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1943 Vol. 25 Janvier-Février

UNE METHODE NOUVELLE

DE LA

QUANTIFICATION DES CHAMPS

PAR

E. C. G. STUECKELBERG
(Avec 6 fig.)

(suite et fin)

IITe PARTIE

Théorie classique du champ chargé.

§ 10. — LES LIGNES D'UNIVERS QUE SUIVENT
LES PAQUETS D'ONDES DU CHAMP NON CHARGE,

Nous étudions 1’évolution que subit un paquet d’ondes
u(x, x%), dont on connait la forme u (£, 0), au temps z* = 0.

Dans I’absence de « formes extérieures » (y,” = 0) ce paquet
suit, en moyenne, une ligne d’univers qui est une droite.

Nous faisons alors intervenir le champ de force yx,° 7 0.
Le champ u(z); le plus simple est celui a une seule compo-
sante @ (2), qui doit alors étre un scalaire. On en forme
1(2),> = @ ()7, ou v = ) 1 doit étre un spineur (anti-)
symétrique si u, appartient & une rep. univ. (ou biv.).

Un tel spineur existe pour la rep. biv. toujours sous forme
de ©*® = eh™ E*®. 1l sera montré autre part (cf. § 19), que
le paquet suivra alors en moyenne une ligne d’univers * = ¢%(s)

avec ds? = — g.q(q) dg* dg® qui satisfait &

d2
Qameoq)(q) .

o s >

(10.1)
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L’équation d’onde pour le « champ de force » u7 doit contenir
d’autres composantes. S’il n’en existe pas, la seule possibilité
est Bea® = 0. Il résulte alors de I’équation d’onde (2.10)
x® = 0. Pour cette raison nous introduisons, comme théorie
la plus simple, celle qui contient en plus du scalaire @ ses
dérivées 7D, = 3, D. Le systéme !

0,0 — D,

0, 0* — I ® = — elu] E*%u (10.2)

peut étre mis sous la forme (6.9), si on introduit les cing
composantes (2hl) DA = ua(A =1 & 4); A)PD = ut;
! = »7". Ala place de '13% + T . en §6, on peut considérer?
le tenseur
o = a 1 o
T —1 2(@ (I)B—-Eg (o, 0" + (@)2)) . {10.3)
I1 satisfait en vertu de (10.2) & I’équation de continuité

0, T — 0, (Tl + Tat,) = 0 . (10.4)

Pour généraliser la théorie, la question se pose si on peut
introduire des composantes vectorielles ®@_(z) dans ’expression
pour %,”(z). La seule facon serait

y (@)} = — eh D, (z) v2 . (10.5)

Elle est impossible parce que y**® est symétrique. Un y**
symétrique est en contradiction avec le § 6.

Le méme raisonnement est appliqué aux rep. univ. Dans ce
cas 7*? doit étre symétrique. C’est alors le tenseur fondamental

7** qu’on substitue en 7*® = eh'x*". L’utilisation d’un
vecteur @, est impossible, parce que
x(2),> = eh™ @ (z) BF" (10.6)

est antisymeétrique.
1 Systéme de la force scalaire de Yukawa pour des mésotrons
neutres & spin 0: ([ ]— %) @ = eutAdu,.

2 On a ajouté & Toy + Tov . de (6.7) un terme TZ® satisfaisant
a dg T;‘B = 0 pour le symétriser.



QUANTIFICATION DES CHAMPS 7

§ 11. — LES LIGNES D'UNIVERS QUE SUIVENT
LES PAQUETS D'ONDES DU CHAMP CHARGE,

Nous cherchons la généralisation nécessaire pour que le
champ vectoriel @, (z) puisse étre utilisé comme « champ de
force » dans I’équation d’onde pour u,. Ce n’est qu’une substi-
tution du genre (10.5). Pour qu’une telle opération devienne
possible pour la rep. biv.,il faut qu’a part les y**® symétriques,
des spinotenseurs antisymétriques p**? = — B*34 existent pour
cette méme rep. biv. : ¢,* est alors donné par (10.6) pour des
rep. biv. et (10.5) pour des rep. univ.

La représentation irréductible ne dispose pas de tels spineurs.
Pour introduire (10.6) dans I’équation d’onde, il faut donc
passer & une représentation réductible. Si v sont les matrices

YEB(K: B =1..f) du systéme irréductible (¢ f lignes), on
peut toujours en former des y**) symétriques et des B**/
antisymétriques a 2f lignes par

a(f) oD
wepy _ (Y0 cogeen — (0 A (11.2)
i o, o) P wh oo )7

A Vaide de la « matrice ¢ »

0 —1D
I = 7 {11.3)
1 0

(17 est la matrice d’unité 4 f lignes et colonnes) on a
(A,B...=1..2f): '

BY® = i 8% = v3%ig . (11.4

La matrice ¢ est ainsi la matrice-antisymétrigue qui commut
avec tous les y*

Elle est différente de la matrice antisymétrique & parce
qu’on a

()0 =88 =& =38 (11.5)
(iz)AB shic iAC. iCB e Si — zAB ]
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L’opération D (z), définie par

D, ()2 = 80, (x) —ileh™ O (z) (11.6)

«(®)s

permet d’écrire 1’équation d’onde (6.1) (avec (10.6)) dans la
forme
((DGT“)AB—xEAB)u(x)B = 0 . (11.7)

La méme généralisation est possible pour les rep. univ. On
construit des B*®) et des v*®" a partir des p*) antisymé-
triques:

aony _ (B, 0N e U
B = ;oY = (11.8)
0, BG(J‘) —p*h 0

soit encore une fois avec (11.3)
C

YiP = — [ 0pYP = —pACi P, (11.9)

L’équation d’onde prend la forme

% B —-x'f}cB)u(x)B == (11.10)

Une multiplication de (11.7) avec — ¢,° et la définition

(CED =D ACED = qAP (11.11)
d’un spineur scalaire £*® = — EP* antisymétrique pour des

rep. univ. formé par contraction sur les deux spineurs *® et le
spineur fondamental n*®, donne & I’équation d’onde pour un
champ & rep. univ. (11.7) la méme forme (11.10) que celle de
la rep. biv. Il faut seulement se rappeler que c’est %** et non
pas £** qu'on a défini comme le spineur fondamental dans le
cas d’une rep. univ. Pourtant cette distinction n’entre pas en
jeu si nous écrivons les scalaires toujours dans leurs formes
explicites avec les composantes covariantes u, n*® uy,
u, E*%uy et ul i** u,. Laquelle des trois expressions scalaires
est considérée comme égale & u™* u, est alors sans importance.
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Les lignes d’univers que suit un tel paquet d’ondes sont
(cf. §19)

d? ¢*
ds?

P qu
(£ hx) = (+ ¢)B (Q)I ; Bug = 0,03 — 0@, .
(11.13)

Le signe de (& e) est déterminé par le signe de p°") (u/w)
et celui de (- hx) par le signe de o) (u/p) (c’est-a-dire par le
signe des éléments diagonaux des ondes principales dont le
paquet se compose).

Les deux cas (rep. biv. et rep. univ.) admettent ainsi des
paquets d’ondes qui se propagent en suivant des lignes d’uni-
vers que suivent des points de masse chargés d’une charge
spécifique + e/m = + efhx.

Le champ @, introduit en (10.2) ne peut pourtant pas étre
utilisé, parce que son B,y (11.13) disparait identiquement.
Mais le systéme !

0, (T @) — 3, (" @) — B g =0

0B 4+ (7 0%) = J* (11.14)
avec
J*z) = eB***U(z, 2),, ou = —ey***Ulz, a),,
(11.15)

peut étre mis sous forme (6.9), si on introduit les dix compo-
santes 7 ®_, By, = — Bg,. Le tenseur

. 1 _
T‘&‘)B — 2% QP 4 B BBU- — g*® (Buv B* 4+ 277° D, (DU‘)
(11.16)

satisfait en vertu de (11.14) a 2

B, TH = =—B¥1I, (11.17)

1 Systéme de la force vectorielle de Yukawa pour des mésotrons
neutres a spin 1.

? La relation 0,®x = [20,J* = 0, qui résulte de (11.14) a été
utilisée.



10 QUANTIFICATION DES CHAMPS

D’autre part le tenseur

T3 (x) = hlim (D*(y) vP)** U (x, 9),,

xX=y
ou
— hlim (.. 8% pour ~P (11.18)

qui différe de (2.4) en ce qu'il contient le «terme mixte » T;ﬁi "]
de (6.6) a la divergence

8, T = B¥J, , (11.19)
Dans cette équation J, est la premiére (ou la seconde) définition
en (11.15) suivant qu’on prend la premiere (ou seconde)
expression (11.18) pour T%,
Le tenseur
T*® — T2k 4 T (11.20)

représente ainsi la densité de 1’énergie-impulsion totale.

§ 12. — LES SOLUTIONS FONDAMENTALES.

AB a.AB)

Les matrices symétriques (n*" et v et les matrices anti-
symétriques (E*" et [B*4P) existant simultanément, on peut
définir les quatre fonctions D®*) et D®%) pour chaque repré-
sentation.

Les définitions (3.11) de ™) et le développement (3.13)

montrent que les relations existent:
DOz, ), = — 5Dz, y) o . (12.1)

Si p™*) est diagonal en pp’

(n+ .

P(?np))(vrn'jp’) - 91('21)11’ 8p? (12.2)
on a toujours

(n— _ :

F)('fr;‘tiiz) (m’p’) — Pmy)n' Lpp’ * (12.2 a)

Le raisonnement qui nous a permis de déterminer le signe

des valeurs propres de p®") pour les rep. biv. irréducibles
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et de p*) pour les rep. univ., reste valable pour les rep. biv.
réductibles du type (11.2):
Une solution quelconque de 1'équation d’onde (11.7) avec des
« forces » %,* = 0 peut toujours étre écrite sous forme d’une
somme des solutions du systéme (11.7) sans « forces » (O, == 0),
mais alors avec des coefficients a(u, 2%) qui dépendent de .
Pour un z* donné, ces solutions appartiennent ainsi & un sys-
téme réductible défini par (11.2). I’ensemble des valeurs
propres des matrices o®") est alors deux fois I'ensemble des
valeurs propres du systéme irréductible. Comme p°*)(u/u’) ne
dépend pas de 24, cette démonstration est valable pour tout z%.

Pour les rep. univ. nous nous rappelons que o) est défini
par une intégrale sur tout ’espace-temps. Pour autant que les
®, ne different de zéro que dans une partie finie de ce continu
spatiotemporel, la contribution principale vient toujours de la
région infinie ou ®, = 0. Les valeurs propres de ¢®") sont
ainsi deux fois ’ensemble des valeurs propres du systéme
irréducible avee @, = 0.

Les p"+) permettent de définir en plus de la matrice ¢ (i/u’)
en (3.15) deux matrices nouvelles (n = 0, 1)

Ly (/) = J @)™ o) (/) e (wi)  (12.3)

qui sont toutes les deux invariantes et indépendantes de la
normalisation des S,. Les fonctions u, = eu, et u, = i,,u,
définies par (3.16) avec les matrices (3.15) et (12.3) satisfont
a I'équation d’onde si u, était une solution. Nous avons utilisé
le symbole ¢ pour la matrice (12.3) parce que de (12.2), (12.2a)
et (13.3) résultera

,?. . .
k, = (L(ﬂ)u)A = L2, « (12.4)
§ 13. — LES THEORIES CLASSIQUES DU CHAMP CHARGE.

L’exposé qui suit s’applique aussi bien aux rep. biv. qu’aux
rep. univ, parce que les deux théories dérivent maintenant
de la méme équation (11.7).
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Nous étudions le cas particulier du § 6 ou le champ de
force ®_(z) ne dépend pas du temps z* dans un systéme de
Lorentz privilégié. Les solutions de (11.7) peuvent alors étre
écrites dans la forme

S(wz), = S(rp/a), = (™™ P S(rpjz, 0), * (13.1)

avec

((f), T 4 g (k4(r>~%<1>4<¥))> S, = x(@WS* . (13.2)
. \

A la méme valeur propre appartient la solution linéairement
indépendante
S (rg/z), = iAB S(rplz), . (13.3)

Les deux solutions sont reliées entre elles par la relation (5.7).
Elles ont ainsi les mémes propriétés que les S(p), et S(q),
du champ non chargé,

Nous établissons les expressions pour 1’énergie totale et la
charge totale: Pour la charge totale, la différence entre le
champ chargé et le champ non chargé se manifeste dans
Iexistence de deux expressions 2

e, = S‘ ps,o)( Oy Ay — arq arp) ou =—e Y (0)( Aoy A, + rq rq)
T
(13.4)

qui proviennent de I’alternative entre B* et v* en (11.15).

La méme alternative se pose pour l'énergie totale. Pour
démontrer ceci, nous ajoutons & H, I’énregie Hy du «champ
~de force», soit

H, = H, + Hy = ‘ (dz)® (T% + Th) (13.5)
avec les T°% de (11.20). T%* étant bilinéaire en ®* et B,
I'énergie H, se décompose en

+ H (13.6)

self mixte

HCD = Hext + H

1 On a défini (¢/),F =1 + fF + (27,0 f°
2 Pour la définition de ¢{” ef. (5.10).
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parce que les ®* (et B z) sont des sommes d'un terme g,
représentant le « champ de force » produit par des «sources»
Joxt extérieures (autres que celles dues a U,.) et d’un terme
@7y qui est la solution statique de (11.14). Le H. ne nous
intéresse pas, parce que nous étudions le mouvement des
paquets d’ondes u, dans un champ ®7,; donné. Le H,,; doit
étre I’objet d’une etude a part, qui s’occupe de la self-énergie.
La somme H. + Hy; sera considérée comme une constante
additionnelle sans importance. Par contre, la somme

AB ?

H, — H, + H . = J (@) b lim 2t y) Y U e, o

ou = ] (dz)*h lim (... B¢ pour %) . (13.7)

représente |’« énergie cinétique » plus '« énergie potentielle »
de la matiére chargée dans un champ de potentiel ®. (). La
deuxiéme identité n’est obtenue que dans le cas particulier ou

-+

®...(Z) = 0. Elle résulte d’une intégration partielle. Le
dernier membre de (13.7) a la méme forme que dans la théorie
des ondes planes (2.6), mais les deux expressions

H, =% SW P(O)R ( Crg — :q arp) ;
T'
ou =h> k(e 0, + ala,) (13.8)
r

proviennent des deux définitions (11.18) et (13.7), qui sont
reliées par «ou = ... » ! dans chaque formule,

La relation (4.13) ou (5.10) entre les matrices o™ et o™
est (dans ce cas D(Da/bx‘* = 0) la méme que pour les ondes
planes non chargées. La démonstration part de la formule

(SA = 5( /x)A):

((“ﬁ, )+ 64(k4—%®A(;))> 58, + B8, .8k =

= xEAP .88, + EAPS, . 8x (13.9)

1 On doit prendre en (13.4) et (13.8), ou les deux 1re® expressions
ou les deux 2¢® expressions (marquées avec «ou = ...»). En (5.8),
(6.15), (6.16) et dans les formules qui en dérivent le signe de
U’énergie est erroné. g
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qu’on obtient en variant k, par 3k, dans (13.2). Cette formule
est multipliée par S(p'/z), = S, (ou par S; i%) et intégrée sur
tout I'espace-temps. Les termes contenant 3S, sont intégrés
par parties en tenant compte que S, satisfait a (13.2) avec
»' et k,. Avec la définition (3.11) de p" la relation

(kg — k) B2 — (x — %) EAP) r (dz)* S, 88,

%

+ 8ky. [ (dz)tS BAP S, = Sx2m oM (ww)  (13.10)

(ou avee ¥4, v et @) & la place de 8%, E et 7)) est obtenue.
La dépendance temporelle de S, permet d’intégrer sur 2 et
d’utiliser la définition (3.10) de ‘.

[(d)* S, B2 S, = 2n8(k, — k) [ (d2)®S] B S, =

t

0 .
l] o7 (/) - (13.11)

= 2n o,

Le premier terme en (13.10) disparait pour k, = k, et
® = x'.

Les matrices p™ (u/w') n’ayant que des termes pour k, = k,
et x = %/, (13.10) a pour conséquence

ox
(1+) 7 (1-) 4
pm)(u/u') _ 9(0_)(“/!’*’) _ ‘3"4 . (13.12)
e /) e (/) I_’i

Cette relation est ainsi valable en toute généralité, si
VD, (2)/32* = 0.

Avant de procéder a la discussion, nous remarquons que la
substitution (¢u), pour u, (12.4) a pour seul effet de remplacer
I’'une des expressions en (11.15), (11.18), (13.4), (13.7) et
(13.8) (reliées entre elles par «ou = ...») par 'autre.

-Nous sommes préts a discutuer les deux cas, soit

A. La rep. biv.

T = u,. Si 'on prend les premiéres définitions en (13.8)

et (13.4), I'énergie totale (et la charge totale) par solution

u
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(temporellement) périodique (13.1) sont nulles. Une théorie
pareille est acausale.

Cette acausalité subsiste, a fortiori, parce que l’énergie
totale devient méme négative si ’on utilise les deuxiémes
définitions (13.4) et (13.8): I’énergie totale par onde a mainte-
nant le signe de k%, le facteur p{” pour les rep. biv. du type
considéré étant toujours positive.

u; # u,: lidentification u; = eu, (5.16) (avec la défini-
tion (3.16) de 'opération €) a pour conséquence de donner la
forme (cf. (5.9) et (5.15))

—th(l)k4 2) ; u_ezp(l) +arq)

(13.13)

aux premiéres expressions (13.4) et (13.8) (v} = ieu, donne
le méme résultat pour les deuxiémes définitions).

L’énergie par onde est maintenant toujours positive . La
charge portée par une onde (temporellement) périodique
S(w/x), a le signe de sa fréquence %, .

B. La rep. uniy.

Ce ne sont que les deuxiémes définitions (13.4) et (13.8)
qui, avec u, = u, nous assurent une énergie positivel par
onde, parce que, malntenant ! change son signe avec k.
Le résultat s’écrit sous la forme (13.13) avec p” & la place de
e, C’est encore une fois le signe de la fréquence &} qui déter-
mine le signe de la charge portée par une onde (temporellement)
périodique.

§ 14, — L’INVARIANCE DE JAUGE.

Les lignes d’univers (11.13) ne dépendent pas des quatre

composantes @, mais seulement des six composantes

B,s = — Bg, du «champ de force». Pourtant, les @, jouent

1 Plus exactement: pour une charge totale finie, elle ne prend
jamais une valeur négative infiniment grande.
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un rdle dans I'interaction entre deux paquets d’onde u,, parce
que le B 4 produit par I'un d’eux résulte de (11.14) et dépend
ainsi de la valeur de ®,. De méme, I'énergie du champ total
dépend (11.16) de @ .

Le cas-limite I = 0 rameéne (11.14) a la théorie du champ
électromagnétique de Mazwell. D’abord cette théorie élimine [™
de T2 et du deuxiéme systeme (11.14). D’autre part, le
premier systéme (11.14) a pour conséquence le systéme

0,Bg, + 03B, + 3, By = 0. (14.1)
Sans faire appel au premier systeme (11.14), I’équation d’onde
composée de (14.1) et du deuxiéme systéme (11.14) garantit
la conservation de I’énergie-impulsion dans le cas [™ = 0,

Les composantes @, n’apparaissent dans 'équation d’onde
(11.7) pour u, et dans la définition du tenseur T*® (11.18) que
sous forme de 'opération D (x) (11.6).

Les grandeurs observables associées au «champ de force »
sont:

1o Les six composantes B, = — By, qu’on mesure en

oL
observant les trajectoires des paquets d’ondes formées
par i, ;

20 L’énergie-impulsion portée par le champ de force (soit
les dix composantes T% = T3%, qu'on observe en
mesurant 1’énergie, I'impulsion et le moment d’impulsion
qu'un appareil émetteur a transmis au «champ de

force ».

Ces deux grandeurs (B*® et T%%) sont invariantes, si 1’on
substitue pour @, en (11.14) les composantes '

D, (@) = O (z) +§aa¢(x) (14.2)

ou ¢ (x) est une fonction arbitraire de z.

La théorie d’un champ a [ == 0 est ainsi invariante par
rapport aux transformations de jauge (14.2), si 'on n’observe
que des charges J* produisant le champ et les lignes d’univers
parcourues par ces charges.
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Si, en plus, on peut observer individuellement les différentes
composantes u,, un changement (14.2) dans les composantes @,
(appelées les composantes du potentiel quadrivecteur) a pour
conséquence une transformation de jauge des composantes u,
donnée par

u(z), = (ei“’(’c));3 w () (14.3)

ey
Elle représente une rotation du « vecteur du champ u, » autour
de 'angle ¢ (¢ est la « phase complexe » si nous nous représen-
tons, pour un instant, toute paire de deux composantes de u,
reliées par (11.3), comme les deux composantes d’un vecteur
dans un plan complexe). Une mesure simultanée de ces deux
composantes permettra de distinguer entre deux champs u,
et u, reliés par (14.3). Elle permettra ainsi une mesure de @,
dans le cas I = 0.

Par contre, §’il n’existe pas d’appareil qui permette d’obser-
ver u(x),, mais si des observations ne peuvent étre faites que
sur des grandeurs !

f(x) = lim (y*42, DEAB(y) A% 28) Ulx, y),, (14.4)
x=y

(parmi lesquelles se trouvent J* et T*?), les composantes @ (z)
restent inobservables.

Les grandeurs B* T et f(z) de (14.4) sont des invariantes
par rapport aux transformations de jauge.

§ 14 a. — REsUME.

L’interaction d’'un champ u, avec un «champ de force»
vectoriel @ peut étre décrite si le champ u, appartient & une
représentation formée de deux représentations identiques et
irréductibles. Ce champ combiné peut porter des charges.

Dans les deux cas (rep. biv. et univ.), il n’existe qu’'une seule

théorie classique, qui satisfait 4 la notion de causalité (énergie
totale par onde H, > 0).

1 F (v, D, n, ©) est une série de puissances en vy, D, n et i.
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St les deux composantes correspondantes des deux rep. irréd.
peuvent étre observées séparément, les composantes ®* du
potentiel vecteur d’'un champ électromagnétique ont une
réalité physique.

PARTIE IV

Théorie quantifiée du champ chargé.

§ 15. — LES SEIZE THEORIES A PRIORI POSSIBLES
POUR UN CHAMP CHARGE,

Des seize types énumérés au § 9, les huit cas u* £ u sont
4 éliminer pour la méme raison que dans le cas du champ non
chargé. Le deuxiéme critére du § 9 peut étre remplacé par un

critére plus simple:

« Le deuxieme critere demande que la charge totale portée
par une onde périodique soit un multiple entier (pos. ou nég.)

de la charge élémentaire e. »

Restent ainsi huit types. De cet ensemble, toutes les théories
suivant la statistique FD avec une fonction D" dont le p{™*)
change son signe avec k, ont la seule solution u, = 0. Ce sont
les deux théories: «rep. biv. avec D) » et «rep. univ. avee
D(0+) »,

Nous discutons maintenant les six théories qui restent:

A. Rep. b.

Statistiqgue FD. — La seule fonction qui nous est restée est
D®*). La double fonction U!{)’ étant cette fonction donnée,
nous devons utiliser la double fonction UE:B) antisymétrique 1
pour définir les grandeurs physiques en (13.7) et (11.15). Ce
ne sont que les premiéres expressions qui nous ameénent a des
J* et H, non nuls. Les valeurs pour e, et H, sont ainsi les

1 Cf. les arguments du § 9, équation (9.12) et suivantes.
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premiéres alternatives en (13.4) et (13.8) (avec a™ == a), mul-
tipliées avec 'opération j provenant de la définition (9.12).
Les contributions de zéro-point sont enlevées, si I’on ajoute a
Uf;B) le terme (9.15). Le résultat est le méme que celui de la
théorie non chargée, soit (9.23). La charge totale est donnée par

(0)1\ k:

T' e

wme S =Sy s
7 P

/

avec N, = 0,1.

Statistique BE. — Les deux fonctions D et D) peuvent
étre utilisées. C’est la fonction U'}) qui fournit les grandeurs
physiques. Elle est symétrique. Ce sont alors les deuxiémes
définitions qui nous ameénent & des valeurs propres non nulles.
Or I’énergie d’une onde & fréquence négative pourra atteindre,
pour les mémes raisons qu’en théorie classique, des valeurs
négatives arbitrairement grandes, qui ne peuvent pas étre
soustraites. Donc ces deux théories sont a rejeter comme étant
non conformes aux premiers critéres.

B. Rep. uniy.
Statistiqgue FD. — Celle-ci n’est possible qu’avec la fonction
D®®) La double fonction U, augmentée par le terme qui

enléve les effets de zéro-point (9.15), nous améne aux expres-
sions analogues & (9.23) et (15.1) mais avec le terme

(0)/9(1) » & la place de M,.. Avec la définition N, = M, —%

a la place de (9.23a), les mémes formules pour H, et e, sont
obtenues que dans le cas de la rep. biv.

Statistigue BE. — Les deux fonctions D et D" peuvent
étre utilisées. L'expression pour 1’énergie totale et la charge
totale doit étre calculée par U'}). Aprés avoir ajouté le terme
(9.15), le résultat prend la forme (9.24) pour I’énergie, si 'on
a utilisé D). L’application de D" ne fait que substituer
|7 ™ & la place de |g!”|™. Mais ces deux facteurs ayant
la méme valeur (ef. (13.12)), il n’y a aucune différence entre
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les deux théories pour autant qu’on ne considére que des
champs satisfaisant &4 2@ (x)/o2* = 0.

REsumE. — Des seize types de théories possibles, il ne nous
est resté que quatre formes, soit: '

TasrLEAau II.

Les théories du champ chargé.

Ne wt ri%ﬁgg“" Sﬁ“’iﬁg fonction caractére

1 =u | N+ % FD Do) | Dirac-Heisenberg

2 = u N BE D(o-) Pauli-Weisskopf

3 = u N FD Da+) Méc. nouv. FD

4 = u N BE DG-) ! Méc. nouv. BE
(15.3)

Les types n° 1 et n° 2 sont les théories proposées par Dirac
et Heisenberg (n°1 = DH), par Pauli et Weisskopf (n° 2 = PW)
pour expliquer l'existence des quanta de charge opposée
(antiparticules: électron et positron).

Nous allons démontrer au § 19 que les alternatives n° 3
et n° 4 sont identiques avec la quantification de la nouvelle
mécanique relativiste proposée d’autre part [6].

§ 16. — DISCUSSION DES QUATRE THEORIES
ET ELIMINATION DE LA THEORIE N° 3.

Les figures 1 a 4 étudiées au § 6 montrent le phénomeéne de
la « création de paires ». En effet, une seule onde plane caracté-
risée par son vecteur d’onde ki, (en figure 1) se divise au
moment z* ~ 0 sous I'influence du « champ de force ». ¥ (2)?
en deux ondes planes, qui se propagent dans deux directions
diftérentes k.., et k..

Si la figure 1 s’applique a un champ u, chargé, on voit que
les deux ondes secondaires ont des fréquences opposées
(k{psy = — kis), ce qui implique dans les deux théories clas-
siques (§ 11) aussi bien que dans les quatre théories quantifiées
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(§ 15) la création de deux ondes secondaires portant des charges
opposées. Ces deux ondes ont été produites par le « champ de
force » y (x),”. Leur intensité est proportionnelle & I'intensité
de ’onde chargée primaire. Il s’agit ainsi en théorie classique
de la création induite. L'interprétation quantique sera étudiée
au § 17.

Nous démontrons d’abord que le deuxiéme critére: «La
charge par onde est un multiple entier de e » est satisfait par tous
les quatre types du tableau II. Cette démonstration se base
sur les formules (6.15) et (6.16) pour H,,, soit pourles formules
classiques analogues pour ¢,. En termes de m, n ..., ces formes
sont pour z* ({ 0 (fig. 3 et 4):

(0) r
€y = € Z Pr mp Cmg — %mg Gpmp)

(0 + \
+ S‘ p )AZ mp mq - a’mq amp)

+ e ? 0)B2 np Fyi ;q anp)
O .
+ e D D W 2AB (g gy, — 0y 0ppy)  (16.1)

et, en termes de w, v, ... (fig. 1 et 2):

— (0) —at
Ey = € \ o (o Byp Cug ™ Pug Cup)
+ e 2 o (al —aga,) - (16.2)

Les formules quantiques (corrigées pour les effets de zéro
point) sont obtenues de (16.1) et (16.2) si I’on y substitue pour
(¢, a ,— ..) les expressions suivantes (suivant le méme pro-
cédé comme celui qui aboutissait & I'établissement de (9.23)):

No 11: (biv., FD, D"} = Dirac-Heisenberg) (6.16) et (16.2)
avec
(a+a—...) k4 1N- N — 0 1: (0) _ (o)
Gl T e
(16.3)

1 Du tableau II.
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parce que c’est dans le systéme w, v ... que la matrice p°") est
diagonale. Cette substitution, effectuée en (16.2), montre que
la charge par onde périodique est un multiple (0 ou 1) de

? N N | N N
NN N N
N N N o0 N
\ (8) \ \ el §
N <N N
N § A
B \ N
N N P
\ 4 § § ke §
N N
\ § 1) \\§
RN B
"S‘I TR 7 7T _%
/////////Q// ///////\//// 4%
N N
X N "
\ N\
\ \
N\ W N
\ \ ,,
\ . s
N\ SEE
£»§ AN (8)
NIE 2 N
N g—“ .
Fig. 5. Fig. 6.
S (mp/z)a S (np/z)s

Les fleches k) sont les vecteurs d’ondes principales contenus dans
la solution (temporellement) périodique v pour ® (x%) = const. r, s ...
sont ces solutions pour z* << 0 et »’ s’ celles pour z* > 0. (1), (A)
et (B) sont les amplitudes des ondes temporellement périodiques,
dont les solutions S(mp/x), se composent pour un @ (x%) variable.

+ e, dépendant du signe de k; (ol = ol = p{” étant posi-
tives).

Nous remarquons que 1’établissement de (6.15) (6.16) et
(16.1) (16.2) reste valable si I’on superpose au « champ de
force » dépendant du temps (@ (22) £ 0 pour — 3¢ < 22 < 3¢)



QUANTIFICATION DES CHAMPS 23

un deuxiéme « champ de force » D> (), qui dépend de x seule-
ment. A la place des ondes planes utilisées au § 6, on doit
alors substituer les ondes (temporellement) périodiques de la
deuxieme partie. La figure 3 est & remplacer par la figure 5.

Une onde incidente du passé avec kg, > 0 consiste en
paquets d’ondes a charge positive. Le champ superposé di a
O (7) qui régne aux deux régions a' ~[" et al ~ 1" est de
telle nature qu’il ne permet pas le passage des paquets &
charge positive a travers ces deux «barriéres». Les paquets
formés de telles ondes restent dans le volume V délimité par
ces barriéres. Au moment z* ~ 0, ’onde incidente (r) se divise
en une onde réfractée () qui, gardant la charge positive,
continue & osciller entre les deux barrieéres 2! ~ 1" et x ~ 1",
Par contre, 'onde (s) réfléchie ("Z‘S) < 0) porte une charge
opposée. Elle est accélérée par les barrieres et les pagquets
d’ondes qui en sont construils traversent les barriéres et sortent
du volume V. Ils représentent des antiparticules.

No 2: (rep. univ., BE, D = Pauli-Weisskopf) (6.16),
(6.17) et (16.2) avee

N i N ! . 0
(aupa‘uq”_"') lP(O) h Np_mo, 1; 2 wes § PM)”" P() .

(16.4)

Le résultat est le méme qu’en théorie n® 1, le signe de + N, ¢
étant maintenant déterminé par le signe de p!” > 0 resp.
o < 0 en (16.2), sauf que la statistique BE permet des
valeurs propres N, > 1. |

Ne 3 (rep. univ., FD, D®") = nouv. méc.) (6.15) et (16.1)
avec

@ a, —..) > N_; N =0,1; & =0,

(16.5)

La valeur de p) est toujours égale & celle de p'". La preuve
en est simple: l’mtegratlon de S, S* sur tout l'espace-temps

vaut o) = ( —}— + )p,(})— ol. Les trois termes pro-



24 QUANTIFICATION DES CHAMPS

viennent des trois branches k., k., et &, qui n’existent chacune
que dans une moitié de I'espace-temps. Les valeurs propres du
premier terme sont: pour H,. (6.15) des multiples positifs de
h|k;‘.| et pour e, (16.1) des multiples positifs de e. Chaque
membre individuel de la somme qui constitue ce premier
terme contient I'entiére contribution d’une seule onde périodique r
aky > 0. Dans le cas de la figure 5, c’est cette premiére somme
qui représente la charge totale dans le volume V, parce que les
termes contenant p!” ne contribuent en rien & la charge dans
V 1. 1l résulte ainsi de cette théorie que

Les valeurs propres de la charge dans un volume V délimité
par des barriéres impénétrables pour les quanta a charge e > 0
sont des multiples entiers positifs ou nuls de - e (et vice versa ?).

Ce résultat s’applique a fortiori aux théories n® 1 et n° 2,
Mais, tandis que les théories n° 1 et n® 2 permettaient de mesurer
simultanément le nombre de quanta a charge + e et le nombre
de ceux a charge — e, les théories n° 3 et n° 4 interdisent une
connaissance simultanée de ces deux quantités physiques.

Cette nouvelle relation d’incertitude n’est pas en contradiction
avec l'expérience: une mesure de la charge électrique se fait
toujours par la construction d’une barriéere fermée, Celle-ci est
constituée par des forces électriques (parmi celles-ci comptent
les « forces de valence », 'cadhésion d’un ion & une gouttelette
dans ’expérience de Millikan », la « liaison d’un ou de plusieurs
électrons négatifs a un noyau d’atome », ete...). Une barriére,
qui lie les particules a charge - e, a toujours la propriété de
laisser passer toute antiparticule a charge — e. Done, une
mesure simultanée du nombre de particules et du nombre
d’antiparticules dans le méme volume V nous semble étre
exclue par la nature méme des appareils & notre disposition.

1 Si 'on définit p(‘?”(p/u’) par une intégrale spatiale sur V seule-
ment (au lieu de tout ’espace) en (3.10), on a o) ~ o et o) ~ 0
parce que ’onde S(r/x), est entiérement contenue en V, tandis que
S (s/x), est essentiellement dans 1’infini.

2 Pour la démonstration du « vice versa » on doit décomposer u,

en des fonctions S (m’/z), dénombrant lensemble des fonctions
- émergentes du « diffuseur ».
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Mais il y a une autre raison pour éliminer la théorie n° 3:
un champ u, & rep.univ. et a statistique FD ne peut pas
satisfaire & une équation d’onde inhomogéne du type (6.9).
Il ne peut donc jamais jouer le rdole d'un « champ de force»
w; dans une équation d’onde d’un autre champ. Le deuxiéme
membre de (6.9) satisfait toujours a une lot de commutation,.
tandis que le premier membre représente maintenant en

théorie n® 3 une grandeur anticommutaiive. D’autre part, le
o

uutu
commute méme pas pour deux événements z et y a de tres

grandes distances spatiales (R% >>x®). Ceci est en pleine
contradiction avec la nature observable de T%*. Cette impossi-
bilité de I'existence de I’équation (6.9) interdit la création de
paires de quanta d’un champ u, (& rep. biv. ou univ.) par des
quanta du champ u; (a rep. univ.) considéré. Or, parlant en
termes du «spin », elle interdira les réactions:

terme trilinéaire T de 1’énergie-impulsion en (6.7) ne

a) DT ZNo + P* (16.6 a)
b) H* = P" + e (16.6 b)

ou une particule & spin entier (Deuteron D', atome d’hydro-
géne HO se «décomposer» en deux particules a spin demi-
entier (neutron -+ proton, proton - électron) et les «émis-
sions » ou « absorptions »

c) Ptz p" 4+ N© (16.6 ¢)

ou une particule & spin demi-entier (proton) «émet» une
particule & spin entier (mésotron) u= en devenant un neutron
(si les particules D™, H® et w™ & spin entier (rep. biv.) se com-
portent conformément & la théorie n° 3). La réaction (16.6¢)
est responsable pour les forces nucléaires dans la théorie de
Yukawa.

Pour cette raison, nous croyons que la théorie n°® 3 n’est pas
réalisée en nature.

No 4: (univ., BE, DU = nouv. méc.).
Il faut prendre le U{}) symétrique pour y construire les
grandeurs physiques. A part ceci, la discussion reste la méme
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que pour la théorie n° 3. Les charges observées dans un volume V
sont des multiples entiers de e.

La théorie n°® 4 admet 1’équation inhomogene (6.9) (comme
le fait d’ailleurs la théorie n° 2). Les réactions (16.6a, b et ¢)
sont alors possibles,

Tout calcul d’intensité avec lequel des transformations du
type (16.6a, b ou ¢) (parmi lesquelles compte tout phénomene
d’émission et d’absorption) prennent place, est fait en suivant
la théorie classique des champs. Le résultat est ainsi indépen-
dant de I’alternative entre D7) et D", soit entre théorie n° 2
et n® 4, (est aussi le cas pour toute détermination de e/m et du
rapport entre le moment magnétique et le moment mécanique.

La différence entre les deux théories ne se montre que dans
le phénomeéne de

§ 17. — LA CREATION DE PAIRES DE QUANTA,

Nous appliquons nos théories aux problemes du § 6 (fig. 1
/4

a 4):

Tutories x°8 1 ET 2. — Nous considérons la fonctionnelle
de Schroedinger (indépendante du temps 24) W/(N, ... N, Nj ...)
comme fonction des nombres N, N de quanta dans les ondes .,
v ... La fonctionnelle particuliére '

L L . NM o), 2 801\*1 - Sg’_u.Nu Sﬁva - 801\*;\ . (17.1)

a pour conséquence que seules les espérances mathématiques
N, (5 0) et N, (s 0) different de zéro, tandis que pour tout
autre A(5£ i, v) on a N, = 0. Il en est de méme pour toute autre
forme bilinéaire en a,: a, a,,,, = 0, si u # p'.

Nous formons I'espérance mathématique de la charge portée
par une onde plane (k) pour z* >> 0. La charge contribuée
par UL (ou U{Y)) dans la théorie n® 1 (ou n° 2) vaut alors
(cf. fig. 1 et 2):

(62M, + a2M.) . (17.2)
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Pour arriver & la charge effective, nous devons y ajouter la
charge due au terme de zéro-point (9.15). Celle-ci vaut pour
toute onde plane (cf. (9.15) & (9.22))

1 biv.
|' E‘ pOuI’ rep. s

Pq(r-O) 1 kt;

gy — = €—— = £ e
r’(0) 97(11)2 lk

-

univ.

= e

(17.3)

La substitution de N, pour M, (équation (9.23a) pour la
théorie n°® 1, équation (9.24a) pour n° 2 dans (17.2) et I’addi-
tion de (17.3)) fournit, pour les charges effectives (e, = e + €r(o))
le résultat ! suivant pour ’augmentation e., — e, de I'espé-
rance mathématique de la charge e, dans l'onde £, ~ k,.,:

e, —e, = a’e ¥ a*(e, + (—ey)) pour rep. (ubr:;r) :

(17.4) 2
Dans les deux théories, il y a ainsi:

10 La création spontanée. Celle-ci est caractérisée par I'appa-

rition de @?® quanta chargé dans I'onde £,,, méme si les

9
deux ondes primaires k&, et &k, ne contenaient aucun
quantum (e, = ¢, = 0).

29 Dans le cas n° 1 (FD), anéantissement induit, proportionnel
a e, + (—e,). Cet anéantissement ne peut jamais
amener & un e, << 0, parce que e, et — e; ne peuvent
prendre que les valeurs 0 et e.

3° Dans le cas n° 2 (BE), le deuxiéme terme représente une
création induite, proportionnelle a e, — (— ¢,), qui est
I’analogue parfait de la théorie classique (cf. § 16, premier
alinéa).

THEORIES N°8 3 ET 4. — Nous étudions la fonctionnelle
fonetion du nombre N,,, N,, des quanta dans les ondes m, n,...
La fonction particuliére

T(..N_ ..)=28_ ...8

m

3

ony ow,, O%,;, *** Son;  (17.5)

1 On a b® ¥ a®* = 1 pour la rep. (ulz:;)

1 biv.
Peret —es > 00 << pour rep. (univ.)'
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donne les espérances mathématiques zéro pour toute forme
bilinéaire en a,,, sauf pour N, (= 0).

I’espérance mathématique de la charge (déja corrigée pour
les effets de zéro point) (cf. fig. 4 ou fig. 6) contenue dans
toute onde plane e, pour z* {0 est alors nulle, sauf celle
de e, qui vaut

- p(o) - -
= eB*—— N = —eB:N . (17.5 a)

| n

e

@

Ce résultat est une conséquence de (16.1) et de figure 4 (ou
fig. 6).

Pour évaluer les espérances mathématiques a des temps
futurs & 'apparition du « champ de force », nous devons utiliser
la formule correspondant a (16.1) pour 2* >> 0. Les figures 3
et 4 montrent que (au signe du dernier terme pres) cette
formule est la méme que (16.1) si 'on substitue s" & r, 7" a s
et si 'on interchange m et n.

Tenant compte de (17.5a) ce résultat est

(0)

— Ps’ = 5= 1 —
€ == &€ D Nn = —eNn zﬁes
|Pn
(0)
Cpr = €—s AN = eA*N = i (— es)
B
e, —e, = a*e, ; e, = — d’e, . (17.6)

Ces formules s’appliquent, si notre connaissance de '« état »
du systeme est décrite par (17.5). Mais généralement ceci n’est
pas le cas. Notre état (17.5) décrit la certitude qu’aucune
charge positive (k. > 0) n’existe pour z* {{ 0 mais que I’espé-
rance mathématique de la charge négative vaut ¢, 1. Par contre,
si seulement des charges positives (par exemple dans I'état r)
ont été présentes avant I’enclenchement du « champ de force »
@, (z%), les derniéres équations (17.6) sont :

es,z—aae : e

- o — €, = ale, . (17.7)

r

1 Je ne connais donc pas es mais seulement es. Par contre je
connais e = 0 (et donc & fortiori e, = 0) (cf. § 16).
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On les a obtenues en décomposant u, suivant les ondes émer-
gentes, a la place des ondes incidentes (fig. 3 et 5).

Si, en moyenne, on a pour z* ({ 0, des charges e, et e, pré-
sentes dans leurs ondes respectives, on doit ajouter leurs
contributions (17.6) et (17.7) aux ondes £,, et %, sans relation
de phase 1. Le résultat ainsi obtenu est, pour 'onde k, > k.:

-

e,—e., = a*(e,—e;) (val. pour théorie no 4 2) (17.8)

Il différe du résultat de la théorie n® 2 en ce qu’il ne contient
que la création induite?®.

La nouvelle théorie (soit n° 3 (FD), soit n° 4 (BE)) différe de
no 2 (celle de Pauli-Weisskopf) et de n° 1 (celle de Dirac-Heisen-
berg) en ce qu'elle ne donne pas de création spontanée de paires
de quanta chargés a spin entier par un « champ de force» (par
exemple le champ électromagnétique).

Cette différence se manifestera dans I’expérience suivante:

Un rayonnement de photons incidents sur des noyaux ato-
miques donne, d’apres les théories n° 1 et n° 2 (Dirac-Heisen-
berg et Pauli-Weisskopf) un nombre moyen de paires de méso-
trons créées spontanément par un photon, qui est proportionnel
@ 72 (7. = nombre atomique) (formule de Bethe-Heitler, cf. [7]).

D’apres la nouvelle théorie, un tel effet spontané ne peut pas
se produire. Par contre, un effet induit pourra se montrer si les
forces nucléaires sont produites par ce champ chargé et de

1 Cette moyenne doit étre faite sur les phases compleres des
coefficients C..5... de la somme

F..N )= ... e 5. 8% - Oy
N

] s N

> ;e
Ny

"

tout en gardant constantes les valeurs ey et es.

2 Dans le cas BE (théorie n° &) la formule (17.8) est obtenue. En
théorie n® 3 (FD) N; ne peut prendre que les valeurs 0 et 1. La
phase est alors limitée et une autre formule, contenant annthila-
tion induite, résulte si ep et eg = 0. Remarquons aussi que la nou-
velle relation d’incertitude du § 17 limite en théorie n® 3 [Despérance
mathématique 0 < er < B2e < e, i on sait que eg vaut — e.
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quanta & spin entier (mésotron). Toute expression bilinéaire
en termes de ce champ des mésotrons est alors proportion-
nelle & ~ 27, ou peut-étre a ~ 272 dépendant de la maniére
de la superposition des champs nucléaires individuels de
chacun de ces ~ 27 constituants nucléaires. Le photon inci-
dent peut alors produire des paires par création induite. Mais
leur nombre par photon est proportionnel & aZ. -~ BZ2.

§ 18, — UNE RAISON POUR ELIMINER LA THEORIE NO 2.

Si 'on considéere l’existence des réactions (16.6a, b et ¢)
comme une nécessité physique, le nombre de nos théories se
réduit a une seule théorie (avec statistique FD) pour des parti-
cules a spin demi-entier, mais a deux théories (les deux avec
statistique BE) pour les particules @ spin entier. 1l est pourtant
peu probable qu’il existe deux sortes de particules & spin
entier.

Nous n’avons trouvé aucun moyen de démontrer I'impossi-
bilité physique de notre nouvelle théorie n® 4. Par contre, un
argument peut ¢étre invoqué pour éliminer la théorie n® 2
(celle de Pauli-Weisskopf): La théorie classique est composée
de deur champs non chargés & f composantes chacun. Si ces
deux champs peuvent étre mesurés simultanément, on peut
observer I'cangle» ¢ (z) entre deux de ces 2f composantes
reliées par la matrice ¢ (11.3) (cf. (14.2) et (14.3)). Ainsi une
distinction est possible entre 1'état électromagnétique de
I'espace représenté par le méme «champ» B 5 mais par un
« potentiel » @ différent.

Si nous écrivons les fonctions D{), qui distinguent les deux
théories sous forme de matrices a 2f lignes (comme on 'avait
fait pour (11.2), (11.3) et (11.8)), on a (cf. équation (12.1))

peaen _ /D(O—)(f)’ 0 . pooen _ 0 . DaH®
0o , Do)’ DD 0

(18.1)

On voit maintenant que seule la fonction D" impose une
restriction @ la mesure de 'angle ¢ (x) qui se trouve dans le plan
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représenté par deux composantes de u, reliées par la matrice ¢
(11.3) ou par D en (18.1) L.

La nouvelle théorie (n° 4) contient ainsi a priori I’imposstbulité
d’observer cet angle qui représente une transformation de jauge.
La théorie n° 2 de Pauli-Weisskopf ne fait que quantifier
séparément les deux champs non chargés et admet ainsi a priori
Pobservation d’une transformation de jauge.

Une observation d’une telle transformation a I'aide de
champs (chargés) a rep. biv. (théorie n° 1) est exclue parce
qu’une loi d’anticommutation ne permet de mesurer deux
grandeurs anticommutantes qu’a leur signe pres. Or cette
restriction enléve a fortiori toute poésibilité de mesurer
I’angle 9 (z) dans ce cas n° 1. |

§ 19. — LIDENTITE ENTRE LA NOUVELLE THEORIE DU CHAMP
ET LA QUANTIFICATION DE LA NOUVELLE MECANIQUE
DU POINT MATERIEL.

Dans un article précédent [6]!, nous avons démontré que
la quantification de la mécanique contenue en

éw: n* ]Zcm — éB“B(q) g ; f — (19.1) 2
montrait (dans le cas particulier d’'un champ ®%(z%) considéré
au § 6 et pour le spin 0) qu'une particule de charge - e,
observée au temps 2% >> 0, a :

ou 1° déja existé au temps 2% {C 0 et a été accélérée par le

champ (électrique) qui existait pendant [I'intervalle
— 3t < x* < - ed1,

ou 2° qu’elle est le partenaire d’une paire créée par le champ
(électrique) pendant cet intervalle.

1 On peut démontrer en plus que la singularité de D(+) est de
telle nature & interdire méme la mesure de la « phase moyenne »
% (z) définie par des valeurs moyennes des composantes du champ %,
pris sur un volume V.

2 A est un paramétre quelconque, cf. éq. (4.5) de [6] (deuxiéme
partie).
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La probabilité pour la premiere alternative est B2 et celle
pour la seconde A2 Ces coefficients ont la méme signification
qu’en figure 4. Or les relations (cf. note p. 220) qui existent
entre les coefficients @, b, A et B des ondes planes dans les
figures 1 4 4, montrent que 'espérance mathématique e, /e de
trouver une charge au temps z* >> 0 dans un certain état de
mouvement est 1/B2 fois plus grande que e/e qui représente
I'espérance mathématique & trouver une charge pour z* {0
dans ’état de mouvement correspondant . Or (19.1) montre
que la relation

E;,:E;: ate, (19.3)
existe entre les deux grandeurs. Elle est identique au résultat
de la nouvelle théorie du champ quantifié ((17.6), 5¢ équation).

Pour faire une démonstration exacte de l'identité des deux
théories proposées, il faut d’abord généraliser (19.1) pour
pouvoir appliquer & des particules avec spin. Cette forme est
obtenue si I’on introduit, en plus des variables ¢%(2) et @*(})
des nouvelles variables classiques v* () et a*®(n) = — = ().
(19.1) doit alors étre remplacé par:

qoz - Yon : _Yo( — p1 O_ot[i. g

B

o = p7 (y*nP — yPn%) ;. n® = By, . (19.4)

On peut démontrer que cette théorie donne lieu & des lignes
d’univers qui sont toujours pres & ceux de (11.13). 2" et A"
sont des constantes de la dimension £, si on donne a A la dimen-

sion d’une longueur. Une telle théorie est classiqguement possible.
Le tenseur

MaB = LaB + Sa@

LmB = g, Tg — dg Ty SaB = ——h”caB (19.5)

est conservé dans ’absence de forces. Donc S g représente
le spin. L’analyse montre qu’en moyenne une telle particule

1 (’est-a-dire dans un état de mouvement défini par les impul-
sions m(,) = hA{, .
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posséde un moment magnétique et électrique. La condition
v, ¥* = 01! fait disparaitre le moment électrique dans son
systéme de repos (7 = 0). '

La gquantification de cette théorie n’est possible que pour des
spins entiers. Les +y* deviennent les matrices +v%°, etc.
S (dgy* § (g, M), Y (g, M* est positif pour toute région d’espace-
Q

temps Q >>x™* 2, I’intégrale sur un tel Q peut donc représenter
la probabilité de trouver la particule dans cette région (dans
le sens proposé par I'auteur [6]).
Pour des spins demi-entiers, il faut considérer [ (dg)* (e{), $*
0

comme une telle probabilité. Cette intégrale étendue sur tout
I’espace-temps est en effet positive. La théorie correspond au
cas u; = (eu), de la théorie quantifiée que nous avons du
¢écarter dans la théorie du champ u, parce que les valeurs
propres de la charge dans un volume défini par les « barriéres »
ne sont pas des multiples entiers de e. Elle est 4 éliminer de
la mécanique du point parce que des paquets d’ondes a pro-
babilité négative peuvent se séparer du paquet d’onde primitif.
Autrement dit, méme pour des régions d’espace-temps
Q>>»™* Dintégrale de la probabilité n’est pas toujours
positive.

19a. — RESUME.

La généralisation que le champ chargé apporte aux deux
théories du champ non chargé en fait six théortes. Des trois
théories & rep. biv. (spin demi-entier), les deux qui utilisent la
statistique BE doivent étre exclues parce qu’elles admettent
des valeurs négatives pour 'énergie totale d’une onde pério-
dique. Des trois théories a rep. univ. (spin entier), celle qui
utilise la statistique FD ne permet pas de réactions ou un seul
quantum a spin entier apparait ou disparait.

! Dans son systéme de repos, le point ¢, décrit alors des cercles

avec la vitesse de lumiére. On remarque une analogie avec un modéle
de Hoanl [9].
2 On pose m = hx (m == masse de repos).
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Des deux théories qui restent, 'une (celle de Pauli-Weiss-
kopf) admet en principe la possibilité de mesurer les potentiels
électromagnétiques par une mesure de deux composantes du
champ chargé. L’autre théorie (In théorie nouvelle) contient un
principe fondamental interdisant cette observation.

Nous proposons donc que seules les théories qui satisfont
au principe de U'incertitude de la phase ¢ (x) du champ chargé
solent réalisées en nature.

Ces deux théories sont alors la théorie de Dirac-Heisenberg
pour des quania a spin demi-entier, et une nouvelle théorie du
champ, qui est identique a la quantification de la nouvelle
mécanique du point matériel proposée par l'auteur [6]. Cetie
nouvelle théorie utilise la fonetion D"

Mai 1942,
Genéve. Institut de Physique de I’Université.
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