Zeitschrift: Archives des sciences physiques et naturelles

Herausgeber: Société de Physique et d'Histoire Naturelle de Genève

Band: 25 (1943)

Artikel: Le spectre et la théorie du rang

Autor: Wavre, Rolin

DOI: https://doi.org/10.5169/seals-742349

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 02.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

à un cœur isolé d'hétérotherme placé dans des solutions artificielles la possibilité de réagir vis-à-vis de la température à la façon d'un cœur d'Oiseau ou de Mammifère, on peut se demander si l'adaptation des organes ou des cellules de ces derniers animaux aux températures relativement hautes de 37° à 43° n'est pas conditionnée par le même facteur que nous avons rencontré dans les expériences *in vitro*, à savoir une convenable prépondérance des ions K⁺ dans le milieu intérieur de l'animal.

Certes, nous n'entendons pas lier ce point de vue de façon directe et, dans une relation de cause à effet, au mécanisme de l'homéothermie. Mais on pourrait admettre que l'acquisition de divers facteurs (nerveux, circulatoires, hormonaux, composition des tissus) et qui maintiennent haute et constante la température des êtres supérieurs n'ait commencé à devenir possible qu'à la faveur d'une évolution préalable dans la composition du milieu intérieur, évolution dont la conséquence était de reporter vers des températures plus élevées le maximum d'activité des cellules ¹.

Rolin Wavre. — Le spectre et la théorie du rang.

On dit qu'une fonction f(x) est continue en x^0 , si sur toute suite x^n tendant vers x^0 , l'on a

$$f(x^0) = \lim f(x^n) . (1)$$

Baire a élargi cette notion de continuité et sa généralisation est utile dans plusieurs domaines des mathématiques.

 $\overline{\lim} f(x^n)$ désignera la plus grande valeur au voisinage de laquelle il y a une infinité de valeurs $f(x^m)$; c'est ce que l'on appelle la plus grande limite.

 $\frac{\lim}{\text{L'équation (1)}} f(x^n)$ sera la plus petite limite, définition analogue.

$$f(x^0) \geqslant \overline{\lim} f(x^n)$$
 (2) et $f(x^0) \leqslant \underline{\lim} f(x^n)$. (3)

¹ Notre mémoire *in extenso* est publié dans les Archives des Sciences physiques et naturelles, 5° série, vol. 25, 1943.

Si l'on ne retient que la condition (2) la fonction f sera dite semi-continue supérieurement en x_0 , si l'on ne retient que (3) f(x) sera dite semi-continue inférieurement en x_0 .

Ces notions de semi-continuité s'étendant à des fonctionnelles. Elles s'étendent à des fonctions d'un point de l'espace d'Hilbert à une infinité de dimensions.

C'est dans un espace E, isomorphe de l'espace d'Hilbert et de l'espace fonctionnel que nous formerons ici des fonctionnelles intéressantes liées à la théorie des valeurs spectrales.

A étant un opérateur hermitien, agissant sur un élément x de E, et A^p son $p^{\text{ième}}$ itéré, nous formons comme dans nos notes précédentes

$$A^p x = l_1 \dots l_p x_p$$

avec norme

$$||x_p|| = 1$$
.

L'on a

$$l_1 \leqslant l_2 \leqslant l_3 \leqslant \dots ;$$

soit

$$l=\lim\,l_p$$

et

$$\varpi = \frac{l_1}{l} \cdot \frac{l_2}{l} \cdot \frac{l_3}{l} \dots .$$

Tant qu'il existe une infinité de conséquents x_p de x ces nombres existe, l est fini ou infini, $0 \le \varpi \le 1$. Si $l_1 = 0$, l'on dit que l = 0 et l'on ne forme pas le produit infini ϖ .

Les nombres l(x) et $\varpi(x)$ dépendent de x; ce sont des fonctionnelles de x. Elles ne sont pas continues, des exemples simples tirés de la théorie des équations intégrales le montrent facilement.

Mais on peut démontrer ceci:

- I. La fonctionnelle l(x) est semi-continue inférieurement.
- II. La fonctionnelle $\varpi(x)$ est semi-continue supérieurement.

La démonstration paraîtra dans une revue spécialisée.

Nos notes précédentes ont rappelé que si $\varpi(x) > 0$, les conséquents x_p convergent fortement vers une limite qui est

un élément (vecteur, ou fonction) propre, répondant à la valeur propre (période ou fréquence) l. Et dans ce cas l appartient au spectre ponctuel.

Si $\varpi(x) = 0$, alors l(x) est lié d'une manière plus compliquée à l'ensemble des valeurs spectrales.

Il est donc naturel d'attacher à l un simple caractère 0 ou 1 suivant que $\varpi = 0$ ou $\varpi > 0$. Le rang de x sera cette valeur l^0 ou l^1 et se désignera par r(x).

Deux éléments auront même rang si, et seulement si, ils ont même l et en même temps deux ϖ nuls ou deux ϖ différent de zéro.

$$r(x) < r(y)$$
 si $l(x) < l(y)$

ou si

$$l(x) = l(y)$$
 avec $\varpi(x) = 0$ et $\varpi(y) \leqslant 0$.

Cette relation de rang est transitive, l'égalité est symétrique... Soit alors x^n une suite d'éléments tendant fortement (comme d'ailleurs dans I et II) vers un élément x^0 .

On peut comparer $r(x^0)$ avec $\lim r(x^n)$ et démontrer.

III. Le rang est semi-continu inférieurement:

$$r(x^0) \leqslant \underline{\lim} r(x^n)$$
.

Il est possible que $l(x^p) > l(x^0)$ alors $\varpi(x^0) = 0$.

Lucien Féraud. — Statistique mathématique: Distributions de produits intérieurs.

1. De deux distributions « semi-normales » définies respectivement par les fonctions de fréquence

$$\frac{\alpha_x^{\lambda_x}}{\Gamma(\lambda_x)} x^{\lambda_x - 1} e^{-\alpha_x x} , \qquad \frac{\alpha_y^{\lambda_y}}{\Gamma(\lambda_y)} y^{\lambda_y - 1} e^{-\alpha_y y}$$

(où x, α_x , λ_x ; y, α_y , λ_y sont tous positifs) on déduit, en les considérant comme indépendantes, la distribution de la différence z = x - y.