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Ernest-C.-G. Stueckelberg. — Solutions invariantes D, (x, y)
de I'équation de Schroedinger relativiste.

La théorie des champs quantifiés fait appel a une fonction
D (z, y) 1, qui satisfait & l’équation de Schroedinger: x = m/h ,
D, (2) —b/bw"“—i(e/h @) P=—1; F*=F())

(D, () D** (2) — ) D (@, y) = (D, (y) D*(y) — »}) D,p(x, y) =0 -
(1)

En I’absence des forces, les solutions invariantes ne peuvent
dépendre que de RZ2 Dans la note précédente 2, nous avons
démontré qu’il n’existe que deux fonctions de ce type, qui
disparaissent pour R2- oo, soit

Dia(x,y) = — Dy, ) 5 D, y) = Daly, 2 . (2)

Nous allons démontrer que si @, # 0, il existe une série de
fonctions complexes D (x, ) ayant la symétrie

DM (z, y) = DWW (y, 2)* . (3)

La solution D@ (%, y) est I’analogue spatiotemporelle de
la fonction de Green: Une solution quelconque W, (y) de
Iéquation de Schroedinger (1) est déterminée en un événe-
ment y, si sa valeur et la valeur de sa dérivée normale sont
connues sur un hyperplan z = (z, z* = const.).

o () ——w-f dz)*{ (D** (2) DO (z, y)) ¥, (@) — DY (e, ) (D*¥,al2)) } -
| (4)
La fonction ng) doit donc avoir la propriété
bD(O) (33 y) —> —
Dz, 9) =0; —F 54— =—4nd(z—y)
pour z* = yt (5)

1 Cf. p. ex. PauLrl. Rapport du Congrés Solpay 1939, paru dans
Phys. Rev. 58, 716, 1940 et Rev. Mod. Phys. 13, 203, 1941.

2 E. C. G. StueckeLBeRrG. G. R. séances Soc. Phys. et Hist. nat.
Genéve, 59, 49, 1942,
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parce que, sur 'hyperplan x = 2%,V , (y) et 3V ,/oy* peuvent
étre donnés arbitrairement.

Pour démontrer (4), nous cherchons I’ensemble des fonctions
propres S (x/w) de I’équation de Schroedinger, qui appartiennent
& des valeurs propres de la masse %2 (u) et qui sont dénombrées
par un indice p (continu ou discontinu). Soit [ (du)* la som-

mation sur I'ensemble invariant de cet indice, et [ (dz)* =
+ oo
S (dz)® [dz* la sommation sur tout I'espace-temps. Alors ces

-0

fonctions peuvent étre normalisées a

el

J (do)? S* (x/u) S (z/u) = 8(u/w) ;

[ (@098 o) B (o) = S(oly) -

le symbole 3 (a/b) signifie que [ (db)* 8(a/b) f(a) = f(b). A Taide
de ces fonctions, on forme la matrice

elple) = 277 8 (2 (w) — ()

| (a0l{ (D48 (e/u)" S (o) — S(afu)* DS (afu)} (7

qui, étant hermitique, peut toujours étre mise en forme diago-
nale e(u/p’) = () 3(p/u’). Les fonctions D™ sont définies
par

DW (e, v) = 2(2mp | (du)* 8 (2 () — )

(Fe@)™™ S (@/w)*Sly/w) - (8)

La relation (4) est obtenue pour W, . (y) = A(n) S(y/w)
si on multiplie (7) avec A(w') e(w)™ S(y/w) et si on somme
sur (dup)% Elle est vraie d’abord pour tout A (w')S(y/w)
appartenant a4 la masse »%(p'). A cause de la linéarité de
(4), ceci est vrai pour toute solution ¥, (y) de I'équation de
Schroedinger avec x2 = x2(p’). La solution D! permet de
définir a partir d’une fonction ¥ (z) quelconque des fonctions

¥alt) = 37,/ (@)D, 1) ¥ ia) ©)
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qui satisfont a (1) et ont la propriété que
¥y = [dp) Pty - (10)

Pour démontrer ce théoréme, on exprime d’abord W (x)
par la somme

Y

¥ (z) = j (du)* A () S (#/w) (11)

et substitue cette expression en (9) tenant compte de la défi-
nition (8) de DY, En vertu de la premiére relation d’ortho-
gonalité (6), on trouve

Yol = [ (@urs(er — ) AWSwR  (12)

qui, & son tour, satisfait & (10). En I'absence des ®,, on choisit
les S(z/k) = (2m)™ exp (jk,z*) et Pon retrouve D™ = DO
ou D) de la communication précédente suivant que n est pair
ou impair.

L’application de ces fonctions montrera une nouvelle ana-
logie entre la mécanique du point matériel et celle des champs
quantifiés complexes 1.

1 E. C. G. StueckeLBERG. Helv. Phys. Acta, 14, 321 et 588,
1941; 15, 588, 1942, et un article en préparation.

-

* 3(a) et 3(z) sont les symboles de Dirac habituels, qui sont
les propriétés
+ e

S dasia—b)fla) = f(b) ;[ (da)3le—3)f@) = i) -

—o0
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