere suivante:

«T W* + <»)T _ i[o x 0]((V + i(V)
Mip (1)9 + j(2)9 <4)T + x +

Archives. Vol. 26. — Septembre-Octobre 1944.

V CD,
11 CT

1

x S3
2l-l
n ' xm
i

T

x[ct X a]3'3 cp* (öf + Sj^1' t(» ix[1 X 1]' 9

x[a X a](2) 9* (dt + Sl2)(2) iji ix[1 X 1)(2) 9

— x[a X cr](1)4* (dt — Sl)(1)<p ix[1 X 1](1)*4

— x[a X a](2) 4>* (öt — S,2)(2)9 ix[1 X 1](2) 4»

(2.23a)

(2.23 b)

10
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Les equations (2.23a) prennent alors la forme suivante:

(dt + [« x 1 x S^]) Y

(ö( + [1 x a3 X S)]) Y

ct x l x Kl
1

1

1 X CT m
1

Y

Y

(2.23c)

oü les matrices esq et a3 sont les doubles de deux matrices
reelles de Pauli.

En appliquant le meme procede aux equations (2.22a) nous
aboutissons aux equations suivantes:

(öf + [1 x ct3 x s|]) Y' ix

(ö( -j- [<j3 x 1 X S*]) Y' ix.

i x a x n ii i

CT X 1 m

Y'

VJ1V

(2.23d)

La transformation, defmie par la matrice unitaire:

U Vz ([1 X 1] + [ctx X ctL + [ct X ct] + [ct3 X o3]) [1 X 1] (2.23e)

permet de prouver l'equivalence de (2.23c) et de (2.23dl).

Done les equations composees du premier degre, auxquelles
donnent lieu les deux systemes d'equations mixtes pour le

corpuscule de spin 1, sont äquivalentes. Ce Systeme unique
d'equations mixtes composees pour / 1 est d'ailleurs iden-

tique au Systeme d'equations que M. Louis de Broglie a mis
ä la base de sa theorie du photon.

Dans le cas general du spin / quelconque, nous avons:

(öj + [IIct" x Sj,])(1)6 x[IlCTfti x nCT](1)^*

(dt + [na" x sj,])'2^ x[nCT,d x riCT](2'^* |

et les equations du type B, doublees de la meme maniere.
En posant:

«y (1)<j; + t(2)<> (2)y — i[nCT(,ii,»o x n<j]((1)^* + f(2)ijj*)

nous obtenons, compte tenu des relations de compatibilite, les

equations suivantes:

(Ö, + [ct3 X IlCT(il)" X sjj]) Y i X [CTj X ri(CT(,<i)"CT(fti)»o) X ni]Y J

(ö + [i x nCT((,,)"' x s^,]) y tx[i x W*'0»' x ni]Y j

(ä suivre)

(2.23/)

(2.23g)
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