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UNE METHODE NOUVELLE
DE LA

QUANTIFICATION DES CHAMPS

PAR

E. C. «. STUECKELBEltG
(Avec 6 flg.)

RfiSUMlS

L'article contient un expose general de la theorie classique et
de la theorie quantifiee des champs physiques.

Pauli a montre que des particules ä spin entier, respectivement
demi-entier, doivent obeir ä la statistique de Fermi-Dirac, respectivement

de Bose-Einstein. Dans sa demonstration, il n'a pas tenu
compte d'une deuxieme fonction invariante. L'influence de cette
fonction est etudiee. Cette etude demande une nouvelle presentation
de la theorie des champs charges et non charges. L'unite imaginaire
est eliminee. Le resultat est une nouvelle methode de la quantification,

qui n'est possible que pour des particules ä spin entier. Elle
est identique k la quantification d'une nouvelle mecanique du point
materiel proposee d'autre part par l'auteur.

INTRODUCTION

Plusieurs auteurs, notamment Dirac [1] et Fierz [2] d'une

part, de Broglie et ses collaborateurs [3] d'autre part, ont
etudie les proprietes de la theorie d'un champ u(x)A k plusieurs
composantes (A 1, 2 /). Ces recherches se divisent en

quatre parties:
On distingue d'abord entre des champs qui portent ou

peuvent porter des charges electriques (champ charge) et des

champs qui n'ont pas cette possibility (champ non charge).
Chacune de ces theories a une partie classique et une- partie
quantifiee. f ein* \
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194 QUANTIFICATION DES CHAMPS

La theorie classique distingue entre des composantes wA qui
se transforment entre elles suivant une representation bivoque

(rep. biv.) et Celles dont la matrice de transformation est une

representation univoque (rep. univ.) du groupe des transformations

de Lorentz.
La theorie quantifiee joint aux principes classiques le postulat

que les valeurs observables de l'energie d'une onde de

frequence kl soiit des multiples de M4 ou, ce qui revient au meme,
que les valeurs observables de la charge portee par un paquet
d'ondes est un multiple de e.

h et e sont les quanta d'action (constante de Planck) et de

charge electrique (charge elementaire). II resulte alors de la
theorie quantifiee que si uA se transforme suivant une
representation 09 du groupe des rotations spatiales, le moment d'im-

pulsion (spin) vaut hg1, g est demi-entier (^g N + pour

jes rep. biv. et entier (g N) pour les rep. univ.
Le probleme se pose alors de savoir si une theorie classique

donnee admet seulement une ou plusieurs possibility de

quantification. On sait qu'il existe en principe deux methodes.
L'une est la consequence du principe d'exclusion de Pauli. Elle
amene ä la statistique de Fermi-Dirac (FD) pour les quanta
associes aux champs. L'autre admet un nombre arbitraire de

quanta par element de volume dans l'espace de phase des

quanta. II en resulte la statistique de Bose-Einstein (BE).
Pauli [4] a demontre qu'ä des champs ä rep. biv. ne peuvent

correspondre que des quanta obeissant ä la statistique de FD,
tandis que ceux associes a des champs a rep. univ. doivent tou-

jours suivre la statistique de BE. Comme Pauli l'a lui-meme

expose, sa demonstration est incomplete en ce qu'elle ne

comporte que les methodes de quantification qui se basent sur
la generalisation 2 de la fonction invariante de Heisenberg et

Pauli (D(0)(x, y)). Mais, en plus de cette fonction, qui est

caracterisee par une singularite S (R2) 3 sur le cone de lumiere,
il existe une autre fonction D(i)(x,y) avec la singularite R~2. II

1 Plus exactement le carre du spin a la valeur propre hsg(g + 1).
2 Contenant le terme de masse.
3 R2, voir (3.1).
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est evident que l'admission de cette nouvelle fonction (qui a

ete introduite par Dirac [5] dans la theorie du positron) in-
troduit de nouvelles possibilites pour la relation entre spin et

statistique.
Nous sommes arrive ä l'etude detaillee de ces possibilites,

parce que les Operateurs de densite de charge, que nous avons
definis dans une nouvelle mecanique du point materiel [6], nous
ont amene aux relations de commutation qui contiennent la
fonction D(1).

L'article que nous presentons ici a pour but de completer
l'etude faite par Pauli. II se divise en quatre parties: I. Theorie

classique du champ non charge, II. Theorie quantifiee du champ
non charge, III. Theorie classique du champ charge, IV. Theorie

quantifiee du champ charge. Un resume se trouve k la fin de

chaque partie (§§ 6«, 9a, 14a et 19a).

Notre resultat est identique ä celui de Pauli, si Ton demande

que tout quantum charge ä spin entier puisse se decomposer
en deux quanta ä spin demi-entier 1. Mais, pour les quanta ä

spin entier, il existe deux theories possibles. L'une, qui utilise
D(0> (x, y), est celle de Pauli et Weisskopf [7] et l'autre, avec
D(1'(£,?/), se montre identique k notre nouvelle mecanique
(generalisee pour des spins non nuls) [6],

Nous croyons que c'est la nouvelle theorie qui est realisee

en nature, parce qu'elle est l'analogue des theories k spin demi-
entier en ce que la « phase <p(x) du champ complexe » est inobser-
vable. (La theorie du spin entier avec D<0) (x, y) admet en principe

la possibility de mesurer cette phase. Elle donne ainsi une
realite observable aux potentiels electromagnetiques.)

Nous croyons que les deux theories a spin entier se

confondent quant ä tous leurs resultats, sauf pour ceux qui
portent sur la creation de paires. Au § 17, cette difference, qui
est en principe observable, est discutee.

1 Ou donner toute son energie et son impulsion ä un autre
quantum sans changer la statistique de cet autre quantum. Si ce
postulat n'est pas introduit,, des quanta ä spin entier et ä statistique

FD peuvent exister.
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PREMIERE PARTIE

§ 1. — Notations du calcul tensoriel et spinoriel.

A. Tenseurs.

Un evenement x (a;1, x2, x3, a:4) est caracterise par son

endroit x (x1, x2, a;3) et son temps xi ct. Des grandeurs a",

qui se transforment comme les dxa (a, ß, 1, 2, 3, 4), sont
les composantes contravariantes d'un vecteur. Les composantes
covariantes du lenseur fondamental ga9 g9a permettent de

definir les composantes covariantes aa ga9 afi 1 du meme

vecteur. Cette equation, qui exprime ax en termes de ae, peut
etre resolue pour a®. La relation ainsi obtenue aa gotfi a&

definit les composantes contravariantes du tenseur fondamental.

Les composantes mixtes

f1-1'

sont zero ou un, suivant que a ^ ß ou a ß. La loi de

transformation

a* X« a«'

(1.2)

aa (x )"»

oil X-1 est la matrice inverse de la matrice X, exprime les composantes

d'un vecteur dans le systeme d'axes xx en termes de

ses composantes dans le systeme xa. Un systeme de Lorentz a

des valeurs ga(3 independantes de x. Une transformation de

Lorentz est une matrice X independante de x qui laisse
invariantes les valeurs numeriques de gx(i 2. Dans ce cas,

(x) daSr" / dx* (1.3)

est un tenseur mixte, qui se transforme comme «a cC

1 Un indice tensoriel a, ß, apparaissant deux fois de suite sous
forme co- et contravariante, implique la sommation de 1 ä 4.

2 Sil Sit S33 — ?4i Sil - 1. les autres 0.
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De (1.2) oil sait en toute generality que

a*h a*'b* M)

est un invariant ou un scalaire.

B. Spinenrs.

Les / grandeurs ha (A 1, 2, /) qui se transforment
suivant une loi1

ua Saa,üa' (1.5)

dans laquelle la matrice s est une rep. univ. ou biv. de la

transformation de Lorentz, sont appelees les composantes
contravariantes dhin spineur. (Un spineur particulier est le

vecteur u" (a 1 a 4) avec a X).

Les composantes covariantes eA d'un (autre) spineur ont
la propriete

"A"A "A'V : "A «V(*~V'A (l-6a) (1.6 6)

uA vA est un invariant ou scalaire en analogie parfäite avec

(1.4). Cette analogie est poussee plus loin si un spineur fonda-
mental £AB (ou t]ab) existe, analogue ä ga(J, tel que

"a=£ab"B ou =1ab"b (!-7>

se transforme suivant (1,6b). Naturellement, (1.1) s'applique
dans la forme

^Ac1c" 5ac5cb= 51 »; • (1-8)

Mais la symetrie de \ (ou yj) n'est plus necessairement satis-

faite. Au contraire, nous verrons qu'on doit distinguer deux cas

Sab — SBA (pour rep. biv.)
(1.9)

^ab 'IBA (Pour reP" univ->

1 Un indice spinoriel A, B repete deux fois sous forme co- et
contravariante, implique la sommation de 1 ä /.
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D'un spineur UAB du second ordre, on peut done former le

scalaire

a=üABUAB ou (=v]abUab) (1.10)

Si UAB est symetrique, le scalaire a disparait pour des rep. biv.
et vice versa.

L'importance du calcul spinoriel est dü ä l'existence de

spinotenseurs fondamentaux ä valeurs numeriques invariantes 1

vaAB (ou ßaAB). A leur aide, on forme de UAB les vecteurs

b* ßaABUAB ; ca y*AB cAR (1.11)

Ces spinotenseurs mixtes permettent ainsi d'associer au

spineur ma des « spinovecteurs »

(ra")A yT "b - etc- f1-12)

Nous avons introduit deux symboles ß et y pour pouvoir
definir

ß« _ ß* • Ya Y*
* AB rßA » I AB IBA

Remarquons, pour terminer, que tout symbole xa, aa(J, uA,

7)AB, ßaAB, yaAB, etc., est un nombre reel et peut, en principe,
representee une grandeur physique.

§ 2. — L'equation d'onde.

A. Representation bivoque.

Du Systeme de / equations (A 1, 2, /)

öa<Ya")A — *"A 0 (2-1)

oü x"1 est une longueur fondamentale, il ressort que toute
quantite bilineaire en deux solutions u'k et uK

J* (x) eu+ y"B ub (2.2)

1 Par exemple y11 2 y1'1'2' 1 ; y2 l 2
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satisfait ä l'equation de continuity

dar 0, (2.3)

si le spineur fondamental i;AB est antisymetrique ((1.9)).
Le tenseur

TaS hu" d* v&AB u (2.4)
uru A a

satisfait ä line equation analogue

drjTaEj =0, (2.5)
,5 u 1 u

si la divergence est prise par rapport a son second indice
tensoriel.

Ja peut etre interprets comme la densite de courant et Ta(3

comme la densite rf'energie-impulsion. Venergie totale vaut
alors 1

H„ / (dx)» T44 — hf (dx)3 u; (y4 ö4 m)a

(2.6)
hj(dx)3uA (y, grad u)A + hy. f (dx)3 uA uK

Dans le cas particulier, oü uA uA, l'energie totale disparait
identiquement grace ä l'antisymetrie de \ et ä la symetrie
des ya. Pour le verifier, on integre le premier terme par parties.
Par contre, la charge totale

eu f(dxY J4 c f(dx)3 ul y4AB "b (2-7)

differe do zero meme pour uA m4.

B. La methode de la fusion cle de Broglie [3J.

Soient u^ (x)A des solutions de (2.1) denombres parl'indice p..

Soient ü(lx> (x)= des solutions d'un systeme (2.1) appartenant
ä la meme ou ä une autre representation du groupe de Lorentz
(X I, 2. ../;! I, I... 7).

—>
1 f (dx)3 est l'integration sur tout l'espace x pour un temps

x4 const. — f (dx)* sera l'integrale effectuee sur tout Vunivers x.
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Alors il est possible de construire des expressions bilineaires
particulieres 4

2"(li)Mi"<!x)(*)f UA (2.8)
V-

qui satisfont aux deux systemes (2.1)

ÖaTf — *ufl 0

A ji—— v U— — 0 (2-9)
"a <x AB AA

a la fois. Si ui et «= appartiennent a des rep. biv., u~ est la
base d'une representation univoque. La somme des deux equations

peut etre mise sous la forme

öocßf"B - ""a 0 (2.10)

avec x (it + x) et des spinotenseurs SAB antisymetriques

ß«B ß?_=w-=, (y—5= + I— r=) (2.11)(AA) (BB } \ AB AB AB AB/ * '

et avec un spineur fondamental symetrique

\b s I(i5)(il) 5äb*S • <2-12»

L'indice A (AÄ) parcourt les 7 X J valeurs A TT, 12, ...»

17, 2T, 22, 77.

C. La representation univoque.

Le uA defini en (2.8) se transforme suivant une rep. univ.
De l'equation (2.10) il ressort que les deux grandeurs bilineaires
en ce champ uK

J« euA ßaAB uB ; T^M huA öa ßpAB uB (2.14)

satisfont aux equations de continuite (2.3) et (2.5), si r)AB est

le spineur symetrique (1.9). Contrairement aux rep. biv., c'est

4 De ces expressions sont discutees au § 4 (equ. (4.2)).



QUANTIFICATION DES CHAMPS 201

alors Ja qui disparait identiquement si l'on pose it et

Hu qui differe de zero meme dans ce cas.

§ 3. — Les deux solutions fondamentales [8],

A. La fonction D<0' (x, y)AB.

Les equations (2.1) ou (2.10) determinent le taux de variation

temporelle d4(y4m)a des / composantes de (y4w)A (ou de

(ß4«)A pour des rep. univ.). En general, les matrices yAB sont
telles que p(< f) des composantes de (y4 u)A sont identiquement

nuls. Dans ce cas, ces p equations (2.1) ont la forme
de conditions initiales. Si l'on impose certaines conditions
aux limites spatiales, ces p conditions initiales determinent p
composantes de uA en termes des / — p autres composantes.
A leur place, on peut prendre les / — p composantes non
nulles de (y4 u)A.

La valeur u (x)A de uA k un evenement quelconque x doit
alors etre determinee comme fonctionnelle lineaire des valeurs
des / — p composantes (y4u(y))A sur un hyperplan y4 const.
La theorie de relativite montre que ce ne sont que les evene-
ments y ä l'interieur du cone de lumiere

R'=(*«-»«) (*a - J,8) I « —y Is— (^ —yT < 0

(3.1)

qui peuvent influencer Tevenement x. II doit done exister un
noyau D<0) (^, y)ab tel qu'on a

u(x)A J" (dy)3D(0 + (x, y) AS (r* U (y))B (3.2)

y* const

Le fait que (y4 u)A peut etre choisi arbitrairement sur le plan
x* y* const., s'exprime par la condition

Jim (yacD'0+) (X, y)CI> y4I>B) 8=8 (x-y) (3.3)
x*=y*

Le meme raisonnement s'applique aux rep. univ. C'est alors ß4

qui prend la place de y4 en (3.2) et (3.3). Nous distinguons les
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noyaux des deux types de theories par l'indice + (rep. biv.) et

— (rep. univ.). II sera demontre plus tard que ces noyaux
possedent la symetrie

D<"±>(;z, t/)AB ± D<»±> (y, z)BA (3.4)

Iis satisfont ainsi ä l'equation d'onde (2.1) (ou (2.10)) par
rapport ä x et A, et aussi par rapport k y et B. La theorie de

relativite (3.1) et (3.3) montre que D(0) ne differe de zero que
dans l'interieur du cone R2 < 0 et que ses singularites sur le

cone sont de la forme §(R2) ou des derives de 8(R2). D(0)

represente ainsi la generalisation de la foncüon invariante de

Heisenberg el Pauli.

B. La fonction D(1)(*, y)ab

D'une fonction spinorielle arbitraire f (x)A qui satisfait ä

certaines conditions d'integrabilite, on peut former des fonc-

tions (x)A. Elles sont defmies comme les solutions de l'equation

d'onde (2.1) pour un x donne. Leur sonime

J dv.uv,(x)K f(x)x (3.5)

— 00

est egale au /A initial. wXA est un terme du developpement en
serie de /A suivant les valeurs propres de Voperation ya ~da.

II doit exister un noyau D(1)(x, ?/)AB, solution de l'equation
d'onde, qui determine les termes de la somme (3.5)

«•>1 A f271*"1,/ <d2/)4 Dx (•r, y)AB/'y)B • (3.6)

Nous montrerons que D'1' satisfait aux relations de symetrie
(3.4) (avec n 1). Contrairement ä D(0i>, c'est D(1_) qui se

rapporte aux rep. biv. et aux rep. univ. Les singularites
de D(1^ sont du type R~2 et des derives de R~2. Pour R2 >> x~2

D(1) disparait comme e~xR (pour la preuve cf. [8]).
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C. Autres fonciions D?/)AB.
D'autres fonctions D(n±), ayant des singularities du meme

genre, peuvent etre defmies, si l'on introduit le procede du

D. Developpement en series.

Les fonctions propres u (x)A S (p/#)A de 1'operation
2>a sont determinees par

ö*rrs(iVz)B x(p)S(p/x)A (3.7)

ou x (p) est une valeur propre de 3a ya, denombre par l'in-
dice p (pt, p2, pm). A une valeur de x (p) x appar-
tiennent en general un grand nombre de fonctions propres
S (p/z)A.

Les fonctions propres forment un Systeme complet. La jonction
arbitraire f (x)A peut ainsi etre exprimee par la somme 1

/Wi J (dp)m a (p)'S (y./x)x (3.8)

La fonction dionde ux (x)A, solution generale de l'equation
d'onde (2.1) pour une valeur donnee dex, peut etre ecrite sous

la forme

"x(*)a f t^)"18 (j< (n) — >t) a (fi) S (h-/«) ^ (3-9)
t/

ou 8 (z) est la fonction 8 unidimensionnelle. L'indice x en ttXA

sera omis, des que nous ne nous occupons que d'un seul x.
Pour donner le developpement des fonctions fondamentales

1 f{dp)m /dpi/dp, /dpm ou 2 2 - fdV-m-l f dy-m
U-l u-z

est la somme multiple continue ou discrete sur l'indice multiple
P (fi> fa. pm)•
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D(n), nous introduisons les matrices p(n'(p/p') independantes
de x

p(°T)(p/p') 8 (x(p) — x (p')) J (dy)3 S (p./y) AyiBA $ {\i'/y) s

(3.10) 1

p*1-'Ox/p') (27t)~1 J' (dy)4 S (p/y)A $BAS (p'/t/)B (3.11)

La matrice p<0_) est formee de facon analogue ä (3.10) avec le

spinotenseur antisvmetrique ß4BA ä la place de y4BA. De meme,
p<1+) est forme avec v)BA ä la place de 5BA en (3.11).

Chacune de ses matrices p(n> a une inverse p(n'_1 telle que 2

/OVT P(nM ([*' / (*") P(n) (p" / p') 8 (p / !*') (3.12)

On peut alors demontrer que les fonctions D(0(w, 0 + 0—,
1 +i 1—)

Din) ix > y)AB (3.13)

f(dy.)m /(dp')m 8 (x (p) - x) p^1 (p / p') S (p / j,)B S (p' / x) A

ont les proprietes (3.2) et (3.6). On demontre (3.2), en multi-
pliant (3.10) avec p(0+M (p.'/p") a (p.) S (p"/z)n et effectuant
les sommes sur p' et p". Le resultat est (3.2) avec

u(x)k — a([*)S(p/x)A. La relation obtenue est valable pour
toute somme de termes pareils appartenant au meme x (p) x
c'est-a-dire pour toute fonction d'onde (3.9).

La meme operation effectuee sur (3.11), completee par une
sommation sur p, fournit pour uyi(x)jL l'expression (3.9) qui,
k son tour, satisfait ä la condition (3.5).

Ces demonstrations sont independantes de la symetrie de

Y4, £4 ou ß, /). Les svmetries de (3.10) et (3.11)

p(n±)(p/p') ± p<n:t)(p7p) (3.14)

impliquent les svmetries (3.4).

1 (3.10) est independant de y* parce que l'intdgrand satisfait a
1'equation de continuity pour x (p) x (p').

2 8 (p/p') est la matrice unite. Elle a la propriety que

J'(d\j.')m 8 (p/p') g (p') g( p)
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II sera montre au § 4 que, pour toute rep. irreductible, c'est,
ou la matrice p(1+) ou p(0' \ qui peut etre mise sous forme
diagonale (4.1) avec des valeurs propres positives. On peut
alors identifier p<1+> ou p(0f> avec la matrice d'unite 8 (p./p.').
Ceci revient ä choisir le Systeme S (p/«)A orthonormal suivant
(3.10) ou (3.11). Les matrices p(n) commutent alors entre elles 1.

Nous introduisons alors la matrice

s (fJ- / M-') — P(1 p(0=F)_1 (p / p') p({H"M p(1 (p / p')

- /(dp") P0 ±) (p / p") p<°TM (p" / p') (3.15)

qui est independante de toute normalisation.
Elle permet de definir une operation invariante 2 qu'on peut

effectuer sur une fonction arbitraire f(x)A:

£/ WA =/(dp)m ea (p) S (p / x)K (3.16)

za (p) ==j (dp')m e (p / p') a (p') (3.17)

Cette operation transforme D(0±) en D(1=F) et vice versa:

D(0±,(*.2/)ab sD<1T) (*,*/)AB (3.18)

L'inverse s"1 de l'operation s est definie par l'inverse de la

matrice e. De meme, des puissances positives et negatives

(n — — 2, — 1, 0, 1, 2, peuvent etre definies.

Outre les fonctions D(0) et D(1), on peut ainsi definir des

fonctions

D<n> ± (_1)n)
(x;^ y'jAB zn D'° ' (x, y)AK (3.19)

et des fonctions generates

D£> / (e*) D««*1 ou / (e») (3.20)

1 C'est-a-dire pd-) avec pO-r) pour une rep. biv. et pd h) avec p(<H

pour la rep. univ. Les deux autres matrices n'existent pas dans
chaque cas.

2 C'est-ä-dire independante du choix et de la normalisation
des SA.
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La relation (5.15) montrera que les identites D(2rl> D<01

et D(2nrl) D(1) existent. Mais les deductions dans ce para-
graphe s'appliquent aussi ä des champs plus generaux, soit les

champs soumis ä des forces exterieures (§ 6). On a alors
J)(2n) j-j(0)

§ 4. — Les vai.eurs propres des matrices p(n+)(p. / p.').

Les matrices p(n"' (p./p.') etant symetriques, il existe toujours
un Systeme de fonctions propres S(p/x)t tel que

Pin+) (p / P') P{V) (p) 8 (P / P') • (4-1)

Nous voulons demontrer que p(0)(p) est positif pour des

rep. biv. et irreductibles, tandis que p(1,(p) est positif pour
des rep. univ. et irred.

La demonstration se fait par la melhode de la fusion (§ 2).

A. Les matrices p(0"' et p(1_) de la rep. biv.

Nous prenons comme fonctions propres les ondes planes

S (p/ x)A S (k, a, p j x)A oA cos kaxa + ta sin kaxa

(4.2)

denombrees par leur quadrivecteur d'onde k (kj, un
indice de polarisation cr (pour lequel nous avons choisi le

symbole <7, qui represente en meme temps Famplitude crA du

terme en cos) et par un indice p qui sera discute plus tard.
Puisque (4.2) satisfait a l'equation d'onde, il est necessaire

que les relations

— xta ; /fa(raT)A (4.3)

existent entre aA et ta. L'antisymetrie de 5AE et la symetrie
des yaAB a pour consequence

cAaA TATA ° (4.4)

xaATA - x<tata ka ta (y"t)a ka aA (yaa)A (4.5)
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Au meme vecteur d'onde k et ä la meme valeur propre x(p.)
appartient la solution

S (k, a, q I x)A ta cos k^x* — <xA sin k^x* (4.6)

que nous distinguons de (4.2) en substituant pour l'indice p
le symbole q.

Les autres polarisations (a' ^ a) appartenant au meme k

peuvent toujours etre choisies, telles qu'on a

ct1 cta t1 tA «1 tA t1 °A =0 • <4-7)

La matrice p(1^ prend alors la forme

p(l'Uk, ct, p/k', a', p') SQa, fpp,8(ft —ft') (2n)3 aA £AB tb
(4,8) i

Le symbole i (oü p et p' parcourent les deux valeurs p et q
de l'indice p) a les valeurs

W hi 0 ; — 11P ~ 1 • <4-9)

Pour evaluer la matrice p(0+), nous varions en (4.3) par la
variation 8ft4. Elle aura pour consequence une variation 8x de

la valeur propre x et 8<rA, 8ta de la fonction propre <ja, ta.
La relation ainsi obtenue

— ka (yaSa)A — 8ft4 (rMA xSta + ta Sx (4.10)

est multipliee par cr\ Le corrolaire en ta est multiplie par ta
et les deux equations sont soustraites l'une de l'autre. Les

termes en ScrA et 8ta s'annulent en vertu des relations (4.3) et
il ne reste que l'identite

%r4AE ^ r4AB - aA ^A ^ - - oA ^A ^ (4.11)

1 La relation

J"(dx)* cos kaxa f (dx)i (2tt)4 S (A:)

a ete utilisee
8 (ft) 8 (kL) 8 (ft2) 8 (ft.) 8 (ft4)
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devaluation de p(0+) donne ainsi1
dx

p+ > (*, *, W - 8oa, V « (* - *') (2K) 3
CA 5ab Kb

lä*J (4.12)

Les deux relations (4.8) et (4.12) peuvent s'exprimer sous la
forme

p<0+»(!xp/py) spp.p<°>([i/^) ; pd) (tx / [X') S~_(413)

p(1_> (W» / H'p') - w P(1> (H / H') ;
p(0> (t*! <*'>

pp

p<n) (p./ p') (n — 0, 1) sont des matrices symetriques.
Nous rappelons maintenant que la representation la plus

simple (sauf la rep. triviale ßa 0; rj 1) est donnee par
les spineurs y"B de Dirac, qui satisfont aux relations

(T*YV YaC YcB ; (YaYe + /YV •

lis peuvent etre representes par les matrices ä deux lignes

; :)• '-G *-c <=c;
sous forme de produits directs:

«> • x s-(5 I): Itr>-< x ' (o °)

CI-' >'=(IV)' li.
Le spineur fondamental £AB est alors donne par la meme matrice

que yAB, soit

(£AB) — k x i

ce qui fait

(y4AB) (£AC y^J —()c X i) (k X i) — k* X I2 1

/ ox1 Tci la relation S Ik — k -r-r- 8 (x — x') a ete utilisee.1
1 < ÖÄ. I

v '
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egale ä la matrice unite. Cette representation est appelee la

rep. de Vordre ^ et designee par le Symbole 0(i).

En vertu de (y4AB) 1 on a :

p(°+' (p.) > 0 pour 0^ (4.14)

B. Les matrices p(0 ' et p(1+) de la rep. univ.

La fusion de deux representations bivoques «A et u= donne

une representation univoque. De deux representations 0(s' et
0® du groupe de Lorentz, on obtient ainsi une representation

g(ä) x e<?> _
de l'ordre g + g. Les rep. biv. correspondent ainsi ä des g
demi-entiers et les rep. univ. ä des g entiers.

Une rep. univ. 0(3) peut done toujours etre obtenue par
une fusion de deux rep. biv.

Soit

S (k, ct pjx)-^ et S (k, a, p/x)^

les solutions appartenant ä deux rep. biv. exprimees dans la
forme d'ondes planes (4.2) pour un meme vecteur d'onde k.

Une fonetion (4.2) avec l'indice spinoriel A (AA) et

aA ct(xi) —

_ (4-15)1
ta 555 t(AX)

satisfait ä (2.10) avec x x + x et ß" donne par (2.11).
L'ensemble de ces fonetions SA (pour tous les vecteurs k et

1 Cette fonetion est une fusion particuliere (2.8) entre les fonetions

(4.2) et (4.6):

S(k + %, ct, p/x)A S,(k, ct, p/z)A S(S, ct, pjx)= —

— 8 (k ct q I x)~ S (k ct q j x)=

Archives. Vol. 24. — Septembre-Octobre 1942. 14
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toutes les combinations de polarisation (4.15)) forme un Systeme

complet. y)ab est le spineur symetrique de (2.12).
Les relations (4.4) pour cta et ö= impliquent pour tout

(4.15):

<jaTa 0 ; 2(°x'rA)(0iTA) • (4,16)

La representation 0(1) peut etre obtenue par la fusion de

deux representations de Dirac 0(i). (4.16) montre que

cta<Ja 2 (<T- ta)2 > 0 (4.17)

Comme on peut ecrire

P«+)(k,a,plk',<j\p') Saa, Spp, 8 (k k') (2 tu)3 oA cta (4.18)

on deduit de (4.17) que

p<1 + ' (jx) > 0 pour 0(1) (4.18a)

Un raisonnement analogue ä celui reliant (4.3) ä (4.11) resulte

en
dx

'A " dk. 'TA(ß"a)A - tata

II amene ä la relation

P(0 )(k,c,plk',a',p') — Saa.i v,S(k — k') (2k)

dx
dk.

(4.18 b)

(4.18c)

CTO pp' dx
dk.

qui avec (4.18) montre que (4.13) est valable pour la rep.
univ., si 1'on interchange p(1) et p(0).

C. Fusion dhme rep. bio. et d'une rep. unio.

Les formules (4.15) restent valables pour cette fusion. La
representation resultante est une rep. biv. Les matrices y" et \
sont donnees par

(4.19)

Yab Y,(aa)(bb y^_T)= + 5_ßi= ; 5ab H-v=
AB AB AB AB Aß AB A
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et la quantite tiA ta vaut
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aATA 2(^A)ß=iA) (4.20)

Done la fusion d'une representation de l'ordre 1 avec une

representation de l'ordre L donne une representation de l'ordre -|

avec

p'0 + ' (p.) > 0 pour
o(N + i) (4.21)

La relation (4.21) n'a ete demontree que pour N 0 et N 1.

Nous demontrons sa validite generale en considerant la

D. Fusion de deux rep. univ.

Les formules (4.15) sont alors utilisees avec

Pab ßis lis ^is Pis > ^ab ^is ^xs •

De (4.15), il ressort que

gaOa 2 (a-aA) (c= cta)

done, par fusion de 0(1) X 0(1> 0<2\ on montre que

(4.22)

(4.23)

p(1 + (p.) > 0 pour 6(N) (4.24)

Cette inegalite est alors demontree pour N 1 et N 2.
Pour N 3, le resultat est obtenu suivant le procede
08/2 x 03/z _ 0(3)^ p0ur N 4 par 0(2) x 0(2' 0'4), etc.
Done (4.24) est valable pour tout N. (4.20) peut maintenant
etre appliquee ä toute fusion 0(N> X 0(i) 0<N+i). Alors
(4.21) et (4.24) valent pour toutes les representations obte-
nues par ces fusions.
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E. Representations irreductibles.

La demonstration de (4.21) et (4.24) n'a ete donnee que

pour ces representations tres speciales obtenues par fusion.
Toute representation O<0) peut etre decomposee suivant

6(s) eg + eg-0 + + eg ou + eg (4.25)

Chacune des rep. irred. 0g? peut apparaitre plus d'une fois (sauf

0g) ou meme pas du tout. Si les elements p'n+)(p) sont positifs

pour toute solution S (p/£)A de 0(9), ils le sont aussi pour
chaque solution appartenant ä un des 0fr~N en (4.25) (y inclus
«SS).

Les resultats (4.21) et (4.24) sont done valables pour toute

representation irreductible.

§ 5. — Energie totale et charge totale.

A. Representation bivoque.

Le developpement (3.9) applique a (2.7) donne, pour la

charge totale, le resultat
(5.1)

eu ej(dy.)mJ(d(i')m8(x((i) — x) p(0+) (p/p/) a+ (p) a (|L)

Nous passons ä des sommes discretes par le procede suivant:
D'abord, on introduit un domaine de periodicite spatiale

qui fait de l'ensemble continu des vecteurs d'ondes k un

ensemble denombrable. Les sommations en J(d p.)"1 sur k,

<7 et p deviennent ainsi des sommes discretes sauf celle sur

(im k±. Nous effectuons l'integration sur ce seul indice
continu (la frequence):

(T)fdy-m S (>e (tA) — x)/K, pm) 2 '

- ^m)
(tH
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La 2 implique la sommation sur toutes les racines de
M

x ({ij, p2 ••• Pro)—x 0. (II v a toujours au moins deux
racines de pm Ä4 : A4 ± j A4 |). L'ensemble discret des

indices (p,1, p2, pm_4, t) r est represents par r.
Les matrices p(n) sont toujours diagonales en pm.

P(">((A/H') P^S((xm/^) • (5-3)

Les matrices p'"/* sont svmetriques et peuvent toujours etre
mises sous forme diagonale

P<?,+ P<n)Srr, (5.3 a)

La somme discrete

eu e2Pr0 + >ar (5-4)

r

remplace alors (5.1).
On a defini

ßfpli P2 5 {t'rn ' (5-5)

Pour evaluer l'energie totale, on utilise la representation
particuliere (4.2) et (4.6) dans laquelle on remarque que

d4S (k, <j, p/x) k*S (k, ct q/x)

d4S[k,a,q/x) —k*S(k,G,p/x) (5.7)

Dans la somme discrete, l'indice double (rp) est substitue ä r.
p prend les deux valeurs p et g.

Le resultat est (avec p^p^p-) pr°'^ Spp.)

Hu h 2 Pr0> K «V — <> arq) " <5-8)

r

(4.21), (5.4) et (5.8) montrent que:

Un seul champ spinoriel (uA wA) appartenant ä une
representation bivoque contribue une energie totale HM 0. Si la

representation est irreductible, sa charge totale est toujours positive

eu > 0.

ÖX

d^m
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Une theorie ä energie Hu identiquement nulle (uA uA)

est contraire ä notre conception de causalite, parce que
l'absence de toute energie implique quand meme l'existence
des phenomenes observables (par exemple Ja (x) ^0 ou

u (x)K =£ 0).

Par contre, si l'on pouvait poser

p(1) p(1'
+ rr _ + Vr q,arq (0)arp > arp (0) arq VD-y)

Pr Pr

(ou l'on a introduit, conformement ä (4.13), les valeurs propres
o<°> et o(1)Pr Pr

_(0 + (0) ^ xP(rp)(r'p') Pr "rr' pp'

o*1"* =_o(1)S iP(rp) (r'p') Pr rr' pp'

reliees par

on obtiendrait

öx
Pr4>

_ d*4
dx

(5.10)

(5.11)

H =äV, Pj."*? (« + 4a) (5-12).

Avant de trouver une forme invariante pour (5.9), nous
voulons demontrer que cette expression pour Hu est toujours
positive.

Pour des raisons d'invariance, x x(p.) ne peut dependre

que de u (la polarisation) et de l'invariante z —- ka ka,

soit x x (a, z). Done, on a:

sc ~ " (s) • 15-M|

Nous utilisons le fait (sans le demontrer J), que Dx/Z)z a, pour
un x donne, toujours le meme signe: 7>x/~dz < 0. Geci implique

1 On peut le demontrer (cf. Fierz, loc. cit.) si on montre que pour
toute rep. irred. on a toujours x2 —Äaka. Geci implique
8x/Sz — 1 < 0 pour un x > 0 donne.
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que la « masse de repos » hx des quanta augmente si 1'« energie

totale » h | &4 j augmente (en gardant les «impulsions » h | k |

constantes, par exemple k 0). Pour une rep. irred., p^.0) a

ete demontre au § 4 comme etant toujours positif. Ainsi (5.13)
et (5.11) nous assurent que p^ a toujours le meme signe

que kChaque terme de(5.12) forme ainsi une contribution
positive.

Par contre la charge (5.4) ecrite sous la forme

JO) (arp arp "b aTa arfl)rq rq' (5.14)

est nulle si la substitution (5.9) est effectuee. II reste ä demon-

trer que cette association (5.9) peut etre definie d'une maniere

invariante. De (5.10) on deduit que la matrice z ([i/p.') a

maintenant la forme

s (P-/ z(rp) (r'p') ^ (V'm I

p<P
' S

(rp)(r'p') lpp' °rr' (0)
Pr

s2 (M-/M-') S([A/[x')

(5.15)

Done (5.9) n'est pas autre chose que l'association invariante

ha suA. Or la theorie dVun champ ä rep. biv. (irreductible)
et ä charge nulle est physiquement possible, si Von pose

u+ (ar)A zu(x)x pour (5.16)

B. Representation uniooque.

Le meme procede applique ä un tel champ donne, avec

P(r0p,Vp') W W ' Pr°r' ^ »rr' (5'17>

eu e 2 Pr0> Kp arq — Kq arp) (5-18)

Hu h 2 pr0) kr Kp °rp + arq arq) ' (5'19>
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Hm est positif si I'on pose uA uA parce que pj.0) a maintenant
(en vertu de (5.11) 1, (5.13) et de (4.24)) le meme signe que
k\. On peut dire:

Un seul champ spinoriel (uA uA), appartenant ä line

rep. univ., contribue line charge totale eu 0. Si la rep. est

irreductible, son energie totale est toujours positive Hu > 0.

La theorie d'un champ ä rep. univ. (irreductible) et ä charge
nulle est physiquement possible, si Von pose

U+ (x) u (x) pour 0<N) (5.20)

§ 6. — Les forces exterieures.
Interaction entre deux champs.

A. Cas general.

Une force exterieure se manifeste sur un paquet d'ondes en
le forfant k suivre une ligne d'univers qui differe d'une droite.
Les paquets d'onde formes d'ondes planes montrent une
vitesse de groupe independante du temps. L'introduction
d'un terme x(x)ku(x)b au premier membre de (2.1) repre-
sente une force ou «indice de refraction » qui change la vitesse
de groupe. L'introduction de ce terme ne change en rien toute
l'analyse si pour toute rep. biv. Nous n'avons

qu'ä chercher les solutions propres de l'equation modiflee.

PjT — X WaB) S((x/a:)B *((*) S(ulx)A (6.1)

Les sommes (3.13) gardent les proprietes des fonctions
D(n)(x, y)AB exprimees en (3.2) ä (3.6).

Pour qu'on ait conservation d'energie, il faut que le champ uA

exerce une influence sur la fonction x(x)k- Autrement dit,
on doit considerer j_A comme etant produit, lui aussi, par
un second champ u- appartenant ä une autre representation

(A 1,2,.../). Nous appelons uA le «champ de force». Si

1 (5.11) est valable aussi pour des rep. univ.
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Xab est lineaire en «A, il doit exister un spineur fondamental

tabg tel que

X(^)AB taBC"(®)c • <6'2)

Le spineur tabo se transforme deux fois suivant la representation

de uA et une fois suivant celle de uc. II est antisymetrique
en A et B.

De I'equation d'onde (2.1) (ou x^A doit etre remplace par
+ Xab) de la definition (2.4) resulte la relation

ö„TaP /itabgm+ undaüF (6.3)
P U+U AB C

A I'equation d'onde pour uA (2.10), nous ajoutons un terme
P (#)- soit

öa ß«B u (x)~ Y.U (x)~ + P (x)z (6.4)

Le tenseur defini en (2.14) avec u- u- (parce que ce
UU A A

n'est qu'un seul uA qui intervient en % (£)AB), satisfait ä

dRT?3_ — h(d*üA PA + hu_ d"PA (6.5)
* UU A A

Ce n'est qu'en posant

PA i taba u+k u ;
Ta® - — ga&hüAP- (6.6)

2 AB' U +UU ° A

qu'on arrive ä I'equation de continuity pour un tenseur d'energie
impulsion totale.

T"ß TZu + + T "P+u- (6.7)

Les equations d'onde sont: pour uA et uA:

(ö<* TaB — y-ll — TABC ÜJ m(b+) o (6.8

et pour «A (avec U (x, y)AS uAuB):

(da P«5 - XV)B) 5 (X)s i taba u (x, X)AB (6.9)
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Nous pouvons distinguer entre un champ du type uA, qui
satisfait ä (6.8), soit k une equation lineaire et homogene, et
un champ uA, qui est la solution de 1'equation (6.9), soit d'une

equation lineaire et inhomogene. Le champ u- est le « champ de

force », dans lequel les paquets d'onde uA se propagent.
La demonstration faite dans ce paragraphe s'applique aussi

bien k un champ uA appartenant k une rep. univ. Equation (6.8)
est alors ä remplacer par (6.10), oü tabc est symetrique en A
et B.

La question se pose de savoir si le champ u- peut suivre une

rep. biv. Nous allons demontrer que c'est impossible. Le

spineur fondamental de troisieme ordre tabg se transforme

suivant une representation 0(9> X 0(s) X 0(ai 0(2£,+£,)

Mais tout spineur fondamental doit etre construit par la
methode de fusion ä partir des seize spineurs fondamentaux de

la representation 0(i) (theorie de Dirac). Ces spineurs
fondamentaux de Dirac (ya, ya y0, etc.) se transforment
suivant 0* X 0* 0(1). Or, tout spineur fondamental obtenu

par leur fusion (soit taec) doit se transformer suivant
0s X 6s X 0® 0(rf>. La comparaison 2 g + g N montre
que g doit etre un entier, or:

Un i champ de force» uj doit appartenir ä une rep. univ.

B. Discussion d'un cas particulier de Vequation homogene.

Nous considerons un champ de force u(x)A d'une intensite
tellement grande que l'influence qu'exerce sur lui le champ

uA soit negligeable.
Alors on peut considerer u (x)~ et % (x)AB comme des fonc-

tions (spinorielles) donnees, qui doivent satisfaire ä la condition

(öapr-^;-^BC»c)«B o- (6.10)

x(x)AB T Z(i),A pour rep.
biv.
univ. (6.11)
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Nous etudions le cas particulier oü % (x)^ est:
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1° constant pour le demi-univers x* < — c8t;
2° fonction de xl seulement, dans l'intervalle

— c8t < x* < + c8f;
3° constant pour a;4 > §t.

Les solutions, dans les regions 1° et 3°, sont des ondes planes
du type (4.2), parce que la constante x8B + a la meme

symetrie que le terme xi;AB (ou xy]ab) dans 1'equation d'onde.
L'intervalle temporel 28t represente une couche d' inhorno-

geneite dans le « milieu » espace-temps. Une onde plane incidente
sur une telle «surface » se partage en general en une onde

refractee et une onde reflechie.
La figure 3 represente les vecteurs d'ondes Ä(r) d'une onde

incidente de la « direction» du passe. On peut l'ecrire sous la
forme 1 :

Une expression analogue represente S (n, p/x)A, l'onde
incidente de la «direction » du futur (fig. 4). Pour l'onde de la
figure 4, on peut demontrer que A (n) —A (m).

Les S(r, p/x)x sont les ondes planes de (4.2). Les polarisations
des ondes planes r, s, r', s' sont choisies de telle maniere que
r', p' et s, p ont les polarisations de l'onde reflechie et refractee
associees ä l'onde incidente r, p.

L'ensemble des ondes incidentes S (mp/x)A (par exemple
figure 3 et 4) forme un Systeme complet. Si les polarisations
des S(r, pjx)A sont choisies convenablement, on a:

SK p/x)A
B (to) S (r', p'/x)A ; xi >> 0

IS (r, p j x)A + A (to) S (s, p I x)A ; x4 << 0
(6.12)

\ ipp> reP- biv-

j Bpp' reP- unhumv.
(6.13)

1 r, s, denombrent les ondes planes dans le «milieu» passe.
r', s', Celles du « futur ». to, n, sont les ondes incidentes (du passe
ou du futur) sur l'hypersurface d'inhomogeneite.
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La preuve peut etre faite par le calcul explicite de (3.11) avec

(6.12) ou par le raisonnement suivant: l'orthogonalite de

S (m, p/x)A (figure 3) sur tout S (m', p/x)A ä k(r/) ^ k(r) est

evidente. L'orthogonalite du S (m, p/x)A de figure 3 sur le

S(n, p/x)A de figure 4 est une consequence de l'orthogonalite
entre deux ondes incidentes de deux « directions » differentes,
sur le meme « diffuseur» spatio-temporel, que represente la

region 2 8t.

Un autre Systeme complet (cf. fig. 1 et 2) est l'ensemble des

ondes S(p, pjx)A qui se composent d'une seule onde plane

pour £4 < — c8t. Nous les denombrons pour des indices
discrets p., v... (ä la place de m, n)1. S (r, p/x)A et S(s, p/x)A
etant normales l'une sur l'autre pour des integrations spatiales
(pour le meme x) on a la relation

8 / rep. biv.
D(0=t) .(0) g

"P r ,614,P(iip)(n'p') Pß °ßß' i

lpp' reP- univ-

Pßß' n'est done pas diagonal dans le Systeme p, v et p^m'
ne l'est pas dans le Systeme m, n

Calculons l'energie totale pour x* < — c8t pour un uA

developpe suivant le Systeme S (m, p/x)A (ondes incidentes) avec
des coefficients amp et pour un uA exprime par le Systeme

S(p, p/x)A en termes des coefficients
On obtient, dans le cas m, n, (pour x* < < 0):

k (amp amq amq arnpl
m

+ A^p<0) A* A2 (amp amq — amp)

(6.15)

+ h 2 P<s0) k's B2 Kp anq — anq anp)
n

+ h V p(0) *4 2AB (a+p am — a^q anp)
m

1 Ne pas les confondre avec l'indice continu p (pt p).
Les coefficients a et b sont relies ä A et B par a A/B et b — 1/B.
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Fig. 1

S(tL P/x)A

Fig. 2

S(v. n/x)A

Fig. 3.

S(>», p/x).
Fig. 4.

S(i, p/x)A

Les fleches /c(r) sont les quadrivecteurs d'onde des ondes planes.
L'indice r, s denombre les ondes planes pour x* < — c8t, r', s',

celles pour x4 > cSt. L'indice m, n, denombre les solutions du
Probleme suivant des « ondes incidentes ». L'indice p., v represente
les solutions formees par une seule onde plane pour xi < 0. (1).
(A),... (a) sont les amplitudes des ondes planes, dont les solutions
se composent.
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oü m parcourt toutes les ondes du type m (k\ > 0) et n toutes
Celles du type n (k* > 0) en figures 3 et 4. m et n sont composes
des memes ondes r, s, r' et s'. L'indice n dans le dernier
terme est ainsi determine par m. pj.01 p®,, p® p®, sont les

elements diagonaux des ondes planes r, /•', s, s', dont S (mpjx)K
et S (np/x)A se composent.

Dans le cas p., v l'expression a simplement la forme

(xi < < 0):

— Hu Ä2|Pr0) kr Kp aM ~ atq %P>

(6.16)
+ Ä2Ps0) «p avg — < avp>

V

p parcourt les ondes ä > 0 et v Celles ä A* < 0. Les expressions

(6.15) et (6.16) sont valables pour les rep. biv. Celles

associees aux rep. univ. ont une forme analogue. On l'obtient
en remplacant en (6.15) et (6.16)

a^p a-q — a?q a-p Par °+p a p + a+q aq <6-17)

§ 6 a. — Conclusions.

Des quatre types de theories classiques, qui resultent des

2x2 4 alternatives: rep. biv. ou rep. univ.; uA ^ wA ou

aA ma, seulement deux theories (une pour les rep. biv. et une

pour les rep. univ.) donnent des expressions positives pour
l'energie totale par onde plane. Pour chaque representation, il
n'existe ainsi qu'awe seule theorie classique, qui soit physique-
ment admissible.

(ä suivre)
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