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* Ernest-C.-G. Stueckelberg. — Sur l’intégratic;n de l’équaiion:
Lo - | !

(Z Py lz) Q = — ¢ en utilisant la méthode de Sommerfeld*.
T %% _

Sotent X,, X,, X;, les trois coordonnées cartésiennes de
Pespace et t = —iX,, le temps (mesuré dans un systéme
d’unités ou la vitesse de la lumiére vaut 1). Alors I'équation
homogene pour Q(X,, X,, X;, X,)

4 .
(Zaig—ﬁ)Q=0 ' (1

1

est 'équation d’onde relativiste de Schroedinger. Nous nous
proposons d’abord de trouver une solution ¢(R) de cette
équation ne dépendant que de

I

4 :
R:=>X =X, +r2, r
1

.

3 ,
2 x? (2)
1

et qui disparait pbur R? - o . On vérifie facilement que

¢(R) = IR'K,(R) ~ (3)

1 Frank und v. Mises, Diff. Gleich. der mathematischen Physik,
2me éd., vol. 2, page 243.

C. R. Soc. phys. Genéve, vol. 56, 1939. IA
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ou K, (z) est une fonction de Bessel de la deuxieme espéce
pour un argument imaginaire définie par exemple en Watson 1.
(3) n’est défini d’abord que pour des valeurs réelles de X,,
tandis que le contenu physique d’espace-temps demande les
valeurs de ¢ (R) pour X, = it. Mais le prolongement analytique
de (3) est possible sur une surface de Riemann. Ses coupures
allant de X, = £ ¢-r jusqu’'a X, = £+ 10, r étant défini par
la racine positive de (2). Pour des valeurs réelles de R (racines
positives de (2)) ¢ (R) satisfait (1) partout sauf pour R = 0.
Pour résoudre I’équation inhomogéne

4 2 :
(S‘ _ZZ)QZ_P(Xls X27X3=t) (4)

21 2
1 aXi

qui devient ’équation des potentiels retardés de la théorie de
Mazxwell pour I = 0, et qui, avec I # 0 joue un rdle analogue
pour les forces nucléaires (théorie de Yukawa 2), nous appli-
quons le théoréme de Green dans I'espace euclidien quadri-
dimensionnel (X, = réel).

On trouve:

el

. . 1 p
du fait que ¢ devient oo comme g; pour R = 0. L’inté-

ffdxl dX,dX,dX, ¢(R) p(X; X, Xy, — iX,)
e (5)

gration sur dX, en (b) est & exécuter sur I'axe réel du plan
X, de — o a + . En se rappelant 3 que ¢ a la forme:

1 l

-+ seérie de puissances positives de R? (6) 4

on peut déformer le chemin d’intégration en un lacet allant
de X, =—mn—iw a X,=m—1itow autour du point
X, = — ur. L’intégration (5) du premier terme de (6) se réduit

1 WaTtsoN, Theory of Bessel Functions, page 80 (Cambridge, 1922).

2 Pour la littérature cf. STueckeLBeErG, H.P.A. 11, 225 et 299,
1938; Phys. Rev., 64, 889, 1938.

8 'WarTsoN, loc. cit.

¢ 'Warson, loc. cit.
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a un contour (pris au sens négatif) autour du point X, = —ir
et le théoréeme de Cauchy peut étre appliqué. La partie de (5)
due au second terme de (6) est & exécuter sur le plan de
Riemann. logR? augmente de — 27 en passant autour du
point. L’intégrale de la série ne donne pas de contribution.

Utilisant- la définition?! de 'iiZ I,(iZ) = %JI(Z), on obtient
pour () Pexpression

5mQ(0) = ["(]qusp(xlxzxst =7

r

-r SN
» o » 2 2
thdea:L dt zﬂi-/g_‘—__%’!)p(xlxzxa, By (7)
qui, pour / = 0, se réduit a la formule bien connue des poten-
tiels retardés de Maxwell. La solution correspondant au
potentiel avancé s’obtient en déformant le chemin d’inté-
gration en un lacet autour de X, = 4 i-r. Le résultat
est (7) si on pose t =+ r dans le premier terme et rem-
place les limites — o0 et — r parr et + « dans le deuxiéme
terme. Introduisant la fonction de Dirac 8(r + 1) et 3(r —1)
et la fonction v (r,?) qui n’est différente de 0 que si ¢t >r et
vaut 1 dans ce cas, on voit que formellement la «fonction »

D 2 = %{S(r +)— 80— )+

est solution de I'équation homogeéne (1). Elle ne différe de 0 que
pour des événements X,, X,, X3, ¢ & I'intérieur et sur 'hyper-
surface du cone de lumiére r2 — 2 = (.

La fonetion D joue un rdle important dans la quantification
des champs Q 23. Elle a été utilisée aussi dans la théorie des
positrons par Dirac 4.

WarTson, loc. cit.

STUECKELBERG, loc. cit.

Fierz, Helv. Phys. Acta, 12, 3, 1939.

Dirac, Proc. Camb. Phil. Soc, 30, 150, 1934. .
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