Zeitschrift: Archives des sciences physiques et naturelles

Herausgeber: Société de Physique et d'Histoire Naturelle de Genève

Band: 25 (1943)

Artikel: Une méthode nouvelle de la quantification des champs [suite et fin]

Autor: Stueckelberg, E.C.G.

DOI: https://doi.org/10.5169/seals-742302

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 30.10.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

UNE MÉTHODE NOUVELLE

DE LA

QUANTIFICATION DES CHAMPS

PAR

E. C. G. STUECKELBERG

(Avec 6 fig.)

(suite et fin)

IIIe PARTIE

Théorie classique du champ chargé.

§ 10. — LES LIGNES D'UNIVERS QUE SUIVENT LES PAQUETS D'ONDES DU CHAMP NON CHARGÉ.

Nous étudions l'évolution que subit un paquet d'ondes $u(\vec{x}, x^4)_A$ dont on connaît la forme $u(\vec{x}, 0)_A$ au temps $x^4 = 0$. Dans l'absence de « formes extérieures » $(\chi_A^B = 0)$ ce paquet suit, en moyenne, une ligne d'univers qui est une droite.

Nous faisons alors intervenir le champ de force $\chi_{\rm A}^{\ B} \neq 0$. Le champ $u(x)_{\overline{\rm A}}$ le plus simple est celui à une seule composante $\Phi(x)$, qui doit alors être un scalaire. On en forme $\chi(x)_{\rm A}^{\ B} = \Phi(x) \, \tau_{\rm A}^{\ B}$ où $\tau^{\rm AB} = {}^{(-)}_{+} \, \tau^{\rm BA}$ doit être un spineur (anti-) symétrique si $u_{\rm A}$ appartient à une rep. univ. (ou biv.).

Un tel spineur existe pour la rep. biv. toujours sous forme de $\tau^{AB} = eh^{-1}\xi^{AB}$. Il sera montré autre part (cf. § 19), que le paquet suivra alors en moyenne une ligne d'univers $x^{\alpha} = q^{\alpha}(s)$ avec $ds^2 = -g_{\alpha\beta}(q) dq^{\alpha} dq^{\beta}$ qui satisfait à

$$h \times \frac{d^2 q_{\alpha}}{ds^2} \sim e \frac{\partial \Phi(q)}{\partial q^{\alpha}}$$
 (10.1)

L'équation d'onde pour le « champ de force » $\overline{u_{\alpha}}$ doit contenir d'autres composantes. S'il n'en existe pas, la seule possibilité est $\beta^{\alpha \overline{AB}} = 0$. Il résulte alors de l'équation d'onde (2.10) $\mathbf{x} \Phi = 0$. Pour cette raison nous introduisons, comme théorie la plus simple, celle qui contient en plus du scalaire Φ ses dérivées $l^{-1}\Phi_{\alpha} = \delta_{\alpha}\Phi$. Le système ¹

$$\begin{array}{l} \partial_{\alpha}\Phi - l^{-1}\Phi_{\alpha} \\ \\ \partial_{\alpha}\Phi^{\alpha} - l^{-1}\Phi = -elu_{\rm A}^{+} \xi^{\rm AB}u_{\rm B} \end{array} \tag{10.2}$$

peut être mis sous la forme (6.9), si on introduit les cinq composantes $(2hl)^{-\frac{1}{2}}\Phi^{A}\equiv \bar{u}^{-\overline{A}}(\overline{A}=\overline{1}\ \ \dot{a}\ \overline{4})\ ;\ (2hl)^{-\frac{1}{2}}\Phi\equiv \bar{u}^{-\overline{5}}\ ;$ $l\equiv \bar{\varkappa}^{-1}$. A la place de $T_{\bar{u}\bar{u}}^{\alpha\beta}+T_{\bar{u}u^{+}u}^{\alpha\beta}$ en § 6, on peut considérer ² le tenseur

$$T_{\Phi}^{\alpha\beta} = l^{-2} \left(\Phi^{\alpha} \Phi^{\beta} - \frac{1}{2} g^{\alpha\beta} \left(\Phi_{\mu} \Phi^{\mu} + (\Phi)^{2} \right) \right) .$$
 (10.3)

Il satisfait en vertu de (10.2) à l'équation de continuité

$$\partial_{\beta} T^{\alpha\beta} = \partial_{\beta} \left(T_{\Phi}^{\alpha\beta} + T_{u+u}^{\alpha\beta} \right) = 0 . \qquad (10.4)$$

Pour généraliser la théorie, la question se pose si on peut introduire des composantes vectorielles $\Phi_{\alpha}(x)$ dans l'expression pour $\chi_{A}^{B}(x)$. La seule façon serait

$$\chi(x)_{A}^{B} = -e h^{-1} \Phi_{\alpha}(x) \gamma_{A}^{\alpha B}$$
 (10.5)

Elle est impossible parce que $\gamma^{\alpha AB}$ est symétrique. Un χ^{AB} symétrique est en contradiction avec le § 6.

Le même raisonnement est appliqué aux rep. univ. Dans ce cas τ^{AB} doit être symétrique. C'est alors le tenseur fondamental η^{AB} qu'on substitue en $\tau^{AB} = eh^{-1}\eta^{AB}$. L'utilisation d'un vecteur Φ_{α} est impossible, parce que

$$\chi(x)_{A}^{B} = e h^{-1} \Phi_{\alpha}(x) \beta_{A}^{\alpha B}$$
 (10.6)

est antisymétrique.

- ¹ Système de la force scalaire de Yukawa pour des mésotrons neutres à spin 0: $(\bigcap \bar{\varkappa}^2) \Phi = eu^{+_{\Lambda}} u_{\Lambda}$.
- 2 On a ajouté à $T_{\bar{u}\bar{u}}^{\alpha\beta}+T_{\bar{u}u^+u}^{\alpha\beta}$ de (6.7) un terme $T_0^{\alpha\beta}$ satisfaisant à $\partial_\beta T_0^{\alpha\beta}=0$ pour le symétriser.

§ 11. — LES LIGNES D'UNIVERS QUE SUIVENT LES PAQUETS D'ONDES DU CHAMP CHARGÉ.

Nous cherchons la généralisation nécessaire pour que le champ vectoriel $\Phi_{\alpha}(x)$ puisse être utilisé comme «champ de force » dans l'équation d'onde pour $u_{\rm A}$. Ce n'est qu'une substitution du genre (10.5). Pour qu'une telle opération devienne possible pour la rep. biv., il faut qu'à part les $\gamma^{\alpha {\rm AB}}$ symétriques, des spinotenseurs antisymétriques $\beta^{\alpha {\rm AB}} = -\beta^{\alpha {\rm BA}}$ existent pour cette même rep. biv. : $\chi_{\rm A}^{\rm B}$ est alors donné par (10.6) pour des rep. biv. et (10.5) pour des rep. univ.

La représentation irréductible ne dispose pas de tels spineurs. Pour introduire (10.6) dans l'équation d'onde, il faut donc passer à une représentation réductible. Si $\gamma^{\alpha(f)}$ sont les matrices $\gamma_{\overline{A}}^{\alpha \overline{B}}(\overline{A}, \overline{B} = 1 \dots f)$ du système irréductible (à f lignes), on peut toujours en former des $\gamma^{\alpha(2f)}$ symétriques et des $\beta^{\alpha(2f)}$ antisymétriques à 2f lignes par

$$\gamma^{\alpha(2f)} = \begin{pmatrix} \gamma^{\alpha(f)}, & 0 \\ 0, & \gamma^{\alpha(f)} \end{pmatrix}; \quad \beta^{\alpha(2f)} = \begin{pmatrix} 0, & -\gamma^{\alpha(f)} \\ \gamma^{\alpha(f)}, & 0 \end{pmatrix}. \quad (11.2)$$

A l'aide de la « matrice i »

$$i = \begin{pmatrix} 0 & -1^{(f)} \\ 1^{(f)} & 0 \end{pmatrix} \tag{11.3}$$

 $(1^{(f)}$ est la matrice d'unité à f lignes et colonnes) on a $(A, B \dots = 1 \dots 2f)$:

$$\beta_{\mathbf{A}}^{\alpha \, \mathbf{B}} = i_{\mathbf{A}}^{\, \mathbf{C}} \, \gamma_{\mathbf{C}}^{\alpha \, \mathbf{B}} = \gamma_{\mathbf{A}}^{\alpha \, \mathbf{C}} \, i_{\mathbf{C}}^{\, \mathbf{B}} \, . \tag{11.4}$$

La matrice i est ainsi la matrice-antisymétrique qui commut avec tous les γ^{α} .

Elle est différente de la matrice antisymétrique ξ parce qu'on a

$$(\xi^{2})_{A}^{B} = \xi_{A}^{C} \xi_{C}^{B} = \xi_{A}^{B} = \delta_{A}^{B}$$

$$(i^{2})_{A}^{B} = i_{A}^{C} i_{C}^{B} = -\delta_{A}^{B} = -\xi_{A}^{B}.$$
(11.5)

L'opération $D(x)_{\alpha}$ définie par

$$D_{\alpha}(x)_{A}^{B} = \delta_{A}^{B} \delta_{\alpha}(x) - i_{A}^{B} e h^{-1} \Phi_{\alpha}(x)$$
 (11.6)

permet d'écrire l'équation d'onde (6.1) (avec (10.6)) dans la forme

$$\left(\left(D_{\alpha} \gamma^{\alpha}\right)_{A}^{B} - \varkappa \xi_{A}^{B}\right) u(x)_{B} = 0 . \tag{11.7}$$

La même généralisation est possible pour les rep. univ. On construit des $\beta^{\alpha^{(2f)}}$ et des $\gamma^{\alpha^{(2f)}}$ à partir des $\beta^{\alpha^{(f)}}$ antisymétriques:

$$\beta^{\alpha(2f)} = \begin{pmatrix} \beta^{\alpha(f)}, & 0 \\ 0, & \beta^{\alpha(f)} \end{pmatrix}; \quad \gamma^{\alpha(2f)} = \begin{pmatrix} 0, & \beta^{\alpha(f)} \\ -\beta^{\alpha(f)}, & 0 \end{pmatrix} \quad (11.8)$$

soit encore une fois avec (11.3)

$$\gamma_{\rm A}^{\alpha \, \rm B} = - \, i_{\rm A}^{\, \rm C} \, \beta_{\rm C}^{\alpha \, \rm B} = - \, \beta_{\rm A}^{\alpha \, \rm C} \, i_{\rm C}^{\, \, \rm B} \, \, . \tag{11.9}$$

L'équation d'onde prend la forme

$$\left(\left(\mathcal{D}_{\alpha} \beta^{\alpha}\right)_{c}^{B} - \varkappa \eta_{c}^{B}\right) u(x)_{B} = 0 . \tag{11.10}$$

Une multiplication de (11.7) avec — $i_{\rm A}^{\ c}$ et la définition

$$i_{A}^{C} \xi_{C}^{B} = \eta_{A}^{B} ; \quad i^{AC} \xi_{C}^{B} = \eta^{AB}$$
 (11.11)

d'un spineur scalaire $\xi^{AB} = -\xi^{BA}$ antisymétrique pour des rep. univ. formé par contraction sur les deux spineurs i^{AB} et le spineur fondamental η^{AB} , donne à l'équation d'onde pour un champ à rep. univ. (11.7) la même forme (11.10) que celle de la rep. biv. Il faut seulement se rappeler que c'est η^{AB} et non pas ξ^{AB} qu'on a défini comme le spineur fondamental dans le cas d'une rep. univ. Pourtant cette distinction n'entre pas en jeu si nous écrivons les scalaires toujours dans leurs formes explicites avec les composantes covariantes u_A^+ η^{AB} u_B^- , u_A^+ ξ^{AB} u_B^- et u_A^+ i^{AB} u_B^- . Laquelle des trois expressions scalaires est considérée comme égale à u^{+A} u_A^- est alors sans importance.

Les lignes d'univers que suit un tel paquet d'ondes sont (cf. § 19)

$$(\pm h \varkappa) \frac{d^2 q^{\alpha}}{ds^2} = (\pm e) B^{\alpha \beta}(q) \frac{dq_{\beta}}{ds} ; B_{\alpha \beta} = \delta_{\alpha} \Phi_{\beta} - \delta_{\beta} \Phi_{\alpha} .$$
 (11.13)

Le signe de $(\pm e)$ est déterminé par le signe de $\rho^{(0+)}(\mu/\mu)$ et celui de $(\pm h\varkappa)$ par le signe de $\rho^{(1+)}(\mu/\mu)$ (c'est-à-dire par le signe des éléments diagonaux des ondes principales dont le paquet se compose).

Les deux cas (rep. biv. et rep. univ.) admettent ainsi des paquets d'ondes qui se propagent en suivant des lignes d'univers que suivent des points de masse chargés d'une charge spécifique $\pm e/m = \pm e/h\varkappa$.

Le champ Φ_{α} introduit en (10.2) ne peut pourtant pas être utilisé, parce que son $B_{\alpha\beta}$ (11.13) disparaît identiquement. Mais le système ¹

$$\begin{split} \eth_{\alpha} \, (l^{-1} \, \Phi_{\beta}) \, - \, \, \eth_{\beta} \, (l^{-1} \, \Phi_{\alpha}) \, - \, l^{-1} \, \mathrm{B}_{\alpha\beta} \, = \, 0 \\ \\ \eth_{\beta} \, \mathrm{B}^{\alpha\beta} \, + \, l^{-1} (l^{-1} \, \Phi^{\alpha}) \, = \, \mathrm{J}^{\alpha} \end{split} \tag{11.14}$$

avec

$$J^{\alpha}(x) = e \beta^{\alpha AB} U(x, x)_{AB} \quad \text{ou} \quad = -e \gamma^{\alpha AB} U(x, x)_{AB}$$

$$(11.15)$$

peut être mis sous forme (6.9), si on introduit les dix composantes $l^{-1}\Phi_{\alpha}$, $B_{\alpha\beta}=-B_{\beta\alpha}$. Le tenseur

$$T_{\Phi}^{\alpha\beta} = l^{-2} \Phi^{\alpha} \Phi^{\beta} + B^{\alpha\mu} B^{\beta}_{\mu} - \frac{1}{4} g^{\alpha\beta} (B_{\mu\nu} B^{\mu\nu} + 2 l^{-2} \Phi_{\mu} \Phi^{\mu})$$
(11.16)

satisfait en vertu de (11.14) à ²

$$\delta_\beta \, T_\Phi^{\alpha\beta} = -\, B^{\alpha\beta} \, J_\beta \ . \eqno(11.17)$$

¹ Système de la force vectorielle de Yukawa pour des mésotrons neutres à spin 1.

 $^{^2}$ La relation $\partial_\alpha\Phi^\alpha=\,l^2\,\partial_\alpha\,J^\alpha=\,0,$ qui résulte de (11.14) a été utilisée.

D'autre part le tenseur

$$T_{U}^{\alpha\beta}(x) = h \lim_{x=y} (D^{\alpha}(y) \gamma^{\beta})^{AB} U(x, y)_{AB}$$

ou

$$= h \lim (... \beta^{\beta} \quad \text{pour} \quad \gamma^{\beta}) \tag{11.18}$$

qui diffère de (2.4) en ce qu'il contient le «terme mixte» $T_{u^+u\bar{u}}^{\alpha\beta}$ de (6.6) a la divergence

$$\partial_{\beta} T_{U}^{\alpha\beta} = B^{\alpha\beta} J_{\beta} . \qquad (11.19)$$

Dans cette équation J_{β} est la première (ou la seconde) définition en (11.15) suivant qu'on prend la première (ou seconde) expression (11.18) pour $T_{\text{U}}^{\alpha\beta}$.

Le tenseur

$$T^{\alpha\beta} = T_{U}^{\alpha\beta} + T_{\Phi}^{\alpha\beta} \tag{11.20}$$

représente ainsi la densité de l'énergie-impulsion totale.

§ 12. — Les solutions fondamentales.

Les matrices symétriques (η^{AB} et $\gamma^{\alpha AB}$) et les matrices antisymétriques (ξ^{AB} et $\beta^{\alpha AB}$) existant *simultanément*, on peut définir les quatre fonctions $D^{(0\pm)}$ et $D^{(1\pm)}$ pour chaque représentation.

Les définitions (3.11) de $\rho^{(n\pm)}$ et le développement (3.13) montrent que les relations existent:

$$D^{(n-)}(x, y)_{AB} = -i_{A}^{C} D^{(n+)}(x, y)_{CB} . \qquad (12.1)$$

Si $\rho^{(n+)}$ est diagonal en pp'

$$\rho_{(mp)(m'p')}^{(n+)} = \rho_{mm'}^{(n)} \, \delta_{pp'} \tag{12.2}$$

on a toujours

$$\rho_{(mp) (m'p')}^{(n-)} = \rho_{mm'}^{(n)} i_{pp'}$$
 (12.2a)

Le raisonnement qui nous a permis de déterminer le signe des valeurs propres de $\rho^{(0+)}$ pour les rep. biv. irréducibles

et de $\rho^{(1+)}$ pour les rep. univ., reste valable pour les rep. biv. réductibles du type (11.2):

Une solution quelconque de l'équation d'onde (11.7) avec des « forces » $\chi_{\Lambda}^{B} \neq 0$ peut toujours être écrite sous forme d'une somme des solutions du système (11.7) sans « forces » ($\Phi_{\alpha} = 0$), mais alors avec des coefficients $a(\mu, x^{4})$ qui dépendent de x^{4} . Pour un x^{4} donné, ces solutions appartiennent ainsi à un système réductible défini par (11.2). L'ensemble des valeurs propres des matrices $\rho^{(0+)}$ est alors deux fois l'ensemble des valeurs propres du système irréductible. Comme $\rho^{(0+)}(\mu/\mu')$ ne dépend pas de x^{4} , cette démonstration est valable pour tout x^{4} .

Pour les rep. univ. nous nous rappelons que $\rho^{(1+)}$ est défini par une intégrale sur tout l'espace-temps. Pour autant que les Φ_{α} ne diffèrent de zéro que dans une partie finie de ce continu spatiotemporel, la contribution principale vient toujours de la région infinie ou $\Phi_{\alpha}=0$. Les valeurs propres de $\rho^{(1+)}$ sont ainsi deux fois l'ensemble des valeurs propres du système irréducible avec $\Phi_{\alpha}=0$.

Les $\rho^{(n\pm)}$ permettent de définir en plus de la matrice $\epsilon(\mu/\mu')$ en (3.15) deux matrices nouvelles (n=0,1)

$$i_{(n)}(\mu/\mu') = \int (d\mu'')^m \, \rho^{(n-)}(\mu/\mu'') \, \rho^{(n+)-1}(\mu''/\mu')$$
 (12.3)

qui sont toutes les deux invariantes et indépendantes de la normalisation des S_A . Les fonctions $u_A^+ = \varepsilon u_A$ et $u_A^+ = i_{(n)} u_A$ définies par (3.16) avec les matrices (3.15) et (12.3) satisfont à l'équation d'onde si u_A était une solution. Nous avons utilisé le symbole i pour la matrice (12.3) parce que de (12.2), (12.2a) et (13.3) résultera

$$u_{\rm A}^+ = (i_{(n)}u)_{\rm A} = i_{\rm A}^{\ B}u_{\rm B}$$
 (12.4)

§ 13. — LES THÉORIES CLASSIQUES DU CHAMP CHARGÉ.

L'exposé qui suit s'applique aussi bien aux rep. biv. qu'aux rep. univ. parce que les deux théories dérivent maintenant de la même équation (11.7).

Nous étudions le cas particulier du § 6 où le champ de force $\Phi_{\alpha}(\vec{x})$ ne dépend pas du temps x^4 dans un système de Lorentz privilégié. Les solutions de (11.7) peuvent alors être écrites dans la forme

$$S(\mu/x)_{A} \equiv S(rp/x)_{A} = (e^{ih_{4}(r)x^{4}})_{A}^{B} S(rp/\vec{x}, 0)_{B}^{1}$$
 (13.1)

avec

$$\left((\vec{\mathbf{D}}, \vec{\gamma})^{AB} + \beta^{4AB} \left(k_{4(r)} - \frac{e}{h} \Phi_{4}(\vec{x}) \right) \right) \mathbf{S}_{B} = \varkappa(\mu) \mathbf{S}^{A} . \quad (13.2)$$

A la même valeur propre appartient la solution linéairement indépendante

$$S(rq/x)_{A} = i_{A}^{B} S(rp/x)_{B}. \qquad (13.3)$$

Les deux solutions sont reliées entre elles par la relation (5.7). Elles ont ainsi les mêmes propriétés que les $S(p)_A$ et $S(q)_A$ du champ non chargé.

Nous établissons les expressions pour l'énergie totale et la charge totale: Pour la charge totale, la différence entre le champ chargé et le champ non chargé se manifeste dans l'existence de deux expressions ²

$$e_{u} = e \sum_{r} \rho_{r}^{(0)} \left(a_{rp}^{+} a_{rq} - a_{rq}^{+} a_{rp} \right)$$
 ou $= e \sum_{r} \rho_{r}^{(0)} \left(a_{rp}^{+} a_{rp} + a_{rq}^{+} a_{rq} \right)$ (13.4)

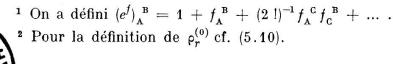
qui proviennent de l'alternative entre β^{α} et γ^{α} en (11.15).

La même alternative se pose pour l'énergie totale. Pour démontrer ceci, nous ajoutons à $H_{_U}$ l'énregie H_{Φ} du «champ de force », soit

$$H_u = H_U + H_\Phi = \int (dx)^3 (T_U^{44} + T_\Phi^{44})$$
 (13.5)

avec les $T^{\alpha\beta}$ de (11.20). $T^{\alpha\beta}_{\Phi}$ étant bilinéaire en Φ^{α} et $B^{\alpha\beta}$, l'énergie H_{Φ} se décompose en

$$H_{\Phi} = H_{ext} + H_{self} + H_{mixte} \qquad (13.6)$$



parce que les Φ^{α} (et $B_{\alpha\beta}$) sont des sommes d'un terme $\Phi^{\alpha}_{\rm ext}$ représentant le «champ de force » produit par des «sources » $J^{\alpha}_{\rm ext}$ extérieures (autres que celles dues à $U_{\rm AB}$) et d'un terme $\Phi^{\alpha}_{\rm self}$ qui est la solution statique de (11.14). Le $H_{\rm ext}$ ne nous intéresse pas, parce que nous étudions le mouvement des paquets d'ondes $u_{\rm A}$ dans un champ $\Phi^{\alpha}_{\rm ext}$ donné. Le $H_{\rm self}$ doit être l'objet d'une étude à part, qui s'occupe de la self-énergie. La somme $H_{\rm ext}+H_{\rm self}$ sera considérée comme une constante additionnelle sans importance. Par contre, la somme

$$H_u = H_u + H_{mixte} = \int (dx)^3 h \lim_{x=y} \partial^4(y) \gamma^{4AB} U(x, y)_{AB},$$
ou = $\int (dx)^3 h \lim (\dots \beta^4 \text{ pour } \gamma^4).$ (13.7)

représente l'« énergie cinétique » plus l'« énergie potentielle » de la matière chargée dans un champ de potentiel $\Phi^4_{\rm ext}(\vec{x})$. La deuxième identité n'est obtenue que dans le cas particulier où $\vec{\Phi}_{\rm ext}(\vec{x}) = 0$. Elle résulte d'une intégration partielle. Le dernier membre de (13.7) a la même forme que dans la théorie des ondes planes (2.6), mais les deux expressions

$$\begin{split} \mathbf{H}_{u} &= h \sum_{r} \rho_{r}^{(0)} \, k_{r}^{4} \big(a_{rp}^{+} \, a_{rq}^{-} - a_{rq}^{+} \, a_{rp}^{-} \big) \quad , \\ \\ \mathbf{ou} &= h \sum_{r} \rho_{r}^{(0)} \, k_{r}^{4} \big(a_{rp}^{+} \, a_{rp}^{-} + a_{rq}^{+} \, a_{rq}^{-} \big) \end{split} \tag{13.8}$$

proviennent des deux définitions (11.18) et (13.7), qui sont reliées par « ou = ... » ¹ dans chaque formule.

La relation (4.13) ou (5.10) entre les matrices $\rho^{(0+)}$ et $\rho^{(1-)}$ est (dans ce cas $\delta \Phi_{\alpha}/\delta x^4 = 0$) la même que pour les ondes planes non chargées. La démonstration part de la formule $(S_A = S(\mu/x)_A)$:

¹ On doit prendre en (13.4) et (13.8), ou les deux 1^{res} expressions ou les deux 2^{es} expressions (marquées avec « ou = ... »). En (5.8), (6.15), (6.16) et dans les formules qui en dérivent le signe de l'énergie est erroné.

qu'on obtient en variant k_4 par δk_4 dans (13.2). Cette formule est multipliée par $S(\mu'/x)_A = S_A'$ (ou par S_C' i^C_A) et intégrée sur tout l'espace-temps. Les termes contenant δS_A sont intégrés par parties en tenant compte que S_A' satisfait à (13.2) avec κ' et k_4' . Avec la définition (3.11) de $\rho^{(1-)}$ la relation

$$\left((k_4 - k_4') \, \beta^{4AB} - (\varkappa - \varkappa') \, \xi^{AB} \right) \int (dx)^4 \, S_A' \, \delta S_B$$

$$+ \, \delta k_4 \, . \, \int (dx)^4 \, S_A' \, \beta^{4AB} \, S_B = \, \delta \varkappa \, 2 \, \pi \, \rho^{(1-)} (\mu/\mu')$$
 (13.10)

(ou avec γ^4 , η et $\rho^{(1+)}$ à la place de β^4 , ξ et $\rho^{(1-)}$) est obtenue. La dépendance temporelle de S_A permet d'intégrer sur x^4 et d'utiliser la définition (3.10) de $\rho^{(0-)}$.

$$\int (dx)^{4} S'_{A} \beta^{4AB} S_{B} = 2\pi \delta(k_{4} - k'_{4}) \int (dx)^{3} S'_{A} \beta^{4AB} S_{B} =$$

$$= 2\pi \left| \frac{\partial \kappa}{\partial k_{4}} \right| \rho^{(0-)} (\mu/\mu') . \qquad (13.11)$$

Le premier terme en (13.10) disparaît pour $k_4 = k_4'$ et $\varkappa = \varkappa'$.

Les matrices $\rho^{(n)}(\mu/\mu')$ n'ayant que des termes pour $k_4 = k_4'$ et $\kappa = \kappa'$, (13.10) a pour conséquence

$$\frac{\rho^{(1+)}(\mu/\mu')}{\rho^{(0+)}(\mu/\mu')} = \frac{\rho^{(1-)}(\mu/\mu')}{\rho^{(0-)}(\mu/\mu')} = \frac{\frac{\partial \varkappa}{\partial k_4}}{\left|\frac{\partial \varkappa}{\partial k_4}\right|}.$$
 (13.12)

Cette relation est ainsi valable en toute généralité, si $\partial \Phi_{\alpha}(x)/\partial x^{4} = 0$.

Avant de procéder à la discussion, nous remarquons que la substitution $(iu)_A$ pour u_A^+ (12.4) a pour seul effet de remplacer l'une des expressions en (11.15), (11.18), (13.4), (13.7) et (13.8) (reliées entre elles par « ou = ... ») par l'autre.

Nous sommes prêts à discutuer les deux cas, soit

A. La rep. biv.

 $u_{\rm A}^+=u_{\rm A}$. Si l'on prend les premières définitions en (13.8) et (13.4), l'énergie totale (et la charge totale) par solution

(temporellement) périodique (13.1) sont nulles. Une théorie pareille est acausale.

Cette acausalité subsiste, à fortiori, parce que l'énergie totale devient même négative si l'on utilise les deuxièmes définitions (13.4) et (13.8): l'énergie totale par onde a maintenant le signe de k_r^4 , le facteur $\rho_r^{(0)}$ pour les rep. biv. du type considéré étant toujours positive.

 $u_{\rm A}^+ \neq u_{\rm A}$: l'identification $u_{\rm A}^+ = \varepsilon u_{\rm A}$ (5.16) (avec la définition (3.16) de l'opération ε) a pour conséquence de donner la forme (cf. (5.9) et (5.15))

$$\mathbf{H}_{u} = h \sum_{r} \rho_{r}^{(1)} k_{r}^{4} (a_{rp}^{2} + a_{rq}^{2}) \; ; \quad e_{u} = e \sum_{r} \rho_{r}^{(1)} (a_{rp}^{2} + a_{rq}^{2})$$

$$(13.13)$$

aux premières expressions (13.4) et (13.8) ($u_{\rm A}^+=i\varepsilon u_{\rm A}$ donne le même résultat pour les deuxièmes définitions).

L'énergie par onde est maintenant toujours positive ¹. La charge portée par une onde (temporellement) périodique $S(\mu/x)_A$ a le signe de sa fréquence k_r^4 .

B. La rep. univ.

Ce ne sont que les deuxièmes définitions (13.4) et (13.8) qui, avec $u_{\rm A}^+=u_{\rm A}$ nous assurent une énergie positive ¹ par onde, parce que, maintenant, $\rho_r^{(0)}$ change son signe avec k_r^4 . Le résultat s'écrit sous la forme (13.13) avec $\rho_r^{(0)}$ à la place de $\rho_r^{(1)}$. C'est encore une fois le signe de la fréquence k_r^4 qui détermine le signe de la charge portée par une onde (temporellement) périodique.

Les lignes d'univers (11.13) ne dépendent pas des quatre composantes Φ_{α} mais seulement des six composantes $B_{\alpha\beta}=-B_{\beta\alpha}$ du « champ de force ». Pourtant, les Φ_{α} jouent

¹ Plus exactement: pour une charge totale finie, elle ne prend jamais une valeur négative infiniment grande.

un rôle dans l'interaction entre deux paquets d'onde $u_{\rm A}$, parce que le ${\rm B}_{\alpha\beta}$ produit par l'un d'eux résulte de (11.14) et dépend ainsi de la valeur de Φ_{α} . De même, l'énergie du champ total dépend (11.16) de Φ_{α} .

Le cas-limite $l^{-1} = 0$ ramène (11.14) à la théorie du champ électromagnétique de Maxwell. D'abord cette théorie élimine l^{-1} de $T_{\Phi}^{\alpha\beta}$ et du deuxième système (11.14). D'autre part, le premier système (11.14) a pour conséquence le système

$$\delta_{\alpha}\,B_{\beta\gamma}\,+\,\delta_{\beta}\,B_{\gamma\alpha}\,+\,\delta_{\gamma}\,B_{\alpha\beta}\,=\,0\ . \eqno(14.1)$$

Sans faire appel au premier système (11.14), l'équation d'onde composée de (14.1) et du deuxième système (11.14) garantit la conservation de l'énergie-impulsion dans le cas $l^{-1} = 0$.

Les composantes Φ_{α} n'apparaissent dans l'équation d'onde (11.7) pour $u_{\rm A}$ et dans la définition du tenseur $T_{\rm u}^{\alpha\beta}$ (11.18) que sous forme de l'opération $D_{\alpha}(x)$ (11.6).

Les grandeurs observables associées au «champ de force» sont:

- 1º Les six composantes $B_{\alpha\beta}=-B_{\beta\alpha}$ qu'on mesure en observant les trajectoires des paquets d'ondes formées par $u_{\rm A}$;
- 2^o L'énergie-impulsion portée par le champ de force (soit les dix composantes $T_\Phi^{\alpha\beta}=T_\Phi^{\beta\alpha}$), qu'on observe en mesurant l'énergie, l'impulsion et le moment d'impulsion qu'un appareil émetteur a transmis au « champ de force ».

Ces deux grandeurs $(B^{\alpha\beta}$ et $T^{\alpha\beta})$ sont invariantes, si l'on substitue pour Φ_{α} en (11.14) les composantes

$$\Phi_{\alpha}(x) = \Phi'_{\alpha}(x) + \frac{h}{e} \, \delta_{\alpha} \, \varphi(x) \qquad (14.2)$$

où $\varphi(x)$ est une fonction arbitraire de x.

La théorie d'un champ à $l^{-1} = 0$ est ainsi invariante par rapport aux transformations de jauge (14.2), si l'on n'observe que des charges J^{α} produisant le champ et les lignes d'univers parcourues par ces charges.

2

Si, en plus, on peut observer individuellement les différentes composantes $u_{\rm A}$, un changement (14.2) dans les composantes Φ_{α} (appelées les composantes du potentiel quadrivecteur) a pour conséquence une transformation de jauge des composantes $u_{\rm A}$ donnée par

$$u(x)_{\mathbf{A}} = (e^{i\varphi(x)})_{\mathbf{A}}^{\mathbf{B}} u'(x)_{\mathbf{B}}.$$
 (14.3)

Elle représente une rotation du « vecteur du champ u_A » autour de l'angle φ (φ est la « phase complexe » si nous nous représentons, pour un instant, toute paire de deux composantes de u_A reliées par (11.3), comme les deux composantes d'un vecteur dans un plan complexe). Une mesure simultanée de ces deux composantes permettra de distinguer entre deux champs u_A et u_A' reliés par (14.3). Elle permettra ainsi une mesure de Φ_α dans le cas $l^{-1}=0$.

Par contre, s'il n'existe pas d'appareil qui permette d'observer $u(x)_{A}$, mais si des observations ne peuvent être faites que sur des grandeurs ¹

$$f(x) = \lim_{x=y} \left(\gamma^{\alpha AB}, D^{\beta AB}(y), \eta^{AB}, i^{AB} \right) U(x, y)_{AB}$$
 (14.4)

(parmi lesquelles se trouvent J^{α} et $T_{U}^{\alpha\beta}$), les composantes $\Phi_{\alpha}(x)$ restent inobservables.

Les grandeurs $B^{\alpha\beta}$, $T^{\alpha\beta}_{\Phi}$ et f(x) de (14.4) sont des invariantes par rapport aux transformations de jauge.

L'interaction d'un champ $u_{\mathbf{A}}$ avec un «champ de force» vectoriel Φ_{α} peut être décrite si le champ $u_{\mathbf{A}}$ appartient à une représentation formée de deux représentations identiques et irréductibles. Ce champ combiné peut porter des *charges*.

Dans les deux cas (rep. biv. et univ.), il n'existe qu'une seule théorie classique, qui satisfait à la notion de causalité (énergie totale par onde $H_r > 0$).

¹ F (γ, D, η, i) est une série de puissances en γ , D, η et i.

Archives. Vol. 25. — Janvier-Février 1943.

Si les deux composantes correspondantes des deux rep. irréd. peuvent être observées séparément, les composantes Φ^{α} du potentiel vecteur d'un champ électromagnétique ont une réalité physique.

PARTIE IV

Théorie quantifiée du champ chargé.

§ 15. — LES SEIZE THÉORIES A PRIORI POSSIBLES POUR UN CHAMP CHARGÉ.

Des seize types énumérés au § 9, les huit cas $u^+ \neq u$ sont à éliminer pour la même raison que dans le cas du champ non chargé. Le deuxième critère du § 9 peut être remplacé par un critère plus simple:

« Le deuxième critère demande que la charge totale portée par une onde périodique soit un multiple entier (pos. ou nég.) de la charge élémentaire e. »

Restent ainsi huit types. De cet ensemble, toutes les théories suivant la statistique FD avec une fonction $D^{(n+)}$ dont le $\rho_r^{(n+)}$ change son signe avec k_r^4 ont la seule solution $u_{\rm A}=0$. Ce sont les deux théories: « rep. biv. avec $D^{(1+)}$ » et « rep. univ. avec $D^{(0+)}$ ».

Nous discutons maintenant les six théories qui restent:

A. Rep. biv.

Statistique FD. — La seule fonction qui nous est restée est $D^{(0+)}$. La double fonction $U_{AB}^{(+)}$ étant cette fonction donnée, nous devons utiliser la double fonction $U_{AB}^{(-)}$ antisymétrique ¹ pour définir les grandeurs physiques en (13.7) et (11.15). Ce ne sont que les premières expressions qui nous amènent à des J^{α} et H_u non nuls. Les valeurs pour e_u et H_u sont ainsi les

¹ Cf. les arguments du § 9, équation (9.12) et suivantes.

premières alternatives en (13.4) et (13.8) (avec $a^+ = a$), multipliées avec l'opération j provenant de la définition (9.12). Les contributions de zéro-point sont enlevées, si l'on ajoute à $U_{AB}^{(-)}$ le terme (9.15). Le résultat est le même que celui de la théorie non chargée, soit (9.23). La charge totale est donnée par

$$e_u = e \sum_r \left(\mathbf{M}_r + \frac{\rho_r^{(0)}}{\rho_r^{(1)}} \frac{1}{2} \right) = e \sum_r \frac{k_r^4}{\left| k_r^4 \right|} \, \mathbf{N}_r$$
 (15.1)

avec $N_r = 0.1$.

Statistique BE. — Les deux fonctions $D^{(0-)}$ et $D^{(1-)}$ peuvent être utilisées. C'est la fonction $U_{AB}^{(+)}$ qui fournit les grandeurs physiques. Elle est symétrique. Ce sont alors les deuxièmes définitions qui nous amènent à des valeurs propres non nulles. Or l'énergie d'une onde à fréquence négative pourra atteindre, pour les mêmes raisons qu'en théorie classique, des valeurs négatives arbitrairement grandes, qui ne peuvent pas être soustraites. Donc ces deux théories sont à rejeter comme étant non conformes aux premiers critères.

B. Rep. univ.

Statistique FD. — Celle-ci n'est possible qu'avec la fonction $D^{(1+)}$. La double fonction $U_{AB}^{(-)}$, augmentée par le terme qui enlève les effets de zéro-point (9.15), nous amène aux expressions analogues à (9.23) et (15.1) mais avec le terme $(\rho_r^{(0)}/\rho_r^{(1)}) M_r$ à la place de M_r . Avec la définition $N_r = M_r - \frac{1}{2}$ à la place de (9.23a), les mêmes formules pour H_u et e_u sont obtenues que dans le cas de la rep. biv.

Statistique BE. — Les deux fonctions $D^{(0-)}$ et $D^{(1-)}$ peuvent être utilisées. L'expression pour l'énergie totale et la charge totale doit être calculée par $U_{AB}^{(+)}$. Après avoir ajouté le terme (9.15), le résultat prend la forme (9.24) pour l'énergie, si l'on a utilisé $D^{(0-)}$. L'application de $D^{(1-)}$ ne fait que substituer $\left| \rho_r^{(1)} \right|^{-1}$ à la place de $\left| \rho_r^{(0)} \right|^{-1}$. Mais ces deux facteurs ayant la même valeur (cf. (13.12)), il n'y a aucune différence entre

les deux théories pour autant qu'on ne considère que des champs satisfaisant à $\partial \Phi_{\alpha}(x)/\partial x^{4} = 0$.

Résumé. — Des seize types de théories possibles, il ne nous est resté que quatre formes, soit:

Tableau II.
Les théories du champ chargé.

N°	u^+	représen- tation	statis- tique	fonction	caractère
1	= u	$\left \begin{array}{c} N + \frac{1}{2} \end{array} \right $	FD	D(0+)	Dirac-Heisenberg
2	= u	N	BE	D(0-)	Pauli-Weisskopf
3	= u	N	FD	D(1+)	Méc. nouv. FD
4	= u	N	BE	D(1-)	Méc. nouv. BE
		3		,	(15.3)

Les types nº 1 et nº 2 sont les théories proposées par Dirac et Heisenberg (nº 1 = DH), par Pauli et Weisskopf (nº 2 = PW) pour expliquer l'existence des quanta de charge opposée (antiparticules: électron et positron).

Nous allons démontrer au § 19 que les alternatives n° 3 et n° 4 sont identiques avec la quantification de la nouvelle mécanique relativiste proposée d'autre part [6].

§ 16. — DISCUSSION DES QUATRE THÉORIES ET ÉLIMINATION DE LA THÉORIE Nº 3.

Les figures 1 à 4 étudiées au § 6 montrent le phénomène de la « création de paires ». En effet, une seule onde plane caractérisée par son vecteur d'onde $k_{(r)}$ (en figure 1) se divise au moment $x^4 \sim 0$ sous l'influence du « champ de force ». $\chi(x)_A^B$ en deux ondes planes, qui se propagent dans deux directions différentes $k_{(r')}$ et $k_{(s')}$.

Si la figure 1 s'applique à un champ $u_{\rm A}$ chargé, on voit que les deux ondes secondaires ont des fréquences opposées $(k^4_{(r')} = -k^4_{(s')})$, ce qui implique dans les deux théories classiques (§ 11) aussi bien que dans les quatre théories quantifiées

(§ 15) la création de deux ondes secondaires portant des charges opposées. Ces deux ondes ont été produites par le « champ de force » $\chi(x)_A^B$. Leur intensité est proportionnelle à l'intensité de l'onde chargée primaire. Il s'agit ainsi en théorie classique de la création induite. L'interprétation quantique sera étudiée au § 17.

Nous démontrons d'abord que le deuxième critère: « La charge par onde est un multiple entier de e » est satisfait par tous les quatre types du tableau II. Cette démonstration se base sur les formules (6.15) et (6.16) pour H_u , soit pour les formules classiques analogues pour e_u . En termes de m, n ..., ces formes sont pour $x^4 \leq 0$ (fig. 3 et 4):

$$\begin{split} e_{u} &= e \sum_{m} \rho_{r}^{(0)} (a_{mp}^{+} a_{mq} - a_{mq}^{+} a_{mp}) \\ &+ e \sum_{m} \rho_{s}^{(0)} A^{2} (a_{mp}^{+} a_{mq} - a_{mq}^{+} a_{mp}) \\ &+ e \sum_{n} \rho_{s}^{(0)} B^{2} (a_{np}^{+} a_{nq} - a_{nq}^{+} a_{np}) \\ &+ e \sum_{n} \sum_{n} \rho_{s}^{(0)} 2 AB (a_{mp}^{+} a_{nq} - a_{mq}^{+} a_{np}) \end{split} \tag{16.1}$$

et, en termes de μ , ν , ... (fig. 1 et 2):

$$e_{u} = e \sum_{\mu} \rho_{r}^{(0)} (a_{\mu p}^{+} a_{\mu q} - a_{\mu q}^{+} a_{\mu p})$$

$$+ e \sum_{\nu} \rho_{s}^{(0)} (a_{\nu p}^{+} a_{\nu q} - a_{\nu q}^{+} a_{\nu p}) .$$

$$(16.2)$$

Les formules quantiques (corrigées pour les effets de zéro point) sont obtenues de (16.1) et (16.2) si l'on y substitue pour $(a_{.p}^+ a_{.q} - ...)$ les expressions suivantes (suivant le mème procédé comme celui qui aboutissait à l'établissement de (9.23)):

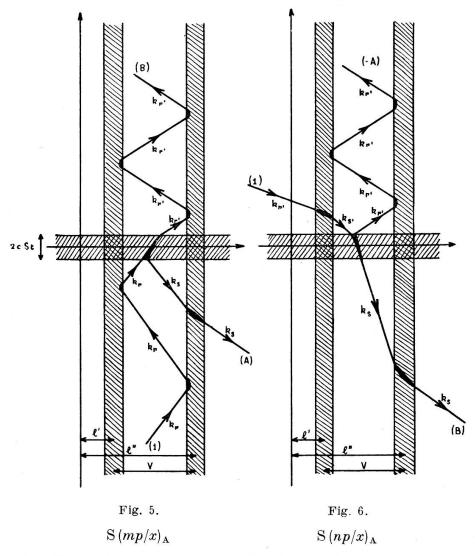
 N^{o} 1¹: (biv., FD, $D^{(0+)} = \text{Dirac-Heisenberg}$) (6.16) et (16.2) avec

$$(a_{\mu p}^{+} a_{\mu q} - \ldots) \rightarrow \frac{k_{r}^{4}}{\left|k_{r}^{4}\right|} \frac{1}{\left|\rho_{\mu}^{(0)}\right|} N_{\mu}; \quad N_{\mu} = 0, 1; \quad \rho_{\mu}^{(0)} = \rho_{r}^{(0)}$$

$$(16.3)$$

¹ Du tableau II.

parce que c'est dans le système μ , ν ... que la matrice $\rho^{(0+)}$ est diagonale. Cette substitution, effectuée en (16.2), montre que la charge par onde périodique est un multiple (0 ou 1) de



Les flèches k(r) sont les vecteurs d'ondes principales contenus dans la solution (temporellement) périodique r pour $\Phi(x^4) = const.$ r, s... sont ces solutions pour $x^4 < 0$ et r's' celles pour $x^4 > 0$. (1), (A) et (B) sont les amplitudes des ondes temporellement périodiques, dont les solutions $S(mp/x)_A$ se composent pour un $\Phi(x^4)$ variable.

 $\pm e$, dépendant du signe de $k_r^4(\rho_r^{(0)} = \rho_s^{(0)} = \rho_\mu^{(0)}$ étant positives).

Nous remarquons que l'établissement de (6.15) (6.16) et (16.1) (16.2) reste valable si l'on superpose au «champ de force» dépendant du temps ($\Phi_{\alpha}(x^4) \neq 0$ pour — $\delta t < x^4 < \delta t$)

un deuxième « champ de force » $\overline{\Phi}^{\alpha}(\vec{x})$, qui dépend de \vec{x} seulement. A la place des *ondes planes* utilisées au § 6, on doit alors substituer les ondes (temporellement) périodiques de la deuxième partie. La figure 3 est à remplacer par la figure 5.

Une onde incidente du passé avec $k_{(r)}^4>0$ consiste en paquets d'ondes à charge positive. Le champ superposé dû à $\overline{\Phi}^{\alpha}(\vec{x})$ qui règne aux deux régions $x^1\sim l'$ et $x^1\sim l''$ est de telle nature qu'il ne permet pas le passage des paquets à charge positive à travers ces deux «barrières». Les paquets formés de telles ondes restent dans le volume V délimité par ces barrières. Au moment $x^4\sim 0$, l'onde incidente (r) se divise en une onde réfractée (r') qui, gardant la charge positive, continue à osciller entre les deux barrières $x^1\sim l'$ et $x^1\sim l''$. Par contre, l'onde (s) réfléchie $(k_{(s)}^4<0)$ porte une charge opposée. Elle est accélérée par les barrières et les paquets d'ondes qui en sont construits traversent les barrières et sortent du volume V. Ils représentent des antiparticules.

 N^{o} 2: (rep. univ., BE, $D^{(\text{o}-)} = \text{Pauli-Weisskopf}$) (6.16), (6.17) et (16.2) avec

$$(a_{\mu p}^{+} a_{\mu q} - \ldots) \rightarrow \frac{1}{|\rho_{\mu}^{(0)}|} N_{\mu}; \quad N_{\mu} = 0, 1, 2, \ldots; \quad \rho_{\mu}^{(0)} = \rho_{r}^{(0)}.$$
(16.4)

Le résultat est le même qu'en théorie no 1, le signe de $\pm N_{\mu}e$ étant maintenant déterminé par le signe de $\rho_r^{(0)} > 0$ resp. $\rho_s^{(0)} < 0$ en (16.2), sauf que la statistique BE permet des valeurs propres $N_{\mu} > 1$.

 $N^{\rm o}$ 3 (rep. univ., FD, ${\rm D}^{(1+)}={\rm nouv.}$ méc.) (6.15) et (16.1) avec

$$(a_{mp}^{+} a_{mq} - \dots) \rightarrow \frac{1}{|\rho_{m}^{(1)}|} N_{m}; N_{m} = 0, 1; \rho_{m}^{(1)} = \rho_{r}^{(1)}.$$
(16.5)

La valeur de $\rho_m^{(1)}$ est toujours égale à celle de $\rho_r^{(1)}$. La preuve en est simple: l'intégration de S_A S^A sur tout l'espace-temps vaut $\rho_m^{(1)} = \left(\frac{1}{2} + \frac{B^2}{2} + \frac{A^2}{2}\right)\rho_r^{(1)} = \rho_r^{(1)}$. Les trois termes pro-

viennent des trois branches k_r , $k_{r'}$ et k_s qui n'existent chacune que dans une moitié de l'espace-temps. Les valeurs propres du premier terme sont: pour H_r (6.15) des multiples positifs de $h \mid k_r^4 \mid$ et pour e_r (16.1) des multiples positifs de e. Chaque membre individuel de la somme qui constitue ce premier terme contient l'entière contribution d'une seule onde périodique r à $k_r^4 > 0$. Dans le cas de la figure 5, c'est cette première somme qui représente la charge totale dans le volume V, parce que les termes contenant $\rho_s^{(0)}$ ne contribuent en rien à la charge dans V. Il résulte ainsi de cette théorie que

Les valeurs propres de la charge dans un volume V délimité par des barrières impénétrables pour les quanta à charge e > 0 sont des multiples entiers positifs ou nuls de e (et vice versa e).

Ce résultat s'applique à fortiori aux théories no 1 et no 2. Mais, tandis que les théories no 1 et no 2 permettaient de mesurer simultanément le nombre de quanta à charge +e et le nombre de ceux à charge -e, les théories no 3 et no 4 interdisent une connaissance simultanée de ces deux quantités physiques.

Cette nouvelle relation d'incertitude n'est pas en contradiction avec l'expérience: une mesure de la charge électrique se fait toujours par la construction d'une barrière fermée. Celle-ci est constituée par des forces électriques (parmi celles-ci comptent les « forces de valence », l'« adhésion d'un ion à une gouttelette dans l'expérience de Millikan », la « liaison d'un ou de plusieurs électrons négatifs à un noyau d'atome », etc...). Une barrière, qui lie les particules à charge +e, a toujours la propriété de laisser passer toute antiparticule à charge -e. Donc, une mesure simultanée du nombre de particules et du nombre d'antiparticules dans le même volume V nous semble être exclue par la nature même des appareils à notre disposition.

¹ Si l'on définit $\rho_{\rm V}^{(0+)}(\mu/\mu')$ par une intégrale spatiale sur V seulement (au lieu de tout l'espace) en (3.10), on a $\rho_{r\rm V}^{(0)}\sim\rho_r^{(0)}$ et $\rho_{s\rm V}^{(0)}\sim0$ parce que l'onde S $(r/x)_{\rm A}$ est entièrement contenue en V, tandis que S $(s/x)_{\rm A}$ est essentiellement dans l'infini.

² Pour la démonstration du « vice versa » on doit décomposer $u_{\rm A}$ en des fonctions S $(m'/x)_{\rm A}$ dénombrant l'ensemble des fonctions émergentes du « diffuseur ».

Mais il y a une autre raison pour éliminer la théorie nº 3: un champ u_{λ} à rep. univ. et à statistique FD ne peut pas satisfaire à une équation d'onde inhomogène du type (6.9). Il ne peut donc jamais jouer le rôle d'un « champ de force » $\overline{u_{\mathbf{A}}}$ dans une équation d'onde d'un autre champ. Le deuxième membre de (6.9) satisfait toujours à une loi de commutation, tandis que le premier membre représente maintenant en théorie no 3 une grandeur anticommutative. D'autre part, le terme trilinéaire $T^{\alpha\beta}_{\overline{u}\,u^+u}$ de l'énergie-impulsion en (6.7) ne commute même pas pour deux événements x et y à de très grandes distances spatiales ($R^2 \gg \kappa^{-2}$). Ceci est en pleine contradiction avec la nature observable de $T^{\mu\mu}$. Cette impossibilité de l'existence de l'équation (6.9) interdit la création de paires de quanta d'un champ $u_{\rm A}$ (à rep. biv. ou univ.) par des quanta du champ $\bar{u}_{\bar{A}}$ (à rep. univ.) considéré. Or, parlant en termes du « spin », elle interdira les réactions:

a)
$$D^+ \stackrel{?}{\sim} N^0 + P^+$$
 (16.6 a)

b)
$$H^0 \rightleftharpoons P^+ + e^-$$
 (16.6 b)

où une particule à spin entier (Deuteron D⁺, atome d'hydrogène H⁰) se « décompose » en deux particules à spin demientier (neutron + proton, proton + électron) et les « émissions » ou « absorptions »

c)
$$P^+ \stackrel{>}{\leftarrow} \mu^+ + N^0$$
 (16.6 c)

où une particule à spin demi-entier (proton) « émet » une particule à spin entier (mésotron) μ^+ en devenant un neutron (si les particules D^+ , H^0 et μ^+ à spin entier (rep. biv.) se comportent conformément à la théorie n^o 3). La réaction (16.6c) est responsable pour les forces nucléaires dans la théorie de Yukawa.

Pour cette raison, nous croyons que la théorie nº 3 n'est pas réalisée en nature.

 N^{0} 4: (univ., BE, $D^{(1-)} = \text{nouv. méc.}$).

Il faut prendre le U⁽⁺⁾_{AB} symétrique pour y construire les grandeurs physiques. A part ceci, la discussion reste la même

que pour la théorie n° 3. Les charges observées dans un volume V sont des multiples entiers de e.

La théorie nº 4 admet l'équation inhomogène (6.9) (comme le fait d'ailleurs la théorie nº 2). Les réactions (16.6a, b et c) sont alors possibles.

Tout calcul d'intensité avec lequel des transformations du type (16.6a, b ou c) (parmi lesquelles compte tout phénomène d'émission et d'absorption) prennent place, est fait en suivant la théorie classique des champs. Le résultat est ainsi indépendant de l'alternative entre D⁽⁰⁻⁾ et D⁽¹⁻⁾, soit entre théorie n° 2 et n° 4. C'est aussi le cas pour toute détermination de e/m et du rapport entre le moment magnétique et le moment mécanique.

La différence entre les deux théories ne se montre que dans le phénomène de

§ 17. — LA CRÉATION DE PAIRES DE QUANTA.

Nous appliquons nos théories aux problèmes du § 6 (fig. 1 à 4):

Théories N° 1 et 2. — Nous considérons la fonctionnelle de Schroedinger (indépendante du temps x^4) $\Psi'(N_1 ... N_{\mu}, N_{\nu} ...)$ comme fonction des nombres N_{μ} , N_{ν} de quanta dans les ondes μ , ν ... La fonctionnelle particulière

$$\Psi(\ldots N_{\mu} \ldots) = \delta_{0 N_1} \ldots \delta_{\bar{N}_{\mu} N_{\mu}} \delta_{\bar{N}_{\nu} N_{\nu}} \ldots \delta_{0 N_{\lambda}} \ldots (17.1)$$

a pour conséquence que seules les espérances mathématiques $\overline{N}_{\mu}(\neq 0)$ et $\overline{N}_{\nu}(\neq 0)$ diffèrent de zéro, tandis que pour tout autre $\lambda(\neq \mu, \nu)$ on a $\overline{N}_{\lambda} = 0$. Il en est de même pour toute autre forme bilinéaire en $a_{\mu p}$: $\overline{a_{\mu p} \, a_{\mu' p'}} = 0$, si $\mu \neq \mu'$.

Nous formons l'espérance mathématique de la charge portée par une onde plane $(k_{(r')})$ pour $x^4 \gg 0$. La charge contribuée par $U_{AB}^{(-)}$ (ou $U_{AB}^{(+)}$) dans la théorie no 1 (ou no 2) vaut alors (cf. fig. 1 et 2):

$$\overline{e'_{r'}} = e \frac{\rho_r^{(0)}}{|\rho_r^{(0)}|} (b^2 M_{\mu} + a^2 M_{\nu}) .$$
 (17.2)

Pour arriver à la charge effective, nous devons y ajouter la charge due au terme de zéro-point (9.15). Celle-ci vaut pour toute onde plane (cf. (9.15) à (9.22))

$$e_{r'(0)} = \pm e^{\frac{\rho_r^{(0)}}{\rho_r^{(1)}}} \frac{1}{2} = \pm e^{\frac{k_r^4}{|k_r^4|}} \frac{1}{2} \quad \text{pour rep.} \left(\frac{\text{biv.}}{\text{univ.}} \right).$$
(17.3)

La substitution de N_{μ} pour M_{μ} (équation (9.23a) pour la théorie no 1, équation (9.24a) pour no 2 dans (17.2) et l'addition de (17.3)) fournit, pour les charges effectives ($e_r = e'_r + e_{r(0)}$) le résultat ¹ suivant pour l'augmentation $\overline{e}_{r'} - \overline{e}_r$ de l'espérance mathématique de la charge \overline{e}_r dans l'onde $k_r \to k_{r'}$:

$$e_r$$
, $-e_r = a^2 e \mp a^2 \left(\overline{e_r} + (-\overline{e_s})\right)$ pour rep. $\begin{pmatrix} \text{biv.} \\ \text{univ.} \end{pmatrix}$. (17.4)

Dans les deux théories, il y a ainsi:

- 1º La création spontanée. Celle-ci est caractérisée par l'apparition de a^2 quanta chargé dans l'onde $k_{r'}$, même si les deux ondes primaires k_r et k_s ne contenaient aucun quantum $(\overline{e_r} = \overline{e_s} = 0)$.
- 2º Dans le cas nº 1 (FD), anéantissement induit, proportionnel à $\overline{e_r} + (-\overline{e_s})$. Cet anéantissement ne peut jamais amener à un $e_{r'} < 0$, parce que e_r et $-e_s$ ne peuvent prendre que les valeurs 0 et e.
- 3º Dans le cas nº 2 (BE), le deuxième terme représente une création induite, proportionnelle à $\overline{e_r}$ (— $\overline{e_s}$), qui est l'analogue parfait de la théorie classique (cf. § 16, premier alinéa).

Théories N^{os} 3 et 4. — Nous étudions la fonctionnelle fonction du nombre N_m , N_n des quanta dans les ondes m, n, ... La fonction particulière

$$\Psi(\dots N_m \dots) = \delta_{0 N_1} \dots \delta_{0 N_m} \delta_{\overline{N}_n N_n} \dots \delta_{0 N_l} \quad (17.5)$$

¹ On a
$$b^2 \mp a^2 = 1$$
 pour la rep. $\begin{pmatrix} \text{biv.} \\ \text{univ.} \end{pmatrix}$.

² e_r et $-e_8 > 0$; $0 < a^2 < \frac{1}{\infty}$ pour rep. $\begin{pmatrix} \text{biv.} \\ \text{univ.} \end{pmatrix}$.

donne les espérances mathématiques zéro pour toute forme bilinéaire en a_{mn} sauf pour $\overline{N}_n (\neq 0)$.

L'espérance mathématique de la charge (déjà corrigée pour les effets de zéro point) (cf. fig. 4 ou fig. 6) contenue dans toute onde plane e_r pour $x^4 \leqslant 0$ est alors nulle, sauf celle de e_s , qui vaut

$$\overline{e}_{s} = e B^{2} \frac{\rho_{s}^{(0)}}{\left|\rho_{n}^{(1)}\right|} \overline{N}_{n} = -e B^{2} \overline{N}_{n} .$$
 (17.5 a)

Ce résultat est une conséquence de (16.1) et de figure 4 (ou fig. 6).

Pour évaluer les espérances mathématiques à des temps futurs à l'apparition du « champ de force », nous devons utiliser la formule correspondant à (16.1) pour $x^4 >> 0$. Les figures 3 et 4 montrent que (au signe du dernier terme près) cette formule est la même que (16.1) si l'on substitue s' à r, r' à s et si l'on interchange m et n.

Tenant compte de (17.5à) ce résultat est

$$\overline{e_{s'}} = e \frac{\rho_s^{(0)}}{\left| \begin{array}{c} \rho_n^{(1)} \end{array} \right|} \overline{N}_n = -e \overline{N}_n = \frac{1}{B^2} \overline{e_s}$$

$$\overline{e_{r'}} = e \frac{\rho_r^{(0)}}{\left| \begin{array}{c} \rho_n^{(1)} \end{array} \right|} A^2 \overline{N}_n = e A^2 \overline{N}_n = \frac{A^2}{B^2} \left(-\overline{e_s} \right)$$

$$\overline{e_{s'}} - \overline{e_s} = a^2 \overline{e_s} ; \quad \overline{e_{r'}} = -a^2 \overline{e_s} . \quad (17.6)$$

Ces formules s'appliquent, si notre connaissance de l'« état » du système est décrite par (17.5). Mais généralement ceci n'est pas le cas. Notre état (17.5) décrit la certitude qu'aucune charge positive $(k_r^4>0)$ n'existe pour $x^4 << 0$ mais que l'espérance mathématique de la charge négative vaut \overline{e}_s 1. Par contre, si seulement des charges positives (par exemple dans l'état r) ont été présentes avant l'enclenchement du « champ de force » $\Phi_{\alpha}(x^4)$, les dernières équations (17.6) sont :

$$\overline{e_{s'}} = -a^2 \overline{e_r} \; ; \qquad \overline{e_{r'}} - \overline{e_r} = a^2 \overline{e_r} \; . \tag{17.7}$$

¹ Je ne connais donc pas e_s mais seulement $\overline{e_s}$. Par contre je connais $e_r = 0$ (et donc à fortiori $\overline{e_r} = 0$) (cf. § 16).

On les a obtenues en décomposant $u_{\rm A}$ suivant les ondes émergentes, à la place des ondes incidentes (fig. 3 et 5).

Si, en moyenne, on a pour $x^4 \ll 0$, des charges $\overline{e_r}$ et $\overline{e_s}$ présentes dans leurs ondes respectives, on doit ajouter leurs contributions (17.6) et (17.7) aux ondes $k_{r'}$ et $k_{s'}$ sans relation de phase ¹. Le résultat ainsi obtenu est, pour l'onde $k_r \to k_{r'}$:

$$\overline{e_r} - \overline{e_{r'}} = a^2 \left(\overline{e_r} - \overline{e_s} \right)$$
 (val. pour théorie nº 4 ²) (17.8)

Il diffère du résultat de la théorie n° 2 en ce qu'il ne contient que la création induite ².

La nouvelle théorie (soit n° 3 (FD), soit n° 4 (BE)) diffère de n° 2 (celle de Pauli-Weisskopf) et de n° 1 (celle de Dirac-Heisenberg) en ce qu'elle ne donne pas de création spontanée de paires de quanta chargés à spin entier par un « champ de force » (par exemple le champ électromagnétique).

Cette différence se manifestera dans l'expérience suivante:

Un rayonnement de photons incidents sur des noyaux atomiques donne, d'après les théories no 1 et no 2 (Dirac-Heisenberg et Pauli-Weisskopf) un nombre moyen de paires de mésotrons créées spontanément par un photon, qui est proportionnel à Z² (Z = nombre atomique) (formule de Bethe-Heitler, cf. [7]).

D'après la nouvelle théorie, un tel effet spontané ne peut pas se produire. Par contre, un effet induit pourra se montrer si les forces nucléaires sont produites par ce champ chargé et de

 1 Cette moyenne doit être faite sur les phases complexes des coefficients $c_{\dots \bar{N}_{\bar{l}} \dots}$ de la somme

$$\Psi(\dots \mathbf{N}_l \dots) = \sum_{\overline{\mathbf{N}}_1} \dots \sum_{\overline{\mathbf{N}}_l} \dots c_{\dots \overline{\mathbf{N}} \dots} \, \delta_{\overline{\mathbf{N}}_1 \, \mathbf{N}_1} \dots \, \delta_{\overline{\mathbf{N}}_l \, \mathbf{N}_l} \dots$$

tout en gardant constantes les valeurs $\overline{e_r}$ et $\overline{e_s}$.

² Dans le cas BE (théorie n° 4) la formule (17.8) est obtenue. En théorie n° 3 (FD) \overline{N}_l ne peut prendre que les valeurs 0 et 1. La phase est alors limitée et une autre formule, contenant l'annihilation induite, résulte si $\overline{e_r}$ et $\overline{e_s} \neq 0$. Remarquons aussi que la nouvelle relation d'incertitude du § 17 limite en théorie n° 3 l'espérance mathématique $0 \leq \overline{e_r} \ll B^2 e < e$, i on sait que e_s vaut — e.

quanta à spin entier (mésotron). Toute expression bilinéaire en termes de ce champ des mésotrons est alors proportionnelle à $\sim 2Z$, ou peut-être à $\sim 2Z^2$, dépendant de la manière de la superposition des champs nucléaires individuels de chacun de ces $\sim 2Z$ constituants nucléaires. Le photon incident peut alors produire des paires par création induite. Mais leur nombre par photon est proportionnel à $\alpha Z + \beta Z^2$.

§ 18. — Une raison pour éliminer la théorie nº 2.

Si l'on considère l'existence des réactions (16.6a, b et c) comme une nécessité physique, le nombre de nos théories se réduit à une seule théorie (avec statistique FD) pour des particules à spin demi-entier, mais à deux théories (les deux avec statistique BE) pour les particules à spin entier. Il est pourtant peu probable qu'il existe deux sortes de particules à spin entier.

Nous n'avons trouvé aucun moyen de démontrer l'impossibilité physique de notre nouvelle théorie n° 4. Par contre, un argument peut être invoqué pour éliminer la théorie n° 2 (celle de Pauli-Weisskopf): La théorie classique est composée de deux champs non chargés à f composantes chacun. Si ces deux champs peuvent être mesurés simultanément, on peut observer l'« angle » $\varphi(x)$ entre deux de ces 2f composantes reliées par la matrice i (11.3) (cf. (14.2) et (14.3)). Ainsi une distinction est possible entre l'état électromagnétique de l'espace représenté par le même « champ » $B_{\alpha\beta}$ mais par un « potentiel » Φ_{α} différent.

Si nous écrivons les fonctions $D_{AB}^{(\cdot)}$, qui distinguent les deux théories sous forme de matrices à 2f lignes (comme on l'avait fait pour (11.2), (11.3) et (11.8)), on a (cf. équation (12.1))

$$D^{(0-)(2f)} = \begin{pmatrix} D^{(0-)(f)}, & 0 \\ 0, & D^{(0-)(f)} \end{pmatrix}; D^{(1-)(2f)} = \begin{pmatrix} 0, & D^{(1+)(f)} \\ -D^{(1+)(f)}, & 0 \end{pmatrix} .$$
(18.1)

On voit maintenant que seule la fonction $D^{(1-)}$ impose une restriction à la mesure de l'angle φ (x) qui se trouve dans le plan

représenté par deux composantes de $u_{\rm A}$ reliées par la matrice i (11.3) ou par ${\rm D^{(1-)}}$ en (18.1) 1.

La nouvelle théorie (n° 4) contient ainsi à priori l'impossibilité d'observer cet angle qui représente une transformation de jauge. La théorie n° 2 de Pauli-Weisskopf ne fait que quantifier séparément les deux champs non chargés et admet ainsi à priori l'observation d'une transformation de jauge.

Une observation d'une telle transformation à l'aide de champs (chargés) à rep. biv. (théorie n^o 1) est exclue parce qu'une loi d'anticommutation ne permet de mesurer deux grandeurs anticommutantes qu'à leur signe près. Or cette restriction enlève à fortiori toute possibilité de mesurer l'angle $\varphi(x)$ dans ce cas n^o 1.

§ 19. — L'IDENTITÉ ENTRE LA NOUVELLE THÉORIE DU CHAMP ET LA QUANTIFICATION DE LA NOUVELLE MÉCANIQUE DU POINT MATÉRIEL.

Dans un article précédent [6] ¹, nous avons démontré que la quantification de la mécanique contenue en

$$\dot{q}^{\alpha} = \pi^{\alpha} ; \quad \dot{\pi}_{\alpha} = \dot{e} B^{\alpha\beta}(q) \pi_{\beta} ; \quad \dot{f} = \frac{df(\lambda)}{d\lambda} (19.1)^{2}$$

montrait (dans le cas particulier d'un champ $\Phi^{\alpha}(x^4)$ considéré au § 6 et pour le spin 0) qu'une particule de charge +e, observée au temps $x^4 >> 0$, a:

ou 1º déjà existé au temps $x^4 \leqslant \leqslant 0$ et a été accélérée par le

champ (électrique) qui existait pendant l'intervalle — $c\,\delta t < x^4 < +\,c\,\delta t,$

ou 2º qu'elle est le partenaire d'une paire créée par le champ (électrique) pendant cet intervalle.

² λ est un paramètre quelconque, cf. éq. (4.5) de [6] (deuxième partie).

¹ On peut démontrer en plus que la singularité de $D^{(1+)}$ est de telle nature à interdire même la mesure de la « phase moyenne » $\overline{\varphi}(x)$ définie par des valeurs moyennes des composantes du champ \overline{u}_A pris sur un volume V.

La probabilité pour la première alternative est B² et celle pour la seconde A². Ces coefficients ont la même signification qu'en figure 4. Or les relations (cf. note p. 220) qui existent entre les coefficients a, b, A et B des ondes planes dans les figures 1 à 4, montrent que l'espérance mathématique $\overline{e_{s'}}/e$ de trouver une charge au temps $x^4 >> 0$ dans un certain état de mouvement est $1/B^2$ fois plus grande que $\overline{e_s}/e$ qui représente l'espérance mathématique à trouver une charge pour $x^4 << 0$ dans l'état de mouvement correspondant ¹. Or (19.1) montre que la relation

$$\overline{e_{s'}} = \overline{e_s} = a^2 \overline{e_s} \tag{19.3}$$

existe entre les deux grandeurs. Elle est identique au résultat de la nouvelle théorie du champ quantifié ((17.6), 5^e équation).

Pour faire une démonstration exacte de l'identité des deux théories proposées, il faut d'abord généraliser (19.1) pour pouvoir l'appliquer à des particules avec spin. Cette forme est obtenue si l'on introduit, en plus des variables $q^{\alpha}(\lambda)$ et $\pi^{\alpha}(\lambda)$ des nouvelles variables classiques $\gamma^{\alpha}(\lambda)$ et $\sigma^{\alpha\beta}(\lambda) = -\sigma^{\beta\alpha}(\lambda)$. (19.1) doit alors être remplacé par:

$$\dot{q}^{\alpha} = \gamma^{\alpha} \; ; \quad \dot{\gamma}^{\alpha} = h'^{-1} \, \sigma^{\alpha\beta} \, \pi_{\beta}$$

$$\dot{\sigma}^{\alpha\beta} = h''^{-1} (\gamma^{\alpha} \pi^{\beta} - \gamma^{\beta} \pi^{\alpha}) \; ; \quad \dot{\pi}^{\alpha} = e \, B^{\alpha\beta} \, \gamma_{\beta} \; . \quad (19.4)$$

On peut démontrer que cette théorie donne lieu à des lignes d'univers qui sont toujours près à ceux de (11.13). h' et h'' sont des constantes de la dimension h, si on donne à λ la dimension d'une longueur. Une telle théorie est classiquement possible. Le tenseur

$$\begin{split} \mathbf{M}_{\alpha\beta} &= \mathbf{L}_{\alpha\beta} + \mathbf{S}_{\alpha\beta} \\ \mathbf{L}_{\alpha\beta} &= q_{\alpha} \pi_{\beta} - q_{\beta} \pi_{\alpha} \; ; \quad \mathbf{S}_{\alpha\beta} = - \, h'' \, \sigma_{\alpha\beta} \end{split} \tag{19.5}$$

est conservé dans l'absence de forces. Donc $S_{\alpha\beta}$ représente le spin. L'analyse montre qu'en moyenne une telle particule

 1 C'est-à-dire dans un état de mouvement défini par les impulsions $\pi^\alpha_{(r)}=\,h k^\alpha_{(r)}$.

possède un moment magnétique et électrique. La condition $\gamma_{\alpha} \gamma^{\alpha} = 0$ fait disparaître le moment électrique dans son système de repos ($\vec{\pi} = 0$).

La quantification de cette théorie n'est possible que pour des spins entiers. Les γ^{α} deviennent les matrices $\gamma_{\rm A}^{\alpha \rm B}$, etc. $\int (dq)^4 \, \psi(q,\lambda)_{\rm A} \, \psi(q,\lambda)^{\rm A}$ est positif pour toute région d'espace-temps $\Omega >> \kappa^{-4}$. L'intégrale sur un tel Ω peut donc représenter la probabilité de trouver la particule dans cette région (dans le sens proposé par l'auteur [6]).

Pour des spins demi-entiers, il faut considérer $\int_{\Omega} (dq)^4 (\varepsilon \psi)_A \psi^A$ comme une telle probabilité. Cette intégrale étendue sur tout l'espace-temps est en effet positive. La théorie correspond au cas $u_A^+ = (\varepsilon u)_A$ de la théorie quantifiée que nous avons dû écarter dans la théorie du champ u_A parce que les valeurs propres de la charge dans un volume défini par les « barrières » ne sont pas des multiples entiers de e. Elle est à éliminer de la mécanique du point parce que des paquets d'ondes à probabilité négative peuvent se séparer du paquet d'onde primitif. Autrement dit, même pour des régions d'espace-temps $\Omega \gg \varkappa^{-4}$ l'intégrale de la probabilité n'est pas toujours positive.

19a. — Résumé.

La généralisation que le champ chargé apporte aux deux théories du champ non chargé en fait six théories. Des trois théories à rep. biv. (spin demi-entier), les deux qui utilisent la statistique BE doivent être exclues parce qu'elles admettent des valeurs négatives pour l'énergie totale d'une onde périodique. Des trois théories à rep. univ. (spin entier), celle qui utilise la statistique FD ne permet pas de réactions où un seul quantum à spin entier apparaît ou disparaît.

¹ Dans son système de repos, le point q_{α} décrit alors des cercles avec la vitesse de lumière. On remarque une analogie avec un modèle de $H\ddot{o}nl$ [9].

² On pose $m = h\varkappa$ (m =masse de repos).

Des deux théories qui restent, l'une (celle de Pauli-Weisskopf) admet en principe la possibilité de mesurer les potentiels électromagnétiques par une mesure de deux composantes du champ chargé. L'autre théorie (la théorie nouvelle) contient un principe fondamental interdisant cette observation.

Nous proposons donc que seules les théories qui satisfont au principe de l'incertitude de la phase $\varphi(x)$ du champ chargé soient réalisées en nature.

Ces deux théories sont alors la théorie de Dirac-Heisenberg pour des quanta à spin demi-entier, et une nouvelle théorie du champ, qui est identique à la quantification de la nouvelle mécanique du point matériel proposée par l'auteur [6]. Cette nouvelle théorie utilise la fonction D⁽¹⁻⁾.

Mai 1942.

Genève. Institut de Physique de l'Université.

BIBLIOGRAPHIE

- [1] DIRAC, Proc. Roy. Soc., A, 155, 447 (1936).
- [2] FIERZ, Helv. Phys. Acta, 12, 3 (1939).
- [3] DE BROGLIE, cf. résumé C. R. Acad. Sc. Paris, 212, 657 (1941).
- [4] PAULI, Rapport Congress Solvay 1939; Phys. Rev., 58, 716 (1940); Rev. Mod. Phys., 13, 203 (1941).
- [5] DIRAC, Proc. Roy. Soc., 30, 150 (1934).
- [6] STUECKELBERG, Helv. Phys. Acta, 14, 51 et 588 (1941); 15, 23 (1942).
- [7] PAULI et WEISSKOPF, Helv. Phys. Acta, 7, 709 (1934).
- [8] Cf. à ce sujet Stueckelberg, C. R. Soc. Phys. et Sc. nat. Genève, 59, 49 et 53 (1942).
- [9] Hönl, Zs. f. Phys., 112, 512; 114, 478 (1939).