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1943 Vol. 25 Janvier-Fevrier

UNE METHODE NOUVELLE
DE LA

QUANTIFICATION DES CHAMPS

PAR

E. O. G. STGEGKELISEltG
(Avec 6 flg.)

(suite et fin)

III® PARTIE

Theorie classique du champ charge.

§ 10. — Les eignes d'univers que suivent
LES PAQUETS D'ONDES DU CHAMP SON CHARGE.

Nous etudions revolution que subit un paquet d'ondes

u(x, £4)a dont on connait la forme a (x, 0)A au temps a;4 0.

Dans l'absence de «formes exterieures » (x* 0) ce paquet
suit, en moyenne, une ligne d'univers qui est une droite.

Nous faisons alors intervenir le champ de force Xa ^
Le champ u(x)j le plus simple est celui k une seule compo-
sante <J> (x), qui doit alors etre un scalaire. On en forme

X(x)a — ou tab ^ tba doit etre un spineur (anti-)
symetrique si uA appartient ä une rep. univ. (ou biv.).

Un tel spineur existe pour la rep. biv. toujours sous forme
de tab eA_1^AB. II sera montre autre part (cf. § 19), que
le paquet suivra alors en moyenne une ligne d'univers x" qa(s)

avec ds2 — dq* dq^ qui satisfait ä

ds2 dq<*
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L'equation d'onde pour le « champ de force » u~ doit contenir
d'autres composantes. S'il n'en existe pas, la seule possibility
est 0. II resulte alors de l'equation d'onde (2.10)
x® 0. Pour cette raison nous introduisons, comme theorie
la plus simple, celle qui contient en plus du scalaire 0 ses

derivees Le Systeme1

Öa®a— rl® — elut 5AB"b (10.2)

peut etre mis sous la forme (6.9), si on introduit les cinq
composantes (2hl)'^(S>K u^(Ä. 1 ä 4) ; (2M)_i® s it« ;

I x-1. A la place de + T-j„+u en § 6, on peut considerer2
le tenseur

T«ß + (®)«)^ (io.3)

II satisfait en vertu de (10.2) ä l'equation de continuity

dpT-P Ö3(T^ + T£u) 0 (10.4)

Pour generaliser la theorie, la question se pose si on peut
introduire des composantes vectorielles ®a(a;) dans l'expression

pour xAB (x). La seule fa$on serait

X(x) » - eh-^Jx) Yf (10.5)

Elle est impossible parce que y<IAB est symetrique. Un xAB

symetrique est en contradiction avec le § 6.

Le meme raisonnement est applique aux rep. univ. Dans ce

cas tab doit etre symetrique. C'est alors le tenseur fondamental
y]AB qu'on substitue en tab eA-1v)AB. L'utilisation d'un
vecteur ®a est impossible, parce que

X(*)AB <A"1®B(s)fl-B (10-6)

est antisymetrique.

1 Systeme de la force scalaire de Yukawa pour des mesotrons
neutres a spin 0: (Q—x2) ® eu+iLuA.

2 On a ajoute ä T~ + T^+u de (6.7) un terme T®0 satisfaisant

ä o pour le symetriser.
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§ 11. — Les lignes d'univers que suivent
LES PAQUETS D'ONDES DU CHAMP CHARGE.

Nous cherchons la generalisation necessaire pour que le

champ vectoriel Oa (x) puisse etre utilise comme «champ de

force » dans l'equation d'onde pour uK. Ce n'est qu'une substitution

du genre (10.5). Pour qu'une telle operation devienne

possible pour la rep. biv., il faut qu'ä part les YaAB symetriques,
des spinotenseurs antisymetriques ßaAB — ßaBA existent pour
cette meme rep. biv. : est alors donne par (10.6) pour des

rep. biv. et (10.5) pour des rep. univ.
La representation irreductible ne dispose pas de tels spineurs.

Pour introduire (10.6) dans l'equation d'onde, il faut done

passer ä une representation reductible. Si ya<^ sont les matrices

Y-b(A, B 1 /) du Systeme irreductible (ä / lignes), on
A

peut toujours en former des ya(2^ symetriques et des ß"0/)

antisymetriques ä 2/ lignes par

/Y«0) 0 \ / 0 — Ya(/>\
ya<20

Y '
; B«W> / ' r | (11.2)

\ 0 -r^V \Ya(n 0 }

A l'aide de la « matrice i »

0 —1(/>'

!<» o
(11.3)

(1W) est la matrice d'unite ä / lignes et colonnes) on a

(A, B... 1...2/):

ßr «E rro* • t11-4)

La matrice i est ainsi la matrice-antisymetrique qui commut

avec to us les ya.
Elle est differente de la matrice antisymetrique \ parce

qu'on a

KV 5a°?cb 12 =K
('V 'ac <cb - K ~ 5,B
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L'operation D (z)a definie par

D« (*)/ Kö« (*) - uB eh~' ®„ (*) (" •6)

permet d'ecrire l'equation d'onde (6.1) (avec (10.6)) dans la
forme

((d,yV- 0 • (11-7)

La meme generalisation est possible pour les rep. univ. On

construit des ßa(20 et des ya(2P ä partir des ßaW) antisvme-
triques:

p-«)= rn' °) ; T*=( ° • n (11.8,
\ o ß«<»/ 0

1 '

soit encore une fois avec (11.3)

vT - LCßoB -ßfio" • dl-9)

L'equation d'onde prend la forme

((DaßV-**)cBH*)B 0 • d1-40)

Une multiplication de (11.7) avec — iA et la definition

*a°5cb iab; iAC5aB v)AB (ii.li)

d'un spineur scalaire £AB — £BA antisymetrique pour des

rep. univ. forme par contraction sur les deux spineurs iAB et le

spineur fondamental t)ab, donne ä l'equation d'onde pour un
champ ä rep. univ. (11.7) la meme forme (11.10) que celle de

la rep. biv. II faut seulement se rappeler que c'est v)AB et non

pas £AB qu'on a defmi comme le spineur fondamental dans le

cas d'une rep. univ. Pourtant cette distinction n'entre pas en

jeu si nous ecrivons les scalaires toujours dans leurs formes

explicites avec les composantes covariantes uA i)AB uB,
uA 5AB wB et uA iAB uB. Laquelle des trois expressions scalaires
est consideree comme egale ä m+a»a est alors sans importance.
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Les lignes d'univers que suit un tel paquet d'ondes sont

(cf. § 19)

rf2 o dq„
(± (± «)B"P(3)-^ ; Baß Öa®ß-Öß®a •

(11.13)

Le signe de (± e) est determine par le signe de p(0+') (p./[x)

et celui de (± Ax) par le signe de p(1+) (fx/p.) (c'est-a-dire par le

signe des elements diagonaux des ondes principales dont le

paquet se compose).
Les deux cas (rep. biv. et rep. univ.) admettent ainsi des

paquets d'ondes qui se propagent en suivant des lignes d'univers

que suivent des points de masse charges d'une charge
specifique ± ejm ± e/Ax.

Le champ <E>a introduit en (10.2) ne peut pourtant pas etre

utilise, parce que son Ba(3 (11.13) disparalt identiquement.
Mais le Systeme 1

Öa<rl®ß>- V^J-^B.ß 0

ö3Baß + r^r1®*) ja (11.14)

avec

Ja(x) ^aABU(a;, x)^ ou — eyaAB\J(x, x)XB

(11.15)

peut etre mis sous forme (6.9), si on introduit les dix compo-
santes L1Oa, Bag — Bß[z. Le tenseur

T«f r2®"®3 + Ba|iB3 _I?aß(B B^ + 2T2®
[X \ (X /

(11.16)

satisfait en vertu de (11.14) ä 2

ößT«ß — Ba3Jß (11.17)

1 Systeme de la force vectorielle de Yukawa pour des mesotrons
neutres ä spin 1.

2 La relation da®<* l2da J<* o, qui resulte de (11.14) a ete
utilisee.
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D'autre part le tenseur

T«P (x) A lim (D«(y) y3)abU(z, y)AB
x y

OU

h lim(.. pour y3) (11.18)

qui differe de (2.4) en ce qu'il contient le «terme mixte» T^+u^
de (6.6) a la divergence

ögTf =B^J3. (11.19)

Dans cette equation Jg est la premiere (ou la seconde) definition
en (11.15) suivant qu'on prend la premiere (ou seconde)

expression (11.18) pour Tjf.
Le tenseur

Taß T«ß + Ta3 (11.20)

represente ainsi la densite de l'energie-impulsion totale.

§ 12. — Les solutions fondamentales.

Les matrices symetriques (v)AB et yaAB) et les matrices anti-
symetriques (£AB et ßaAB) existant simultanement, on peut
d&inir les quatre fonctions et D(1±) pour chaque
representation.

Les definitions (3.11) de p(n±) et le developpement (3.13)
montrent que les relations existent:

D(n-)(x, y)AB — iA0D(n+,(a:, y)CB (12.1)

Si p(n+) est diagonal en pp'

P&W) Pmm'V <12-2>

on a toujours

P&Vp') Pmi'W " (12'2">

Le raisonnement qui nous a permis de determiner le signe
des valeurs propres de p1-0^ pour les rep. biv. irreducibles
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et de p^1+) pour les rep. univ., reste valable pour les rep. biv.
reductibles du type (11.2):
Une solution quelconque de l'equation d'onde (11.7) avec des

«forces » yx 7t 0 peut toujours etre ecrite sous forme d'une

somme des solutions du Systeme (11.7) sans « forces »(<E>a 0),
mais alors avec des coefficients a(\i, ,t4) qui dependent de aj4.

Pour un x* donne, ces solutions appartiennent ainsi ä un
Systeme reductible defini par (11.2). L'ensemble des valeurs

propres des matrices p(0+' est alors deux fois l'ensemble des

valeurs propres du Systeme irreductible. Comme p<0+)(p,/[x') ne

depend pas de at, cette demonstration est valable pour tout x*.

Pour les rep. univ. nous nous rappelons que p(1+' est defini

par une integrale sur tout l'espace-temps. Pour autant que les

<5(X ne different de zero que dans une partie finie de ce continu
spatiotemporel, la contribution principale vient toujours de la

region infinie ou ®a 0. Les valeurs propres de p(1+) sont
ainsi deux fois l'ensemble des valeurs propres du svsteme
irreducible avec ®a 0.

Les p(n-' permettent de definir en plus de la matrice s{\xja')
en (3.15) deux matrices nouvelles (n 0, 1)

i[n) (n/fL) J (dfO p(n-> (11/1O P(n+)-x (p'Vm-') (12.3)

qui sont toutes les deux invariantes et independantes de la
normalisation des SA. Les fonctions «A et ux i(n)«A
definies par (3.16) avec les matrices (3.15) et (12.3) satisfont
ä l'equation d'onde si uA etait une solution. Nous avons utilise
le Symbole i pour la matrice (12.3) parce que de (12.2), (12.2a)
et (13.3) resultera

§ 13. — Les theories classiques du champ charge.

L'expose qui suit s'applique aussi bien aux rep. biv. qu'aux
rep. univ. parce que les deux theories derivent maintenant
de la meme equation (11.7).
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Nous etudions le cas particulier du § 6 oü le champ de

force ®a(ic) ne depend pas du temps xi dans un Systeme de

Lorentz privilegie. Les solutions de (11.7) peuvent alors etre
ecrites dans la forme

S(iVz)A S (rp/x)A (elkHr)xi)AB S (rpjx, 0)B 1 (13.1)

avec

((D, y)AB + ß4AB(Ä:4(r)--|<X>4(J)^SB x(|z)SA (13.2)

A la meme valeur propre appartient la solution lineairement
independante

S (rq/x)x i*${rp/x)B (13.3)

Les deux solutions sont reliees entre elles par la relation (5.7).
Elles ont ainsi les memes proprietes que les S(p)A et S(q)A
du champ non charge.

Nous etablissons les expressions pour l'energie totale et la
charge totale: Pour la charge totale, la difference entre le

champ charge et le champ non charge se manifeste dans

l'existence de deux expressions 2

eu e 2 Pr0) [arp arq — arq arp) ou e ]>j Pr"* (arp arp + arq arq)
r r

(13.4)

qui proviennent de l'alternative entre ßa et ya en (11.15).
La meme alternative se pose pour l'energie totale. Pour

demontrer ceci, nous ajoutons ä Hjj l'enregie H0 du «champ
de force », soit

Hu Hd + J (dx)3 (T" + T404) (13.5)

avec les Taß de (11.20). etant bilineaire en O" et Baß,

l'energie H0 se decompose en

Hext + Hself + Hmixte (13.6)

1 On a deflni (ef)* 1 + /AB + (2 !)_1/AC/CB +
2 Pour la definition de pj.0' cf. (5.10).
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parce que les (et Ba(3) sont des sommes d'un terme <l>gXt

representant le « champ de force » produit par des « sources »

J"xt exterieures (autres que Celles dues ä UAB) et d'un terme
<Pge)f qui est la solution statique de (11.14). Le Hext ne nous
interesse pas, parce que nous etudions le mouvement des

paquets d'ondes uA dans un champ 3>£xt donne. Le Hself doit
etre l'objet d'une etude ä part, qui s'occupe de la self-energie.
La somme Hext + HSPlt sera consideree comme une constante
additionnelle sans importance. Par contre, la somme

Hu Hu + Hmixte j (dz)3 h lim d4 (y) Y4ABU(x, t/)AB
*) x=y

ou j (dx)a h lim ß4 pour y4) (13.7)

represente 1'« energie cinetique » plus 1'« energie potentielle »

de la matiere chargee dans un champ de potentiel 3>4xt(x). La
deuxieme identite n'est obtenue que dans le cas particulier ou

<Dext(x) 0. Elle resulte d'une integration partielle. Le

dernier membre de (13.7) a la meme forme que dans la theorie
des ondes planes (2.6), mais les deux expressions

Hu h 2 Pr0' K {arp arq arq arp) '

r

ou h 2 P<0) K (<p arp + ar; arq) (13.8)
r

proviennent des deux definitions (11.18) et (13.7), qui sont
reliees par « ou ...» 1 dans chaque formule.

La relation (4.13) ou (5.10) entre les matrices p(0+) et p(1~'

est (dans ce cas DOa//öx4 0) la meme que pour les ondes

planes non chargees. La demonstration part de la formule
(SA S(p./x)A):

((D, y) + ß4(^-J®a(x)^AB8Sb + ß4ABSB .8kt

x£AB 8Sb + 5ab Sb 8x (13.9)

1 On doit prendre en (13.4) et (13.8), ou les deux lres expressions
ou les deux 2es expressions (marquees avec «ou ...»). En (5.8),
(6.15), (6.16) et dans les formules qui en derivent le signe de

Venergie est errone.
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qu'on obtient en variant ki par 8kt dans (13.2). Cette formule
est multipliee par S(p,7x)A SA (ou par Sc icA) et integree sur
tout l'espace-temps. Les termes contenant SSA sont integres

par parties en tenant compte que SA satisfait ä (13.2) avec
x' et k\. Avec la definition (3.11) de p<1_> la relation

((ftt - k[) ß4AB - (X - x') ÜAB) f (dx)* s; SSB
%)

+ 8ft4. f (dx)*^ ß4AB SB 8x 2 k p^^/p.') (13.10)

(ou avec y4, 7) et p<1+> ä la place de ß4, E, et p(1^) est obtenue.
La dependance temporelle de SA permet d'integrer sur x* et
d'utiliser la definition (3.10) de p(0~\

f (dx)' 8; ß4AB SB 2k 8(*4 - k\) f (dx)* S; ß4AB SB

2k |^| (|x/(x') (13.11)

Le premier terme en (13.10) disparait pour ki k[ et
x x'.

Les matrices p(rl>(p./fi/) n'ayant que des termes pour kt k[
et x x', (13.10) a pour consequence

ÖX

P<1 + Wp-') _ p(1_) (p/p') _
p(0 + >(p/p') P(° '(p/p') dx (13.12)

Cette relation est ainsi valable en toute generality si

~d<&a(x)/l)x4' 0.

Avant de proceder ä la discussion, nous remarquons que la
substitution (w)A pour uA (12.4) a pour seul effet de remplacer
l'une des expressions en (11.15), (11.18), (13.4), (13.7) et

(13.8) (reliees entre elles par «ou ...») par l'autre.
Nous sommes prets ä discutuer les deux cas, soit

A. La rep. biv.

ha uA. Si l'on prend les premieres definitions en (13.8)
et (13.4), l'energie totale (et la charge totale) par solution
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(temporellement) periodique (13.1) sont nulles. Une theorie

pareille est acausale.

Cette acausalite subsiste, ä fortiori, parce que l'energie
totale devient meme negative si Ton utilise les deuxiömes

definitions (13.4) et (13.8): l'energie totale par onde a mainte-
nant le signe de k*, le facteur p£0) pour les rep. biv. du type
considere etant toujours positive.

uA ^ uA : l'identification uA zuK (5.16) (avec la definition

(3.16) de l'operation s) a pour consequence de donner la

forme (cf. (5.9) et (5.15))

Hu h 2 Pr1)/fr(flrp + alq) 1 eu e 2 Kp + ar4)

r r
(13.13)

aux premieres expressions (13.4) et (13.8) (u* — izuA donne
le meme resultat pour les deuxiemes definitions).

L'energie par onde est maintenant toujours positive La
charge portee par une onde (temporellement) periodique
S(p./x;A a le signe de sa frequence k\.

B. La rep. univ.

Ce ne sont que les deuxiömes definitions (13.4) et (13.8)
qui, avec u+ uA nous assurent une dnergie positive 1 par
onde, parce que, maintenant, pj.0* change son signe avec k*.
Le resultat s'ecrit sous la forme (13.13) avec pj,0) ä la place de

pj.1'. C'est encore une fois le signe de la frequence k* qui determine

le signe de la charge portee par une onde (temporellement)
periodique.

§ 14. — L'invariance de jauge.

Les lignes d'univers (11.13) ne dependent pas des quatre
composantes Oa mais seulement des six composantes
Bag — B!Ba du « champ de force ». Pourtant, les ®a jouent

1 Plus exactement: pour une charge totale finie, elle ne prend
jamais une valeur negative infiniment grande.
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un röle dans l'interaction entre deux paquets d'onde uA, parce
que le Ba(J produit par Fun d'eux resulte de (11.14) et depend
ainsi de la valeur de <J>a. De meme, l'energie du champ total
depend (11.16) de 3>a.

Le cas-limite r1 0 ramene (11.14) ä la theorie du champ
electromagnelique de Maxwell. D'abord cette theorie elimine l"1

de et du deuxieme Systeme (11.14). D'autre part, le

premier Systeme (11.14) a pour consequence le Systeme

Sans faire appel au premier Systeme (11.14), l'equation d'onde

composee de (14.1) et du deuxieme Systeme (11.14) garantit
la conservation de 1'energie-impulsion dans le cas l~x 0.

Les composantes n'apparaissent dans l'equation d'onde

(11.7) pour uA et dans la definition du tenseur T"13 (11.18) que
sous forme de l'operation Da(x) (11.6).

Les grandeurs observables associees au « champ de force »

sont:

1° Les six composantes Ba(3 — Bga qu'on mesure en
observant les trajectoires des paquets d'ondes formees

par uA;
2° L'energie-impulsion portee par le champ de force (soit

les dix composantes T^,a), qu'on observe en

mesurant l'energie, l'impulsion et le moment d'impulsion
qu'un appareil emetteur a transmis au «champ de

force ».

Ces deux grandeurs (Ba(3 et Ta(3) sont invariantes, si Ton

substitue pour 3>a en (11.14) les composantes

oü 9 (x) est une fonction arbitraire de x.

La theorie d'un champ ä L1 0 est ainsi invariante par
rapport aux transformations de jauge (14.2), si Ton n'observe

que des charges Ja produisant le champ et les lignes d'univers

parcourues par ces charges.

ÖaBßy + ÖßByX + öyBaß — 0 ' (14.1)

®a (x) C/ (x) + ^ da 9 (x) (14.2)
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Si, en plus, on peut observer individuellement les differentes

composantes wA, un changement (14.2) dans les composantes Oa

(appelees les composantes du potentiel quadrivecteur) a pour
consequence une transformation de jauge des composantes nA

donnee par
U(X)A (<><*>)/u'(z)B (14.3)

Elle represente une rotation du « vecteur du champ uA» autour
de Vangle cp (9 est la «phase complexe » si nous nous represen-
tons, pour un instant, toute paire de deux composantes de uA

reliees par (11.3), comme les deux composantes d'un vecteur
dans un plan complexe). Une mesure simultanee de ces deux

composantes permettra de distinguer entre deux champs wA

et uA relies par (14.3). Elle permettra ainsi une mesure de Oa
dans le cas l'1 — 0.

Par contre, s'il n'existe pas d'appareil qui permette d'obser-

ver u(x)A, mais si des observations ne peuvent etre faites que
sur des grandeurs 1

/(*) lim (raAB t)ab iAB) U(*. j/)AB (14.4)
x y

(parmi lesquelles se trouvent J et T"e), les composantes Oa(«)
restent inobservables.

Les grandeurs Baß, et f(x) de (14.4) sont des invariantes

par rapport aux transformations de jauge.

§ 14 a. — Resume.

L'interaction d'un champ uh avec un «champ de force»
vectoriel Oa peut etre decrite si le champ «A appartient ä une

representation formee de deux representations identiques et
irreductibles. Ce champ combine peut porter des charges.

Dans les deux cas (rep. biv. et univ.), il n'existe qu''une seule

theorie classique, qui satisfait ä la notion de causalite (energie
totale par onde Hr >0).

1 F (y, D, y), i) est une serie de puissances en y. D, yj et i.

Archives. Vol. 25. — Janvier-F£vrier 1943. 2
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Si les deux composantes correspondantes des deux rep. irred.
peuvent etre observees separement, les composantes (h* du

potentiel vecteur d'un champ electromagnetique ont une
realite physique.

PARTIE IV

Theorie quantifl6e du champ charge.

§ 15. — Les seize theories a priori possirles
POUR UN CHAMP CHARGE.

Des seize types enumeres au § 9, les huit cas u+ u sont
ä eliminer pour la meme raison que dans le cas du champ non
charge. Le deuxieme critere du § 9 peut etre remplace par un
critere plus simple:

« Le deuxieme critere demande que la charge totale portee
par une onde periodique soit un multiple entier (pos. ou neg.)
de la charge elementaire e. »

Restent ainsi huit types. De cet ensemble, toutes les theories
suivant la statistique FD avec une fonction D(n~' dont le pJ.n+>

change son signe avec k* ont la seule solution uA 0. Ce sont
les deux theories: « rep. biv. avec D(1+)» et « rep. univ. avec
D(0+)».

Nous discutons maintenant les six theories qui restent:

A. Hep. biv.

Statistique FD. — La seule fonction qui nous est restee est
D(0+). La double fonction etant cette fonction donnee,

nous devons utiliser la double fonction antisymetrique 1

pour delinir les grandeurs physiques en (13.7) et (11.15). Ce

ne sont que les premieres expressions qui nous amenent ä des

Ja et Hu non nuls. Les valeurs pour eu et Hu sont ainsi les

1 Cf. les arguments du § 9, equation (9.12) et suivantes.
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premieres alternatives en (13.4) et (13.8) (avec a+ a), mul-
tipliees avec Poperation j provenant de la definition (9.12).
Les contributions de zero-point sont enlevees, si l'on ajoute ä

le terme (9.15). Le resultat est le meme que celui de la
theorie non chargee, soit (9.23). La charge totale est donnee par

o(0) A \ k4

+ =e^r^iN^ (l5-1)
y \ Py / y J 'lY |

avec Nr 0,1.

Statislique BE. — Les deux fonctions D(0"' et peuvent
etre utilisees. C'est la fonction qui fournit les grandeurs
physiques. Elle est symetrique. Ce sont alors les deuxiemes
definitions qui nous amenent ä des valeurs propres non nulles.
Or l'energie d'une onde ä frequence negative pourra atteindre,
pour les memes raisons qu'en theorie classique, des valeurs

negatives arbitrairement grandes, qui ne peuvent pas etre
soustraites. Done ces deux theories sont ä rejeter comme etant

non conformes aux premiers criteres.

B. Rep. univ.

Statistique FD. — Celle-ci n'est possible qu'avec la fonction
D^1+). La double fonction U^, augmentee par le terme qui
enleve les effets de zero-point (9.15), nous amene aux expressions

analogues ä (9.23) et (15.1) mais avec le terme

(p^/pr^) Mr ä la place de Mr. Avec la definition Nr Mr — ^
ä la place de (9.23a), les memes formules pour Hu et eu sont
obtenues que dans le cas de la rep. biv.

Statistique BE. — Les deux fonctions D(0_) et peuvent
etre utilisees. L'expression pour l'energie totale et la charge
totale doit etre calculee par U^'. Apres avoir ajoute le terme

(9.15), le resultat prend la forme (9.24) pour l'energie, si l'on
a utilise D'0-). L'application de D(1_) ne fait que substituer

Jp^j"1 ä la place de |p£0)|~l. Mais ces deux facteurs ayant
la meme valeur (cf. (13.12)), il n'y a aucune difference entre
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]es deux theories pour autant qu'on ne considere que des

champs satisfaisant ä öOa(x)/3x4 0.

Resume. — Des seize types de theories possibles, il ne nous
est reste que quatre formes, soit:

Tableau II.
Les theories du champ charge.

N° represen¬
tation

statis-
tique fonction caractfere

1 u n + T FD D(°+) Dirac-Heisenberg

2 — u N BE DP-) Pauli-Weisskopf
3 — u N FD D(1 + Mec. nouv. FD
4 — u N BE DP~) Mec. nouv. BE

(15.3)

Les types n° 1 et n° 2 sont les theories proposees par Dirac
et Heisenberg (n° 1 DH), par Pauli et Weisskopf (n° 2 PW)

pour expliquer l'existence des quanta de charge opposee
(antiparticules: electron et positron).

Nous allons demontrer au § 19 que les alternatives n° 3

et n° 4 sont identiques avec la quantification de la nouvelle

mecanique relativiste proposee d'autre part [6],

§ 16. — Discussion des quatre theories
ET ELIMINATION DE LA THEORIE N° 3.

Les figures 1 a 4 etudiees au § 6 montrent le phenomene de

la « creation de paires ». En effet, une seule onde plane caracte-
risee par son vecteur d'onde &(r) (en figure 1) se divise au
moment x* ~ 0 sous l'influence du «champ de force ». x (X)x

en deux ondes planes, qui se propagent dans deux directions
differentes et A(s/).

Si la figure 1 s'applique a un champ uA charge, on voit que
les deux ondes secondaires ont des frequences opposees

— A4.,,), ce qui implique dans les deux theories clas-

siques (§ 11) aussi bien que dans les quatre theories quantifiees
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(§ 15) la creation de deux ondes secondaires portant des charges

opposees. Ces deux ondes ont ete produites par le «champ de

force » x (x)a Leur intensite est proportionnelle k 1'intensite
de l'onde chargee primaire. II s'agit ainsi en theorie classique
de la creation induite. L'interpretation quantique sera etudiee

au § 17.

Nous deinontrons d'abord que le deuxieme critere: «La
charge par onde est un multiple entier de e » est satisfait par tous
les quatre types du tableau II. Cette demonstration se base

sur les formules (6.15) et (6.16) pour Hu, soit pour les formules

classiques analogues pour eu. En termes de m, n ces formes

sont pour x4 <<( 0 (fig. 3 et 4):

E(0) / + b \
Pr \amp amq amq ampI

m

+ c 2j Ps A (amp amq amq amp)
m

+ « 2 pf B2 Kp arn ~ am anp>

n

+ «22 Ps0) 2 AB Kp am - <q anp) (16-D
m n

et, en termes de p., v, (flg. 1 et 2):

eu « 2 Pr0) (<P am ~ am aup)
l-t

+ « 2 Ps0)Kp % — an avp) • (16'2)
V

Les formules quantiques (corrigees pour les effets de zero

point) sont obtenues de (16.1) et (16.2) si Ton y substitue pour
a.q — •••) les expressions suivantes (suivant le meme pro-

cede comme celui qui aboutissait a l'etablissement de (9.23)):

N° 11: (biv., FD, D(0+) Dirac-Heisenberg) (6.16) et (16.2)
avec

••> -T^r^yrV, ^ 0,1; p<°> p<<»

I r j I P(x |

(16.3)
1 Du tableau II.
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parce que c'est dans le Systeme p., v que la matriee p(0T' est

diagonale. Cette substitution, effectuee en (16.2), montre que
la charge par onde periodique est un multiple (0 ou 1) de

Fig. 5. Fig. 6.

S (mp/x)A S (np/x) A

Les Heches k(T) sont les vecteurs d'ondes principales contenus dans
la solution (temporellemenl) periodique r pour ® (x1) — const, r, s
sont ces solutions pour xi < 0 et r's' Celles pour xi > 0. (1), (A)
et (B) sont les amplitudes des ondes temporellement periodiques,
dont les solutions S {mp/x)A se composent pour un ®(x4) variable.

± e, dependant du signe de k* (p{.0) p^0) p^0) etant
positives).

Nous remarquons que l'etablissement de (6.15) (6.16) et
(16.1) (16.2) reste valable si Ton superpose au «champ de

force » dependant du temps (^(x4) ^ 0 pour — 8t < x4 < 8t)
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un deuxieme « champ de force » Oa(J), qui depend de x seule-

ment. A la place des ondes planes utilisees au § 6, on doit
alors substituer les ondes (temporellement) periodiques de la

deuxieme partie. La figure 3 est ä remplacer par la figure 5.

Une onde incidente du passe avec k> 0 consiste en

paquets d'ondes ä charge positive. Le champ superpose du k

<I>a (x) qui regne aux deux regions x1 ~ l' et x1 ~ I" est de

telle nature qu'il ne permet pas le passage des paquets ä

charge positive ä travers ces deux «barrieres ». Les paquets
formes de telles ondes restent dans le volume V delimite par
ces barrieres. Au moment a;4 ~ 0, l'onde incidente (r) se divise

en une onde refractee (r') qui, gardant la charge positive,
continue ä osciller entre les deux barrieres x1 ~ l' et x1 I".
Par contre, l'onde (s) reflechie (k^ < 0) porte une charge

opposee. Elle est acceleree par les barrieres et les paquets
d'ondes qui en sont construits traversent les barrieres et sortent
du volume V. Iis representent des antiparticules.

A'0 2: (rep. univ., BE, D(0~' Pauli-Weisskopf) (6.16),
(6.17) et (16.2) avec

Kp"w,- •••) nsnNn: °-1; 2> ; p(^0> p'0) •

I Pet I

(16.4)

Le resultat est le meme qu'en theorie n° 1, le signe de ± N^e
etant maintenant determine par le signe de p£0' > 0 resp.
Ps°* < 0 en (16.2), sauf que la statistique BE permet des

valeurs propres N > 1.

N° 3 (rep. univ., FD, D(1t) nouv. mec.) (6.15) et (16.1)
avec

amq * " •) "* "i (1) I

^ ' Pm Pr
| Pm I

(16.5)

La valeur de est toujours egale ä celle de p'1'. La preuve
en est simple: l'integration de SA SA sur tout l'espace-temps

vaut p^ + y + y ^ pP}= pP). Les trois termes pro-
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vieiment des trois branches kr, kr, et ks qui n'existent chacune

que dans une moitie de l'espace-temps. Les valeurs propres du

premier terme sont: pour Hr (6.15) des multiples positifs de

h | ft* | et pour er (16.1) des multiples positifs de e. Chaque
membre individuel de la somme qui constitue ce premier
terme contient Ventüre contribution d'une seule onde periodique r
ä k* > 0. Dans le cas de la figure 5, c'est cette premiere somme

qui represente la charge totale dans le volume V, parce que les

termes contenant p^0) ne contribuent en rien ä la charge dans

V 1. II resulte ainsi de cette tlieorie que

Les valeurs propres de la charge dans un volume V delimite

par des barrieres impenetrables pour les quanta ä charge e > 0

sont des multiples entiers positifs ou nuls de + e (et vice versa 2).

Ce resultat s'applique ä fortiori aux theories n° 1 et n° 2.

Mais, tandis que les theories n° 1 et n° 2 permettaient de mesurer
simultanement le nombre de quanta ä charge + e et le nombre
de ceux ä charge — e, les theories n° 3 et n° 4 interdisent une
connaissance simultanee de ces deux quantites physiques.

Cette nouvelle relation d'incertitude n'est pas en contradiction
avec l'experience: une mesure de la charge electrique se fait
toujours par la construction d'une barriere fermee. Celle-ci est

constitute par des forces electriques (parmi celles-ci comptent
les «forces de valence », 1'« adhesion d'un ion a une gouttelette
dans l'experience de Millikan », la «liaison d'un ou de plusieurs
electrons negatifs ä un noyau d'atome », etc...). Une barriere,
qui lie les particules ä charge + e, a toujours la propriete de

laisser passer toute antiparticule a charge — e. Done, une

mesure simultanee du nombre de particules et du nombre

d'antiparticules dans le meme volume V nous semble etre
exclue par la nature meme des appareils ä notre disposition.

1 Si l'on defmit p^°T) (p./p.') par une integrale spatiale sur V seule-

ment (au lieu de tout l'espace) en (3.10), on a p^Y rv. p^ et p^ 0

parce que l'onde S (rfx)K est entierement contenue en V, tandis que
S (sfx)K est essentiellement dans l'inflni.

2 Pour la demonstration du « vice versa # on doit decomposer uA
en des fonctions S (m'/x) A denombrant l'ensemble des fonctions
emergentes du « diffuseur ».
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Mais il y a une autre raison pour eliminer la theorie n° 3:

un champ uA ä rep. univ. et ä statistique FD ne peut pas
satisfaire ä une equation d'onde inhomogene du type (6.9).
II ne peut done jamais jouer le role d'un «champ de force»

uj dans une equation d'onde d'un autre champ. Le deuxieme
membre de (6.-9) satisfait toujours ä une loi de commutation,.
tandis que le premier membre represente maintenant en

theorie n° 3 une grandeur anticommutative. D'autre part, le

terme trilineaire T-u-|. u
de l'energie-impulsion en (6.7) ne

commute meme pas pour deux evenements x et y ä de tres
grandes distances spatiales (R2X>x-2). Ceci est en pleine
contradiction avec la nature observable de T^. Cette impossibility;

de l'existence de l'equation (6.9) interdit la creation de

paires de quanta d'un champ uA (ä rep. biv. ou univ.) par des

quanta du champ w- (ä rep. univ.) considere. Or, parlant en

termes du «spin », elle interdira les reactions:

a)

b)

D*

H°

i- N° + P

tP' + e"

(16.6 a)

(16.6 h)

ou une particule ä spin entier (Deuteron D atome d'hydro-
gene H°) se «decompose » en deux particules ä spin demi-

enlier (neutron + proton, proton 4' electron) et les «emissions

» ou « absorptions »

c) n+ + N° (16.6 c)

oü une particule ä spin demi-entier (proton) «emet» une

particule ä spin entier (mesotron) p.L en" devenant un neutron
(si les particules D+, H° et ä spin entier (rep. biv.) se com-

portent conformement a la theorie n° 3). La reaction (16.6c)
est, responsable pour les forces nucleaires dans la theorie de

Yukawa.
Pour cette raison, nous croyons que la theorie n° 3 n'est pas

realisee en nature.

N° 4: (univ., BE, D<1_) —- nouv. mec.).
II faut prendre le symetrique pour y construire les

grandeurs physiques. A part ceci, la discussion reste la meme
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que pour la theorie n° 3. Les charges observees dans un volume V
sont des multiples entiers de e.

La theorie n° 4 admet l'equation inhomogene (6.9) (comme
le fait d'ailleurs la theorie n° 2). Les reactions (16.6a, b et c)

sont alors possibles.
Tout calcul (Tintensite avec lequel des transformations du

type (16.6a, b ou c) (parmi lesquelles compte tout phenomene
d'emission et d'absorption) prennent place, est fait en suivant
la theorie classique des champs. Le resultat est ainsi indepen-
dant de l'alternative entre D(0_) et D(1~\ soit entre theorie n°2
et n° 4. C'est aussi le cas pour toute determination de e/m et du

rapport entre le moment magnetique et le moment mecanique.
La difference entre les deux theories ne se montre que dans

le phenomene de

§ 17. — La creation de paires de quanta.

Nous appliquons nos theories aux problemes du § 6 (fig. 1

h 4):

Theories nos 1 et 2. — Nous considerons la fonctionnelle
de Schroedinger (independante du temps x4) (Nt... N Nv...)
comme fonction des nombres N Nv de quanta dans les ondes p.,

v La fonctionnelle particuliere

T S0Ni 8^;-^ ^5vNv '' • ®osA (17-1)

a pour consequence que seules les esperances mathematiques

N^y^ 0) et Nv(^ 0) different de zero, tandis que pour tout
autre A(^ p, v) on a N>, 0. II en est de menie pour toute autre
forme bilineaire en aiLpall'P' 0, si 9- 7^ [>'•

Nous formons l'esperance mathematique de la charge portee

par une onde plane (k^,^) pour x4 0. La charge contribute

par U<-» (ou U^) dans la theorie n° 1 (ou n° 2) vaut alors

(cf. fig. 1 et 2):
(0)

(6*11 + a2MJ (17.2)
P<0) I *
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Pour arriver ä la charge effective, nous devons y ajouter la
charge due au terme de zero-point (9.15). Celle-ci vaut pour
toute onde plane (cf. (9.15) ä (9.22))

La substitution de pour (equation (9.23a) pour la
theorie n° 1, equation (9.24a) pour n° 2 dans (17.2) et l'addi-
tion de (17.3)) fournit, pourles charges effectives (er e'r + er(0))

le resultat1 suivant pour l'augmentation ~er, — er de l'espe-
rance mathematique de la charge er dans l'onde kr -> kr,:

er,-er a*e T a* (7r + (— 7S)) pour rep. J

(17.4) 2

Dans les deux theories, il y a ainsi:

1° La creation spontanee. Celle-ci est caracterisee par l'appa-
rition de a2 quanta charge dans l'onde kr,, meme si les

deux ondes primaires kr et ks ne contenaient aucun

quantum (er es 0).
2° Dans le cas n° 1 (FD), aneantissement induit, proportionnel

ä eT + (— es). Cet aneantissement ne peut jamais
amener ä un er, < 0, parce que er et — es ne peuvent
prendre que les valeurs 0 et e.

3° Dans le cas n° 2 (BE), le deuxieme terme represente une
creation induite, proportionnelle ä e, — (— es), qui est

l'analogue parfait de la theorie classique (cf. § 16, premier
alinea).

Theories nos 3 et 4. — Nous etudions la fonctionnelle
fonction du nombre Nm, Nn des quanta dans les ondes m, n,...
La fonction particuliere

K i
—- ^ pour rep.
k A univ.

biv.

(17.3)

'ON! ••• 8ONotSN„Nm ••• S0NI (17.5)

1 On a J' t a! 1 pour la rep. ^'.V' \
\umv./

l / biv. \
2 er et — es > 0; 0 < a2 < pour rep. ^univJ-
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donne les esperances mathematiques zero pour toute forme
bilineaire en amp sauf pour N„(^ 0).

L'esperance mathematique de la charge (dejä corrigee pour
ies effets de zero point) (cf. fig. 4 ou fig. 6) contenue dans

toute onde plane er pour x4 « 0 est alors nulle, sauf celle
de e8, qui vaut

P<°)

e« eB,riö|Nn -eB1Nn- («-5«)
I I

Ce resultat est une consequence de (16.1) et de figure 4 (ou
fig. 6).

Pour evaluer les esperances mathematiques ä des temps
futurs ä l'apparition du « champ de force », nous devons utiliser
la formule correspondant ä (16.1) pour a;4 » 0. Les figures 3

c-t 4 montrent que (au signe du dernier terme pres) cette
formule est la meme que (16.1) si Ton substitue s' ä r, r' ä s

et si 1'on interchange m et n.
Tenant compte de (17.5a) ce resultat est

P<°> _ _N„ =-eN. 4, e.(i) in n B2
tn |

O(0)
_ _ 42'r A2N e A2N ^r> 1 (I) I n - n B2 -

I i'n-
I

es, — es a2es ; er, — a?es (17-6)

Ces formules s'appliquent, si notre connaissance de 1'« etat»
du Systeme est decrite par (17.5). Mais generalement ceci n'est

pas le cas. Notre etat (17.5) decrit la certitude qu'aucune
charge positive (k* > 0) n'existe pour x4 <<( 0 mais que Vespe-

rance mathematique de la charge negative vaut ~es 1. Par contre,
si sealement des charges positives (par exemple dans l'etat r)
ont ete presentes avant l'enelenchement du « champ de force »

C>a(a;4), les dernieres equations (17.6) sont :

es, — a2er ; er, — er a2 er (17.7)

1 Je ne connais done pas es mais seulement es. Par contre je
connais er 0 (et done ä fortiori er 0) (cf. § 16).
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On les a obtenues en decomposant uA suivant les ondes emer-

gentes, ä la place des ondes incidentes (fig. 3 et 5).

Si, en moyenne, on a pour a;4 0, des charges er et es

präsentes dans leurs ondes respectives, on doit aj outer leurs
contributions (17.6) et (17.7) aux ondes kr, et ks, sans relation
de phase 1. Le resultat ainsi obtenu est, pour l'onde kT kr,\

er — er, a2 (er — esj (val. pour theorie n° 4 2) (17 .8)

II differe du resultat de la theorie n° 2 en ce quHl ne contient

que la creation induite2.
La nouvelle theorie (soit n° 3 (ED), soit n° 4 (BE)) differe de

n° 2 (celle de Pauli-Weisskopf) el de n° 1 (celle de Dirac-Heisen-

berg) en ce qidelle ne donne pas de creation spontanee cle paires
de quanta charges a spin entier par un « champ de force » (par
exemple le champ electromagnelique).

Cette difference se manifestera dans 1'experience suivante:
Un rayonnement de photons incidents sur des noyaux ato-

miques donne, d'apres les theories n° 1 et n° 2 (Dirac-Heisen-
berg et Pauli-Weisskopf) un nombre moyen de paires de mesotrons

creees spontanement par un photon, qui est proportionnel
ä Z2 (Z nombre atomique) (formule de Bethe-Heitler, of. 17]).

D'apres la nouvelle theorie, un tel effel spontane ne peut pas
se produire. Par contre, un effet induit pourra se montrer si les

forces nucleaires sont produites par ce champ charge et de

1 Cette moyenne doit etre faite sur les phases complexes des

coefficients c ^ de la somme

Y(...N, y ...2 ••• SniNi ••• 8^^
Ni 5[

tout en gardant constantes les valeurs er et es.
2 Dans le cas BE (theorie n° 4) la formule (17.8) est obtenue. En

theorie n° 3 (FD) Ni ne peut prendre que les valeurs 0 et 1. La
phase est alors limitee et une autre formule, contenant Vannihilation

induite, resulte si er et es ^ 0. Remarquons aussi que la nouvelle

relation <i'incertitude du § 17 limite en theorie n° 3 I'esperance

mathematique 0 < er < B2 e < e, i on sail que es vo.ut — e.
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quanta ä spin entier (mesotron). Toute expression bilineaire
en termes de ce champ des mesotrons est alors proportion-
nelle ä ~ 2Z, ou peut-etre ä ~ 2Z2, dependant de la maniere
de la superposition des champs nucleaires individuels de

chacun de ces ~ 2Z constituants nucleaires. Le photon incident

peut alors produire des paires par creation induite. Mais
ieur nombre par photon est proportionnel a ocZ + ßZ2.

§ 18. — Une raison pour eliminer la theorie n° 2.

Si Ton considere l'existence des reactions (16.6a, b et c)

comme une necessite physique, le nombre de nos theories se

reduit ä une seule theorie (avec statistique FD) pour des parti-
cules ä spin demi-entiei\ mais k deux theories (les deux avec

statistique BE) pour les particules a spin entier. II est pourtant
peu probable qu'il existe deux sortes de particules ä spin
entier.

Nous n'avons trouve aucun moyen de demontrer l'impossi-
bilite physique de notre nouvelle theorie n° 4. Par contre, un
argument peut etre invoque pour eliminer la theorie n° 2

(celle de Pauli-Weisskopf): La theorie classique est composee
de deux champs non charges ä / composantes chacun. Si ces

deux champs peuvent etre mesures simultanement, on peut
observer 1'« angle » 9 (x) entre deux de ces 2/ composantes
reliees par la matrice i (11.3) (cf. (14.2) et (14.3)). Ainsi une
distinction est possible entre l'etat electromagnetique de

l'espace represente par le meme « champ » Ba(3 mais par un
« potentiel» <&a different.

Si nous ecrivons les fonctions D^'j, qui distinguent les deux
theories sous forme de matrices ä 2/ lignes (comme on l'avait
fait pour (11.2), (11.3) et (11.8)), on a (cf. equation (12.1))

On voit maintenant que seule la fonction D(1 ' impose une
restriction ä la mesure de Vangle 9 (x) qui se trouve dans le plan

(18.1)
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represents par deux composantes de nA reliees par la matrice i
(11.3) ou par D(1_) en (18.1) 1.

La nouvelle theorie (n° 4) contient ainsi ä priori \' impossibility
d'observer cet angle qui represente une transformation de jauge.
La theorie n° 2 de Pauli-Weisskopf ne fait que quantifier
separement les deux champs non charges et admet ainsi ä priori
Vobservation d'une transformation de jauge.

Une observation d'une telle transformation ä l'aide de

champs (charges) ä rep. biv. (theorie n° 1) est exclue parce
qu'une loi d'anticoinmutation ne permet de mesurer deux

grandeurs anticommutantes qu'ä leur signe pres. Or cette
restriction enleve ä fortiori toute possibility de mesurer
1'angle cp(x) dans ce cas nö 1.

§ 19. — L'identite entre la nouvelle THEORIE du champ
ET LA quantification de la nouvelle mecanique

du point materiel.

Dans un article precedent [6]1, nous avons demontre que
la quantification de la mecanique contenue en

q' tu« ; Ka eB^(q)^ ; f ^ (19-1) 2

montrait (dans le cas particulier d'un champ <E>a(:r4) considere

au § 6 et pour le spin 0) qu'une particule de charge + e,

observee au temps x* »> 0, a :

ou 1° dejä existe au temps x4 <<(0 et a ete acceleree par le

champ (electrique) qui existait pendant l'intervalle
— c$t < x4 < + cSt,

ou 2° qu'elle est le partenaire d'une paire creee par le champ
(electrique) pendant cet intervalle.

1 On peut demontrer en plus que la singularity de D(1+) est de
telle nature ä interdire meme la mesure de la « phase moyenne »

<p(x) defmie par des valeurs moyennes des composantes du champ uA
pris sur un volume V.

2 A est un parametre quelconque, cf. eq. (4.5) de [6] (deuxieme
partie).
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La probability pour la premiere alternative est B2 et celle

pour la seconde A2. Ces coefficients ont la meme signification
qu'en figure 4. Or les relations (cf. note p. 220) qui existent
entre les coefficients a, b, A et B des ondes planes dans les

figures 1 ä 4, montrent que l'esperance mathematique es,/e de

trouver une charge au temps xi yy 0 dans un certain etat de

mouvement est 1/B2 fois plus grande que eje qui represente
l'esperance mathematique k trouver une charge pour x4 <(<( 0

dans l'etat de mouvement correspondant1. Or (19.1) montre

que la relation

existe entre les deux grandeurs. Elle est identique au resultat
de la nouvelle theorie du champ quantifie ((17.6), 5e equation).

Pour faire une demonstration exacte de l'identite des deux
theories proposecs, il faut d'abord generaliser (19.1) pour
pouvoir l'appliquer k des particules avec spin. Cette forme est

obtenue si Ton introduit, en plus des variables <7a(X) et tra(X)
des nouvelles variables classiques y01 (X) et ffaP(X) —(^(X).
(19.1) doit alors etre remplace par:

q" Ta ; ya h.'-1 up

aaß ; eB«3 (19.4)

On peut demontrer que cette theorie donne lieu ä des lignes
d'univers qui sont toujours pres ä ceux de (11.13). h' et h"
sont des constantes de la dimension h, si on donne ä X la dimension

d'une longueur. Une telle theorie est classiquemenl possible.
Le tenseur

Ma3 LO<3 + Saß

Laß ?aTCß — ' Saß " h" CTocß <19'5)

est conserve dans l'absence de forces. Done Sa(3 represente
le spin. L'analvse montre qu'en moyenne une telle particule

1 C'est-a-dire dans un etat de mouvement deftni par les impulsions

7tr) hk®r)
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possede un moment magnetique et electrique. La condition

ya y01 0 1 fait disparaitre le moment electrique dans son

Systeme de repos (tc 0).
La quantification de cette theorie n'est possible que pour des

spins entiers. Les ya deviennent les matrices yAB, etc.

J {dq)4 ^(<7, X)A X)A est positif pour toute region d'espaee-
n
tenips Q yy x~4 2. L'integrale sur un tel Q peut done representer
la probability de trouver la particule dans cette region (dans
le sens propose par l'auteur [6]).

Pour des spins demi-entiers, il faut considerer J'{dq)1 (s^)a <]/
n

comme une telle probability. Cette integrale etendue sur tout
1'espace-temps est en effet positive. La theorie correspond au

cas uA {eu)A de la theorie quantifiee que nous avons du

ecarter dans la theorie du champ uA parce que les valeurs

propres de la charge dans un volume defini par les « barrieres »

ne sont pas des multiples entiers de e. Elle est k eliminer de

la mecanique du point parce que des paquets d'ondes k

probability negative peuvent se separer du paquet d'onde primitif.
Autrement dit, meme pour des regions d'espace-temps
LJ yy xf4 l'integrale de la probability n'est pas toujours
positive.

19a. — Resume.

La generalisation que le champ charge apporte aux deux

theories du champ non charge en fait six theories. Des trois
theories ä rep. hiv. (spin demi-entier), les deux qui utilisent la

statistique BE doivent etre exclues parce qu'elles admettent
des valeurs negatives pour l'energie totale d'une onde perio-
dique. Des trois theories ä rep. univ. (spin entier), celle qui
utilise la statistique FD ne permet pas de reactions ou un seul

quantum k spin entier apparait ou disparait.

1 Dans son Systeme de repos, le point qa decrit alors des cercles

avec la vitesse de lumiere. On remarque une analogie avec un modele
de Hönl [9].

2 On pose m hx. (m masse de repos).
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Des deux theories qui restent, l'une (celle de Pauli-W'eiss-

kopf) admet en principe la possibilite de mesurer les potentiels
electromagnetiques par une mesure de deux composantes du

champ charge. L'autre theorie (la theorie nouvelle) contient un
principe fondamental interdisant cette observation.

Nous proposons done que seules les theories qui satisfont
au principe cle I'incertitude de la phase <p(x) clu champ charge

soient realisees en nature.
Ces deux theories sont alors la theorie de Dirac-Heisenberg

pour des quanta ä spin demi-entier, et une nouvelle theorie du

champ, qui est identique a la quantification de la nouvelle

mecanique du point materiel proposee par 1'auteur [6|. Cette
nouvelle theorie utilise la fonction

Mai 1942.
Geneve. Institut de Physique de VUniversite.
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