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SEANCE DU 19 FEVRIER 1942 53

Ernest-C.-G. Stueekelberg. — Solutions invariantes Dx3 (x, y)
de Vequation de Schroedinger relativiste.

La theorie des champs quantifies fait appel ä une fonction
D (x, y)1, qui satisfait ä l'equation de Schroedinger: x mjh

(x) S/Ö^ — / (e/h) 0^ (x) ; /2 — 1 ; F (/)* F (— /)

(D* (x) D11* (x) — x2) Dx2 (x y) (D^ (y) D" {y) — x2) Dx2 [x,y) 0

(1)

En l'absence des forces, les solutions invariantes ne peuvent
dependre que de R2. Dans la note precedente 2, nous avons
demontre qu'il n'existe que deux fonctions de ce type, qui
disparaissent pour R2 -* co soit

D$(*, y) — DSKy, X) ; D(*, y) D«>(y, x) (2)

Nous allons demontrer que si <5^ =/= 0, il existe une serie de

fonctions complexes (x, y) ayant la symetrie

/) 7n+1D5)(». *)* • (3)

La solution D(0) (x, y) est 1'analogue spatiotemporelle de

la fonction de Green: Une solution quelconque vFx2 (y) de

l'equation de Schroedinger (1) est determinee en un evene-

ment y, si sa valeur et la valeur de sa derivee normale sont

connues sur un hyperplan x (x, xi const.).

{y) ~ h f{dx)S {(D4* (*) (*. y)) ^ (* - y) (D4Yx* (*))} •

(4)

La fonction doit done avoir la propriete

ö D'® (x y)
V) 0 : 5^4 —4ti8(x — y)

pour x* y* (5)

1 Cf. p. ex. Pauli. Rapport du Congres Solvay 1939, paru dans
Phys. Rev. 58, 716, 1940 et Rev. Mod. Phys. 13, 203, 1941.

2 E. C. G. Stueckelberg. C. R. seances Soc. Phys. et Hist. nat.
Geneve, 59, 49, 1942.
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parce que, sur l'hyperplan x x4, Tx, (y) et 'bW^fdy4 peuvent
etre donnes arbitrairement.

Pour demontrer (4), nous cherchons l'ensemble des fonctions

propres S (a:/p) de l'equation de Schroedinger, qui appartiennent
ä des valeurs propres de la masse x2 (p.) et qui sont denombrees

par un indice p. (continu ou discontinu). Soit f (dp)4 la som-
mation sur 1'ensemble invariant de cet indice, et f (da;)4

+ «

f (da:)3 fdxi la sommation sur tout l'espace-temps. Alors ces
— 00

fonctions peuvent etre normalisees ä

Jfda^S'fc/iiJSfc/p') s(p/p') ;

f (dp')*S*(«/p')S(y/p') S(x/y) (6)
1'

le Symbole 8(ajb) signifie que f (db)4 8(a/b) f(a) =f(b). Al'aide
de ces fonctions, on forme la matrice

sWsP) 2ir/8(x2(p) — x2(p'j)

J(dz)2{ (D4 S (a/p))* S (®/p') - S {xjp)* D4 S(x/p') } (7)

qui, etant hermitique, peut toujours etre mise en forme diagonale

s(p/p') e(p) §(p/p'). Les fonctions D(,l) sont definies

par

V) 2 (2TT,2 f (dp)4 S (x2 (p) — x2)

(/ s (M-))n_l s S (2//P-) (8)

La relation (4) est obtenue pour (y) A (p') S (y/p')
si l'on multiplie (7) avec A(p') e(p)-1 S(y/p) et si on somme

sur (dp)4. Elle est vraie d'abord pour tout A(p') S(y/p')
appartenant ä la masse x2(p'). A cause de la linearite de

(4), ceci est vrai pour toute solution vFy2 (y) de l'equation de

Schroedinger avec x2 x2(p'). La solution D'F permet de

definir ä partir d'une fonction *F (x) quelconque des fonctions

[y) 2(fcr2 /{dx)i {x'y)rr {x) (9)
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qui satisfont ä (1) et ont la propriete que

55

+ co

Y(y) =/d(x«)Tx,(y) (10)

— CO

Pour demontrer ce theoreme, on exprime d'abord Y (x)

par la somme

¥(*) J A ((*')S («/(i') (11)

et substitue cette expression en (9) tenant compte de la
definition (8) de D(1). En vertu de la premiere relation d'ortho-
gonalite (6), on trouve

Yxl(y) J" W4 >(*M' - x2) A(p) S(»/(*) (12)

qui, ä son tour, satisfait ä (10). En l'absence des <1^, on choisit
les S(x/k) (2n)~2 exp (/'kaxa) et 1'on retrouve D<rt) D(0)

ou 1)0^ de la communication precedente suivant que n est pair
ou impair.

L'application de ces fonctions montrera une nouvelle
analogic entre la mecanique du point materiel et celle des champs

quantifies complexes

1 E. C. G. Stueckelberg. Helv. Phys. Acta, 14, 321 et 588,
1941; 15, 588, 1942, et un article en preparation.

* 8(a) et 8 (x) sont les symboles de Dirac habituels, qui sont
les proprietes

+ °°

J da 8 (a — b) f(a) f[b) ; J (dx)3 8 (x — y) f (x) f(y)
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