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1943 . Vol. 25 Mai-Juin

L’APLATISSEMENT TERRESTRE
CALCULE EN SECONDE APPROXIMATION

PAR

Jean RUFFET

INTRODUCTION.

Nous nous proposons de résumer dans les pages qui suivent
les résultats relatifs & la figure de la terre obtenus dans notre
these « L’aplatissement terrestre calculé en seconde approxima-
tion ».

Nous avons d’abord repris dans une premiére partie la belle
méthode du procédé uniforme proposée par M. Wavre et
exposée au chapitre 1V de son livre « Figures planétaires et
géodésie » en employant un développement initialement diffé-
rent. Nous avons développé en série suivant les puissances
de la vitesse angulaire @ non plus le rayon vecteur R mais
I'inverse du carré du rayon polaire r. Les figures d’équilibre
étant voisines des ellipsoides, il était naturel de prendre une
coordonnée radiale qui etit un développement fini et non illimité
pour les ellipsoides.

Dans une seconde partie, nous avons appliqué le procédé
uniforme en développant suivant les puissances de la vitesse
angulaire non seulement lellipticité et la pesanteur, mais
également la masse totalel. L’étude de la constante p,, qui

1 En 1937, Mle M.-J. Pérau, de Bruxelles, a appliqué le procede
uniforme }usqua la tr01s1eme apprommatlon en de{'
masse en série dans un travail manuscrit dont M. Wavrg a e

:ﬁ.-'j_j,_f

sance et qui, croyons-nous, n’a pas été publié.
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s’introduit dans cette recherche, a permis de resserrer I'inter-
valle de variation de I'inverse d’aplatissement. Rappelons que
les données fondamentales sont: le rayon polaire, la pesanteur
au pdle, et la constante p de la précession générale; leurs
valeurs numériques que nous adoptons sont celles rappelées
par M. Wavre dans son ouvrage « Figures planétaires et
géodésie ».

LE DEVELOPPEMENT DE 7.

Rappelons que dans le probléme des figures planétaires, la
condition nécessaire et suffisante pour qu’il y ait équilibre
relatif s’écrit sous la forme du tableau fondamental donné par
les formules (102) et (103) de la page 78 de « Figures planétaires
et géodésie ». Nous avons posé r = R™ et ¢ = 2p et avons
développé T'inverse du carré du rayon polaire en écrivant

r= %(1 + 7) ou t représente le rayon de la sphére de méme

pole que la surface de niveau, v étant une fonction de ¢, du

complément de la latitude géocentrique 6 et de la longitude ¢.

Aprés avoir substitué le développement formel de 7 et de @ en

série de puissances de w? dans le systéme fondamental, on

obtient une expression formelle que 1'on ordonne suivant les

puissances de w? et relativement a toute valeur de p.
Symboliquement, écrivons

\ULAn pn)
> o Fp =0 .

n

L’approximation d’ordre n consiste & poser F;a") ==
L’identification des termes en w? conduit a la déformation

2 = A (1) sin® 0

qui ne différe de e que par une quantité constante. Le coeffi-
cient A est lié a a par I'égalité A = — 2a. On retrouve les
résultats classiques, seuls les ellipsoides de révolution répondent
a cette déformation.

L’étude de la seconde approximation donne des formules
algébriques qui présentent une analogie avec celles obtenues
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en développant le rayon vecteur. En particulier, '’expression
de la déformation a 'extérieur de I'astre s’écrit

n = M(z) sin? 0 — N (¢) sin? 0 cos? 0

avec

M(t) = — 2%e®(® + w™) + Rot(— 388 + 4wt + Vi)
N(f) = — W et(315 — but+ TV .

Enfin, & Papproximation demandée, 'inverse d’aplatisse-
ment devient
1 2

2z 1
&% [ 1] 2

La premiére approximation suivant cette nouvelle méthode
est déja plus voisine de la seconde approximation, elle donne
une meilleure idée des résultats numériques a cet ordre de
précision. En partant des valeurs admises par Poincaré, on
obtient pour l'inverse d’aplatissement

1 o068,
(¢4

valeur qui est inférieure de 1,5 & celle déterminée par M. Wavre
a la page 121 de son livre. Par contre, les résultats numériques
sont, .en seconde approximation, avec un écart Insignifiant,
ceux obtenus par M. Wavre au chapitre VIII, Géodésie et
précession, de « Figures planétaires et géodésie ».

Enfin la correction & partir de I'ellipsoide de comparaison
s’exprime en fonction de la constante u par la relation linéaire

5 .. 6350 5 (3 N u)
= 8 (583,7 + 1)2\2

4

avec

2
0 < u=§-§-

Dans le cas de la terre, on trouve en seconde approximation
une valeur moyenne de 6,1 métres.
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LE DEVELOPPEMENT DE LA MASSE M.

Nous avons repris I’étude des approximations successives en
développant également en série de puissances de la vitesse
angulaire « la masse M qui intervient dans l'équation de
Poincaré. On trouve des formules algébriquement semblables
a celles obtenues par M. Wavre dans « Figures planétaires et
géodésie » sans développement de la masse M.

Nous avons introduit dans I’expression de la déformation e
la constante w, de lordre de * liée & M; par la relation
iM, ¢° = w . Cherchons & en déterminer les valeurs limites.

Développons la masse par la formule [p dV en exprimant
I'élément de volume & w?* prés, ¢’est-a-dire en premiére approxi-
mation; on obtient

1
= ST' [ (a13)

avec

la surface libre correspondant a la valeur = = 1.

M. Wavre donne au § 65 du chapitre VI de son livre, les
expressions en premiére approximation des moments d’inertie A
et C dont la différence s’exprime comme ceci

C—A = S—ﬂmzlpdars)

Rappelons enfin que la constante u est liée & cette différence
des moments d’inertie, ce qui permet d’écrire

1
8w
=5 edledy
0

Ces expressions de pu, et de u sont des invariants intégraux
pour toutes les répartitions des densités qui laissent inaltérés
les éléments stokiens S;, w, M.
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Formons la combinaison linéaire suivante et intégrons par
parties nos seconds membres

1

3u1—5u_ 3)

g — [ al=—=de
0

Or, nous avons, quelle que soit la valeur de v: @ 2> 0 et dp < 0,

d’ou l'inégalité
3y, —S5u =0 ;

N)IC.@

le signe = convient au cas de la masse homogéne avec u =

Ainsi la limite inférieure de p, est fonction de la constante u
dont la valeur pour la terre est légérement inférieure & I'unité

u .

| e

W =

Cherchons maintenant a établir sa limite supérieure; pour
cela, revenons au développement de la page 115 de « Figures
planétaires et géodésie ».

M, représente la masse totale My des sphéres et My 4+ wZ M,
la valeur de la masse M.

. »: . M ’ b3 > r
A notre approximation, le quotient ﬁl est égal a la quantité
0

P que nous majorons en prenant sa valeur sur la surface libre
et que nous exprimons en fonction de nos constantes, ce qui
permet d’écrire finalement

“1<2+-§-u.

En remplacant, dans le cas de la terre, u par I'unité, nous
avons une limite supérieure de p,, fortement majorée et que
nous chercherons & abaisser au moyen d’un procédé indiqué par
M. Wavre

7

u1.<§;

N

e
3

5

la masse homogéne donne p; = 3.
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Lor pe LipscHITZ.

Reprenons I'inégalité

Spm — Su
8wi

1
<< — fa(f3—r5)dp

.
0

Majorons encore cette expression en prenant pour a sa
valeur 4 la surface et choisissons comme loi de variation des
densités la loi de Lipschitz qui s’écrit

p = po(l —at™ ,

ou p, est la densité au centre et o et » deux nombres positifs.

Remplacons & nouveau u par 1 dans la déformation a; et
exprimons la masse M, en fonction de la densité moyenne dont
la valeur est

3
D]. = Po (1 i ’3*‘*4:“‘; a) .

Ces substitutions effectuées, I'inégalité prend la forme aprés
intégration
12n 1
3 (n+3)(n+5)
o 3 +n

Exprimons enfin le rapport% en fonction des densités g,

et D, et de n

1 Dl 3+npl’

o Dy — ¢

L’inégalité devient, en majorant encore une fois en mettant
I'unité a la place de u,

5 pl)
u < = + 4( — == )oln
1 3 Dl ( )

en posant
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en particulier

[

p(n —> 0) — &= -

Prenons des données numériques vraisemblables dans le cas
de la terre: la densité moyenne D, = 5,5 et la densité super-
ficielle g, = 2,75, chiffre peut-étre légérement trop élevé mais

. : - 1
qui permet d’exprimer le rapport des densités sous la forme 5

On montre sans difficulté que la constante y, est limitée supé-
rieurement par la valeur 2 pour 0 < n < + ® . Finalement,
sil’on tient compte que I'on a continuellement majoré 'inégalité,

]
~§u<p.1<2.

7
3
rigoureuse puisqu’elle ne fait pas appel a une loi de densité mais
par contre trop défavorable comme nous I'avons déja remarqué.

La limite supérieure obtenue précédemment est plus

HYPOTHESE D’UN NOYAU CENTRAL
ET UNE CIRCONSTANCE EXTREME.

Proposons-nous de déterminer une limite supérieure de

I'expression
1

— /1a('r3—~1:5)dp ,

L3

0

en ne supposant qu'un seul saut de densité pour la valeur =
rendant notre parenthése maximum; ce qui revient a se placer
dans le cas le plus défavorable. Nous aurions par conséquent un
noyau central homogéne de densité p, entouré d’une écorce
homogéne de densité p,.

: . . 3
Le maximum de la parenthése a lieu pour la valeur t, = \/ £

D’aprés nos hypothéses, . est la valeur de 7 pour laquelle la
densité subit le saut. Calculons notre densité moyenne intro-
duite dans a;; ce qui donne aprés intégration

D, = (po— @) 7. + 6
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Notre inégalité devient alors

12 f1
s —su < 2(1— 82}

En limitant supérieurement u, on a

5 & P1
g =+ 3( -3
inégalité analogue a celle du cas le plus défavorable déduit de

la loi de Lipschitz (n — 0), mais obtenue actuellement sans
introduire la loi des densités.

LES RESULTATS NUMERIQUES.

Les valeurs numériques auxquelles conduisent les formules
algébriques donnent pour l'inverse d’aplatissement des résul-
tats légérement plus élevés. Le centre de I'intervalle de varia-
tion de I'inverse d’aplatissement parait étre 296,4; le chiffre 297
reste exclu.

En tenant compte des modifications apportées par l'intro-
duction de la constante p de la précession générale, on peut
donner les résultats suivants

5
avec g u < py < 2 296 < % < 296,7

i

i
3
Avec trois décimales, nous avons 0,958 < u < 0,965.

la limite - éléve & 297,08 la valeur maximum.

g - gé . - A 2 4
—~——"" donne lieu & la double inéga-

Déq.

Enfin le rapport z =

lité

0,005274 < z < 0,005286

Ces limites de z et de l'inverse d’aplatissement contiennent
les chiffres donnés par Helmert en 1915 et rappelés par M. Wavre
dans son livre a la page 122.
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