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Sur la diffraction par un corps noir quelcongue
de la lumidre provenant d'une source punctiforme
et equirayonnante.

Intégrale compléte portée aux quadratures.

PAR

P. BARRECA

Privat-docent & 1’Université de Messine (Italie).

1. — Résumé. — Dans le présent travail on obtient I'inté-
grale compléte de I’équation indéfinie de I'optique pour le cas
exposé dans le titre et on indique briévement la facon d’en
déduire, peut-étre et dans des cas particuliers simples, I'inté-
grale générale lorsqu’on aura pu exécuter la quadrature. Nous
appelons complétes (suivant J.-L. Lagrange) les intégrales
générales lorsque leurs fonctions arbitraires dégénérent en -
constantes (arbitraires). La surface du corps est supposée
avoir une équation unique. Le probléme considéré n’avait pas
été encore résolu.

2. — La solution de I'équation indéfinie optique:
__®V 2V | ®V  4r?
MV =Smtgptam - (“

est bien connue . Pour la lumiére monochromatique, agissant

L E. T. WairtAker, On the partial differential equations of
mathematical Physics. Math. Ann., t. 57, p. 342, 1903.
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avec une Intensité constante depuis un temps infini, et pour
une source punctiforme, elle est:

n =+ &fi{(x—m) €08 8¢ -+ (y—n) sin Og €08 o -+ (2—p) 8in O sin %}
BY(GO, (PO, ...)d(?u , (2)

T +
V= [do,
0 -

T

Les x, y, z sont les coordonnées cartésiennes des points de
Iespace et m, n, p celles de la source. Lorsque la solution est
ainsi écrite, une translation paralléle des axes n’a évidemment
pas d’effet. Y est une fonction arbitraire, en général complexe,
A la longueur d’onde, 6, et ¢, sont deux variables auxiliaires,
lesquelles disparaissent lorsque la quadrature est accomplie.
Pour I'usage du double signe, on peut supposer notre corps-
obstacle écarté, et envisager un point éloigné de la source, tous
deux sur 'axe des x (y = 0,z = 0, n = 0, p = 0). Lorsque la
lumiére se propage selon les z croissants, le signe doit étre
négatif.

3. — Songeons & Y dans lintégrale compléte. Dans le
deuxiéme de nos mémoires cités icil, nous avons démontré,
d’une maniére générale, qu'il y a trois régions de l'espace:
10 la région des seules ondes sphériques, 20 la région comprise
entre I'onde qui touche I'obstacle pour la premiére fois et celle
qui va quitter 'obstacle, 3° la région au dela de ce dernier
contact. Dans la premiére, Y ne présente pas d’intérét, car
son V est bien connu. Dans la deuxiéme, et pour Uintégrale
compléte, Y varie a chaque surface d’onde qu’on change, car
si on supprime la partie du corps qui n’est pas encore entrée en
contact avec une onde donnée parmi toutes ces ondes, et si on
remplace la partie supprimée, cela ne portera effet que sur la
partie suivante de D'espace. Il faut donc, dans l'intégrale
compléte, avoir des constantes arbitraires qui varient de chaque
surface d’onde & la suivante et caractérisent les Y de chaque

1 P. BArrecA, Sur la diffraction par un corps de révolution éclairé
selon son axe par une source lumineuse punctiforme. Archives des
Sciences physiques et naturelles, 1936, page 88.

Idem, méme titre, deuxiéme mémoire, 1937, p. 237; tbidem.

ARCHIVES. Vol. 22. — Septembre-Octobre 1940. 17
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surface d’onde. Mais cela ne s’applique pas a l'intégrale géné-
rale, car la les constantes arbitraires sont remplacées par des
fonctions arbitraires, lesquelles changent aussi de chaque sur-
face d’onde a la suivante, mais automatiquement, c’est-a-dire
qu’on peut les envisager comme étant uniques.

Dans la troisieme région, Y est partout le dernier Y de la
deuxiéme région.

4. — Chercher Y de la deuxiéme région, c’est donc amener
Iéquation (2) a la quadrature. Le probleme a déja été résolu
par nous pour un cas particulier (mémoires cités), qui est un
cas 4 deux dimensions ou on envisage un corps noir de révo-
lution éclairé selon son axe qui est supposé aussi étre ’axe
des x. Dans I'intégrale compléte, on voit deux constantes arbi-
traires, qui sont deux (z,, y,) des trois coordonnées z,, ¥, 2
d’un point de la trace de 'onde . Nous pouvons appeler ce
point le point conjugué (X, y,, z;) de la surface d’onde ou du
point donné (x, y, z). Mais si on fait usage de 'équation de la
ligne méridienne du corps (c’est une donnée du probléme qui
change d’un cas & lautre), lesdites constantes arbitraires
deviennent une seule.

Dans ce cas particulier et symétrique, ce point conjugué
était indifféremment un point quelconque de sa trace d’onde
(qui était plane et circulaire). Dans la solution rappelée, il
existe aussi d’autres parameétres, c’est-a-dire les coordonnées
du point (ou des points) de contact de la derniére onde encore
sphérique avec le corps et les rayons vecteurs de la source a
certains anneaux parfaitement obscurs (réels ou imaginaires)
sur la surface du corps 2, mais ces paramétres changent seule-
ment si on modifie le corps ou sa position, et ils ne changent pas
avec la surface d’onde qui passe en (z, y, z). Voila pourquoi,
dans un passage & l'intégrale générale, ils ne deviendront pas
des fonctions de z, y, z. Un point conjugué était aussi conjugué
a lui-méme.

Essayons maintenant de voir s’il y a avantage, icl aussi,

1 Intersection de la surface d’onde avec la surface de I’obstacle.
2 ]ls étaient donnés par certaines équations.
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4 envisager un point conjugué (du point donné) placé sur sa
trace d’onde, c’est-a-dire si un tel point existe et si ses coor-
données ., y,, 2z, sont des parameétres de 'intégrale compléte,
utilisables pour toute sa surface d’onde, selon le § 3. En cas
de réussite, il se peut qu’il y aura également d’autres para-
metres ne changeant pas avec la surface d’onde.

5. — Remarquons tout de suite qu’'un tel point, §'il existe,
doit produiire la valeur exacte (1) de A,V, soit qu'on considere
ses coordonnées z,, y,., 2, comme de véritables constantes, soit
qu'on les considére comme des fonctions inconnues de z, ¥, z.
En outre, cela nous autorisera a4 en faire usage comme para-
metres. Nous démontrerons ici encore que s'il existe, de tels
parametres conférent une valeur extréme (maximum ou mini-
mum) au mod. V. Appelons A l'intégrale compléte et @ celle
générale. Si le point conjugué existe, on a:

NV = A{x,y, z; x, = const, y, = const, z, = const}:

A

=®{z,y.z2: 22, y, 2, y(2,y, 3. g, y,2} )

en désignant par A et @ des valeurs numeériques égales, ainsi
que des opérations identiques, effectuées sur les arguments. On
obtient A,V de chacune séparément en calculant d’abord les
dérivées premieres, ensuite les deuxiémes et en faisant 1'addi-
tion des deuxiémes. Or si 2., ¥,, 3, obéissent aux équations:

00 ox, odoy, odoz

e ,_E_ S + — = =0
o0x, Oz oy, Ox 0z, 0x
oD ox oD oy 00 03
s ad + ad ¢ b (&)
c c c
0®ox, 00Oy, 000z
_ =0

| 0z, 9z oy, 0z | 0z, 0z

les dérivées premiéres de V exprimé par ®, par rapport &
z, Y, 3, sont les mémes dérivées de A. Désignons ces dérivées,
qu'on obtient sans faire usage des régles des fonctions de
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(G- () () <5>

en faisant usage de doubles crochets.

Pour avoir les dérivées deuxiemes, il faut dériver la premiére
(5) totalement par rapport & z, la deuxiéme totalement par
rapport & y, la troisiéme par rapport & z. Nous aurons en
premier lieu les mémes dérivées deuxiémes qu’on obtiendrait
en laissant z,, y,, 2, constants:

02 (02D 02
(52)) (G7) (G5)- ©
Ensuite, il faudra exécuter sur les (5) les mémes opérations
qui, dans les équations (4), sont exécutées sur ®. Remplacons

donc dans les premiers membres des (4), @ par les grandeurs
(5), ligne a ligne. On obtient:

0 /0@ 0 /70®\\ %Y, 0

s (52 5 (G2 S ¢
oz, xz)] oz o0y, \\oz// oz 0z,

0 0@)% 0 92))1%1'(@3))6_%
oz ((5y)) 3y + 0y ((39)) 5 + oz, ((39) 59
O //d@\\ Oz, 0 //0®@\\ °Y, 0 ®\\ 93,
a—@((“az))—z i a“%((a?))ﬁz T @((T)) T

Mais ce ne sont que les dérivées par rapport a z, ¥, z, des
membres premiers des équations (4), lesquels sont zéro. Nous
avons donc seulement les (6), c¢’est-a-dire la valeur de A,V est
identique pour A et pour @. On voit aisément que c’est aussi
la valeur donnée par (1). Il existe pour chaque trace d’onde des
points conjugués (au moins un, jusqu’a présent), car en général
les équations (4) doivent avoir des racines.

fonction, par:

(31

Remarque. — Lorsqu’on passe d’'une surface d’onde a celle
infiniment proche, un point conjugué doit se déplacer infiniment
peu, donc il y a sur 'obstacle des lignes de points conjugués. Le
point (ou les points) de premier contact des ondes et le point
(ou les points) de dernier contact, doivent aussi étre des points
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conjugués de leurs surfaces d’onde et d’eux-mémes. Ils consti-
tuent donc les points extrémes de ces lignes.

Nous ferons usage de I'index ¢ pour les points conjugués,
et de I'index S pour des points quelconques de la surface S de
I'obstacle. Lorsque cette surface est de révolution et éclairée
selon son axe, et lorsqu’on suppose cet axe étre un des axes
cartésiens, tous ses points sont conjugués.

6. — Il est aisé de voir par les équations (4) que 2, ¥,, 2, font
devenir extrémal mod A = mod ® = mod V. En effet, lorsque
nous aurons l'intégrale compléte A, avant d’en faire usage il
nous faudra choisir un cas particulier, ¢’est-a dire une équation
de la surface de I'obstacle, par exemple:

z, = Lz, y,) , ou: z, = Llx,, y,) » (7)
et ensuite faire disparaitre en A une des coordonnées para-
métriques z,, y,, %, par exemple z,. Nous avons donec les trois
équations (4) et 'équation (7) pour en déduire trois inconnues
seulement, mais nous allons voir tout de suite qu’il n’y aura
pas contradiction. En effet, lorsqu’on décompose le troisiéme
terme des équations (4), on en tire:

(62 #3232 )+ 2222 =
sl () +snen) = s () o) =
ax{(( ))‘5’6@00}"" I((gz))+%§;g_i}:0

- B

Ici encore, nous avons fait usage de doubles crochets pour
distinguer les dérivées directes, ou immédiates, des autres. 1l
est donc suffisant qu’on ait seulement:

D L XY/
(l32)) 55002

R )] o 07
o + — —— =0
((ayc)) 0z, 0y,

Oarc

X

e%
_|_

z
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Or, ces équations, lorsqu’elles sont résolues par rapport a z,
et y, font devenir extrémal @, car les nombres complexes (8)
étant zéro, leurs modules sont zéro, aprés quoi ces mémes
dérivées (8) de @ ne font plus changer @ lorsqu’on augmente z,
et y, infiniment peu (sans toucher a z, ¥, z).

Remarque I. — Dans le cas des corps de révolution éclairés
selon leurs axes qui sont aussi les axes des Oz, on a seulement
deux coordonnées: z, y, z,, y,. Les traces d’onde sont planes
et circulaires. Dans une trace d’onde donnée, tous les y, sont
égaux ainsi que les z,, et la valeur extrémale de @ est par cela
remplacée par une valeur unique tout le long de la trace, qui
est a la fois une valeur maximum et minimum.

Remarque 11. — Pour tirer de l'intégrale compléte I'intégrale
générale, il suffira de remplacer les parameétres z., z., y., par
leurs valeurs tirées des équations (7) et (8), sous réserve des
difficultés d’exécution.

Remarque 111. — 11y a, le long de la trace d’onde, autant de
points avec ® maximum que de points avec @ minimum. Pour
cette raison, si la résolution des équations (8) ne fournit pas
une formule unique donnant tous les z, (ou les y,), on aura
éventuellement plusieurs solutions.

Remarque IV. — Dans les équations (8), on peut remplacer ®
par A, voir équation (3). On a alors deux équations dont on
peut tirer, pour chaque point donné (z, y, z) de I'espace, les
deux coordonnées z,, y,., caractérisant son point conjugué qui
est placé sur la surface-obstacle. La troisieme, z., peut étre
calculée au moyen de I'équation de cette surface.

Mais on peut aussi en tirer les deux équations de toute ligne
conjuguée, ¢’est-a-dire sans les z, y, z (ni point donné). A cet
effet, laissons de coté 1'équation de la surface du corps, déja
utilisée ici, et souvenons-nous de ce qu'un point conjugué d’'une
surface d’onde est aussi conjugué a lui-méme (§ 5), c’est-a-dire
que, dans les équations (8), aprés avoir accompli ses dérivations,
on peut poser le cas particulier suivant:
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Les deux équations nécessaires et suffisantes de la ligne,
qu’'on en tire, sont donc:

{ oA o7 /0A
(("ax)) T o, (azc) =

X=X X=X,
Y=y, Yy=u,

=2, z=7,

(8 bis)
R

Ye X=2x, Ye % X=X,

‘ U=V, Y=Y,
\ =z ‘ =z

sans plus de z, y, z.

DETERMINATION DE Y POUR L' INTEGRALE COMPLETE.

7. — Expliquons d’abord par quel moyen restrictif nous
allons déterminer Y. La formule (2) est par trop générale (voir
aussi le § 3 de notre premier mémoire cité), car elle donne bien
la valeur juste de A,V, mais elle fait usage d'une fonction
arbitraire Y, qui est absolument guelconque, pourvu qu’il en
résulte dans (2) une intégrale ayant une valeur unique et déter-
minable. Le résultat de ladite formule ne dépend justement pas
de 0, et ¢4, qui ne sont pas des données du probléme physique,
mais cette indépendance est due aux deux intégrations définies
avec limites fixes, et pour cette raison c’est la somme des infinis
infiniment petits qui est indépendante, et non pas ces derniers.
Mais, au point de vue physique, il faudrait que I'expression
méme & intégrer le fit. Mais en supposant qu’on obtienne cela,
alors I'intégration par rapport a 0, et ¢, devient inutile, de
méme que la formule de M. Whittaker.

Dans le présent mémoire, aussi bien que dans le deuxiéme
cité, nous suivons pour ainsi dire une route intermédiaire,
¢’est-a-dire que nous ferons usage de cette formule avantageuse,
mais nous affranchirons de 6, et de ¢, 'expression a intégrer,
en tous les points d’une ligne. Pour faire cela, nous envisagerons
une surface qui caractérise chaque cas particulier, laquelle est
donnée aussi, c’est-a-dire la surface S de I'obstacle, et sur cette
surface nous songerons & une ligne conjuguée. Cela fera appa-
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raitre z,, y., z. dans les formules. Aux autres points de 'espace,
V est aussi indépendant de 6, et ¢,, mais seulement par I'effet
des intégrations définies. Pour le cas déja rappelé (corps de
révolution, etc., mémoire cité), nous avons jadis affranchi
I'expression & intégrer sur toute la surface S, mais cela est tout
a fait analogue, car tout point de S v était un point conjugué

(§ 5).

8. — Développons. Laissons Y inconnu dans I’équation (2).
Prenons des coordonnées géographiques: colatitude 6, des
points conjugués (avec origine sur I'axe positif des z), longi-
tude ¢, (avec le plan xoy en premier méridien), rayon vecteur p,
du poéle (placé dans la source). Employons cette équation (2)
pour des points conjugués quelconques, dont on tirera aussi
des parameétres de Y (§ 5, leurs coordonnées), car un point
conjugué (de toute la surface d’onde) est aussi conjugué a
lui-méme. Partageons Y en deux parties, une qui ne donne que
des ondes sphériques (pour lesqaelles nous appellerons O la
valeur de V) et une autre F. On obtient:

P i ¢ 5 y § :
i?:iTc{f“S 0, 608 0g1-5in 0 €08 ¢ 8in O 08 oo +-5in O, sin o, 811 O 5il o }

T =1k
R P
Vc—o(;:./ dﬂo![‘eF(%,%,@c»%’{)d% (9)
0 —T
car il est:
L, = P COS ec > Yo = P sin ec cos ¢, » % = Pg sin BC sin Pe

Démontrons tout de suite que I’affranchissement, de 6, et
de @y, de la fonction & intégrer ne peut étre obtenu qu’en
posant:

S . QeiR(ﬁc, Pes %) x G
\ (10)
[ 6_e

e s . . . . .
— '371:176{008 0, ¢08 69 -+8in 0, €08 o, 8i O €08 oo - 8in 6, 8ill o, 8N B¢ sin :pﬂ}

Nous appelons Qe'® une fonction, qu’on doit encore déter-

: . P g ;
miner, des seules variables 0,, ¢, —{i, qui sont les coordonnées
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du point conjugué. En effet, cette position simplifie I'intégrale
et donne tout de suite:

V, — 0, = 2m2Q¢i® (10 bis)

car maintenant la fonction & intégrer ne dépend pas de 0, et
de ¢,, pour des valeurs quelconques des variables indépendantes
Ocs @cy pes M o5 9o

On ne peut se débarrasser de 6, et de ¢, par d’autres moyens,
car 'équation (9) étant vraie indépendamment des hypotheses
qu’on peut faire sur F, et F étant dans 'équation (9) la seule
grandeur qui ne soit pas explicite et connue, on ne peut extraire
que de F un diviseur efficient.

En outre, si on compare ce cas avec le cas particulier du
corps de révolution éclairé selon son axe qu'on choisit aussi
comme axe Oz, on voit que la solution est analogue (deuxiéme
mémoire, page 256). En effet, la partie en dehors des signes
d’intégration est, dans cette formule, une fonction seule-
Ps
3
tout point de S y était un point conjugué. L’intégrale, au lieu
de devenir comme ici:

ment de 6, car il n’y avait que deux dimensions, et (§ 5)

, 2mi . . .
= T{ (x—ox.) 08 0o+ (U—y,) sinOg €08 g+ (2—2,) sin B¢ sin cpu}

T +?
fan J Boe
0 —F

= Yy . X=Xy
bes, (211: BN sin 60) +£2mi —— 080y
ed 0,

y
¢ bes, (27:; sin 60)

ce qui est aussi I'intégrale du quotient de deux fonctions qui
seraient égales, s’il n'y avait 'index S. Nous avons écrit bes,
pour fonction de Bessel d’ordre zéro.

9. — Avec ces opérations, le probléme n’est pas encore
résolu. Il faut encore déterminer Qe'™. A cet effet, nous voulons
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ignorer volontairement le facteur G des positions {10) et le
supposer encore inconnu (cela est légitime) afin de n’avoir pas
I'élimination de Pexponentielle dans 1'équation (9), et pouvoir
ainsi la traiter par des procédés plus généraux. Nous écrivons
done I'équation (9):

L 9mi %{ €08 0, 08 O -8in O, €08 o, sin O €08 o+ 8in O sin o, 8in B i, }

it +
3 i P
V,— 0, = QBER./ dOOl[. BG(GO, @0 0.1 @ps TC) do, - (11)
0 ot

Nous prendrons ici des deux membres de cette équation les
dérivées:
(v, —O,) 02(V,— O,

00,09, ~ dg, 07, om, 06,

en appelant:
Pe
7, = arc tang =

et nous en tirerons Qe'},

) 2(V,— 0,
10. — Evaluation de ————————
666 Ocpc

Posons quatre variables nouvelles:
d=66+60, B:ec_—‘eo, ‘L'ZCPC'{‘CPO, T:(Pc—tp()' (12}

Comme les degrés de liberté doivent étre les mémes qu’au-
paravant, choisissons-en deux, par exemple les 17¢ et 3me (ou
2me et 4me) comme variables automatiques d’intégration. Les
deux autres, au contraire, auront des valeurs fixes arbitraires.

On tire:
0, = = ; e , C’est-a-dire: soit d0, = %?' , soit d6, = — ?

V] T dy dt (13)
Po="5"> B : soit dogy = 5 soit dgg = — 53
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et les limites des intégrations seront:

/ Pour 6, = 0 , soit o = 6, -, soit B = 6,
B =m , soit o’ =0, +n, soit " =6, —=x
, (14)
P = —m, soit ¢ =9, —m, soit v =o¢,+=w

|
/

v

Cc

¢ = +m, soit " =9, + 7w, soit v"=9¢,—m .
Dans les deux cas, on a:

a’=f+n d'=¢,+m
exposani

e (), —Qe‘R Y-t oadB Yy fel
Jd“/ 5 g g Y

o'=0, ¢ =g,

+8, %8 G e+B YT a—P

-7

+

Pe o
exposant de &€ = ;L 2w BN % o8 3 cns 9 + sin 2 i 2 s B €03 3
o & + 0 . ({) + = . ‘IJ s
+ s 3 sih 2 sm 2 in
p7=6,r T =9,
R ) méme exposant ]
Qe e o — B -7 a+f + 1 P :
V —0, = = e X R T FCEOL .
c Cc 4 E B G 2 ) 9 ’ 9 3 %A J' ( dT)
€
=0, mgetr (15)

De méme dans Qe'® il faut supposer avoir exprimé 0, et o,
par les nouvelles variables.

Remarquons que la deuxiéme intégration de chaque équation
se fait en gardant toujours constants «, 3, et en plus encore
une des deux grandeurs T et ¢. L’intégration, soit par rapport
& {, soit par rapport a 1, doit s'étendre le long d’un cercle
entier. Songeons maintenant & ce que les grandeurs qui
varient pendant cette intégration sont seulement:

b+ 7 Y — 1 1
CcOS 3 cos 2 = acosv—}— 5 cos ¢
P+ f—1 1 1 T
sin 3 sin 3 = 2—cos~: 2—cos U]

et partageons le cercle en deux parties & fonctions égales, car
ces cosinus ont des valeurs deux fois positives et deux fois
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négatives. (Chaque partie aura des valeurs positives et des
négatives.) La séparation doit étre faite dans les points &
cosinus + 1 et — 1, c’est-a-dire:

vosms et T =0=etels
rrry y s 1
TNH:W:CPC_CPO ? T :OZCPC_CP *
De la sorte, les équations (15) deviennent:
a’=0,+m W
5 méme exposant qu’auparavant
i
Vv, — Qe [da] (mémes arguments) d ¢
(17)
frel n =

5 expoqant ete.
i
v, — 0, Qe j dBJ (mémes arguments) (dt) .

Nous pouvons faire disparaitre les signes d’intégration par
des dérivations par rapport aux limites inférieures, selon la
regle:

X2
axl 5;;1./d$/Ex y) dy = + Bz, y)

X1
z et y étant deux variables indépendantes. Faisons les opéra-
tions en deux temps successifs: premiérement dérivons par
rapport aux limites inférieures o, ''; B’, ', sans songer a
des valeurs déterminées des dites limites. Comme Qe'® est en
dehors des signes d’intégration, il n’est pas assujetti aux dites
limites en général et par cela ne subira pas de changement,
c’est-a-dire que ses arguments o, {, 3, T ne doivent pas recevoir
d’apex. C’est que les limites d’'intégration sont des variables
indépendantes des variables d’intégration et des autres, dans
les formules ou elles apparaissent. Avec cette premiére opéra-
tion, le premier membre des équations (17) devient:
2(V,— 0, . ®(V,— 0,

soit Taw Ay soit o o
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Deuxiéme opération: remplacons les dites limites (toutes les
grandeurs avec apices) par leurs valeurs (16) et autres, et aussi
les grandeurs sans apex par leurs valeurs (12). Le premier
membre deviendra:

PV, ==i)
00, 00, ‘

Dans Pautre membre, intégrale sera remplacée par la fonc-
tion & intégrer des limites, mais nous ferons usage des positions
démontrées en (10); ainsi ce remplacement donnera tout de
suite et toujours 1, car le remplacement des valeurs limites
seia fait identiquement dans G et dans I'exponentielle.

On a done:

, BV, — 0

9 ¢ "¢ _ QelR 18
06, 09, o . (18)

11. Remarque I. — Si au lieu de dériver de la facon exposée
par rapport aux limites les deux membres de I'équation (11),
on fait simplement la dérivation habituelle par rapport & 0,

et ¢., on a maintenant, G étant connu: g
o(V,—O,) im0 d . 3 .
—_— R Y 9,2 9.2 = QelR — 2 Y eiR .

aec Qe OBCQW + TT OBCQ 2w bﬂcQ

Voir aussi ’équation (10 bis). On en tire:

02 (‘fc J— Oc) B ; angiR

e T g, 19
36, dp, T 38,00, (19)

Mais nous verrons cela plus loin.

Remarque 11. — Si, au lieu de dériver dans les équations (17)
par rapport aux limites inférieures, on dérive par rapport aux
limites supérieures, on obtient des équations analogues,
car les o, B, ¢, T sans apices ne changent point, tandis que
les o”, B”, ", v" remplacent les &, £, ¢, 7/, mais n’en
different que par quelques = en plus ou en moins, et le
facteur G, qui doit subir les mémes modifications des expres-
sions qu’on obtient toujours & partir de (9) ou de (11), doit
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initialement étre encore ce (10). L’autre facteur reste, ici aussi,
a déterminer.

Remarque I11. — La dérivation des intégrales définies, qu'on
vient de voir, donne toujours un mondéme lorsque la fonction
a intégrer est un mondme. Lorsque, dans cette fonction, il y
a un facteur explicite qui ne dépend pas des variables d’inté-
grations primitives, il faut le porter avant tout en dehors des
signes d’intégration. Lorsque ce méme facteur est sous-entendu,
il faut discuter les résultats finaux.

Remarque I'V. — Nous avons dédoublé une certaine intégrale
en passant des équations (15) aux équations (17). Sans cela
nous aurions trouvé un Qe'® avec une valeur double, mais cette
solution ne serait pas conforme au cas particulier déja résolu.
Nous reviendrons sur ce point.

2(V,—0,)
O0p, 07,
a la précédente, nous pouvons poser:

12. — Evaluation de . — D’une fagon analogue

*

Pe
n, = arc tangT

6 =" +0, §d=1,—0, d=9¢.+¢, T=0¢,—¢ -

Choisissons deux parmi ces quatre derniéres variables?,
par exemple la premiére et la troisiéme (ou 2me et 4M€) comme
variables d’'intégration et les deux autres comme arbitraires
fixes. Faisons-en usage dans I’équation (11). La dérivation nous
donnera deux équations analogues aux équatiosn ci-dessus

Pe

écrites, dans lesquelles 5 lorsqu’on l'écrit explicitement, est

devnue:

P .
tang (arc tang TC_:I; une COPI‘BCt]OH)

’

C’est une correction tout a fait analogue aux corrections
qu’on aurait obtenues dans le paragraphe 10 pour 6, et ¢,.

! Les deux derniéres positions ne sont pas nouvelles.
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L’arc ¢, subira aussi des corrections. Les arcs corrigés seront
les mémes dans chaque équation (aussi pour G), mais ils
seront différents d’une équation a 'autre. Nous en tirerons des
conclusions analogues, c’est-a-dire que G, ayant subi des mo-
difications pareilles & celles de I’exponentielle, était mérue,
initialement, son réciproque. Un autre facteur sera Qe'®. Les
deux dérivations par rapport aux limites, apres le dédoublement
de l'intégrale deuxiéme, (si on prend par exemple les limites
inférieures:

c=1 =1, $7"=9, =09
transformeront I’équation (11) en:

g XV =9 _ im
0¢, ﬁnc

02(V,— 0,
0,90,
choisir comme variables, deux variables du paragraphe pré
cédent le dernier et deux nouvelles, ¢’est-a-dire:

13. — Evaluation de Ici, nous pouvons

m:ec+607 Bzec"‘—'e!)? E:’nc+<P0$ C:"?C_“CPO'

(Le dernier terme de chacune est I'ancienne variable d’'inté-
gration, tandis que le premier est la grandeur par rapport a
laquelle on veut dériver). Il en suit:

da

soit d0, = 5 soit db, = —9!—29
soit de, = %E ; soit do, = — %C
et les limites d’intégration seront:
" Pour 6, =0 ; soit o« = 6, ; soit B’ = 6,
» Bp=m , soit " =0, + m , soit B =60, — =
P Py =—T , soit & = 9,— =, soit T'=m,+ =

» @y = + w, soit &' =1m, 4+ w, soit " =m,—m.



Z exposant = + 2w tang

\

V,— 0,

V,— 0,
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Dans les deux choix on a donc:

a”"=0,+n L"=7,+m

R exposant
Qe \oc—B E—C a+pP E+EC E+C
vln @I[ S g, S, tang =T ; 2

E+¢{ oao+B a—PB , . ax+B E+C . oa—p E—F
3 Zcos 3 cos 3 -+ sm 3 oS 5 sin 3 cos 5 +
(20)
a+B E+C g B Bl ]
-} sin 5 2 sin 9 sin )
B7=0,m L'=n,m
iR méme exposant qu’auparavant
(4
Q f dp) f G{mémes arguments}(— d%)
c U= 7](;+TE

De méme dans Qe'® il faut supposer effectués les change-
ments des variables.

Songeons seulement & la deuxiéme intégration de chaque
équation. Il faut toujours laisser o, {3 (et en plus une des deux
autres grandeurs £ et {) constants. L’intégration, soit par rap-
port & &, soit par rapport a C, s’étend le long d’un cercle entier.

La fonction & intégrer est le produit des trois exponentielles
(et des G correspondants):

E+¢ at+pB oa—f
4 27i fang =—— ) {m—eos—}

b

:|:21-1 tang "+ sin iﬁ sin a—B €08 % == }
e (20 bis)
E+E ot+8 . T
2 tang { 5 2 2 9

b

L’exposant de la premiére est le produit d’une constante
par la tang, laquelle changerait de signe quatre fois le long

3

du cercle si arc était 3 (ou % dans Pautre choix). Comme

Iarc est ici & (ou {) elle changera de signe seulement deux fois
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et dans des points diamétralement opposés, que nous allons
appeler A et B.

L’exposant de la deuxiéme est le produit de la méme tang
par un exposant déja vu dans le paragraphe (10), qui change
de signe aussi deux fois et en d’autres points C et D. Un tel
produit change donc de signe dans les quatre points A, B, C, D,
du cercle, deux a deux diamétralement opposés et a des dis-
tances inégales. Les secteurs opposés ont le méme signe. Enfin
Iexposant de la troisiéme expression (20 bis) change de signe
d’une fagon analogue dans les mémes quatre points A, B, C, D,
diamétralement opposés deux a deux.

L’exposant total de toute la fonction a intégrer et aussi
son G, change donc de signe dans ces quatre points.

Prenons deux secteurs consécutifs (¢c’est-a-dire un a signe
positif et un & signe négatif de exposant) pour chacune des
deux parties de l'intégrale, qui reste ainsi dédoublée.

Remarque 1. — L’arc du cercle étant £ (ou ), tandis qu’on

E+C

a a faire & tang =

dépend de T (ou de E).

, le diamétre AB a une inclinaison qui

Remarque II. — Pour la deuxiéme et la troisiéme exponen-
tielle (20 bis), nous avons aussi {ait usage de I'arc £ (ou de ).
Cela ne laisse pas de coté le cos { (ou le cos &) qu'on voit dans
les équations qui précédent les expressions (16). Car le produit

E+Z(

cos { tang ou Pautre, cos & tang E+t) peut, étre réuni

4 la premiére exponentielle, sans que les diametres AB, CD se
déplacent.

On tire alors des équations (20):

a”=ﬁc+n 5![1!
iR méme exposant qu’auparavant
Qel A ]
V,—0, = 5 do G { mémes arguments | d
(3 .
CL'=35 &III
e “"T Cun (21 )
R exposant comme auparavant '
e'L
| V,— 0O, _ 9 /dg f G{comme auparavant } d¢ .
“ I=Oc Cf”

ARcHIVES, Vol. 22. — Septembre-Octobre 1940, 18
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En dérivant par rapport aux limites inférieures de chaque
intégrale et en se souvenant de ce que G doit affranchir I'ex-
ponentielle de 6, et de ¢, (et pour cela étre toujours son réci-
proque), on tire:

3 (V, — 0, .
% = QeR (22)
97,00,
14. — Nous avons donc:
g PVe— 0l QeiR o XVe—0J _ QeiR
) 00, 0, d9, 07, 29)
| AL YR ‘
a7, 00, '
et I'équation (10 bis):
Vc - Oc iR
g = Qe

Dérivons la premiére par rapport a 7., la deuxiéme par rap-
port a 6., la troisitme par rapport & ¢,. Comme cela donne:

o0n, 96, O,

et que (V,— O, ne differe de Qe'® que par la constante
3= tous deux sont fonction du seul argument:

const x (6, + ¢, + n,) -
En outre, on déduit des (23):

V,— 0, _ 2(V,— 0, _ 92(V,— 0, B 2(V,—0,)
Gn? 00,09, - d0¢,0m, 07,00,

On en tire donc:

0, + @; +n,

2
V,— 0, = const. e + const.
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Cette équation, lorsqu’on en fait usage pour le point ¢ de

premier contact (V, = O,), qui est aussi an point conjugué,
devient:
Oy + @p + 1y

2

0 = const. -+ const.

Soustrayons-la membre & membre de I’avant-derniere équa-

tion:
O+, + 7 B + o+ 1y
V.— O, = const. \g 2= —e 2= - (24)

C C

Mais nous verrons, dans un paragraphe prochain, par une
comparaison avec le cas particulier déja résolu (des corps de
révolution, etc.) que cette formule n’est vraie que sur une
partie des lignes conjuguées, tandis que, pour une autre
partie, elle a besoin de quelques modifications. Nous y déter-
minerons aussi la constante de I'équation (24), au lieu de le
faire ici. Sans le dédoublement d’une certaine intégrale (§ 11,
remarque 1V), nous aurions eu une valeur double de Qe'®, et le
dénominateur des exposants dans I'équation (24) aurait été

27 4/2, mais cette solution ne serait plus conforme au cas
particalier.

15. — Résumons, avant de faire cela, quelque peu les for-

mules trouvées tout & I'heure. On tire de l'équation (11) et
du § 11:

/~ﬂ.

e {(x x) 80880 + (Y—y,) sinBg ts g + (2—2,) sin by &!rlcpo}
V=0 + Qe'k /de j (25)

Lorsque (, y, z) est un point de ligne conjuguée, il est aussi
conjugué & lui-méme et on en tire:

- _
V,—0, = 272 Qe (25 bis)

ce qui est conforme & une équation (19) que nous avons déja vue.
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Remarque I. — Par cette équation (25), A,V a toujours la
valeur juste (1), car on doit se rappeler (§§ 5 et 6) qu’il ne faut
pas dériver aussi par rapport & Z,, Y., Z.

Remarque 1. — On a, de la sorte, une fonction arbitraire F
différente pour chaque corps différent, car I’équation de sa
surface (supposée équation unique de toute la surface) peut étre
écrite:

3, = Liwg,y) ., ou gz = 4z, y,) - (26)

De méme si on a une fonction F, avec laquelle on peut écrire
une équation analogue & I’équation (25), on peut théoriquement,
et par comparaison avec 1’équation (25), en déduire une équa-
tion (26), c’est-a-dire un corps. Ainsi le degré de généralité
est tout juste ce qu’il faut.

Remarque I11. — Nous pouvons résumer comme suit notre
démonstration de la formule (25):

1o Il ne peut pas exister d’autres fonctions (en plus des
fonctions exprimables par la formule de M. Whittaker) qui
donnent la valeur juste (1) de A,V, car cette formule est une
intégrale générale;

20 11 est légitime et utile d’affranchir de 6, et de ¢, sur les
lignes conjuguées la fonction & intégrer dans cette formule;

3° On ne peut faire cet affranchissement qu’en divisant de
la maniere que nous avons adoptée (voir § 8);

40 Sauf une constante (équation 24) qu’il faut encore déter-
miner, on voit que les fonctions arbitraires de I'équation (25),
c’est-a-dire z,, ¥y,, 2, ne laissent pas d’incertitude sur I'intégrale
compléte.

Nous obtiendrons donc une formule générale d’intégrale
complete.

DETERMINATION DE LA CONSTANTE DE L'EQUATION (24).

16. — Déterminons la constante de 1'équation (24) par
comparaison avec le cas particulier, déja rappelé, des corps
de révolution. Dans le deuxiéme mémoire cité, les équations
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finales sont différentes pour les points conjugués « antérieurs »
et les points « postérieurs ». La séparation des dits y est donnée
par une ligne ayant pour équation:

95+
e 2

= max .

Ici I'élément analogue sera constitué par les points (sans
continuité et détachés) des lignes conjuguées, dans lesquels
on a:

B+ @c+1,

e *  =max, clest-a-dire: 0, + ¢, + n, = max (26 bis)

et pour cela, les coordonnées 0,5, ®max> Timax d€ Ces points
sont de nouveaux paramétres pour la distinction a faire ici.

En faisant usage de lindex ¢ au lieu de S, les équations
finales (18) et (18 bis) des dits mémoires deviennent:

ca %st7s
P 2-
. izm% e 2"
S t
AN ¢ SRR | »
ca ca \/ o 24 Os+ms
/ t y
| (27)
cp Os+'?]s t BS+T‘S
:E‘ZnipT% e *m 4+ ’ g 4m
— * Imax max
V,—0,_ = —+/2L e
= Ve bp 2 g G
e 2 e e 2T
max max

I'index S étant un index générique. L’index ca concerne les
points conjugués antérieurs et I'index cp les postérieurs. L est
la puissance lumineuse de la source. L’index ¢ se rapporte au
point de premier contact. 1.’index max concerne le point de la
ligne ou I'exponentielle est maximum. I’index 2 concerne les
coordonnées géographiques de certains anneaux parfaitement
obscurs (réels ou imaginaires) qu'on détermine par certaines
équations. C’est-a-dire que 2a est 'index d’un anneau antérieur
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et 2p d'un anneau postérieur. Le signe vertical de Cauchy!
concerne le remplacement de l'index S par l'index des coor-
données et la soustraction des valeurs. La diversité des deux
formules (27) est due a la nécessité de briser en deux parties une
certaine intégrale définie et de prendre chacune avec un signe
convenable.

Faisons donc la comparaison de la premiére des équa-
tions (27) avec I'équation (24). Nous pouvons ensuite répéter
les mémes raisonnements qui nous ont amené de la premiére
(27) a la deuxiéme, afin de faire la méme distinction ici aussi.
Comme le probléme particulier était & deux dimensions (0, 7)),
il n’y a pas de ¢ dans les équations (27), car il suffisait de
connaitre V dans le plan du premier méridien et tout point
de S était conjugué (o, = @, = 0). En plus, ici il ne peut pas
exister d’anneaux obscurs (réels ou imaginaires), mais seulement
des points obscurs isolés (réels ou imaginaires) sur les lignes
conjuguées, et caractérisables par trois coordonnées (a I'in-
dex 2). Les mémes raisonnements faits dans le mémoire rappelé
pour démontrer I'existence des anneaux (réels ou imaginaires),
c’est-a-dire que certaines équations posant V = 0 doivent
avoir des racines, ont ici leurs analogues. Par cela il est dé-
montré qu’il existe trois paramétres a index 2a utilisables ici
pour les points antérieurs, et six autres (trois & index 2p, trois
a index mazx) pour les points postérieurs:

A Og+og+1g

e] e
Lomi ?ﬂ e it
- e A t
V0 — s/ 1
ca ca \/ B 20 O+ @5+
e QTE
| t
{ - (28)
| ep O+ @stng ¢ Ostesrg
somil | & 4| e T
. 4 © 'max max
Voo — 9 __\/QL - g 0.+t
cp D p‘lp 2p 0, +os+7g t sT®sTh
‘: e Vs _l_ e Py
\ max max

1 Introduit en Italie par G. Peano, Caleolo infinitesimale, Turin.
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Remarque I. — Dans le mémoire rappelé, la fonction (24) a
été trouvée par la condition que ses dérivées premiéres par
rapport & 6, et par rapport & 7, (il n’y avait pas de p_) devaient
étre égales. Ici la condition imposée est que les dérivées compo-
sées de deuxiéme ordre soient égales. Mais toutes les dérivées
d’'un méme ordre sont égales.

Remarque 11. — Cette fonction (24) ou (28) est symétrique
par rapport aux grandeurs angulaires 0., ¢., 7., mais elle ne
I'est pas du tout si on passe a des coordonnées cartésiennes ou
lorsqu’on fait usage d’'une surface-obstacle donnée, car si
I'équation de la surface est, par exemple:

0. = 1log, o)

/ peut n’étre pas symétrique. En réalité, il ne faut pas faire
usage de cette équation de la surface, mais (au contraire) des
deux équations (8 bis) de toute ligne conjuguée, et celles-ci
aussi peuvent n’étre pas symétriques.

Dans le cas tout a fait général, ces angles sont indépendants
dans les formules, car on n’a pas encore choisi de surface; et
pour cela, jusqu’a I’heure ou on choisira, ils peuvent donc avoir
des valeurs quelconques et sans liaison déterminable. En fai-
sant usage au contraire, dans les cas particuliers, des deux
équations de toute ligne conjuguée, on éliminerait deux des
trois variables. Nous ne ferons pas cette élimination et il faut
aussi se rappeler que nous ne connaissons pas encore lesdites
deux équations sous une expression explicite, les équations
(8 bis) n’étant pas explicites. C’est pourquoi, étant ici en quéte
d’une intégrale compléte pour le cas général, nous envisagerons
6., ©., 1, en paramétres indépendants arbitraires de cette inté-
grale, c’est-a-dire selon le langage du calcul, en parameétres qui
peuvent prendre (le cas échéant) des valeurs opportunes. Seu-
lement dans 'appendice consacré a I'intégrale générale, & la
fin du mémoire, nous examinerons de plus preés les 0,, ¢., 7,
et leurs cas particuliers 0,5, ©5, M9} 0 0xs Prmaxs Mmax, €0 fone-
tion des données particulieres et méme par la considération de
leurs deux liaisons (8 bis), toutefois sans résoudre les diffi-
cultés du calcul.
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Remarque III. — Lorsqu’'on fait usage des coordonnées
cartésiennes r., ¥, 3., au lieu des 0,, ¢., 1., il faut retrancher
les m, n, p des analogues z,, ¥,, 2, si la source n’est pas dans
I'origine mais en (m, n, p).

Remarque 1V. — Comme nous avons fait usage, dans le cas
des corps de révolution, d’axes cartésiens spéciaux, on peut
craindre que les équations (28) aussi ne soient vraies que
pour des axes spéciaux. Remarquons a ce sujet qu’il s’agit
seulement de déterminer une constante, celle de I'équation (24).
Or, si on change les axes par des rotations quelconques et si on
fait toujours usage des équations (28) pour un point & index 2
(qui est aussi un point conjugué, ayant V, = 0), on voit aisé-
ment qu’elles deviennent:

elles nous satisfont donc toujours. Il nous était méme loisible
de déduire tout de suite de I'équation (24) ladite constante par
cette seule condition V, = V, = 0, mais nous n’aurions alors
ni résolu le doute sur le dénominateur des exposants, ni dis-
tingué les points antérieurs des postérieurs.

REsvuLTATS.

17. — Des équations (25) et (25 bis) on tire:

7 47T ;
: > i?{(xﬁxc)wsﬂgﬁk(y—yc)sineorox:poJr(zsz)sinBosincpo}
Ve—O
V=042 deﬁof dep,
3
0 —TT

2r?

et en faisant usage des équations (28) on déduit les intégrales
completes:
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10 Pour les points & points conjugués antérieurs:

o VE—m) + (y—m)2 + (z-p)?

- 5
2L.e '
v, =12 : N—— (29)
Viz—m)?* + (y —n)? + (z—p)
ca 954—@5-!-715
3 —am T T on . ..
’_E j:%rci_%-cf € am > 2] i}ll{(x_xc)mseo+(y—yc)smﬂoeus o+ (z—2,) sin O¢ sin cpo}
Vval. e t -
- d
212094 20 Yst@sting @0, B Yo
9 (3 '3
e i 0 -
t
20 Pour les points & points conjugués postérieurs:
Loni V(x-m)2+ (y—n)2+(z—p)2
v _ VaLe 3
p = : ) _
Vie—m)? + {y—n)* + (:— p)?
. - GSJ.-:szrn§ : 05+ @5+mg
. domi-F e T+ e *T
— ViLe " lmax e x méme intégrale (29 bis)
22 Pop o %+¢s+wj ; b5+ ps+mng 5

e 2t + e 2T

max max

Dans ces deux formules, les coordonnées cartésiennes sont
x, ¥, 2 pour le point donné de I'espace; elles sont z., y., z, pour
son point conjugué; elles sont m, n, p pour la source, et I’origine

o s Ps
en est arbitraire; 7, est une abréviation pour arc tang—-. Les

0., o, o, sont les coordonnées géographiques, avec pole dans la
source (§ 8) des points; coordonnées qui peuvent aisément étre
calculées en partant de (x, — m), (y, — n), (3, — p), et leur
index S devient:

¢ lors du point conjugué, 2a lors des points parfaitement
obscurs antérieurs, 2p lors des analogues postérieurs, ¢ lors du
premier contact, max lors des points ou devient max. la somme
0, + o, + M. L est la puissance lumineuse de la source,
i 'unité des nombres imaginaires, e la base des logarithmes de
Neper, A la longueur d’onde, 7 le rapport d’Archimede.
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APPENDICE.

Sur les procédés pour passer de U'intégrale compléte a U'intégrale
générale.

18. — Dans toute la troisieme région de I'espace, souvent
(éventuellement pour des raisons de symétrie géométrique) on
connait a priort les valeurs de z,, y,, 2, car elles sont les coor-
données du point de dernier contact des ondes avec I'obstacle.
Dans ce cas, I'intégrale compléte (29) ou (29 bis) est d’un
usage plus aisé que I'intégrale générale, et il n’y a maintenant
d’inconnu que les parameétres 0,, @5, 7, et pour ces points pos-
térieurs aussi 0., Prax, Nmax qui sont tous & déterminer
dans chaque cas particulier donné et par le moyen des équa-
tions qu’on a ébauchées. Dans la deuxieme région, s’il s’agit d’un
corps de révolution éclairé selon son axe, on peut, lorsque le
point donné (z, y, z) est trés voisin du corps, prendre par appro-
ximation x, = z, y, = ¥, %, = z. Cela supprime aussi la qua-
drature. Dans tous les autres cas, si on a fait la quadrature des
formules (29) et (29 bis) par des moyens capables de donner
des résultats simples, on peut passer & l'intégrale générale en
remplacant dans l'intégrale complete A les x, et y, par leurs
expressions tirées des deux équations (8), c’est-a-dire de:

0A _ o A _
Oz, 0y,

aprés avoir fait usage aussi de I’équation de la surface de
I'obstacle, soit:

ZC = Z(xcﬁ yc)

car ces équations (8) (voir remarque IV du § 6) donnent z,
et y, en fonction des z, y, 2 données.

Toujours dans des cas particuliers simples au moins, on
pourra éventuellement faire usage des deux équations (8 bis)
de toute ligne conjuguée et en déduire 0,,, ©o,, Mo, pour les
points antérieurs et Oy, ®o.,, N9y, Opax> Pmaxs Nmax POUT les



SUR LA DIFFRACTION PAR UN CORPS NOIR QUELCONQUE 261

points postérieurs; ces trois derniéres grandeurs par 1'équa-
tion aussi:

ema.x + chax + nmax = max

et les autres par un procédé analogue au procédé ébauché dans

le deuxiéme mémoire cité sur les corps de révolution (voir
son § 14, II).

Reggio en Calabre, ce 30 janvier 1940.
J’adresse & M. le prof. E. CHERBULIEZ, directeur des Archives,

des remerciements sincéres et trés vifs pour la revision de mon
texte au point de vue de la langue.
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