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SEANCE pU 19 rFEVRIER 1942 49

Ernest-C.-G. Stueckelberg. — Solutions invariantes D, (x, y)
de Iéquation (1 —»2) D = 0(1) dans U'espace pseudo-euclidien.

Le continu quadridimensionnel pseudo-euclidien de Iespace-
temps définit la distance invariante entre deux événements
par R(z,y)® =g, (2" —y*) (2" —y’) = — T2 =r2 — % (avec
t =x*—y* r =|z —y ). Une fonction invariante

D.o(z, y) = D,, (R

ne peut dépendre que de cette distance R2 Si cette fonction
est solution de I’équation homogéne ([J = g"*’ 32 / dx* d2Y), elle
possede en général des singularités sur le cone de lumiére
R2 =0, ¢ = + r. Une telle fonction est dite solution de (1) si,

pour toute fonction W (z), 'intégrale étendue sur tout I’espace
+ oo
J (dx)? et sur tout le temps [ dat, la fonction

— 00

Y® ) = [ (@) | @t D,u(z, 4) Tiy) (2

Y (X)

satisfait & I’équation homogeéne (1) (mentionnée dans-le titre).
Si Zp (z) est une fonction de Bessel de I'ordre p et de 'argu-
ment z, toute fonction invariante

d

ng (B &= xT_lzl (xT) = QW

Z, (xT) (3)

est solution de (1). La fonction D,, obtenue par la substitution
Z,(z) = J,(2) en (3) est une premiére solution du probléme.
J(2) étant une série de puissances (a coefficients réels) en 22,
n’a pas de singularités au cone de lumiére. Mais elle n’a pas
d’intérét dans les problémes physiques (quantification des
champs) parce qu’elle devient infinie pour R®-> 4 o . La
théorie des champs quantifiés s’intéresse 4 des solutions inva-
riantes de (1), qui tendent vers zéro pour R% -~ 4+ o0. De telles
fonctions réelles doivent avoir une discontinuité sur le cone
de lumiére, parce que toute fonction de Bessel autre que J,

C. R. Soc. phys. Genéve, vol, 59, 1942, 4



50 SEANCE DU 19 FEVRIER 1942

devient complexe pour un changement de la phase ¢ de 'argu-
ment z = e'®.

Pour obtenir de telles solutions, nous rappellons ' que I'inté-
grale étendue sur le domaine euclidien, qui est contenu en (2)
si Pintégration sur [ da* se fait le long de I'axe imaginaire dans
le plan riemanien de z* (ou de ¢ = #* —y*, cf. chemin (X) = (A)
dans la figure), satisfait I'équation inhomogene

(O —) ¥yele) = — bn¥(z) (&)

si Zy(z) contient la singularité Zy(2) ~ % log z pour z-0.

Les fonctions suivantes

—HP () = Jole) 2log 0 3) + gla) )

Nols) = Tole) = log s + g(2) (6

plan tuerv

! (av)

I . _,,/,///////////,’////

/////I/y/‘l////////,,/,)/””nn» - — O ,////r///////////
c (c)
‘>

(o)

(A)

satisfont & cette condition. g(z) est également une série
de puissances en z2. Elles ont en plus la propriété que

— i H®(e'? z) et Ny(z) sont les deux réelles, si z est réel et
positif. Elles tendent vers zéro si z -~ + réel oo. Le chemin
d’intégration (X) = (A) (cf. figure) peut étre déformé en I'un
ou I'autre des lacets (X) = (av) ou (X) = (ret) autour des poles

1 STueckELBERG. C. R. séances Soc. Phys. et Hist. nat. Genéve,
56, 43, 1939.
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t = + r de la fonction. Ces deux solutions ¥ %% ou W de (4)
peuvent étre exprimées entiérement en termes de la densité
de la source ¥ (x) pour des temps réels avancés ¢ > r ou retardés
t <r (méthode de Sommerfeld 1). Elles tendent vers zéro
pour R? - 4 oo, si la densité de source ne différe de zéro que
dans une région finie d’espace.

Si, par contre, on choisit un chemin du type (X) = (B) dans
(2), I'intégrale peut étre contractée en un contour (O) fermé
et situé entiérement dans la partie inférieure du plan . Une
telle fonction ‘P‘f‘? satisfait a I’équation homogene, parce que
(O —=x2) D,; =0 dans tout le domaine d’intégration. Le par-
cours particulier (C) du type (B) définit W'Y en termes de la
densité de source V' (z) pour des temps réels. Cette solution peut
étre exprimée par une intégrale étendue le long de I’axe réel de ¢,
si on définit dans intégrant D, , (2) par la prolongation analy-

tique le long du parcours (C) de la fonction choisie. La phase ¢
1

1
de 2 ==T zx(t—r—i]r')? (t + r—i|’t!)7 change de

si ¢t augmente de (t < —r)—>(—r<<t<<r)-(t>r).
Cette prolongation appliquée pour x% > 0 donne

2= {"xT)> (¢ 2 xR)—> (xT) .

La substitution de ce z en «(b) + 2J,(z)» fournit la pro-
longation

T

(No(xT) — iJg (xT)) - (— iH‘D”(ei *%R)) > (No(xT) + iJy(=T)).
(7)

Les parties réelles et imaginaires de (7) doivent satisfaire
individuellement & (1). Nous les appelons D (z, y) et
DS (x, y). Ils résultent par la différentiation formelle (3) de

deux fonctions réelles et discontinues, que I'on peut exprimer

1 SoMmMERFELD, cf. Frank u. v. Mises, Diff. Gleich. der math.
Physik, 2me éd., vol. 2, p. 780 et suivantes.
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en termes des symboles de Dirac & (z2) = dvy(2) / dz ;
2zv(3) =|z| +2; v(@ +y(—2) =1

D&(e, ) = — DRy, o) = — 2 o (157 ¥(T%) JaxT))
=r'(3r+9)—8r—1) +2y(T)(...) + ...
®)
DR, ) = DRy, 2) = 2 7z (— YRYIHP (2 xR} + ¥(T%) Ny )

Les troisiéemes membres de (3) et (9) indiquent les singularités
les plus fortes pour ¢ = 4 r. Pour des valeurs négatives de
®2 = —o02 < 0, la prolongation doit étre faite le long du
parcours

. TC
i—

z = T) > (e ? xR) ~ (" xT) .

A la place de (7), on obtient une association différente, dont
la partie imaginaire est (& un facteur et & un terme additionnel
2J,(z) pres) la fonction DY) (z, y) exprimée en (8) avec
Iargument i6T & la place de »T. La partie réelle par contre

donne une fonction différente de (9), soit

d . i
D2(x, y) = Dyly, z) = TRZ)(Y(Rz) No(oR) — y(T?) iH (¢ 2T
—2R 4 ... (10)
pid

qui a les mémes singularités que (9). Comme (9), elle disparait
pour R2 et pour T2+ o0 . DY, par contre, est dans les deux cas
®? Z 0 zéro pour R? > 0, mais il ne disparait pour T? -~ o
que si x2 > 0. D’autres propriétés, que ces fonctions possédent
en commun avec d’autres fonctions plus générales, seront

étudiées dans la communication suivante I.

1 E. CG. G. StueckeLBERG. C. R. séances Soc. Phys. et Hist. nat.
Genéve, 49, 53, 1942.
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