Zeitschrift: Archives des sciences physiques et naturelles

Herausgeber: Société de Physique et d'Histoire Naturelle de Genève

Band: 22 (1940)

Artikel: Sur la déformabilité d'un corps à potentiel constant

Autor: Soudan, Robert

DOI: https://doi.org/10.5169/seals-741692

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 30.10.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Chaque branche admet l'autre comme fonction période, les fonctions h sont holomorphes autour de b ou de a respectivement.

La fonction f doit être solution d'une équation linéaire du second ordre à coefficients uniformes. En effet, si l'on écrit:

$$\begin{vmatrix} f & f_a & f_b \\ f' & f'_a & f'_b \\ f'' & f''_a & f''_b \end{vmatrix} \equiv 0$$
 soit $\varphi f'' - \varphi' f' + \psi f = 0$

la fonction φ se forme facilement à partir des expressions ci-dessus

$$\varphi = f'_a f_b - f_a f'_b = f'_a h_a - f_a h'_a - \frac{f_a^2}{z - a};$$

elle est bien uniforme en a et aussi en b, de même pour φ' et ψ .

Le problème posé est ainsi ramené à trouver des solutions multiformes d'une équation linéaire du second ordre ayant deux branches au moins et telles que l'une admette l'autre comme fonction période. L'équation déterminante doit alors avoir une racine double entière et le groupe des substitutions des solutions une structure qu'il serait facile de dégager.

Mais existe-t-il des solutions de cette forme ? S'il n'en existait pas on pourrait conclure à une sorte de réciproque, tout au moins partielle, du théorème de Cauchy concernant les contours fermés.

Qui voudrait poursuivre cette recherche devrait tenir compte que les lignes C se laissent facilement ramener, en vertu même de la relation (1) à d'autres lignes de forme canoniques, telles que des droites et un certain nombre de lacets.

Robert Soudan. — Sur la déformabilité d'un corps à potentiel constant.

Nous nous proposons ici de traiter le problème suivant: Peut-on déformer un corps homogène sans que son potentiel ne change en aucun point de l'espace extérieur? En particulier, nous montrerons que l'on peut déterminer une déformation infinitésimale d'épaisseur proportionnelle à ϵ telle que la variation ΔU du potentiel soit au plus de:

$$\Delta U \leqslant \epsilon^n A$$

si nous nous plaçons à distance $d \ge k > 0$ du corps.

Pour traiter ce problème, il est utile d'introduire les fonctions

$$F_v = \frac{1}{v} \int_v \frac{1}{r} dv$$

qui jouissent des propriétés faciles à établir:

$$(\alpha + \beta) F_{\alpha+\beta} = \alpha F_{\alpha} + \beta F_{\beta}$$

$$\lim_{\alpha \to 0} F_{\alpha} = \frac{1}{r}$$

$$\lim_{R \to \infty} R F_{v} = 1.$$

Le problème est résolu si l'on peut déterminer la couche Δv telle que:

$$U_{\Lambda n} = kU$$
.

Cette relation implique en effet, en vertu des propriétés des fonctions F:

$$F_v = F_{\Delta v}$$
.

Et:

$$\mathbf{F}_v = \mathbf{F}_{v+\Delta v}$$
 .

Si l'on choisit la masse intérieure à V' égale à la masse du corps primitif

$$\mathbf{U}_{v} = \mathbf{U}_{v+\Delta v}$$
.

Il suffit donc, pour déterminer la solution de notre problème, de résoudre l'équation:

$$\varepsilon \int_{S} \delta \operatorname{L} r \, d\sigma = \int_{\Delta S} \delta \operatorname{L} r \, d\sigma . \tag{I}$$

On sait que l'on peut remplacer le premier membre par un potentiel de simple couche de densité ω (qui est la densité obtenue par le balayage de Poincaré) analytique.

$$\int_{0}^{2\pi} \frac{\varepsilon \omega \rho \operatorname{Lr}}{\cos(n, \rho)} d\theta = \delta \int_{0}^{2\pi} d\theta \int_{\rho(\theta)}^{\rho(\theta) + \varepsilon i(\theta, \varepsilon)} \operatorname{Lr} d\rho$$

On développe la deuxième intégrale du second membre en série, on pose:

$$i = \sum_{0}^{n} \varepsilon^{h} i_{h}(\theta)$$

on identifie les n premières puissances de ε . Les équations obtenues sont de la forme:

$$\int\limits_{0}^{2\pi}i_{h}(\theta)\;\rho\;\mathrm{L}r\,d\theta\;=\;\sum_{i}^{m}\int\limits_{0}^{2\pi}\mathrm{D}_{i}(\theta)\;\frac{\mathrm{d}^{i}}{\mathrm{d}\,\rho^{i}}\;\mathrm{L}r\,d\theta\;\;.$$

Les fonctions D_i sont connues et analytiques. i_h est la fonction inconnue. Le deuxième membre représente une fonction harmonique hors de Γ et peut s'écrire, en tenant compte que:

$$\frac{\partial^{i}}{\partial \rho^{i}} \operatorname{Lr} = \sum_{h=0}^{i} \frac{i!}{(i-h)! h!} \cos^{i-h} \theta \sin^{h} \theta \frac{\partial^{i}}{\partial x^{i-h} \partial y^{h}} \operatorname{Lr}$$

$$\int\limits_{0}^{2\pi} i_{h} \, \rho \, \mathrm{L} r \, d\theta \, = \sum_{i}^{m} \, \sum_{h=0}^{i} \frac{i \, !}{(i-h) \, ! \, h \, !} \, \frac{\mathrm{d}^{i}}{\mathrm{d} \, x^{i-h} \, \mathrm{d} \, y^{h}} \, \int\limits_{0}^{2\pi} \cos^{i-h} \theta \, \sin^{h} \theta \, \, \mathrm{D}_{i}(\theta) \, \, \mathrm{L} r \, d\theta \, \, .$$

Or l'intégrale du second membre représente un potentiel de densité analytique répartie sur un contour analytique et il existe un théorème de MM. Hadamard et E. Schmidt qui dit qu'un tel potentiel est prolongeable analytiquement au travers de Γ . Ainsi le second membre de nos équations représente une fonction harmonique prolongeable au travers de Γ , donc remplaçable par une densité de simple couche analytique D_0^i sur Γ . En identifiant les densités des deux membres, on détermine les n fonctions i_h . L'erreur de potentiel est proportionnelle à ε^n si on se limite au nième terme de

$$i(\theta, \varepsilon) = \Sigma \varepsilon^h i_h(\theta)$$
.

Si on se limite au premier terme, on a:

$$i_0 = \frac{\omega}{\delta \cos(n, \rho)} \cdot$$

La déformation correspond alors à une couche d'épaisseur proportionnelle à la densité de balayage de Poincaré. L'erreur de potentiel est proportionnelle à ε^2 , c'est-à-dire stationnaire.

On pourrait vérifier directement cette propriété.

En posant dans l'équation I:

$$i\left(\theta\,,\;arepsilon
ight)\,=\,\sum_{0}^{\infty}\,arepsilon^{h}\,i_{h}\left(\theta
ight)$$

on peut déterminer chaque terme i_h de proche en proche, comme on l'a vu. En supposant que cette dernière série converge pour ε assez petit, nous aurions une famille de déformations à potentiel constant, car l'équation I serait identiquement satisfaite. La convergence du développement en série du second membre de l'équation I n'offrirait alors pas de difficultés.

On peut retrouver les résultats connus sur la déformation de la sphère en utilisant la méthode ci-dessus. Dans ce cas particulier, la série:

$$i(\theta, \epsilon) = \sum_{0}^{\infty} \epsilon^{h} i_{h}(\theta)$$
 converge.

La résolution de l'équation I a pour conséquence la résolution du problème suivant: Soit une famille de couches d'épaisseurs données de paramètre ε , quelles densités faut-il distribuer à l'intérieur de ces couches pour qu'elles aient des potentiels $\varepsilon U(x, y)$ de paramètre ε ?

Emile Briner et Henri Hæffer. — Sur la production de l'aldéhyde formique au moyen de l'arc électrique en haute et en basse fréquence.

Comme l'ont montré de nombreuses séries de recherches précédentes faites dans les laboratoires de chimie technique, théorique et d'électrochimie sur l'action chimique des décharges électriques, l'accroissement de fréquence de l'arc électrique et la réduction de pression des mélanges gazeux dans lesquels il jaillit améliorent très fortement les rendements énergétiques des