Zeitschrift: Archives des sciences physiques et naturelles

Herausgeber: Société de Physique et d'Histoire Naturelle de Genève

Band: 22 (1940)

Artikel: Notes sur la fonction rénale. IV. Contrôle expérimental de la formule

théorique

Autor: Jung, Charles

DOI: https://doi.org/10.5169/seals-741713

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 30.10.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

répondant à la formule $C_{10}H_8O_7$, contenant un groupe méthoxyle et ayant des propriétés d'acide tribasique. Ce composé a pu être obtenu synthétiquement de la manière suivante:

Le 3-méthoxy-2-acétyl-1,5-diméthyl-benzène I ¹ fournit par oxydation permanganique en milieu alcalin suivie d'une oxydation en milieu acide une substance qui représente l'acide 3-méthoxy-benzène-1,2,5-tricarbonique II; elle est identique au produit C₁₀H₈O₇ obtenu par oxydation de la roséo-purpurine. La formation de ce composé indique sans autre que la roséo-purpurine répond à la formule IV et représente la 4-méthoxy-5,7-dioxy-2-oxyméthyl-anthraquinone.

Charles Jung. — Notes sur la fonction rénale. — IV. Contrôle expérimental de la formule théorique.

Des considérations théoriques exposées dans les notes précédentes ² m'ayant conduit à une formule exprimant le débit de l'urée, j'ai cherché dans quelle mesure cette formule s'accordait avec les faits expérimentaux. Le débit de l'eau et le débit de l'urée peuvent être mesurés directement, mais les quantités d'eau et d'urée filtrées par le glomérule ne peuvent être déterminées que par un procédé indirect.

A la suite de Rehberg, de Govaerts, j'ai eu pour cela recours au dosage de la créatinine. Ces auteurs ont fait ingérer de la créatinine au sujet en expérience, pour élever la concentration de cette substance dans le sang et pouvoir plus facilement la doser. Cette manière de faire présente l'inconvénient que cette concentration tend à revenir à la normale et doit être déterminée à plusieurs reprises au cours de l'expérience. J'ai pensé qu'on pouvait au contraire s'épargner ces dosages, assez délicats et peut-être sujets à caution, en admettant que le taux de la créatinine, en temps normal, ne varie pas de façon appréciable d'une heure à l'autre et en supposant un taux uniforme de $0.01 \, ^{0}/_{00}$. Une légère erreur sur ce chiffre n'a pas grande importance, du moment qu'elle est la même pour toute l'expérience.

¹ V. Auwers et Borsche, B. 48, 1706, 1915.

² C. R. Soc. phys. hist. Nat., Genève, 57, 67, 96, 98, 1940.

J'ai de même admis pour l'urée du sang un taux uniforme de $0.30~^{\rm 0}/_{\rm 00}$.

L'expérience a été conduite de la manière suivante. L'urine a été recueillie pendant des périodes de durée variable, le taux de la créatinine y a été déterminé par la méthode colorimétrique de van Slyke et le débit de cette substance par minute a été calculé. Sachant que la créatinine n'est pas résorbée au niveau du tube contourné, on en déduit facilement les quantités d'eau et d'urée filtrées par le glomérule. L'application de la formule

$$\frac{\mathbf{U}}{\mathbf{U_0}} = \left(\frac{\mathbf{A}}{\mathbf{A_0}}\right)^{\frac{\delta \mathbf{S}}{\mathbf{A_0} - \mathbf{A}}}$$

permet de calculer le débit théorique de l'urée. J'ai adopté les valeurs $\delta = 5,72 \times 10^{-6}$ et S = 45000 utilisées dans une note précédente. L'urée a été d'autre part dosée dans les divers échantillons d'urine par la méthode de Fosse au xanthydrol. La valeur observée peut ainsi être comparée à la valeur calculée.

Pour obtenir des urines de dilution variable, 500 cm³ d'eau ont été ingérés au cours d'une des séries d'expérience. On sait qu'on provoque ainsi une diurèse abondante sans que la concentration du sang en soit modifiée de façon appréciable.

Nos résultats sont consignés dans le tableau suivant, où figurent aussi les valeurs de la constante d'Ambard et du coefficient d'épuration sanguine de van Slyke, calculés également en supposant l'urée sanguine à $0.30^{-0}/_{00}$.

	Durée de la période	Volume d'urine	Densité	Urée	Créatinine
	min.	cm³		0/00	0/00
I	97	124	1012	12,0	0,810
II	36	315	1001	2,5	0,124
III	30	247	1001	2,2	0,116
IV	23	74	1008	5,2	0,304
V	21	74	1006	4,8	0,264
I	65	102	1008	9,5	0,65
II	54	61	1014	10,0	0,76
III	38	64	1013	9,5	0,59
IV	31	82	1008	6,9	0,40

Débit par minute			Coefficients		Débit d'urée
eau	urée	créatinine	Ambard	van Slyke	calculé
cm ³	mg	mg			mg
1,28	15,4	1,04	0,076	45,3 a	16,1
8,75	21,9	1,08	0,095	73,0 b	21,9
8,23	18,1	0,95	0,108	$60,3 \ b$	18,4
3,22	16,7	0,98	0,091	55,7 b	16,8
3,52	16,9	0,93	0,092	56,3 b	16,4
1,57	14,9	1,02	0,085	39,7 a	16,1
1,15	11,5	0,87	0,093	35,7 a	12,0
1,68	16,0	0,99	0,080	$41,0 \ a$	15,5
2,65	18,3	1,06	0,081	$61,0 \ b$	18,3

a) Epuration standard.b) Epuration maxima.

On voit d'une part, par les faibles variations du débit de créatinine, que le débit de filtration glomérulaire est relativement constant, même lors d'une diurèse importante, et d'autre part que les coefficients d'Ambard et de van Slyke sont beaucoup moins constants que ces auteurs le supposaient. Enfin la concordance entre les valeurs calculées et observées est très satisfaisante.

Fernand Chodat et Renée Olivet. — Action antisporulante de la sulfanilamide chez les algues.

La sulfanilamide et ses dérivés déterminent in vitro sur les germes microbiens une action bactériostatique. L'analyse du mécanisme de cette inhibition est malaisée; la petitesse et la simplicité des corps microbiens empêchent d'observer les modifications morphologiques surgies à la suite d'un contact avec les sulfanilamides. Des perturbations mesurables du métabolisme des microbes traités sont d'autre part difficiles à déceler. Des expériences entreprises au laboratoire n'ont été concluantes, ni pour les fonctions enzymatiques, ni pour les échanges gazeux.

Ces difficultés nous ont engagés à chercher dans le monde des algues un matériel plus approprié à la résolution de ce