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1942 Vol. 24 Septembre-Octobre

UNE METHODE NOUVELLE

DE LA

QUANTIFICATION DES CHAMPS

PAR

E. C. G. STUECKELBERG
(Avec 6 fiz.)

RESUME

L’article contient un exposé général de la théorie classique et
de la théorie quantifiée des champs physiques.

Pauli a montré que des particules a spin entier, respectivement
demi-entier, doivent obéir a la statistique de Fermi-Dirac, respecti-
vement de Bose-Einstein. Dans sa démonstration, il n’a pas tenu
compte d’une deuxiéme fonction invariante. L’influence de cette
fonction est étudiée. Cette étude demande une nouvelle présentation
de la théorie des champs chargés et non chargés. L’unité imaginaire
est éliminée. Le résultat est une nouvelle méthode de la quantifica-
tion, qui n’est possible que pour des particules & spin entier. Elle
est identique & la quantification d’une nouvelle mécanique du point
matériel proposée d’autre part par 'auteur.

INTRODUCTION

Plusieurs auteurs, notamment Dirac [1] et Fierz [2] d’une
part, de Broglie et ses collaborateurs [3] d’autre part, ont
étudié les propriétés de la théorie d’un champ u(x), a plusieurs
composantes (A = 1, 2 ... f). Ces recherches se divisent en
quatre parties: 7

On distingue d’abord entre des champs qui portent ou
peuvent porter des charges électriques (champ chargé) et des
champs qui n’ont pas cette possibilité (champ non chargé).
Chacune de ces théories a une partie classique et une partie
quantifiée.
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194 QUANTIFICATION DES CHAMPS

La théorie classique distingue entre des composantes u, qui
se transforment entre elles suivant une représentation bivoque
(rep. biv.) et celles dont la matrice de transformation est une
représentation univoque (rep.univ.) du groupe des transforma-
tions de Lorentz.

La théorte quantifiée joint aux principes classiques le postulat
que les valeurs observables de I’énergie d’une onde de fré-
quence k* sont des multiples de hk* ou, ce qui revient au méme,
que les valeurs observables de la charge portée par un paquet
d’ondes est un multiple de e.

h et e sont les quanta d’action (constante de Planck) et de
charge électrique (charge élémentaire). 11 résulte alors de la
théorie quantifiée que si u, se transforme suivant une repré-
sentation 09 du groupe des rotations spatiales, le moment d’im-

pulsion (spin) vaut hgl. g est demi-entier (g = N + —12—) pour

[es rep. biv. et entier (¢ = N) pour les rep. univ.

Le probléme se pose alors de savoir si une théorie classique
donnée admet seulement une ou plusieurs possibilités de
quantification. On sait qu’il existe en principe deux méthodes.
L’une est la conséquence du principe d’exclusion de Pauli. Elle
amene a la statistiqgue de Fermi-Dirac (FD) pour les quanta
associés aux champs. L’autre admet un nombre arbitraire de
quanta par élément de volume dans P’espace de phase des
quanta. Il en résulte la statistique de Bose-Einstetn (BE).

Pauli [4] a démontré qu’a des champs a rep. biv. ne peuvent
correspondre que des quanta obéissant & la statistique de FD,
tandis que ceux associés a des champs a rep. univ. doivent tou-
jours suivre la statistique de BE. Comme Pauli I'a lui-méme
exposé, sa démonstration est incompléte en ce qu’elle ne
comporte que les méthodes de quantification qui se basent sur
la généralisation 2 de la fonction invariante de Heisenberg et
Pauli (D9(z,y)). Mais, en plus de cette fonction, qui est
caractérisée par une singularité 8 (R?) 3 sur le cone de lumiére,
il existe une autre fonction DY (x,y) avec la singularité R 11

! Plus exactement le carré du spin a la valeur propre k2g(g + 1).
2 Contenant le terme de masse.
8 R2, voir (3.1).
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est évident que ’admission de cette nouvelle fonction (qui a
été introduite par Dirac [5] dans la théorie du positron) in-
troduit de nouvelles possibilités pour la relation entre spin et
statistique,

Nous sommes arrivé & I’étude détaillée de ces possibilités,
parce que les opérateurs de densité de charge, que nous avons
définis dans une nouvelle mécanique du point matériel [6], nous

ont amené aux relations de commutation qui contiennent la
fonction DM,

L’article que nous présentons ici a pour but de compléter
I'étude faite par Pauli. Il se divise en quatre parties: 1. Théorte
classique du champ non chargé, I1. Théorie quantifiée du champ
non chargé, I11. Théorie classique du champ chargé, 1V. Théorie
quantifiée du champ chargé. Un résumé se trouve a la fin de
chaque partie (§§ 6a, 9a, 14a et 19q).

Notre résultat est identique a celui de Pauli, si I’on demande
que tout quantum chargé & spin entier puisse se décomposer
en deux quanta & spin demi-entier . Mais, pour les quanta a
spin entier, il existe deux théories possibles. 1.’une, qui utilise
D@ (x, y), est celle de Pauli et Weisskopf [7] et Pautre, avec
DM (g, y), se montre identigue & notre nouvelle mécanique
(généralisée pour des spins non nuls) [6].

Nous croyons que c’est la nouvelle théorie qui est réalisée
en nature, parce qu’elle est I’analogue des théories & spin demi-
entier en ce que la « phase @(x) du champ complexe » est inobser-
vable. (La théorie du spin entier avec D) (x, ) admet en prin-
cipe la possibilité de mesurer cette phase. Elle donne ainsi une
réalité observable aux potentiels électromagnétiques.)

Nous croyons que les deux théories a spin entier se
confondent quant & tous leurs résultats, sauf pour ceux qui
portent sur la création de paires. Au § 17, cette différence, qui
est en principe observable, est discutée.

1 Ou donner toute son énergie et son impulsion & un autre
quantum sans changer la statistique de cet autre quantum. Si ce
postulat n’est pas introduit, des quanta & spin entier et a statis-
tique FD peuvent exister.



196 QUANTIFICATION DES CHAMPS

PREMIERE PARTIE

§ 1. — NOTATIONS DU CALCUL TENSORIEL ET SPINORIEL.

A. Tenseurs.

Un événement x = (z1, 2%, 23, 2%) est caractérisé par son

>
endroit = (z1!, 22, 2®) et son temps 24 == ct. Des grandeurs a”,

qui se transforment comroe les dz* (e, B, ... = 1, 2, 3, 4), sont
les composantes contravariantes d’un vecteur. Les composantes
covariantes du tenseur fondamental g, = go, permettent de
définir les composantes covariantes a, = g,,a®' du méme

vecteur. Cette équation, qui exprime a, en termes de a®, peut
étre résolue pour P, La relation ainsi obtenue a* = g ag
définit les composantes contravariantes du tenseur fondamen-
tal. Les composantes mixtes

€= £ 6 = 3 .1

sont zéro ou un, suivant que « 2 8 ou o = 3. La loi de trans-
formation

o s o’

a’=A_a

(1.2)
a, = a, ()._1)“;
ou A! est la matrice inverse de la matrice A, exprime les compo-
santes d’un vecteur dans le systéme d’axes x* en termes de
ses composantes dans le systéme z*. Un systéme de Loreniz a
des valeurs g.,, indépendantes de z. Une transformation de
Lorentz est une matrice A indépendante de x qui laisse inva-
riantes les valeurs numériques de g, 2. Dans ce cas,

BYe () — 3BT B :
9,a°" () = 0a"V [ 2™ = b.¥ (1.3)
est un lenseur mixte, qui se transforme comme a, a® a¥ ..,

1 Un indice tensoriel a, (B, ..., apparaissant deux fois de suite sous
forme co- et contravariante, implique la sommation de 1 a 4.
g, = By = 8y = — &4, = &y = ... = 1, les autres 8 = 0.
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De (1.2) on sait en toute généralité que
ab, = a* b, (1.5)

est un tneartant ou un scalaire.

B. Spineurs.

Les f grandeurs u* (A =1, 2,...f) qui se transforment
suivant une loi !

ut = st ut (1.5)

dans laquelle la matrice s est une rep. univ. ou biv. de la
transformation de ILorentz, sont appelées les composantes
conlravariantes d’un spineur. (Un spineur particulier est le
vecteur u®* (a == 1 & 4) avec s = A).
Les composantes covariantes ¢, d’un (autre) spineur ont
la propriété
A A . . -4\A’
uto, =ut o, 0, =0, (s7)", [(1.6a) (1.65)
u ¢, est un invariant ou scalaire en analogie parfaite avec
(1.4). Cette analogie est poussée plus loin si un spineur fonda-
mental &, (ou 7,,) existe, analogue & g4, tel que

u, =E, u® ou =, u’ (1.7)

se transforme suivant (1.6b). Naturellement, (1.1) s’applique
dans la forme

‘qli = T)AC ncn = EAC E.DCB - E}: - Sﬁ ® (1'8)

Mais la symétrie de & (ou 7) n’est plus nécessairement satis-
faite, Au contraire, nous verrons qu’on doit distinguer deux cas

&, =— &, (pour rep. biv,)
(1.9)
Mg = Naa (pour rep. univ.)

1 Un indice spinoriel A, B ... répété deux fois sous forme co- et
contravariante, implique la sommation de 1 & f.
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D’un spineur U,  du second ordre, on peut donc former le
scalaire

= B TRE 8l (= ™ U] (1. 10)

S1 U, , est symétrique, le scalaire a disparait pour des rep. biv.
et vice versa.

L’importance du calcul spinoriel est di & D'existence de
spinotenseurs fondamentaur a valeurs numériques invariantes !
v*® (ou B**®). A leur aide, on forme de U, les vecteurs

B* = B, 5 =y, . (1.11)

Ces spinotenseurs mixtes permettent ainsi d’associer au
spineur u, des «spinovecteurs »

(y* u), =¥ uy ., ote. (1.12)

Nous avons introduit deux symboles £ et y pour pouvoir
définir

a a o __ %
3AB_—BBA’ Yap = Yaa

Remarquons, pour terminer, que tout symbole x* a*®, u,,

Nupr Buans Yeap €LC., €st un nombre réel et peut, en principe,
représenter une grandeur physique.

§ 2. — L’EQUATION D’ONDE.

A. Représentation bivoque.
Du systéme de f équations (A =1, 2, ... f)
o, (Y*u), —xu, =0 (2.1)

o

o %' est une longueur fondamentale, il ressort que toute
quantité bilinéaire en deux solutions u, et u,

TE (] == eu] 4% (2.2)
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satisfait a I’équation de continuité
3, =0, (2.3)

si le spineur fondamental £** est antisymétrique ((1.9)).
Le tenseur

THR o= it 9% yPAT g (2.4)

utu
satisfait & une équation analogue

B 2.5

% Tu fu 0, (2.5)
si la divergence est prise par rapport a son second indice
tensoriel.

J* peut étre interprété comme la densité de courant et T*?
comme la densité d’énergie-impulsion, L’énergie tolale vaut
alors 1

Hy, = [ (d2)3T% = — b [ (dz)® u (v*0, )"

L (2.6)
= hf(da)®u; (v, grad w)* + hx [(dz)®u; u* .

Dans le cas particulier, ou u, = u,, I’énergie totale disparait
identiquement grace & l'antisymétrie de & et & la symétrie
des y* Pour le vérifier, onintégre le premier ternie par parties.
Par contre, la charge totale

e, = [(da)pJ* = e [(dz)®u v**" u (2.7)

B

differe de zéro méme pour u, = u,.

B. La méthode de la fusion de de Broglie [3].

Soient ™ (x); des solutions de (2.1) dénombrés par I'indice .
Soient 1" (2)z des solutions d’un systéme (2.1) appartenant
a la méme ou & une autre représentation du groupe de Lorentz

A=12..A=1,2..). .

—_
1 [ (dx)® est l’intégration sur tout I’espace x pour un temps
z* = const. — [ (dx)* sera l'intégrale effectuée sur tout Uunivers x.
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Alors il est possible de construire des expressions bilinéaires
particuliéres 4

u(dzp = 2u™ (apu® (@ = u, (2.8)
s

qui satisfont aux deux systémes (2.1)

BB s s e B s
Ouyz Uz wxu 7 = 0

= = (2.9)

«*B — —
baYi U — RUg =

a la fois. Si y; et uT appartiennent & des rep. biv., us est la
base d’une représentation univoque. La somme des deux équa-
tions peut étre mise sous la forme

0,B%u, —xu, =0 (2.10)
avec x = (% + %) et des spinotenseurs 8%, antisymétriques
® _ p& e * oz L

B = Blmen = (5 + te0s) o)

et avec un spineur fondamental symétrique
T S WGNE) T Ehm e (242
L’indice A = (AA) parcourt les | x 7 valeurs A = 11, 12, ...,
T 2y Dy 05 T
C. La représentation univoque.

Le u, défini en (2.8) se transforme suivant une rep. univ.

De I’équation (2.10) il ressort que les deux grandeurs bilinéaires
en ce champ u,
- + " _ + B
J* = eu ™y, 5 TR = hu 0*pPAPu (2.14)

B

satisfont aux éguations de continuité (2.3) et (2.5), s1 m,, est
le spineur symétrique (1.9). Contrairement aux rep. biv., c’est

¢ De ces expressions sont discutées au § 4 (équ. (4£.2)).
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alors J* qui disparait identiquement si I’on pose u™ = u et
H,, qui différe de zéro méme dans ce cas.

§ 3. — LES DEUX SOLUTIONS FONDAMENTALES [8].

A. La fonction DO (z, y),,.

Les équations (2.1) ou (2.10) déterminent le taux de varia-
tion temporelle d,(y'u), des f composantes de (y'u), (ou de
(B*u), pour des rep. univ.). En général, les matrices vi® sont
telles que p (< f) des composantes de (y*u), sont identique-
ment nuls. Dans ce cas, ces p équations (2.1) ont la forme .
de conditions initiales. Si ’on impose certaines conditions
aux limites spatiales, ces p conditions initiales déterminent p
composantes de u, en termes des f — p autres composantes.
A leur place, on peut prendre les f — p composantes non
nulles de (v* u),.

La valeur u (), de u, 4 un événement quelconque x doit
alors étre déterminée comme fonctionnelle linéaire des valeurs
des f — p composantes (y*u (y)), sur un hyperplan y* = const.
La théorie de relativité montre que ce ne sont que les événe-
ments y & 'intérieur du cone de lumiére

B = (0 =9 o~ ) = |E=F =" =) <0
(34)

qui peuvent influencer I'événement z. Il doit donc exister un
noyau DO (z, y),, tel qu'on a

ula), = [’ DO (z, ),y (vuly)® . (32)

y4=const

Le fait que (y*u), peut étre choisi arbitrairement sur le plan
z* = y! = const., s’exprime par la condition
: 0+ _ & o
x141-r=1:;4 (Y:GD( )(:c, y)cDTwB) _' 8§8(a: _ y) : (3.3)

Le méme raisonnement s’applique aux rep. univ. C’est alors £*

qui prend la place de v* en (3.2) et (3.3). Nous distinguons les
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noyaux des deux types de théories par 'indice -+ (rep. biv.) et
— (rep. univ.). Il sera démontré plus tard que ces noyaux
possédent la symétrie

D(Ti:'c) (x: y)An = m D(ni) (y’ x)BA * (34)

Ils satisfont ainsi a4 I'équation d’onde (2.1) (ou (2.10)) par
rapport & z et A, et aussi par rapport a y et B. La théorie de
relativité (3.1) et (3.3) montre que D™ ne differe de zéro que
dans Dintérieur du céne R* < 0 et que ses singularités sur le
cone sont de la forme 8 (R*) ou des dérivés de & (R?). D
représente ainsi la généralisation de la fonction invariante de
Heisenberg et Pault,

B. La voncrion DU (z, Y)ss -

D’une fonetion spinorielle arbitraire f(x), qui satisfait a
certaines conditions d’intégrabilité, on peut former des fonc-
tions u,, (z),. Elles sont définies comme les solutions de I’équa-
tion d’onde (2.1) pour un » donné. Leur somme

+ oo

/ dxu, (z), = f(z), (3.5)

— o

est égale au f, initial. u,, est un terme du développement en
série de f, suivant les valeurs propres de Uopération v*?3,.

I1 doit exister un noyau D (z, Y) g, solution de I'équation
d’onde, qui détermine les termes de la somme (3.5)

u,(a), = (2m)7 [ (dy)* DI (e, yj,, fy)® . (3.6)

Nous montrerons que D) satisfait aux relations de symétrie
(3.4) (avec n = 1). Contrairement a4 D" ¢’est DY) qui se
rapporte aux rep. biv. et D) aux rep. univ. Les singularités
de D™ sont du type R™? et des dérivés de R™%. Pour R2 >> »x*
D disparait comme ¢ *® (pour la preuve cf. [8]).
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C. Autres fonctions D™ (z, y),,.

D’autres fonctions D"+ ayant des singularités du méme
genre, peuvent étre définies, si I'on introduit le procédé du

D. Développement en séries.

Les fonctions propres u (x), = S(u/x), de Iopération
d, Y* sont déterminées par

0, ¥ S (wfa)y = x(u) S (w/a), (3.7)

ou % (u) est une valeur propre de d, v*, dénombré par I'in-
dice @ = (@q, Wy, ... &,,). A une valeur de » (@) = » appar-
tiennent en général un grand nombre de fonctions propres
S (u/z),.

Les fonctions propres forment un systéme complet. La fonction
arbitraire f (x), peut ainsi étre exprimée par la somme !

fla, = [ [@dw™alwS /), . (3.8)

La fonction d’onde u, (x),, solution générale de I’équation
d’onde (2.1) pour une valeur donnée de x, peut étre écrite sous
la forme

u, (@), = [(de)™80elp) —alw) S/,  (3.9)

L=

ou 8 (z) est la fonction & unidimensionnelle. L’indice x en u,,
sera omis, dés que nous ne nous occupons que d’un seul x.
Pour donner le développement des fonctions fondamentales

L dw)™ = fdug fdyy . [du, ou = 3 fdug,y [duy,

w1 W2

est la somme multiple continue ou discréte sur l'indice multiple
b= (11, Uay e M)
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D™ nous introduisons les matrices p™ (u/w’) indépendantes
de x

o0 (ufu) = 3 0elu) — 3 (w)) [ (d)"S (/o) , YA (),
(3.10) 1

o7 (wjw) = (zn)“lf (dy)*S (wly), EPAS (why), - {3.41)

La matrice p(o_) est formée de facon analogue a (3.10) avec le
spinotenseur antisymétrique B'** a la place de y***. De méme,
o) est formé avee %®* & la place de £°* en (3.11).

Chacune de ses matrices p™ a une inverse ™! telle que 2

Staw o™ p ) oM ) =8 /w) . (3.12)

On peut alors démontrer que les fonctions D™ (n = 04, 0—,
1+; 1)
DI (, y),p = (3.13)

= [ ()™ f(du)™ 8 (x (w) — %) o™ (w/w)S(u/y), S/ 2),

ont les propriétés (3.2) et (3.6). On démontre (3.2), en multi-
pliant (3.10) avec o™ (w'/w”) a(u) S (u'/x), et effectuant
les sommes sur ' et p'. Le résultat est (3.2) avec
u(x), = a(w) S (u/x), . La relation obtenue est valable pour
toute somme de termes pareils appartenant au méme % (@) = x
c¢’est-a-dire pour toute fonction d’onde (3.9).

La méme opération effectuée sur (3.11), complétée par une
sommation sur p, fournit pour u, (z), I'expression (3.9) qui,
a son tour, satisfait & la condition (3.5).

Ces démonstrations sont indépendantes de la symétrie de
v% E% ou B, . Les svmétries de (3.10) et (3.11)

o) (ufp) = & M) (W) (3.14)

impliquent les symétries (3.4).

1 (3.10) est indépendant de y* parce que 'intégrand satisfait a
1’équation de continuité pour x (p) = » ().
2 8 (p/p’) est la matrice unité. Elle a la propriété que

Sdu)™ 8 (u/w) g(w) = g(w) .
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Il sera montré au § 4 que, pour toute rep. irréductible, c’est,
ou la matrice p"*™) ou p")) qui peut étre mise sous forme
diagonale (4.1) avec des valeurs propres positives. On peut
alors identifier o' ) ou o) avec la matrice d’unité 3 (u/p).
Ceci revient a choisir le systeme S (u/x), orthonormal suivant
(3.10) ou (3.11). Les matrices o™ commutent alors entre elles ®.
Nous introduisons alors la matrice

(t4) P(D?)-i ( (0F)-1 (1+x)

e(p/p)=—p w/w)=ope e (w/p)

= — f(dp") o"E (uipw) O ) (3.45)

qui est indépendante de toute normalisation.
Elle permet de définir une opération invariante * qu’on peut
effectuer sur une fonction arbitraire f (x),:

ef (), =f(duw™ea(p) Sk /), (3.16)
ea () = [ (du)"e (u/p) a(w) . (3-17)
Cette opération transforme DO+ en DU et vice versa:

D(O:‘:) (CE, y)AB - SD(i:F) (x: y)AB d (318)

Iinverse €' de 'opération ¢ est définie par I'inverse de la
matrice €. De méme, des puissances positives et négatives
' (n=..—2 —1,0,1,2 ...) peuvent étre définies.

Outre les fonctions D et D, on peut ainsi définir des
fonctions

Dok D" (5 g = e DO B (2, ) (3.19)
et des fonclions générales

D) — f (e DPE  ou =7 DLF  (3.20)

AB

1 (Vest-a-dire o-) avec p(0+) pour une rep. biv. et p( ) avec p(0-)
pour la rep. univ. Les deux autres matrices n’existent pas dans
chaque cas.

2 (est-a-dire indépendante du choix et de la normalisation
des S,.
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La relation (5.15) montrera que les identités D®™ = D
et D) — DU existent. Mais les déductions dans ce para-
graphe s’appliquent aussi a des champs plus générauzx, soit les
champs soumis a des forces extérieures (§ 6). On a alors
D = DO,

§ 4. — LES VALEURS PROPRES DES MATRICES o™ ") (u /).

Les matrices o™ ") (u/w’) étant symétriques, il existe toujours
un systeme de fonctions propres S (. /), tel que

o™ (/) = o™ () 8 (/1) . (4.1)

Nous voulons démontrer que p®(w) est positif pour des
rep. biv. et irréductibles, tandis que p!(w) est positif pour
des rep. univ. et irréd.

LLa démonstration se fait par la méthode de la fusion (§ 2).

A. Les matrices 9 et o' de la rep. biv.

Nous prenons comme fonctions propres les ondes planes

S(w/x), =8S(k,0,p/a), =0, cos k a* + =, sin k, 2"
(4.2)

dénombrées par leur quadrivecteur d’onde & = (k,), un
indice de polarisation ¢ (pour lequel nous avons choisi le
symbole &, qui représente en méme temps 'amplitude &, du
terme en cos) et par un indice p qui sera discuté plus tard.

Puisque (4.2) satisfait a 1’équation d’onde, il est nécessaire
que les relations

— k, (y%0), = n7, 3 k (Y*7), = uo, (&£.3)

existent entre ¢, et 7,. L’antisymétrie de £*" et la symétrie
des v**® a pour conséquence

g, 6% =7 et =0 (4 .4)

6, vt = —uetz, =k v, (Y*7)* = ko, (Y*0)* . (4.5)
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Au méme vecteur d’onde £ et 4 la méme valeur propre x (p)
appartient la solution

S(k,o,q/x), = 7, cos k,x* — o, sin k a* (4£.6)
que nous distinguons de (4.2) en substituant pour I'indice p
le symbole q.

Les autres polarisations (¢’ # ) appartenant au méme &
peuvent toujours étre choisies, telles qu'on a

0;0' =T;TA=G;TA=T;GA:O. (4.7)
La matrice p""? prend alors la forme

p(‘l*)(k, c,pl/k,d,p) =38 s 8 (k—K') (2“)3°A EAP Ty

(4.8) 1

66’ Lpp

Le symbole ¢,,,. (ou p et p" parcourent les deux valeurs p et ¢
de I'indice p) a les valeurs
pp =lgg=0; by =—1,=—1. (4.9)
Pour évaluer la matrice ), nous varions %, en (4.3) par la
variation ok,. Elle aura pour conséquence une variation dx de

la valeur propre x et ds,, 37, de la fonction propre o
La relation ainsi obtenue

T

A? A

— k; (v*80), — 8ky (y*o), = wd7, + 7, Ox (4.10)

est multipliée par o*. Le corrolaire en 7, est multiplié par *

et les deux équations sont soustraites I'une de 'autre. Les
termes en do, et 67, s’annulent en vertu des relations (4.3) et
il ne reste que I'identité

4 dxn 4 Ox
G ‘\(4ABGB = TA'Y ABV‘L'B = — GATA 5?{: == — GA 13 6-]}';‘ ("l'li)
! La relation

[ {da)t cos kpar = [(dajte T = (2mpas ()

a été utilisée
3 (k) = 8 (k) 8 (ky) 8 (ky) 8 (ky)
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L’évaluation de ¢°*) donne ainsi!

ox

i , , ok,
P(OI)(kaGap/k’7G,,Pi:—ngfspp’s(k—k)(2ﬂ)3 e; UAEABTB
‘6?; (£.12)

Les deux relations (4.8) et (4.12) peuvent s’exprimer sous la
forme

O(UJ.—)( / ’ r) s § (0) ( / "o (1) ’ _ai

_ , . , (0) Y
o4 (wp wp) = — iy oM (/) 5 o0 (/W) ’W
4

o™ (u/w) (n = 0, 1) sont des matrices symétriques.

Nous rappelons maintenant que la représentation la plus
simple (sauf la rep. triviale f* = 0; v = 1) est donnée par
les spineurs %" de Dirac, qui satisfont aux relations

YR = 0vE s (PP 4 S =P
Ils peuvent étre représentés par les matrices a deux lignes
1 0 . 0 —1 1 0 0 1
1=(o 1) =1 Ta)s #=(0 —1) 1=(1 o)
sous forme de produits directs:
. ko [ 0
1By __ _ C o (+2B) — —

5By - ._Omi_ 4By __-L 0 .
("{A)-———LXL—(. 0), YA)_-kXL_(O .

L
Le spineur fondamental &, , est alors donné par la méme matrice

—

que v}, soit

(B em == X 1
ce qui fait
(y'AP) = (£ YéB) =—(kxi)lhxij=—8xi2=1
ox

! Tci la relation 8 (k — k) = | <

= | 3K, 3 (x — ') a été utilisée.
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égale & la matrice unité. Cette représentation est appelée la

rep. de U'ordre % et désignée .par le symbole 6P,

4AE)

En vertu de (v = 1 on a:

") >0 pour 6 |. (4.14)

B. Les matrices 0" et o1 de la rep. univ.

La fusion de deux représentations bivoques u; et u; donne
une représentation univoque, De deux représentations 0(9) et
0(@ du groupe de Lorentz, on obtient ainsi une représentation

0@ 5 0@ — o@+9

de I'ordre g + g. Les rep. biv. correspondent ainsi & des g
demi-entiers et les rep. univ. a des g entiers.

Une rep. univ. 6@ peut donc toujours étre obtenue par
une fusion de deux rep. biv.

Soit

S(k,5, pla)s et

all

l

(k, 5, pl2)3

les solutions appartenant a deux rep. biv. exprimées dans la

forme d’ondes planes (4.2) pour un méme vecteur d’onde k.
Une fonction (4.2) avec I'indice spinoriel A = (AA) et

g, = 0'(“‘— 2= E

(4.145) 1

&
J
.
l
l
al

satisfait & (2.10) avec x = x + x et B* donné par (2.11).
L’ensemble de ces fonctions S, (pour tous les vecteurs & et

1 Cette fonction est une fusion particuliére (2.8) entre les fonc-
tions (4.2) et (4.6):

S(k+k, o, p/), =Sk, s, pla); S(k, o, p/a)
— S(F, 5, q/a); S(k, o, q/2)5 .

ARCHIVES. Vol. 24. — Septembre-Octobre 1942. 14
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toutes les combinations de polarisation (4.15)) forme un systéme
complet. n,, est le spineur symétrique de (2.12).

Les relations (4.4) pour o; et oy impliquent pour tout
(4.15):

g, =10 ; 6, o% = T, ™ = 2(3’1?1) (giiz) . (&16)

La représentation 6 peut étre obtenue par la fusion de
deux représentations de Dirac 6@, (4.16) montre que

6, ot = 2(3';;1)2 >0 . (4.17)

A
Comme on peut écrire
o' (R0, Ik, p) = 8,48, 8(k — k) (2m)%0, 6" (4.18)

o5’ %pp’

on déduit de (4.17) que

o) >0  pour 61, (4.18a)

Un raisonnement analogue & celui reliant (4.3) a (4.11) résulte
en

7, (Bto)t = — 1 7t g—;:; ; (4.18b)
Il ameéne a la relation (4.18¢)
_ ox
P(O-—) (k,G’, p/kl,U’s p,) = Sac’ipp’s(k — k’) (27‘:)3 a]f4 G GA
O | 4
5%,

qui avec (4.18) montre que (4.13) est valable pour la rep.
univ., si I’on interchange oY et o,

C. Fusion d’une rep. biv. et d’une rep. unte.

Les formules (4.15) restent valables pour cette fusion. La
représentation résultante est une rep. biv. Les matrices y* et &

sont données par
(4.19)

. - S a . — .

AB AB AB AB AB 'AB
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et la quantité o, t* vaut
GATA = 2(51;1) (;i?tx) ‘ (£.20)

Donc la fusion d’une représentation de I'ordre 1 avec une

» i ’ : 3
représentation de I’ordre ; donne une représentation de ’ordre 5
avec

e >0  pour BN (4.21)

La relation (4.21) n’a été démontrée que pour N = Oet N = 1.
Nous démontrons sa validité générale en considérant la
D. Fusion de deux rep. uniy.

Les formules (4.15) sont alors utilisées avec

o o
Bl = P T e Phn e = Mawfaw - (622)

De (4.15), il ressort que

o, 0t = Z(EIEA) (Eic_JA) (4.23)

donc, par fusion de 6% x 6 = 6% on montre que

o) (w) >0  pour 6™ | (4.24)

Cette inégalité est alors démontrée pour N =1 et N = 2.
Pour N = 3, le résultat est obtenu suivant le procédé
0%2 x 62 = 6 pour N = 4 par 6% x 6® = 61 ete.
Donc (4.24) est valable pour tout N. (4.20) peut maintenant
étre appliquée a toute fusion 6™ x 6% — §F+D  Alors

(4.21) et (4.24) valent pour toutes les représentations obte-
nues par ces fusions.
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E. Représentations irréductibles.

La démonstration de (4.21) et (4.24) n’a été donnée que
pour ces représentations trés spéciales obtenues par fusion.
Toute représentation 697 peut étre décomposée suivant

= 0
89 = 6@ 1+ ole-D 1 4 6 ou ...+ 6 . (4.25)
Chacune des rep. irréd. 8% peut apparaitre plus d’une fois (sauf
6(9)) ou méme pas du tout. Si les éléments p™*) (u) sont positifs
pour toute solution S (u/z), de 6, ils le sont aussi pour
chaque solution appartenant & un des 0.~ en (4.25) (y inclus

0
Oirr) -

Les résultats (4.21) et (4.24) sont donc valables pour toute
représentation irréductible.

§ 5. — ENERGIE TOTALE ET CHARGE TOTALE,

A. Représentation bivoque.

Le développement (3.9) appliqué a (2.7) donne, pour la

charge totale, le résultat
(5.1)

e, = e f (du™ S (dwy™8 e () — %) 00 (/) () a () -

Nous passons a des sommes discrétes par le procédé suivant:
D’abord, on introduit un domaine de périodicité spatiale

qui fait de l’ensemble continu des vecteurs d’ondes k£ un
ensemble dénombrable. Les sommations en f ()™ sur k,

o et p deviennent ainsi des sommes discretes sauf celle sur
¢ = k4. Nous effectuons l’intégration sur ce seul indice
continu (la fréquence):

ox

Op.m

fdums(x(u) — ) f s ooe ) = 2 o

. (7)

(P-h M2y o Ei(m‘r))
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La implique la sommation sur toutes les racines ') de
('r)
% (1y g oo ) — % = 0. (II v a toujours au moins deux

racines de p, =k, 1kt = + ‘kﬂ). L’ensemble discret des
indices (Wq, g, ... i, T) = 7 est représenté par r.
Les matrices p™ sont toujours diagonales en w,,.

o™ (u/u) = o8 (U [ try) - (5.3)

Les matrices p{") sont symétriques et peuvent toujours étre
mises sous forme diagonale

Pi("?T) = g‘n) 81"1" N (5-3“)
La somme discréte
£y = ez p£0+)a: a, (5.4)
T
remplace alors (5.1).
On a défini
Ox |[(t)-}
@, = || "a(w, pay ) - (5.5)
Hm

Pour évaluer 1’énergie totale, on utilise la représentation
particuliére (4.2) et (4.6) dans laquelle on remarque que

0*S(k,q, p/z) = kS (k, o, q/)
0'S(k,0,q/x) = — kS (k,o,p/z) . (5.7)
Dans la somme discréete, 'indice double (rp) est substitué a r.

p prend les deux valeurs p et g.
Le résultat est (avec p(,,p)(rp) = o3, 'S pp)

e 0
H, th( Vi (tge Oy — @ ay) - (5.8)

(4.21), (5.4) et (5.8) montrent que:

Un seul champ spinoriel (v, = u,) appartenant @ une repré-
sentation bivogue contribue une énergie totale H, = 0. 57 la
représentation est irréductible, sa charge totale est toujours positive
e, > 0.
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Une théorie & énergie H, identiquement nulle (u] = u,)

est contraire a notre conception de causalité, parce que
I’absence de toute énergie implique quand méme ’existence
des phénoménes observables (par exemple J*(z) 72 0 ou
u (x), # 0).
Par contre, si 'on pouvait poser
al = i“ + pg)

@ 3 al = ———a
rq 0) rp ? D 0 Trq
pi) gl

(5.9)

(ot 'on a introduit, conformément a (4.13), les valeurs propres
©0) ot oM
Pr €L Py

04) (0
Pirp) (rp') = Or  Opp Bppe

A 1 (5.10)
Oy 7o) = — P S gy
reliées par
) =
br __ Okg (5.11)
p(0) Ox
'r‘ [
ok,
on obtiendrait
H =k > oV (o), + a) . (5.12).

r

Avant de trouver une forme invariante pour (5.9), nous
voulons démontrer que cette expression pour H, est toujours
positive.

Pour des raisons d’invariance, x = x (@) ne peut dépendre

que de o (la polarisation) et de l'invariante z = — £k, k%,
soit ¥ = % (o, z). Done, on a:
ox ox
= (2 :
5 k (bz) . | (5.13)

Nous utilisons le fait (sans le démontrer 1), que dx/dz a, pour
un x donné, toujours le méme signe: dx/dz << 0. Ceci implique

1 On peut le démontrer (cf. Fierz, loc. cit.) si on montre que pour
toute rep.irréd. on a toujours »® = — ky k*. Ceci implique
3%/8z = — 1 < 0 pour un » > 0 donné.
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que la « masse de repos » hx des quanta augmente si I’«énergie
totale » h\k‘*i augmente (en gardant les «impulsions » h|k|

constantes, par exemple k — 0). Pour une rep. irréd., o a
été démontré au § 4 comme étant toujours positif. Ainsi (5.13)
t (5.11) nous assurent que p{!’ a toujours le méme signe
que k'. Chaque terme de(5.12) forme ainsi une contribution
positive.
Par contre la charge (5.4) écrite sous la forme

ey =e> o (@t a + ala) (5.14)
r

est nulle si la substitution (5.9) est effectuée. Il reste & démon-
trer que cette association (5.9) peut étre définie d’'une maniére
invariante. De (5.10) on déduit que la matrice e (u/p’) a
maintenant la forme

€ (p' / y”) == E(rp) (r p" 8 (Hm/u;n)

o)
5, (5.15)

pi‘”

e (/) = 3(pfu') -

Erp) ' p) = lpp’

Done (5.9) n’est pas autre chose que 1’association invariante
u, =eu,. Or la théorie d’un champ & rep. biv. (irréductible)

et a charge nulle est physiguement possible, si 'on pose

pour pIN+H) . | (5.16)

u’ (z), = su(x)A

B. Représentation univoque.
Le méme procédé appliqué a4 un tel champ donne, avec

0 0 '
p(rp;(r 'p’y T pr‘r’ "pp’ H E’g-r-2 - P( ) 8 (5.'17)

e

ll

P (0, iy — @y B (5.18)

¢
r
= k> oDkt (af, 0., + o (5.19)
r

rq arq) ’
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H,, est positif si 'on pose u = u, parce que o’ a maintenant
(en vertu de (5.11) 1, (5.13) et de (4.24)) le méme signe que
ki On peut dire:

Un seul champ spinoricl (u; = u,), apparlenant & une
rep. uniy., contribue une charge totale e, = 0. Si la rep. est
wrréductible, son énergie totale est toujours positive H,, > 0.

La théorte d’un champ a rep. univ. (irréductible) et a charge
nulle est physiguement possible, st l'on pose

ut (2), = u(z), pour 6N . (5.20)

§ 6. — LES FORCES EXTERIEURES.
INTERACTION ENTRE DEUX CHAMPS,

A. Cas général,

Une force extérieure se manifeste sur un paquet d’ondes en
le forcant & suivre une ligne d’univers qui différe d’une droite.
Les paquets d’onde formés d’ondes planes montrent une
vitesse de groupe indépendante du temps. L’introduction
d’un terme y (z),"u (), au premier membre de (2.1) repré-
sente une force ou «indice de réfraction » qui change la vitesse
de groupe. L’introduction de ce terme ne change en rien toute
Panalyse si y*® = — y"* pour toute rep. biv. Nous n’avons
qu’a chercher les solutions propres de 1’équation modifiée.

O ¥ — x(@),") S(w/a)y = x(w) S(u/x), . (6.1

Les sommes (3.13) gardent les propriétés des fonctions
D™ (z, y),, exprimées en (3.2) a (3.6).

Pour qu’on ait conservation d’énergie, il faut que le champ u,
exerce une influence sur la fonction y (x),°. Autrement dit,
on doit considérer y,® comme étant produit, lui aussi, par
un second champ u; appartenant 4 une autre représentation

(A=1,2,..f). Nous appelons ui le «champ de force». Si

1 (5.11) est valable aussi pour des rep. univ.
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X, est linéaire en uj

5, il doit exister un spineur fondamental

 2¢ tel que
(6.2)
G

Le spineur t*®° se transforme deux fois suivant la représen-

tation de u* et une fois suivant celle de u®. Il est antisymétrique
en A et B,

De I’équation d’onde (2.1) (ou x&® doit étre remplacé par
xEr + x,°) et de la définition (2.4) résulte la relation

0, T  — peA®yty %u; . (6.3)

g utu [

A T'équation d’onde pour L_LX (2.10), nous ajoutons un terme
P (x); soit
3, B2 u ()5 = xu (z)5 + P (@)x (6.4)

Le tenseur T;Ba défini en (2.14) avec 1;;= L—LX (parce que ce
n’est qu’un seul l_I,A— qui intervient en y (x),”), satisfait a
0T = — R(0%u) P* + hu_ OTPA (6.5)
Ce n’est qu’en posant
px — % ARty TR PRt Pl (6.6)

qu’on arrive & I’équation de continuité pour un tenseur d’énergie
impulsion totale.

g 8 B
y S ST i N it (6.7)
Les équations d’onde sont: pour u, et u, :
(0, ¥3" — %€ — 7303 )l = 0 (6.8
et pour u; (avec U (z, y),, = u,uy):

(0,82 — xn®) ula)y = o ¥ 3 Uz, ) (6.9)

LY



218 QUANTIFICATION DES GHAMPS

Nous pouvons distinguer entre un champ du type u,, qui
satisfait a (6.8), soit & une équation linéaire et homogeéne, et
un champ u;, qui est la solution de I’équation (6.9), soit d’une
équation linéaire et inhomogéne. Le champ u; est le « champ de
force », dans lequel les paquets d’onde u, se propagent.

La démonstration faite dans ce paragraphe s’applique aussi
bien & un champ u, appartenant a une rep. univ. Equation (6.8)

est alors 4 remplacer par (6.10), ou t**¢ est symétrique en A
et B.

(0, B —xn? — % uz)u, =0. (6.10)

La question se pose de savoir si le champ w; peut suivre une
rep. biv. Nous allons démontrer que c’est impossible. Le
spineur fondamental de troisitme ordre ©**¢ se transforme
suivant une représentation 09 x 6@ x §© = gRot9
Mais tout spineur fondamental doit étre construit par la
méthode de fusion & partir des seize spineurs fondamentaux de
la représentation 6 (théorie de Dirac). Ces spineurs fonda-
mentaux de Dirac (y*, y*v®, etc.) se transforment sui-
vant 0 x 6} = 6U, Or, tout spineur fondamental obtenu

par leur fusion (soit t*°¢) doit se transformer suivant

69 x 69 x 69 = 6%, La comparaison 2g + g = N montre
que g doit étre un entier, or:

Un « champ de force» u; doit appartenir a une rep. univ.

B. Discussion d’un cas particulier de I’équation homogéne.

Nous considérons un champ de force u(r); d’une intensité
tellement grande que I'influence qu’exerce sur lui le champ
u, soit négligeable.

Alors on peut considérer u (z); et y (z),® comme des fonc-
tions (spinorielles) données, qui doivent satisfaire a la condition

: , biv.
y (x)*® = T y (z)®* pour rep. % aniv. (6.11)
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Nous étudions le cas particulier ol y (x),” est:

1° constant pour le demi-univers ? << — ¢d¢;
20 fonction de z* seulement, dans l'intervalle

— cdt < 2t < - ¢dt;
3° constant pour z* > ot |

Les solutions, dans les régions 1° et 3°, sont des ondes planes
du type (4.2), parce que la constante »x3; + x,” a la méme
symétrie que le terme x&*® (ou x%*?) dans ’équation d’onde.

L’intervalle temporel 23¢ représente une couche d’inhomo-
généité dans le « milieu » espace-temps. Une onde plane incidente
sur une telle «surface» se partage en général en une onde
réfractée et une onde réfléchie.

La figure 3 représente les vecteurs d’ondes k., d’une onde

incidente de la « direction » du passé. On peut 1’écrire sous la
forme ! :

B(m)S(r, p'/a), ; a*t>>0
Sim, p/x), = (6.12)
1S(r, p/a), + Am)S(s,p/x), ; z* << 0

Une expression analogue représente S(n, p/z),, ’onde inci-
dente de la «direction » du futur (fig. 4). Pour 'onde de la
figure 4, on peut démontrer que A (n) = — A(m).

Les S(r, p/x), sont les ondes planes de (4.2). Les polarisations
des ondes planes r, s, 7', s’ sont choisies de telle maniére que
r’, p’ et s, p ont les polarisations de ’onde réfléchie et réfractée
associées a l'onde incidente r, p.

L’ensemble des ondes incidentes S (mp/z), (par exemple
figure 3 et 4) forme un systéme complet. Si les polarisations
des S(r, p/x), sont choisies convenablement, on a:

\ 7, rep. biv.
(1F) — LM o
Pimp)m’p”) = Pm 8 /), 5 . (6.13)
p TEP. Univ.
L r, s, ... dénombrent les ondes planes dans le «milieu» passé.

r’, s, ... celles du « futur ». m, n, ... sont les ondes incidentes (du passé
ou du futur) sur I’hypersurface d’inhomogénéité.
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La preuve peut étre faite par le calcul explicite de (3.11) avec
(6.12) ou par le raisonnement suivant: 1’orthogonalité de
S(m, p/z), (figure 3) sur tout S(m’, p/z), & ki, # ky est
évidente. L’orthogonalité du S(m, p/x), de figure 3 sur le
S(n, p/x), de figure 4 est une conséquence de I’orthogonalité
entre deux ondes incidentes de deux «directions » différentes,
sur le méme «diffuseur» spatio-temporel, que représente la
région 293t

Un autre systéme complet (cf. fig. 1 et 2) est I'ensemble des
ondes S(w, p/z), qui se composent d’'une seule onde plane
pour z* << — ¢dt. Nous les dénombrons pour des indices
discrets p, v... (a la place de m, n)l. S(r, p/x), et S(s, p/x),
étant normales I’une sur ’autre pour des intégrations spatiales
(pour le méme x) on a la relation

- s 8,ps Tep. biv.

0+)
p(LLIO)(L!- p) = Pu Suu’ (6.14)

f Lyps TEP. UNiv.

pﬂtf, n’est donc pas diagonal dans le systéme w, v ..., et o),

ne I’est pas dans le systéme m, n ...

Calculons 1’énergie totale pour a* << — ¢3¢t pour un u,
développé suivant le systéme S(m, p/z), (ondes incidentes) avec
des coefficients @, et pour un u, exprimé par le systéme
S(u, p/x), en termes des coeflicients By

On obtient, dans le cas m, n, ... (pour z* < << 0):

0
— H, =2 e K ag, Gy — @ng By
m
O (0) 74
+ h> p( )k A2 (a Bty S a;;lqamp)
" (6.15)
0) 7,4
+ B\ ki B (o a,, — ot a,)
n
Y (0) 4 —
+ k2ol kY 2AB () a,, — a) a,)
m
1 Ne pas les confondre avec l’indice continu p = (g; ... um).

Les coefficients a et & sont reliés &4 A et B para = A/B et b = 1/B.
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{a) (o) A

I, T
/I/////////#///I/l//l/// .

I//II/A////I/////I////
AL/ 1IN

1) (1)

Fig. 1 Fig. 2

S(w, p/x)a S(v. n/z)s

(B)"

Fig. 3. Fig. 4.
S(m, p/z), S(n, p/x),

Les fleches k() sont-les quadrivecteurs d’onde des ondes planes.
L’indice r, s ... dénombre les ondes planes pour z* << — ¢8¢, 1, s,
celles pour zt > ¢3t. L’indice m, n, ... dénombre les solutions du
probléme suivant des « ondes incidentes ». L’indice w, v ... représente
les solutions formées par une seule onde plane pour zt < 0. (1).

(A), ... (a) ... sont les amplitudes des ondes planes, dont les solutions
se composent.
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ou m parcourt toutes les ondes du type m (kff > () et n toutes
celles du type n (k% > 0) en figures 3 et 4. m et n sont composés
des mémes ondes r, s, r' et s’. L’indice n dans le dernier
terme est ainsi déterminé par m. p»’ = pl,, p? = oY, sont les
éléments diagonaux des ondes planes r, 7', s, ', dont S (mp/z),
et S (np/x), se composent.

Dans le cas p, v.., 'expression a simplement la forme
(x* < < 0):
= 0) 1.6 ( +
—H, = hEP,(» Ky (ay,p g — “-Iq @yp)
7
- (6.16)
+ +
4 ths kg (g, @,y — ayy a,,)
v

w parcourt les ondes a k* > 0 et v celles & k: << 0. Les expres-
sions (6.15) et (6.16) sont valables pour les rep. biv. Celles
associées aux rep. univ. ont une forme analogue. On 1’obtient
en remplacant en (6.15) et (6.16)

+ + +
. q®p Par ala,+aja, (6.17)

§ 6a. — CoNcCLUSIONS,

Des quatre types de théories classiques, qui résultent des
2 X 2 = 4 alternatives: rep. biv. ou rep. univ.; u; #u, ou
u, = u,, seulement deux théories (une pour les rep. biv. et une
pour les rep. univ.) donnent des expressions positives pour
I’énergie totale par onde plane. Pour chaque représentation, il
n’existe ainsi qu’une seule théorie classique, qui soit physique-
ment admissible.

(a suivre)
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