Zeitschrift: Archives des sciences physiques et naturelles

Herausgeber: Société de Physique et d'Histoire Naturelle de Genève

Band: 22 (1940)

Artikel: Influence du Rhizobium sur la croissance des racines de cresson

Autor: Bieler, Gertrude

DOI: https://doi.org/10.5169/seals-741674

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 30.10.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

sion, les rendements de production de l'ozone ont été environ 10 fois plus élevés que dans les conditions ordinaires. En valeurs absolues, ces rendements sont d'ailleurs bien inférieurs (10 à 12 gr d'ozone au kwh) à ceux que l'on atteint au moyen de l'effluve (100 à 150 gr au kwh).

Il a paru néanmoins intéressant de mettre en évidence la formation de l'ozone au moyen de l'arc électrique.

Gertrude Bieler. — Influence du Rhizobium sur la croissance des racines de cresson.

K. V. Thimann 1 a émis l'hypothèse que le développement des nodosités des racines de légumineuses est dû aux auxines sécrétées par les bactéries envahissantes. En 1939, Thimann confirme son hypothèse par les arguments expérimentaux suivants: les *Rhizobium* produisent de grandes quantités d'auxines dans les milieux de culture. Les nodosités de nombreuses légumineuses, et même celles d'autres plantes, contiennent une quantité importante d'auxines; ces phytohormones semblent avoir une origine différente de celle des auxines du tissu normal.

Link, Wilcox et Link ² ont montré en 1937 qu'en appliquant sur les racines (tomate et haricot) des pâtes à la lanoline imprégnées d'auxines naturelles et de synthèse, il se forme des excroissances. Cette méthode a permis plus tard à Link ³ de montrer que les extraits éthérés des liquides de culture du *Rhizobium phaseoli* sont riches en facteurs de croissance, sensu lato. Dans quelques cas, on a pu prouver qu'il s'agit d'acide indol-3-acétique.

L'expérience que nous décrivons ici apporte une confirmation

¹ Thimann, K. V., Proc. Natl. Acad. Sci., 22, p. 511-514, 1936. Thimann, K. V., Comptes rendus de la troisième commission de l'Association internationale de la Science du sol. The physiology of nodule formation, vol. A, p. 24 (1939). New Brunswick, U.S.A.

² Link, Wilcox et Link, Bot. Gaz., 98, p. 816-867, 1937.

³ LINK, G. K. K., Nature (Lond.), 1937, II, 507.

de la production de principes auxogènes par le Rhizobium sojae. L'essai a porté sur: 1º un milieu de culture stérile (témoin) préparé en faisant bouillir pendant une heure 1 kg de terre de jardin et 1 l d'eau. Après filtration, 10 gr de maltose sont ajoutés pour un litre d'extrait. 2º Dans ce milieu nous avons cultivé du Rhizobium de soja, souche américaine nº 505, aimablement mise à notre disposition par M. J. K. Wilson. 3º Cette culture a été filtrée à la bougie Chamberland L₃; la stérilité du filtrat a été vérifiée.

Mode opératoire: Trois flacons coniques à large col, munis de huit rondelles de papier filtre et fermés au coton ont été stérilisés à l'autoclave. Dans chaque fiole nous avons versé aseptiquement un des trois liquides précités et introduit des graines de cresson, préalablement désinfectées à l'hypochlorite de chaux et rincées rapidement. Le papier doit être bien imprégné sans être submergé. Le tout est laissé sur une table devant une fenêtre.

Après 24 jours nous avons mesuré la longueur des racines:

- 1. Racines dans le milieu stérile: 28, 20, 27, 17, 25, 27, 30, 32, 33, 38, 32, 33, 33, 33, 33, 30, 36, 40, 40, 45, 47, 47, 47, 48, 43, 45, 48, 42, 44, 45, 49, 50, 50, 54, 56, 65, 74, 74, 82 millimètres. Moyenne arithmétique: 42 mm.
- 2. Racines dans la culture de bactéries vivantes: 17, 25, 78, 29, 47, 25, 47, 30, 52, 22, 34, 43, 82, 50, 49, 65, 60, 40, 64, 85, 78, 40, 40, 22, 48, 91, 62, 78, 41, 50, 60, 89, 60, 72, 86, 76, 52, 54, 55, 77, 36, 34, 60, 85, 42, 35, 50, 36, 40, 66, 74, 55, 61, 65, 54, 62, 83, 42, 38, 39, 65, 69, 78, 59, 37, 76, 37, 91, 96, 96, 102, 108, 110 millimètres. Moyenne: 58 mm.
- 3. Racines dans le filtrat: 53, 48, 27, 48, 44, 50, 52, 42, 46, 52, 33, 52, 42, 49, 51, 57, 60, 44, 65, 41, 30, 58, 50, 46, 36, 66, 60, 51, 40, 45, 42, 61, 58, 51, 50, 41, 38, 60, 63, 62, 60, 60, 70, 73, 81 millimètres. Moyenne: 51 mm.

Les racines développées sur le milieu stérile sont moins résistantes que les autres; elles se cassent plus vite, elles sont moins élastiques.

Longueur des racines: mm	Milieu stérile	Culture	Filtrat
0- 29	15,4%	8,3%	2,2%
30- 39	28,2	13,9	8,9
40- 49	35,9	16,7	31,2
50- 59	10,2	13,9	28,9
60- 69	2,6	18,0	22,2
70- 79	5,1	12,5	4,4
80- 89 90- 99 100-109	$egin{array}{c} 2,6 \\ 0,0 \\ 0,0 \\ \end{array}$	8,3 $4,2$ $2,8$	$^{2,2}_{0,0}_{0,0}$
110 Racines mesurées: Longueur maximale:	0,0	1,4	0,0
	39	72	45
	82 mm	110 mm	81 mm

Si nous donnons la valeur 100 à la longueur moyenne des racines croissant sur le milieu de culture stérile (témoin), nous trouvons pour la culture: 138 et pour le filtrat: 121,4.

Conclusion: Le Rhizobium secrète des substances qui augmentent l'allongement des racines de cresson (Lepidium sativum); le filtrat stérile d'une culture bien développée exerce une action analogue, mais plus faible; cette différence s'explique, si l'on considère que les germes vivants continuent à sécréter durant les 24 jours d'expérience des quantités supplémentaires d'auxines. Ces sécrétions augmentent non seulement l'allongement des racines, mais encore leur élasticité et leur résistance.

Institut de Botanique générale, Université de Genève.

Charles Bæhni. — La distribution des Lacistema dans les Andes et les régions avoisinantes.

Le territoire considéré comprend la partie du Vénézuela située au NW de l'Orénoque, la Colombie, l'Equateur, le Pérou, le territoire brésilien de l'Acre et les provinces occidentales de la Bolivie. Les espèces de *Lacistema* qui y croissent appar-