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ASTROPHYSIQUE THEORIQUE

CONSIDERATIONS
SUR LES EQUATIONS DE L’EQUILIBRE RADIATIF
ET DU TRANSFERT D’ENERGIE

PAR

Georges TIERCY

1. — Rappel. Les problémes qui se posent a propos de 1'équi-
libre radiatif stellaire sont résolus a 'aide de quelques équations
fondamentales, qui sont les suivantes:

a) I'équation de transfert d’énergie: -

dJ
dt

cos 0 - B—J;

b) I'équation de I'équilibre radiatif:
€ 1
—_— _— J B 3
—=B— — f (x, 0) . do ;

¢) l'expression du flux radial:

F———IJ(T,B).COSG.dm.
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Lorsque la matiére présente une symétrie sphérique autour
du centre, on utilise volontiers la solution que voicil:

cos§ dB _ o dB
ke dr dx

(solution de I’équation de transfert) ,

J =B — cos 6 , (1)

A 4—: - B, (densité d’énergie) , (2)
e_ 1 1 d/r? dB 2 (3)
ko 3ko r2 dr(kp dr )’

(solution de I’équation d’équilibre radiatif) ,
4w dB 4n dB
= e T T T3 d= %)
(expression du flux radial) ,
; b ; T
P = g, B, (pression de radiation) ; (5)

J est 'intensité de la radiation, B celle du rayonnement noir,
caractérisé, comme on sait, par la relation:

— % ma
B=2.T1, (6)

ou T est la température absolue; 47we est I'énergie libérée par
unité de masse et par seconde; c¢ la vitesse de la lumiere, et
k le coeflicient d’absorption avec I'hypothese du corps gris.
On utilise couramment la variable = définie par I'égalité:

dv = kpdr ; (7)
les équations (1), (3) et (4) s’écrivent alors respectivement:

Jd=B—cos 6.B(1), (8)

g 11d’2dB
=5 A a"m) )
F=—2CB() ; (10)

1 G. Tiercy, Léquilibre radiatif dans les €toiles. Gauthier-Villars,
Paris, 1935, p. 151.
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et dans le cas ou il est possible de négliger la courbure de la
surface, c’est-a-dire dans les couches périphériques d’une étoile
de grand rayon, I'équation de I’équilibre radiatif prend la
forme trés simple relative a la stratification en couches planes:
B” (T)

=—=". (11)

= o

11 est évident que € est une fonction de 7. En premiére appro-
ximation, les choses se simplifient notablement, grace au fait
que, dans les conditions stellaires, la valeur de ¢ est tres petite
par rapport a celle de B (1), comme 1’a montré M. Eddington;
dans la partie périphérique de I'étoile, on a € = 0 et I'on peut
poser:

B(x) = a, + a,7 , ‘ _ (12)

ou a, et a, sont des constantes; cette forme est encore valable,
avec une bonne appfoximation, loin au-dessous de la surface,
a cause de la petitesse de . _

I1 faut cependant remarquer que l'expression (12) a été
obtenue en admettant que B (1) fut développable en série
suivant les puissances de t; cette hypothése est tout a fait
admissible en ce qui concerne l'intérieur de la masse stellaire,
c’est-a-dire tant que T ne prend pas des valeurs infiniment
petites; lorsque = est trés petit, ¢’est-a-dire pour la « pellicule »
de surface, il se produit, comme nous I'avons montré 1, une
chute brusque de température; et le développement de B (1)
en série de Taylor n’est plus admissible; Ia fonction admet une
singularité pour © = 0, en ce sens que sa dérivée B’ (1) devient
infinie, B (0) restant finie.

Lorsqu’il s’agit du flux de surface, cette singularité n’est
guére génante, car B (0) posséde une valeur bien connue, qui
est seule importante.

2. — Du jeu des équations. — La solution courante des pro-
blémes s’obtient essentiellement en combinant les équations de

v Loc. cit., p. 386.
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transfert et d’équilibre radiatif '; admettant la fo_rme réduite
B(t) = a, + ay7

comme solution de I'équation d’équilibre, on porte cette forme
dans 'expression qui donne la solution de I'équation de trans-
fert:

T

3 (‘l.', e) — e*TSeCG f.B (t) . elSECO .secO.dt + J (Tlv e) . e—(‘r—‘cl) sec o ,
31

ou I'on fait ;=0 a la frontiére du corps:

I (v, 8) = ’ B (t) . e8¢0 secf.dt + J(0,0) .50
0
on tient alors compte du fait qu’il doit y avoir raccord entre

le flux ainsi calculé et le flux de surface; on trouve, aprés deux
approximations successives 2:

lg Mg o gt
B(T)_—16J+32J ( u)i/lGL (1——141:),
3 (=, 6) :1-76:'_2_72.5 (f a0 e), (13)

ou & est déterminé par F = & F étant le flux total. On a
donc déterminé les valeurs de a; et a,; les formules (13) sont
celles qui nous ont servi & établir un raccord numérique entre
la solution polytropique valable au coeur de I'étoile jusqu’a

14

o= %ro et la solution valable dans la couche périphérique.

Le jeu consiste donc a passer de I'une a I'autre des deux
équations principales, en procédant par approximations succes-
sives.

Mais on voit bien le défaut du procédé: d’une part, € n’est
nul que dans la partie périphérique; d’autre part, la fonction
B () présente une singularité de surface.

1 G. TiErcy, loc. cit., p. 153 et p. 383.
* Ibid., p. 385.
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3. — Considérations sur ¢ et B. Reprenons 1'équation appro-
chée (3) de I'équilibre radiatif:
e _ 4 1 4/ B
k  3ke r* dr\ke dr)’

au lieu de I’équation réduite (11) des couches planes. On peut
envisager ici deux problémes: ou bien donner la valeur de ¢/k en
fonction de t et chercher I'expression correspondante de B,
ou bien trouver la fonction ¢ (1) en tirant parti de renseigne-
ments connus sur B.

Le premier de ces problémes -a été soulevé par J.-H. Jeans
en 19261; on trouve la solution 2:

k d 2 175  d=* T

A

en appliquant la méthode du retour des séries a la relation
établie pour le cas de la stratification en couches planes:

k__[S + = tam o |

et qui donne I'équation (11) par abandon des dérivées de B
d’ordre supérieur au deuxiéme.

Nous aborderons ci-aprés le second probléme; nous cherchons
donc a exprimer ¢ en fonction de <, en utilisant I'équation (3)
et ce que l'on sait de B (7).

L’équation (3) peut étre écrite comme suit:

d/1 dB 2 1 dB
EFG;'EF) Sl Rtk LR (14
Posons alors:
1 dB _dB _ dU (15)

e @ —dv T dr

en rappelant que p et % sont des fonctions de 7, et que le rapport
/T3 reste constant dans toute la masse lorsque la classe poly-
tropique est n = 3.

1 Monthly Notices, 86.
? G. Tiercy, loc. cit., p. 140.

ARCHIVES, Vol. 21, — Mai-Juin 1939. 9
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L’équation de I'équilibre radiatif devient:

%—I—%%—[—?jspz(), (16)
dont les deux premiers termes ont la méme forme que ceux
de I'équation d’Emden rencontrée dans 1’étude des équilibres
polytropiques.

Le probleme & résoudre est le suivant: peut-on trouver une
expression de ¢ en fonction du rayon, telle qu'on ait ¢ =0
a partir d’une certaine valeur du rayon ? L’étude de la consti-
tution d’une étoile montre que I'énergie L, libérée par une
sphére de rayon r passe par un maximum L_, pour un rayon r”;

X 5 . 3 s
cette valeur r” est elle-méme inférieure & la valeur r' = - ro qui
+

marque la limite d’applicabilité de la solution polytropique
dans le noyau !; le calcul montre que 7” atteint a peine 0,5 ro;
L,. étant maximum, on a alors pour le taux de libération
d’énergie: 4me = 0.

Nous avons d’ailleurs montré, dans I'ouvrage cité, que L,.
vaut 2 environ les 3/5 de la radiation maximum L,”; comme il
ne saurait étre question de faire ¢ << 0 en dehors de la sphére ",
on est amené a considérer L., comme égale & la puissance effec-
tivement rayonnée et mesurée L, et a faire ¢ = 0 a I'extérieur
de la sphere r”; de telle sorte que la solution polytropique du
noyau ne serait en réalité applicable que jusqu’a r”, et non pas
jusqu’a r’. A partir de r”, il faudrait adopter une autre solution,
conservant la valeur L, = L de la puissance rayonnée et se rac-
cordant sur la sphére r”, en ce qui concerne les T et les g, avec
la solution polytropique valable dans la partie centrale. Mais,
comme L, . est du méme ordre de grandeur que L., on voit vite
que la distribution des températures entre r” et ', quelle que soit
la solution adoptée & I'extérieur de la sphére r”, ne serait pas

tres différente de la distribution obtenue en appliquant la solu-
: : . Y y 3

tion polytropique jusqu’a la valeur r' = 770 du rayon; les

valeurs respectives de T” seraient comparables. Aussi, pratique-

1 Voir G. Tiercy, loc. cit., p. 234 a 240.
2 r’ est le rayon pour lequel T = 10%; en dehors de la sphére r/, il
n’y a plus que le 0,839, de la masse de I’étoile.
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ment, pourra-t-on utiliser la solution polytropique jusqu’a la
sphére r’, sur laquelle T” est de 'ordre de grandeur de 10° degrés,
comme on sait. Ainsi s est positif a 'intérieur de la sphére r”,
et devient nul pour r” (ou pour ', comme on vient de voir);
mais, d’autre part, on sait que le coefficient 4 d’absorption
augmente lorsqu’on va du centre a la périphérie; il s’ensuit
que le quotient e/k est fonction du rayon, fonction qui s’annule
pour " (ou r'); si 'on pouvait préciser le type de cette fonction,
il serait possible de trouver la distribution de T en profondeur.
(’est bien 1a notre probléme.

La question se complique du fait que la fonction B (<) pré-
sente une singularité a la surface, comme on I’a rappelé au n° 1.

4. — Résolution de I'équation (16):

d? U 2 duUu

dr? +I‘ W+3sp:0 (16)
Posons:
AU _dB _
dr dt ’
Péquation devient:
dX 2
ot X +3ep=0. (17)

Une solution particuliere de 1'équation privée de second

membre:
PO
dar r
est:
, 1
X = —75 3

, dY
X_ L] dr L BEP P
dy 3
i 3epr? , (18)
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d’ou:

"
dB 3 g -

= ’ —_ —_ J 2
X=X.Y =+ rgb[‘spr'df', (20)

const. <
= danslecasou e =0, c’est-

expression qui se réduita X =

a-dire lorsqu’il n’y a plus aucune énergie libérée; c’est ce qui
arrive en dehors de la sphére de rayon r” dont nous avons parlé
au numéro précédent; alors, on voit, d’apres I'équation (4),
que le flux radial varie comme 1/r?, comme cela doit étre
puisque la puissance rayonnée L ne varie plus.

Si, en plus, le rayon est assez grand pour qu’on puisse négliger
la courbure des couches intéressées et considérer celles-ci comme
planes, 'expression de X se réduit a une constante a, et 'on a:

sous réserve de la singularité de surface, dont nous reparlerons
plus loin.

La solution (20) sera valable jusqu’a r” (ou r’), valeur a
partir de laquelle on a ¢ = 0.
4
Rappelons qu'on a aussi: B = %, et que p'/T3 reste constant

dans toute la masse du noyau, si la classe polytropique est 3;
ce qui donne, avec dt = kpdr:

dB dT
5. — De la forme de B (7) imposée par les faits de surface.
t. -
Prenons le cas de e =0, pour lequel X = % ; nous écrirons:
ry  dB
P i g e e OO -
;X e aZ r2 dT L) (21’

expression qui se réduit a gli = a, pour la surface. Pour I'hypo-

thése des couches planes, cette derniére valeur de la dérivée
reste valable en profondeur et 'on a:

B =ga + a7 (22)
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sous la réserve indiquée pour t = 0; cette solution approchée
ne s’applique pas, en effet, a la périphérie extréme de la photo-

. , b 3 ; 5 : dB
sphere; la nécessité d’obtenir une valeur infiniment grande de s

a la surface entraine a compléter (22) en lui ajoutant un terme
logarithmique:

B(zx) = a; + a7t + At Log (— 1) ; (23)

nous conservons ici la notation de nos précédentes recherches,
ou T est compté positivement vers I'extérieur 1; comme on part
de la surface (t = 0) pour s’enfoncer dans la masse, la quantité
(— 1) est positive. Les valeurs a, et a, sont celles que nous avons
déterminées en seconde approximation? :

97

¥.7 4+ At Log{— 1), (24)

7 .
Blt) = 5. —55°

le flux net a la surface valant F = & dérivant par rapport & 7,
on a done:

dB 4 dA
o = + a + A[1 + Log (— )] + oo TLog(—q). (25

Conservons en profondeur, au moins jusqu'a v = 7', la forme
(24) imposée par les faits relatifs a la pellicule limite; nous
introduisons ainsi une correction au terme en t de (22); mais
il ne faut pas oublier que la forme (22) n’était qu’approchée en
profondeur, ou B” (1) es trés petit, mais non nul, et ot la symé-
trie est sphérique. La correction revient a remplacer le coefficient

a, par un coefficient variable:

7 - ;
B(x) = 57 + 7[a, + A Log (— 7)] - (26)

Remarquons que:
lim|(— 7} Log (— 7)| = 0,
lim [ (— =) Log (— 7]

de sorte que:

on obtient bien la valeur convenable de B pour la surface.

L Loc. cit., p. 183, 155, 379.
2 Loc. cit., p. 385.
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Dans I'expression (26), le terme complémentaire At Leg (-7)
est d’abord nul, pour v = 0. Considérons pour l'instant le cas
de A constant et positif.

On connait la courbe de variation de la fonction y = x Log x;
la valeur de y change de signe pour z = 1; le minimum a lieu

1 s i
pour z = —, la dérivée par rapport a x étant:

Logax + 1.

La fonction Y = At Log (— 1) = — A(—~1) Log (— %)
= — Az Logx, dont la dérivée par rapport a (— 1) est
Y. = —A[Log (— 1) + 1], présente un maximum % pour
_e=1_ 0,37.

e

Ainsi, lorsqu’on s’enfonce sous la surface, alors que le terme
ay7, de valeur positive, de (26) devient de plus en plus grand en
méme temps que la température augmente, le terme complé-
mentaire A t Log (— t) vient tout d’abord en addition du pré-
cédent jusqu'a (— ) =1, aprés quoi il devient négatif et
diminue I'effet du terme précédent.

Mais remarquons que le domaine de (— 7) qui va de 0 a 1 est
fort peu de chose. On sait que, si I'on utilise la variable &
d’Emden pour le rayon, on a 1:

ol o et u, sont des constantes; celles-ci sont telles que le
rayon total r, de l'étoile correspond & £, =6,9; et dans la
couche 2 allant de £ =6,888 a £ = 6,886 la variable (— 1)
passe de la valeur 0 a 14,72; or cette couche est la pellicule
limite, dans laquelle se produit la chute brusque de tempéra-
ture 3; cette pellicule est trés mince; cependant, la valeur
(— ) =1 ne représente que le 1/;; environ de son épaisseur.

1 G. Tiercy, loc. cit.

2 G. Tiercy, loc. cit., p. 387.

8 La température passant, par exemple, de T = 9700° a
T = 4200°.
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Considérons le dernier terme de (26): A T Log (— 71); il est

positif jusqu’a (— 1) = 1; sa valeur maximum est ‘% = 0,87 Az

elle est atteinte pour (— 1) = —lc; == (). 3,
Considérons maintenant la valeur correspondante du second

terme de (26), c’est-a-dire %57 (—7T), ou ¥ = %Tz et
o = {b.75) ; 10_5; si 'on admet par exemple une température

effective de 5000°, on trouve que & = (0,1144).101'; ainsi le

second terme de (26) vaut, pour (— 1) = —3; :

27

53 (0,1144) 101, i — (0,0357) . 101 ~ (0,4) . 10 .

On voit qu’en prenant A < 0,4.1010 le dernier terme de (26)

- 1
restera en valeur absolue, inférieur au second pour (—7) = -

Mais il n’en sera plus de méme a la longue, ¢’est-a-dire lorsque
(— =) augmentera; le crochet de (26) pourra devenir positif
pour (— 7) suffisamment grand; de telle sorte que B (1) dimi-
nuera finalement lorsqu’on s’approchera du centre de I'étoile.

Cela veut dire que l'effet du terme complémentaire de (26),
avec A constant positif, sera d’accentuer I'accroissement de
température dans la pellicule de surface en pénétrant sous
celle-c1 (c’est bien ce qu’il faut), mais de provoquer une dimi-
nution de T pres du centre 1. Il faudra donc choisir A suffi-
samment petit pour que, malgré 'augmentation de Log (— <),
le crochet de (26) reste négatif; mais, de toute facon, la valeur
absolue de ce crochet diminuera dans les régions profondes de la
masse. Nous verrons d’ailleurs au numéro suivant qu'une petite
valeur numérique de A serait incompatible avec une nouvelle
exigence que nous allons justement étudier, du moins lorsqu’on
utilise les équations courantes de solution.

6. — De la quantité 3cp qui figure dans Uéquation du n° 4.

Conservons un instant '’hypothése de A constant et positif;
quelle que soit la valeur attribuée a cette constante, la présence

1 On s’arrétera d’ailleurs au niveau v = <.
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du terme [T Log (— '-)] dans (26) assure une valeur négative
infiniment grande a % quand on fait T = 0, ce qui est essentiel.

Il s’agit maintenant de voir si I'on peut trouver une loi de
répartition de ep correspondant a (26), et permettant d’obtenir
e = 0 sur la sphére de rayon 7" ou 7', comme on a dit au n° 3.

On a vu par (20) que:

XZX'.Y:@, avec X’—_—i;
dt r2
1l vient donc;
dB
e R e
Y-—IX—-rdT, (27)

Or, (26) donne, avec A quelconque, fonction de t:

dB
— = + A1 + Log (— )] + tLog(—7) .~ , (28)

expression qui se réduit a la suivante dans I’hypothése de A
constant:

dB ,
T =+ A[1 + Log (— 7] . (29)

Il vient ainsi:

Y = r2{a, + A1 + Log(— )]}, (30)

et par dérivation par rapport a r:

%—?‘I = 21'{4512 -I—A[i + Log(—-r)]}—]— Arz-%--d— :

Or, on a par (7):

dr
= ke
d’ou1 I'expression:
dy kert
5 = 27{a, + A[1 + Log(— 7]} + A — (31

et comme, a cause de (18), le premier membre de (31) est égal
4 (— 3epr?), on trouve la relation:
Akp

3ep = 2{—a,—A[1 + Log(— %]} — 258 . (39)
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On aurait ainsi, sous réserve du choix de A, la valeur de zp,

. 57 s
ou a, conserve sa valeur — a5 "

Cette valeur (32) peut-elle devenir nulle pour r” ou pour
r' = 0,725 r, ? La question est essentielle.

On sait qu’avec les variables d’Emden, la valeur r’ = 0,725 r,
correspond & £ = 5, alors qu’a la surface on a &, = 6,90; prati-
quement, on prendra £, = 6,888 qui correspond & la température
T, de surface, température non nulle 1.

D’autre part, on a calculé 2 que, pour I'étoile Capella ou la
température effective T, vaut 5200° et ou T, = 4230°, I'opacité
totale (— t) correspondant a & =5 est égale a (2,159) . 109;
avec ces valeurs, et en rappelant que JF = (0,1144) .10 dans le
cas de Capella, on tire de (32):

2w -
90 e < gy [OMASE) . ADS — AR Lo (A150) <400 ¢+
- Akp
ey 33
+ ([2.159) . 10° (33)

11 est nécessaire de rappeler ici les notations utilisées dans la
solution polytropique 3; £ et < étant les variables d’Emden;
on a, pour la classe n = 3.

o g B E= E t
e uc¢ i r T, ; e
Ky g
k P

o et u, sont des constantes, de méme que kj; dans le cas de
Capella, u, — 0,500, ";1 — (11,82) . 105, et r, — (9,5). 101 em.

Enfin, pour &' = 5, ¢’est-a-dire pour r =r’, on a encore:

¢’ = 0,11079 (table d’Emden) ,
T = 1.100.000° ,

1 G. Tiercy, loc. cit., p. 156.
* G. Tiercy, loc. cit., p. 387.
8 G. Tiercy, loc. cit., divers paragraphes.
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d’ou:
‘ o’ = (0,53. (0,11079)3 = 0,00017 ,
? (T2 = (1,39594) . 1021 |
| kK = 144 .

I

L’égalité (33) s*écrit alors:

0,005 . ¢ = el [3’0888.. o —a (14 W)] +

(6,8875) . 1011 32 0,4342945
A . (0,02448)
(2,159) . 10° °
ou bien:
0,29038 1,134
0,0005'1 . 8 = 0,028 - A(1 + 21,493) _—m—ll—- -+ . 1011‘ s
. 5,474
0,00051 . ¢ = 0,028 — A . S, (34)

Si, dans cette égalité qui correspond a £ =5, on fait
A = A" = (0,5115) . 10% on obtient ¢ = 0.

Mais cette valeur positive constante de A fait que le crochet
de la relation (26) s’annule et devient positif trés vite, entre 7,
et r’, alors que ce crochet doit rester négatif, comme on I'a dit
a la fin du numéro 5. Cette valeur de A est donc trop grande
pour satisfaire & la condition du n° 5; mais si 'on prend A plus
petit que A" = (0,5115) . 10% la quantité ¢ ne sera pas nulle
pour £ = 5. Il y a contradiction entre les deux exigences.

La solution avec A constant dans toute I'étoile n’est donc pas
satisfaisante; du moins lorsqu’on fait le calcul au moyen de
I’équation (3) ou (14), qui est une forme approchée de I'équation
de I'équilibre radiatif. I1 faut alors reprendre la relation (26),
avec I'idée que A est une fonction de 7. C'est ce que nous essaye-
rons dans les numéros, 8, 9, 10 et 11.

7. — Les conditions d remplir. Faisons tout d’abord le tableau
des conditions a satisfaire par la fonction B (7):

10 La valeur B (0) est finie; ou la mesure par le flux total
extérieur;
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20 La dérivée B’ (1) doit prendre une valeur négative tres
grande & la surface, pour v = 0;

30 Il faut que € = 0 pour la valeur 7" ou r’ du rayon, et pour
- B Y

40 11 faut enfin que cette fonction B (t) donne une valeur
convenable finie pour lintensité du flux, désignée par
J(t, 0), ou 6 désigne I'angle formé par la radiation
considérée avec le rayon. '

Les deux premiéres conditions sont facilement satisfaites,
abstraction faite de la troisieme; elles le sont méme avec A
constant.

Nous reprendrons plus loin, aux n° 9 & 13, I'étude de la
troisitme condition, étude déja amorcée au n° 6.

Quant a la quatrieme condition, il n’en a pas encore été ques-
tion dans ce qui précede; nous allons Tui consacrer le numéro 8.

8. — Lintensité I (1, 0) du flux rayonnant, et la singularité
de surface de la fonction B (t). L’équation de transfert d’énergie
s’écrit, comme on sait:

dd
dt

cos b =B —J ;

nous avons rappelé au n°1 que la solution usuelle est la suivante,
tant dans le cas des couches planes que dans celui de la symsétrie
sphérique:

J(7,0) = B (1) —cos 6.8’ (7) ; (35)

mais cette solution n’est valable a la surface que si la fonction
B (t) ne présente pas de singularité pour v = 0; c’est le cas
pour I'approximation linéaire souvent utilisée:

B(t) = a, + a7, (36)

que Pon choisit aprés avoir constaté que la dérivée seconde
B” (1) reste en moyenne trés petite devant B (t) dans I'intérieur
profond de I’étoile, et s’annule en vertu de I'équation (3)
lorsque ¢ = 0, c’est-a-dire dans la partie extérieure de I'étoile
ou il n’y a plus aucune libération d’énergie.
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Nous avons dit au n°® 5 que les faits de surface suggerent
d’ajouter a B (1) un terme complémentaire; la fonction devient:

B(t) = a; + ayt + At Log (— 1) , (37)

de telle sorte que B (0) conserve sa valeur finie, tandis que
B’ (1) prend une valeur négative trés grande pour t = 0.

I1 est alors visible que I’expression (37) donne a </ (0, 0) une
valeur extrémement grande, du moins si 'on conserve la rela-
tion (35) comme solution de I’équation de transfert d’énergie.
Cette expression (35) n’est donc pas satisfaisante pour la pelli-
cule de surface; la premiére chose & faire est ainsi de chercher
une forme plus convenable pour J(z, 0).

La solution compléte de I'équation de transfert s’écrit, comme
on sait:

J(t,0) = ¢ 75€0H /'B(z) . e!%0 500 B L dt + I (1, 0) . eT1TEISECE

T1 R
(38)
ou I'on admet connaitre la valeur J (t;, 0) de I'intensité du flux
pour un certain niveau caractérisé par la valeur 7; de 'opacité.
Dans le cas d’une étoile, c’est a la frontiére (1, = 0) que I'on

peut connaitre I'intensité; de sorte que nous écrirons la solution
sous la forme:

T
J(t, 8) = ‘fB(z) T T8eC0 g0 g dr + (0, 0) . e 750 (39)
0

ou t prend alors des valeurs négatives puisqu’on pénétre sous
la surface; autrement dit, la quantité (— 1) augmente de plus
en plus & mesure que I'on s’approche du centre de I'étoile.

En général, on utilise la forme (38); et 'on suppose donnée
I'intensité <J (1,, 0) & un niveau trés bas au-dessous de la fron-
tiére; on considére alors que le dernier terme de (38) est négli-
geable, & cause de I’énorme valeur négative de 7;; et 'on ne
conserve que le premier terme du second membre, en remplacant
T, par — oo a la limite inférieure de I'intégrale; c’est ainsi que
I'on est conduit & la solution (35) en supposant encore B (7)
développable en série.
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Remarquons ici qu’on peut se demander si 'on a vraiment
le droit d’abandonner le dernier terme de (38), car on ne sait
rien de I'ordre de grandeur de J (7, 0).

Nous nous proposons d’utiliser la formule (39), ol le terme
intégré n’est pas négligeable 1; I'emploi de cette relation (39)
sous-entend que I'on connait P'intensité J (0, 0) a la trontiére
du corps; nous dirons plus loin comment on en a connaissance
effectivement.

Tout d’abord, cherchons & simplifier la relation (39); posant:

(t—t)sec® = ¢, sec0.dt = d¢ ,

on obtient:

0
J(r, 0) ZI B(t + ¢ cos 6) -ed"d!.l) + J(0, ) _gTsect :

—rsecd

ne nous préoccupons pas pour l'instant du fait que la fonction
B (1) pourrait présenter une singularité pour v = 0; et suppo-
sons-la développable en série, comme on le fait ordinairement;
il vient: '

¢ . cos 0
1

$2 . cos® 6

Bt + dcos0) = B(r) + B’ (7) + 1 2—B"(‘c) +...;

de sorte qu’apres intégration, et en tenant compte du fait que
B” (1) est un nombre trés petit en moyenne devant B (7),
c’'est-a-dire que B” (1) est négligeable pratiquement, on trouve
pour J (7, 0) expression:

J(r, 0) = B(r).[1 — ™% 1 %
(40)

+cos 0.8 (7). [—1 + 7O (rsec® + 1)] + JT(0, 6) . ¢TI0,
ou encore:

J(r, 8) = B(t) —cos 0. B (1) +

(41)
4+ ¢SO _B (1) + cos 0. B (7). {zsec 8 + 1} + J(0, 6)] .

L G. Tiercy, C. R. de la Société de Physique et d’Histoire naturelle,
Geneéve, 1938, 1.
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Telle est la nouvelle expression que nous employerons pour
I'intensité.

Remarquons en passant que, si I'on adopte pour B (1) la
forme linéaire (36), le crochet du second membre de (41) se
réduit 4 une constante; et il arrive que cette constante est nulle,
comme 1l est facile de le voir.

Pour cela, il faut connaitre la valeur de I'intensité de surface
J (0, 0); celle-ci peut étre obtenue expérimentalement, grace a
I'observation attentive du disque solaire; on constate en effet
que l'intensité de la radiation partant dans la direction de
Pobservateur varie avec la distance au centre du disque visuel;
le bord du disque est assombri; et la loi de cet assombrissement
est la suivante:

JO,0) 1% . 27 )
3 — S & 9
J0,0) a1 Tar e (42)

c¢’est 1a une relation expérimentale, ot J(0,0) est I'intensité au
centre du disque. On trouve d’ailleurs immédiatement que:

41 _
il = s i
(0.0 = =7, (43)
ou Pon a: 7% = F = flux total de surface = T}; en effet,
il vient:
1
G =F = 2x [J(0,0).cos0.5in6.d0,
0
¢’est-a-dire, grace a (42):
29
Fo— ol
f (0, 0) i
On a donc finalement:
1(0, 0) = —= F + L5 . cos B (44)
el e SR " iy 32" ° '

Telle est la formule pratique fournie par I'observation du
disque solaire 1.

1 G. Tiercy, L’équilibre radiatif dans les étoiles, p. 384 et p. 408.
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Or, cette relation reste évidemment valable pour le probleme
qul nous occupe, ol nous avons justement besoin de connaitre
la variation de l'intensité en fonction de 0.

D’autre part, il est facile de voir qu’avec I'approximation
linéaire habituelle de B (1), ¢’est-a-dire :

7 27 _

B(T):if)d'_—éid'.'r; (45)

le crochet de (41) est nul, et que Pexpression de J (t, 0) se
réduit a (35).

Mais revenons & I'expression (37) de B (t), avec le terme
complémentaire At Log (— 7); la dérivée devient infinie néga-
tive pour T = 0, si A est convenablement choisi. Remarquons
que dans la nouvelle formule (40), le coefficient de B’ (7)
devient nul pour © = 0; de sorte que, avec la forme linéaire (36)
ou (45), il vient:

J(0,0) = J(0, 0) .

Or cela est encore vrai si I'on tient compte de la singularité de
B (1) imposée par les faits de surface; on a:

B(x) = a,+a -+ AtLog (— 1),

B'(t) = a, + A[1 + Log(— 7] + g% .t Log (— 1) ;
nous admettrons pour I'instant ! que la fonction A ne devient
pas elle-méme infinie pour v = 0; on a d’ailleurs B (0) = ay;
tandis que la fonction B’ (1) contient un terme en Log (— 1),
qui devient infini pour T = 0; cependant le terme en B’ (7) de la
formule (40) disparait encore; car la vraie valeur du produit

Log (— 7). [—1 + ¢775% (z sec 6§ + 1)]
pour T = 0 est nulle, comme il est facile de s’en assurer. Ainsi

Pexpression (40) peut étre conservée a la surface, ou 'expérience
donne la valeur (44).

1 Voir au n° 12.
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Mais 1l y a mieux; il faut chercher & ramener la formule (40)
a la forme (35) pour les valeurs de (— ) n’appartenant pas a la
pellicule extréme de surface; on sait que la pellicule extérieure,
dans laquelle se produit une chute brusque de température a
Papproche de la surface photosphérique, correspond ! aux
valeurs de (— 1) comprises entre 0 et 15, domaine pour lequel
la variable £ d’Emden varie 2 de 6,888 a 6,886; il s’agit de
considérer maintenant des valeurs de t telles que — 7 > 15.

Nous admettrons que le coefficient A de I'égalité (37) est
une fonction de t a choisir; et nous poserons, pour — 7t > 15:
+ C

A= = Log (— 1)

: (46)

c’est-a-dire:
+ C = ArLog (— ), (47)

out nous prendrons C < 0, comme on verra au n° 13.

Avec cette valeur de A, la fonction (37) devient linéaire en :

B(x) = (&, + C) + ay7 , (48)

analogue a I'expression (13) de B(t) que nous avons donnée, en
seconde approximation, dans notre ouvrage cité 2, et qui corres-
pond au cas ou la courbure des couches peut étre négligée,
comme cela arrive pour les couches extérieures de I'étoile.

Il faut remarquer ici que la formule (48) ne sera pas utilisable
jusqu’aux régions les plus profondes de I'étoile, ou la courbure
des couches n’est plus négligeable; la formule ne sera appliquée
que jusqu’a la couche ou v = 7', au-dessous de laquelle on peut
appliquer la solution polytropique.

Quant a la valeur de la constante C, on pourra la prendre tres

petite a coté de a,, comme on verra au n° 13; par exemple, on
pourra faire C = —1.

1 G. Tiercy, L’équilibre radiatif dans les étoiles, loc. cit., p. 387.
2 Idem, p. 387.
3 G. TiErcy, loc. cut., p. 385.
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r

Ainsi, en profondeur (du moins jusqu’a la valeur 7 = 1),
on aura la solution habituelle:

Bt} = (E%ZT‘FE—C)ﬁ?_?ﬁ'T :

pour la pellicule de surface (— t < 15), on partira de la valeur

C

A5 = — 13 Log 15 °

valable pour — 1 = 15; dés lors, de — 1t =154 v =0, on
remplacera C par une fonection convenable T, qui ne sera pas
autre chose ! que 7 Log (— 7).

Il va sans dire que, dans les conditions créées par I'adoption
de la relation (46), la dérivée B” (t) reste constamment nulle
pour — 7 > 15, méme lorsque (— t) devient trés grand; et
I'on a pour l'intensité, comme le veut I'expression (35):

J(r, 0) = (ag + C) + ay (x — cos 6) . (49)

On peut d’ailleurs arriver a I'expression (46) de A justement
en exigeant que <J(t, 0) se réduise a (35). Partons en effet de
Pexpression (39) de J (z, 0), en intégrant de t;, = —1bat;eny
faisant encore (t — 1) sec 6 = ¢, on trouve la relation suivante
a la place de (40):

J(v, 0 = B(7) . [1 _ 8(11—1)5800] &
+ cos 0. B/(z) . [—1 + e(n—ﬂsece{i — (7 — 7) sec 9}] +

+ J(m, 0) . p(F1-7)sech
ou encore, au lieu de (41):

J(r,0) = B{r) —cos 6.B" () + e
+ e(‘:l—‘:)secﬁ [__ B(T) + B,(T) .{COS 0 — (71 — T)}—I— J(_Tln 6):] 0\ (50)

i

1 Voir au n° 13.

ArcHIVES., Vol, 21, — Mai-Juin 1939. 10
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si I'on veut que J (1, 0) se réduise aux deux premiers termes,
il faut que le erochet de 'expression ci-dessus soit nul; il restera
alors:

J(,0) = a, + a,7+ Ar Log (— =) —

?

—cose.%az—;—A—%—AL()g(—'r)—I—Z—i.TLog(-—r)

d’ou:
J(t,0) = a, + A7, Log (— 7,) + a,(r; — cos 0) —

i

_ (| & L
cose.(,dTAr Log (— 1)

2
IT=T1

en écrivant que le crochet de (50) est nul, on a I’équation:

At Log (— =) — At Log (—7) + (cos® — 7, + 7). %Ar Log (— =) —

_ & s —
cosB.(dTA'c Log (— 7) ,gn:*:_ 0,

(51)

qui est visiblement satisfaite par 'expression (46):
At Log (— ) = const = QG .
L’égalité (50) devient ainsi (49):
J(t, 0 = ¢ + C 4 ay(t—cos 6) ,
expression qui donne bien la valeur voulue:
J(0, 6) = a;—ay,cos 0,

si G est remplacée par une fonction tendant vers zéro avec =
dans la pellicule de surface (voir n° 13).

9. — La condition ¢ =0, de r =r" a — 1 =15. Une
complication nouvelle surgit ici.
La forme (48) de B () a été admise dés que — 7t > 15:

B(t) = a, + C 4+ ay7,

) 7 27
/ = . F a2:—?§3‘-;
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elle est satisfaisante sous. certains rapports; mais il est facile
de voir qu’elle est incapable de fournir la valeur ¢ = 0 pour
r=r,, (£ =5), si Pon s’en tient a I'équation habituelle
approchée de I'équilibre radiatif 1. Rrprenons, en effet, les
égalités du no 4:

% = — 3epr? ,
Y:%;, XZ%’ X,:%z;
on a ici, par (48):
Z_]j:az , Y == ayd?
% = 2a,r = — 3gpr? ;
d’ou:
daiai A )

On trouve aussi (52) en utilisant directement I'égalité (17)
du n° 4:
dX 2 aB

& T T8k, A=

comme on a toujours dt = kpdr, on trouve %:
” 2 4 ¢
keB7(r) + —B'(x) = — 3ep ; (53)

et comme B” (1) = 0 a cause de la forme lindaire de B (1), il
vient:
2 dB
Fde R
d’ou I'égalité (b2).
Or, cette expression (52) ne peut pas s’annuler pour 7 = 7’
ou r = r'. Elle fournit bien une valeur positive pour ¢, valeur

1 Nous reviendrons, & la fin de Particle, & I’équation compléte de
I’équilibre radiatif.

2 11 faut relever que I’égalité (53) a été établie dans I’hypothése
que B (1) est développable en série suivant les puissances de t;
c’est le cas de (48).
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qui est extrémement grande lorsque r est trés petit, qui diminue
d’abord lorsqu’on s’éloigne du centre, mais qui se met & aug-
menter ensuite lorsqu'on tend vers la périphérie. Cette expres-
sion (H2) est inadmissible. Cela nous conduit a retoucher la
valeur de B (7). '

Raisonnons cependant encore avec I'équation approchée (53)
de I'équilibre radiatif; et essayons I’expression:

B(r) =a + [@ + ALog (—<) + D.e" "F]x, (54
qui se réduit a la suivante, des que — v > 15:
B(x) =0, +C + [a, + D.e" ] 7. (55)

Lorsque © = 0, on a bien B (0) = a,, puisque dans la couche
superficielle la quantité C varie avec T et s’évanouit pour v = 0.

Nous ne retiendrons, dans ce n® 9, que le cas de — v > 15,
c’est-a-dire le cas de I'expression (55), ou on suppose que B (7)
est développable. On a alors:

B (1) =a,+D.é". (1 —1) + D .v.e 7 (56)
B’(x) =D.e" 7. (x—2) +2D". " T (1—5) + D".x.e5 T (57)
expressions qui, portées dans (53), donnent I'égalité approchée
suivante:

e *[kp (tD — 2D + 2D’ — 27D’ + =D") +

8 (38)
2(D——TD+TD’)]—|— il = — 3ep ,

r r ]

_.I_

qui fournira la valeur de ¢ quand D sera connu. Nous voulons
maintenant réaliser la condition ¢ =0 pour — =7 < — 7.
L’égalité (58) donne I'équation:

kor(tD — 2D + 2D’ — 2D’ + =D”) +

2a,

I
T =
e

+2(D — 1D + D) = — :
ou encore:

ker . tD” + D’[kpr(2 — 21) + 27]1+ D [kpr(vt — 2) + 2 — 21] =
=—2a,.6 % (59)
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Telle est I'égalité fournissant la valeur de la fonction D,
lorsqu’on part de Péquation approchée (53) de I'équilibre
radiatif. En fait, cette équation (53) définit la forme de B (t)
sans qu’on ait & s’occuper de I'équation de transfert. On verra
par la suite que ce mode de faire ne donne pas des résultats
entierement satisfaisants.

Remarquons que kpr reste supérieur & 10000 dans la couche
qui va de r = r’ a la surface; on a en effet 1:

re =9,5. 10" em ,
r’ = (0.725)r, = cm 6,9 . 101,
o’ = 0,00017 ,
— 1o (2,2) . 100,
F = (1,14%) . 1010
7

4 = 15 F = (0,503) . 1010,
Gy = — o2 F = (0,97) . 10 v — 100,

|

d’autre part 2:

TC
k= C(T) , ko~ 50

K =50(3,1) = 155 ,
K o’ = 155 (0,00017) = 0,026 .

de sorte que:

D’ailleurs, si I'on conserve l'approximation de la solution
polytropique de classe n = 3, on sait qu'on a, avec les va-
riables £ et ¢ de la théorie d’Emden 3:

T<\;L'ra et oo 1,1;3;

d’ot I'on déduit que:

P
koo b et hp v P55

1 Valeurs numériques établies pour Capella.
2. G. Tiercy, L'équilibre radiatif, loc. cit., p. 173 et 185.
3 Ibud., p. 83.
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Ainsi

ko = 0,026 (%)2’5 .

le tableau reproduit ci-dessous montre que la quantité >
devient 10° fois plus petite quand on passe de la spheére r = r’
4 la spheére r,. Ce tableau indique, pour chaque valeur de &
de &' =5 a £, = 6,888 (c’est-a-dire pour chaque valeur de r
de r' & ry), les valeurs correspondantes de ), ¢*” et de I'opacité
(— 1) 1; les valeurs de I'opacité y sont calculées au moyen de la
formule (7), en tenant compte de la variation du coefficient &
d’absorption 2.

T o 25 oG ko - valeélgs((fn;i)gées
£ = 5,000 | 0,11080 | (4,086) . 103 || (2,448) . 10° | (2,159) . 10°
£ = 5,500 | 0,07426 | (1,503) . 103 || (7,462) . 108 | (5,411) . 10®

6,000 | 0,04371 | (3,994) . 10~ || (1,445) . 108 | (8,822) . 107
6,500 | 0,01784 | (4,251) . 103 || (8,597) . 108 | (4,114) . 108
6,800 | 0,00414 | (1,103) . 10-°| (5,608) . 10* | (1,817) . 10*
6,876 | 0,00100 | (3,163) . 10~3|| (2,748) . 10% | (8,848) . 10
6,886 | 0,00052 | (6,237) . 10-°| (7,350) . 10 | (1,472) . 10
£, = 6,888 | 0,00043 | (3,834) . 10-° 0 0
Le rapport ; == —S— passant de 0,725 & I'unité alors que
0 0

™ devient & peu prés 108 fois plus petit, il en résulte que la
quantité kpr passe de 0,026 = 1,8.101 a (0,03). 107"+
= 2,1 . 10%; elle est donc toujours supérieure a 10000.

En conséquence, dans les deux crochets de I'équation (59),
coefficients de D’ et de D, on peut laisser tomber les termes qui
ne sont pas multipliés par kpr; et I'on peut simplifier I'équation
comme suit, en négligeant 2 devant 7, du moins jusqu'a la
sphére £ = 6,886 pour laquelle — v = 1b:

kor.tD” — 2kpr. D’ 4+ kor . D = — 2a,e"7% . (60)

1 Valeurs calculées dans le cas de 1’étoile Capella.
2 G. Tiercy, L’éguilibre..., loc. cit., p.381-387.
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Il est bien évident que cette équation ne pourra pas étre
utilisée pour la pellicule extréme de surface, dans laquelle
I'opacité prend des valeurs de plus en plus petites. La pellicule
extréme devra donc étre traitée a part 1. On obtient ainsi une
équation a coefficients constants pour trouver le facteur D:

D"_QD'+D:_.2‘12_“3:_ (61}
kor .~

Mais kpr varie avec 7; et si kpr devient 107 fois plus petite 2
quand on passe de £ = 5 & £ = 6,886, 'opacité (— =) devient
simultanément environ (1,5) . 108 fois plus petite 3. Le facteur
kor varie donc comme (— t)"/®, ou en gros comme (— T); et
I'on peut poser:

keor = 103 (— 1) , (62)

approximation valable dans la couche en question, c’est-a-dire
jusqu’a £ = 6,886.

L’équation a résoudre prend alors la forme approchée:
2a,e" "

(63)

On apercoit immédiatement une solution particuliere D,
qui s’écrit:
2a,

Do = — 753

s €%« Log{—%) ; (64)

quant a I'équation sans second membre:
D”—2D'+ D = 0, (65)

elle est a coefficients constants. Avec D = ¢, I'équation
caractéristique est:
N—2N+1 =0,

qui posséde une racine double A = 1.

1 Voir no 11.
2 Passant de (1,8) . 10!t & (2,1) . 104
¢ Passant de (2,2) . 10® & (1,5) . 10%.



160 ASTROPHYSIQUE THEORIQUE

La solution (9 de (65) d’écrit donc comme suit:
@D = € (C, + Cy7) ; (66)
de sorte que la solution compléte de (63) est:

2

D = ¢ (C, + Cp1) — %ef-’-’ Log (— 1) . (67)

On remarquera que, dans I’expression (54) de B (1):
B(z) = a; + [@, + ALog (— <) + D&~ "],

le terme en C; est simplement linéaire en T, tandis que celui en
C, est proportionnel a 72; de sorte qu'on peut poser:
B(1) = a; + (ay + Cie¥) 7 + Cpe™ . 32 + (A—%)'rlxog (—=). 1(68)
La quantité D= . ¢* ~ " tend vers zéro lorsque T — 0. D’ailleurs,
dans la couche considérée ici, on a At Log (— 1) = C; B (1)
prend la forme (55), et (68) se simplifie comme suit:
B(1) = (a, + C) + {2 + Cye¥)t + Cye™ . w2 — %TLog ] .
(69)

Remarquons qu’on a ainsi introduit dans B(t) un nouveau
terme en 7 Log (— 1), distinct de At Log(— ) =C; le
coefficient en est bien déterminé.

Telle est 'expression de B (1) que 'on peut utiliser pour la
couche allant de r = " a la surface; cette expression satisfait
a I'équation (59), c’est-a-dire a la condition ¢ = 0 dans toute
la couche en question. Nous rappelons que cette solution a été
obtenue en utilisant I’équation approchée (53) de I’équilibre
radiatif.

Il reste a fixer la valeur des constantes arbitraires C; et C,;
a défaut de toute autre indication expérimentale, nous pren-
drons C, = 0; d’autre part, remarquons que la valeur de D
pour T = 7’ est:

2a,

Dh o= 0167 = '16‘3’ Log (— T’) 5
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ce qui suggere de poser:

2a, __ .
=2 T [ a .
108 " © . Log (— 1) ; (70)

C, =¢C
on ne connait pas de condition intérieure supplémentaire per-
mettant de trouver la valeur de C; constatons simplement qu’a
toute valeur numérique de € correspond une valeur déterminée
T4 de T'opacité pour laquelle D = 0; D est alors négatif en
dehors de cette sphére t; et devient positif a I'intérieur. Nous
prendrons € =1, de sorte que D s’annule pour la valeur
g = 75 D est done négatif dans la couche qui nous intéresse,
entre r = r’ et la pellicule superficielle; en dedans de la sphére »/,
D devient positif. On a donc:

_ 2ay - o

D = jga¢ " [Log (— =) — Log (— 7] , (71)

B(x) = ay + C + 57 + ot=[Log (— =) — Log (— )] . (72)
Il convient de remarquer qu’a l'intérieur de la sphere 7',
D devient positif, mais reste petit; il passe par un maximum,
puis tend vers zéro & mesure que 'on s’approche du centre;
cela se voit immeédiatement par I'expression (71) ou I'on fait
— 1 > —<'. Le maximum de D se détermine par D" = 0,

¢’est-a-dire:
1
Log (— t') — Log (— 1) — - 0,

ou:

(— =") étant égal a (2,2).10% on voit vite que la différence
(— 1, — (—1') = 1 — 1, donnant le maximum de D est
inférieur & T'unité; elle est de I'ordre de 0,5; d’ou, pour le
maximum de D, avec — 1, = 2,2, 10°:

10 0,5
D e 2“2 ) 60'5 [“1_] _ 2.10 4 _ 07017 .

s ™ T 108 2,2.10°

aprés quoi, D tend vers zéro lorsque (— 1) augmente.
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Par contre, 'effet du facteur D, ¢’est-a-dire le terme complé-
mentaire

—ig: % [Log (— 1) — Log (— ?)]

de la formule (72) de B (x), tout d’abord trés petit & coté du
terme a, 7 et de signe contraire, augmente peu a peu de valeur
absolue lorsque (— 1) augmente;si donc on conservait ce terme
complémentaire dans (72) pour la région centrale de 1'étoile,
le coefficient global de © diminuerait et atteindrait zéro pour
— 7 = 10220 environ. Mais r < 7’ est la région centrale ou la
solution polytropique est valable; et I'on admettra que D
reste nul & partir de v = 7',

Ainsi, dans la partie centrale de I'étoile, on aurait la solution
polytropique, avec raccord pour © = 7', tandis que la formule
(72) serait valable de © = 1’ jusqu'a la pellicule de surface,
c’est-a-dire jusqu'a — 7 = 15. C'est ce que nous admettrons
pour l'instant.

D’ailleurs, le terme complémentaire de B (t) tend vers zéro
lorsque r — 0.

L’expression (72) présente donc un terme complémentaire
en T Log (— 7) dés la couche ou v a la valeur t'; du moins lors-
qu’on base le calcul sur I'équation approchée (53) de I'équilibre
radiatif 1.

Il convient d’examiner si, avec cette valeur de B (z), I'inten-
sité J (7, 0) conserve la forme simple (35):

J(z, 0) = B(x) —cos 6.B'(7) ,

ce qui, d’ailleurs, n’est nullement obligatoire. Pour cela, il
faudrait que, en tenant compte de la valeur de J (0, 0) = a; —
a, cos 0, on ait:

—B(t) + (v + cos 0) . B (x) + J(0, 6) = 0,
1 Nous verrons au n° 12 qu’en réalité la forme simple

B(t) = a; + C + a,t peut étre conservée jusqu'a la couche
superficielle.
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comme le montre 1'égalité (41). On trouve, au contraire, que le
premier membre de I'égalité ci-dessus vaut:
2% cos 8 [Log (— ) — Log (— =] — C (73)
103 ' ’
quantité non nulle et positive, C étant négatif 1. L’intensité
J(r, 0) ne se réduit donc pas a la forme simple (35); il faut y
ajouter le terme (73). Mais cela ne géne en rien le calcul des
éléments dans la couche considérée, au-dessous de la pellicule
de surface jusqu'a © = <; U'intensité J(t, 0) augmente tout
d’abord un peu plus vite, lorsqu’on va de — v = 15 vers T = 7/,
que dans le cas (35), voila tout. On obtiendra donc, dans cette
région, des températures un peu supérieures a celles obtenues

oy T 27 &
au moyen de la formule réduite B(r) = e — 3—;.5' Ty OP

cela n’est pas pour déplaire, puisque 'emploi de cette formule
réduite dans la couche considérée ne donne pas entiére satis-
faction; on n’y obtient en effet une distribution convenable
de la température T qu’'a condition d’introduire un facteur
correctif f > 1, ce qui conduit aux valeurs corrigées de — 7
données dans la derniére colonne du tableau reproduit plus
haut 2.

Avec la nouvelle fonction (72) de B (t), la répartition de la
température est donnée par le calcul suivant 3:

— % ma G o Ot
Bl =2Te, 5=2T;,
2a,
B(T) :.al-}-(]—{—aa'c-}-%T[LOg(— T’)—Log (—' T)] ]
7 = 27 -

a]_:'lﬁﬂ‘, a2—~—3—25 ’ Log (— =) ~ 21,

7 ik ; 27 27 1
a4 — _° e wi NSl (N, S -
T _16Te[1+ocC —t— = . Log (— ) +

27

1
"}— ?—-ﬁTLOg (— T)] )

7, 27 81 27
= [t «C— o — T e T Log (— 7)), (79

1 Calcul de C au n° 13.
2 G. Tiercy, L'équiltbre..., loc. cit., p. 386-390.
8 Ou C < 0, voir au n° 13.
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Oou encore.
7 97 7 . 81 27
e — B P T S . N A e
T 16'1'8(1—%—&(3 MT) T 7[103 2t Log | 'r)],
(75)
ou o = 15
7T

On voit que le dernier crochet, qui s’annule pour t = 7/,
reste positif de — 1t = 15 4 © = 1’; la température donnée par
(75) est donc supérieure & celle fournie par la formule réduite:

7 27
A A = . (
T 16"1“8(1 + «C MT) (76)
A T'intérieur de la sphere 7', le terme correctif en D reste nul,
et 'on peut conserver la relation (76); il vaut d’ailleurs mieux

v appliquer la solution polytropique, car la courbure des couches
n’y est plus négligeable.

10. — De la dérivée seconde B” (7). 1l s’agit encore ici du cas
de — 7 > 15, jusqu’a la spheére r’. La fonction B(t) est donnée
par I'expression (72):

2a,

Bit) =a;+C + a,% + E3T[Log(— ) — Log (— 7)[ ,

ou le ecrochet s’annule pour © = <'. Il vient:

b 2a , 2a,
B (‘T.'} = @, + mz [Log (— T) . LOg ('— T):I — W +
Yy 2a, 1
B = s 7

de sorte que le rapport de B”(t) & B(t) est le suivant:

24, 1

B” (%) B 7108 ¢ )

B 2 ’
(v) a, + C + a7 + E%T[Log (— 7") — Log (— T)]

ce rapport est tres petit dans la région considérée; pour v = 1/,
il vaut ~~ 107! pour — © =15, il vaut 4. 107%. On peut donc dire
que, si ce rapport est tres petit pour » = r’, il reste petit pour
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— 1 = 15, c¢’est-a-dire a la limite inférieure de la pellicule de
surface; dans toute la couche considérée, il présente une valeur
moyenne tres petite.

Ainsi la forme (72) de B (t) vérifie, d'une fagon qui parait
satisfaisante, cette condition résultant des études d’Eddington:
la dérivée seconde B” (1) est trés petite a coté de la fonction elle-
meéme.

Le calcul d’Eddington indique, pour le rapport de B” a B,
une valeur de lordre de 10™° pour une température absolue de
108 degrés; or, une telle température est celle qui régne au
niveau 7, pour lequel nous avons trouvé la valeur de 107*! du
rapport en question. Pour la région centrale de I'étoile, la
comparaison des deux calculs n’est pas possible; le taux de
libération d’énergie 47e utilisé par Eddington est en effet une
moyenne concernant toute I'étoile.

(a suivre)
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GONSIDERATIONS
SUR LES EQUATIONS DE L’EQUILIBRE RADIATIF
ET DU TRANSFERT D’ENERGIE

PAR

Georges TIERCY
(suite)

11. — La pellicule de surface. 11 reste a voir si la solution (54)
de B (1) est capable d’assurer encore la nullité de € dans la
pellicule de surface, c’est-a-dire entre — 7t = 15 et T = 0. On a
alors, en écrivant At Log (— 7) & la place de C:

B(t) =a, + a7+ AtLog(—=x) + Dz.e" * ;

% [Log (— 1) —Log (—7)] ,
(77)

B(tr) =a, + ayv+ At Log (—7) + 2y
' 103
ot le coefficient A, donné par I'expression (46) lorsque — 7 > 15,

prend la valeur:
G

A= T BTeg 15 °

valeur positive puisque C << 0.

On remarquera que le terme Dte” " de (77) devient nul en
méme temps que T, done & la surface de la photosphére. Si A est
un nombre fini, on a bien:

valeur de surface. & g}

ARcCHIVES, Vol. 21. — Juillet-Aolit 1939, 11.
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Dans I'application de la formule (77) a la pellicule extréme,
on pourra, pratiquement, considérer celle-ci comme formée de
couches trés minces, dans chacune desquelles la quantité
At Log (— 7) = C, prendrait une valeur déterminée, qui serait
constante pour la couche. On pourrait aussi envisager que A
est constante dans chaque couche. Ou bien 'on considérera
que G, est une fonction de 7 a trouver.

Dans I'une ou I'autre de ces interprétations, la dérivée B’ (1)
prendra une valeur infinie négative pour = = 0. Jusqu'ici, tout
va bien.

Mais qu’en est-il de la quantité £? L’expression (77) permet-
elle d’avoir encore ¢ = 0, comme 1l le faut ?

Rappelons que, d’aprés (14) ou (53), on a, dans le cas d’une
fonction B (1) développable, et en premiére approximation:

kB (x) + ~B’(x) = — 3cp ; (79)

en y faisant € = 0, on peut étre tenté d’en tirer une valeur de A
pour chaque couche mince. On aurait alors, avec (77) et en
traitant A comme une constante a I'intérieur de chaque couche
mince:

B'(t) = a, + A[Log (— =) + 1] +

2a,

s 1—03[L0g (— 7)) — Log (— ‘r)] S —
Pl e e Y
1o = (123

2a,\ kp 2 2a, 2 2a
(A""W) +—(A— )Log(—1)+7[a2+A————2+

E 103 103
2a ,
ha bda , ha . 2a
1[—2&2 . ﬁ—TO—;Log(—T)—l—iO;Log(—‘r)] —}-—mikpr

ker + 21:[1 + Log (— T)J
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ou, en réduisant le crochet & ses termes essentiels !

T[— 2a, + 103L0g {(— 'r)] —|—1—03k pr . (50)

ker + 27['1 + Log (— "I.'):'

mais cette expression de A n’est pas acceptable; dans la couche
qui va de —t =15 a4 t =0, le dénominateur reste positif,
tandis que le numérateur est négatif; il est impossible d’annuler
ce dernier, méme en pénétrant dans I’étoile jusqu’a la valeur
(— ') de I'opacité 2. Or A est positif pour —t >15.

Il convient donc de reprendre la question en traitant A
comme une nouvelle fonction de 7. Il nous faut une expression
de A qui parte de la valeur (78) pour — 7t = 15, qui rende B’ (7)
infinie négative pour v = 0, et qui donne £ = 0. Est-il possible
de satisfaire a ces trois conditions?

Reprenons (77), en y considérant A comme fonction de 7.
On obtient:

B(t) = a, + a7 + Az Log (— 1) +LT[Log () —Tog (—)] 5
B(T):tzl—{-[az—l- 103140g( -_T')]-;-]-[& 103]-rL0g( T) ; (81)
B’ (%) = g, + 2o Log (— ) +

+'[A-_%} [Log(;v) + 1]+ %‘%.—.Log (— =) ;

1 On a: .

Log (— ) = 21,5 ; (ke)penicute = (0,026) . 107° ;

ro o~ 1012 §

v e kel =(0026).10%0 — (2,6) . 100

2 En posant que le numérateur est nul, on obtient I’équation:
(— 1) .[4.107 Log (— 1) — 2. 10%°] = (5,2) . 101 ,
qui ne peut étre satisfaite pour — v < — 7',
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et essayons d’utiliser encore I'équation approchée (79); celle-ci
devient, en y faisant ¢ = 0:

dz 2 .
ke . PP [(A 13:) Log (— T)] +

2 ) +103L0°\ )+%[(A—2133)1Log(—1)]€ 0.(83)

+ Lo
r

Répétons que cette équation (53) ou (79) a été établie dans
I’hypothése d’une fonction B (t) développable en série suivant
les puissances de 7; ce n’est plus le cas actuellement; de sorte
qu’'on ne peut plus attacher une importance primordiale a
I'équation (83).

Gardons-la cependant; et voyons ce qu'on en peut tirer.
Posons:

. 2a
X = (A — 1—03) Log (— 1) , ‘ (84)

ou A serait une certaine fonction de <; I'équation (83) devient:

#X 2 dX 2 a ,
kP-d—Tz-F?'-E:——“[z-l—iOgLO( T)]:
= 2“2 (1,043) . (85)

On voit immédiatement une solution particuliere de cette
condition:

dX,
d=

2 ,
= const. =—a2[1 + 1 Log (—-:)] = — 1,043 a, ;

X, = — 1,043 ay7 ; (86)

quant a la solution de l'équation sans second membre, on
I'obtient en posant:

0
X == g™
ce qui donne I'équation caractéristique suivante:

kp.)@-l—%?\:(); (87)
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il est vrai que r varie légérement a travers la pellicule de surface;
mais cette variation est si peu de chose en face du rayon lui-
méme qu’on peut traiter r comme constante et 1'égaler prati-
quement a r,, a condition, bien entendu, de ne considérer
ic1 que la pellicule en question. On fera de méme %kp = const.
= (kp)y = 2,6.107°; ce qui donne, avec ry = 1012:

kero = 2,6 .10 .

Les racines de (87) sont:

A= 0 et g o P = 08.107% = —8.107% ;
kor,

et la solution de I'équation différentielle privée de second
membre s’écrit:
o _8
Ke 10° 4+ K’ed = Ke 105 +Q,

ou K et ) sont des constantes arbitraires: la solution générale
de (85) est done la suivante:

_ 8
X = Ke ' 4 Q

2a,

1[(12 + Tic Log (— 'r’)] . (88)

Remarquons qu’en faisant K = 0, on trouve:
X._o=Q et B{0) = a, + Q ;

B (0) est donc une valeur finie; la condition £ = 0 de (85) est
satisfaite, puisque X = Q —a, 7 est une solution de cette
équation; par contre, on trouve que:

2a,

B0 = 1gs

Log (— =’) = const. ,

ce qui ne convient pas pour v = 0.
11 convient done de faire K s 0. On obtient alors:

8~
dX 8K 715 2a ,
G = Tt s —<] 5 (9
d’ou par (81):
8K 1o
P'(1) = ———e 10°, (90)
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expression qui, malheureusement, ne contient plus de terme en
Log (— 7); on voit qu’alors, si 'on veut que B’ (0) prenne une
valeur trés grande négative, il faut faire K trés grand.

On a:
SK

B'(O) == — 105 :

exigeons par exemple que B’ (0) = 1000 a, ~ — 10'3; on
trouve que K doit recevoir la valeur K = —21;_ 1018, soit K ~ 1017

La condition ¢ = 0 est satisfaite; B’ (0) prend une valeur
négative trés grande; cela va bien. Mais y a-t-il raccord avec
la valeur (78):

G
As = T 15 Log 15

que prend A pour — 1t =157?
Avec K ~ 1017, on trouve par I'égalité (88) et pour — v = 15:

1017, ooz 4 Q — 10,15 . 1,043 | 2a,

e = 15 Log 15 108 °
(1,0012) . 107 + Q — 1,56 . 101

— —2.107 ;

= 15 Log 15 ’

mais remarquons que, par (88), X doit s’annuler pour v = 0;
c’est-a-dire qu’on doit avoir:

K+Q=0 ou Q= —K,;
de sorte qu’'avec K = 107, la valeur de A devient pour
— 1 = 15:

A — _ (0,0012) . 101" — 1,56 . 101

40,62

—2.107 ,

valeur visiblement négative; en ’égalant a (78), on trouve que
C doit valoir + 1,2 . 1014 valeur positive dépendant de celle
adoptée pour K. Cela ne vas pas. D’ailleurs, il faut tenir compte
du fait que X doit s’annuler, non seulement pour T = 0, mais
encore pour — 7 = 1; ce qui donne deux conditions auxquelles
doivent satisfaire les valeurs de K et Q:

K+Q=0,

c 8.107F T ()
K.e + Q + 1,043 a, = 0 ;
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on en tire:
Q=—K,
1,063 . a, 101 (1,043) i
Q= "00000s —  oo0000s — — (L3-107,

K = + (1,3) . 10 ;

valeurs incompatibles avec le calcul précédent, basé sur I'hy-
pothése que B’(0) serait de 'ordre de 1000 a,; si, par contre, on
adopte pour K la valeur 10'* ci-dessus, on trouve que
B’ (0) = — 1019 = q,, valeur négative insuffisante; B’ (0) ne
prendrait pas une valeur infinie négative, puisqu’il n’y a plus
de terme en Log (— 1) dans B (7).

On en conclut qu’il faut retoucher 'expression (88) de X,
solution de I'équation approchée (83); cela n’a rien d’étonnant,
puisque cette équation, qui traduit que ¢ = 0, correspond au
cas ou B(7) est développable en série suivant les puissances
de 7, et méme au cas des couches planes.

Il est d’ailleurs facile de vérifier que, si le second membre
de (88) s’annule pour — t = 1, la vraie valeur correspondante
de A est finie; elle est en effet donnée par:

8 _ 87
105 __
T K.e 1,043 a, 2a, 8K g8.10—%
— A 2% OB, — 1,043 a, -
T T 105
e
(92)

12. — Nouvelle approximation de B(t). Au lieu de partir
des équations approchées usuelles (1) a (5), nous partirons ici
des équations générales de la théorie de I'équilibre radiatif. Ce
sont les suivantes:

1o Solution de 1'équation de transfert d’énergie sous la
forme (39) ou (93):

J(c, 0) = [B(h). )% sec 6. dr + 5(0, 0). €750, (93)
0

ou
7 27 -

Jo, 0) = 1—657—1- 57 - cos 0 = a, —a, cos B ; (94)
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20 Equation de I'équilibre radiatif:

- =B—— [ Iz, 0) . do ; (95)
30 Expression du flux radial:

F:fff(-r,ﬁ).cosﬂ.dm. (96)

Lorsqu’il y a équilibre radiatif proprement dit, ¢’est-a-dire
lorsque le taux de libération d’énergie est nul, comme c’est le
cas dans la partie extérieure de I'étoile, I'équation de I'équilibre
radiatif devient, avec ¢ = O:

[0z, 0).sin6.d6 ; (97)
0

ws)
.
A
I
[

cette derniére équation remplace I'équation approchée (77).
De sorte que nous allons dés lors baser le calcul essentiellement
sur les égalités (93) et (97).

En posant:

t—r)secd =t/ = — o, secO.dt = —do ,

Pégalité (93) devient:

Tseco
J(T, 8) = fB(T_cP CcOoS B) . e_ﬁodq; -+ J(G, e) 'e—TSCCS .
¢ (93 bis)

Il est évident que les équations (97) et (93 bis) permettent
un jeu d’approximations successives.

Relevons tout d’abord une simplification considérable de la
solution cherchée. Nous avons montré au n° 8 que si B(t) a la
forme linéaire (36):

B(t) = a + a7,

I'intensité J (7, 0) se réduit a expression (35):
J(t,0) = B(t)—cosb.B (1) = a + ay(vr—cos 0) ;

c’est en effet le cas ou B (1) est développable.
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On voit alors immédiatement qu’en portant cette valeur de
I'intensité dans I’égalité (97), on retrouve:

B(t) = ay + a,7 .

Ainsi, tant que B (z) reste développable et garde la forme
linéaire, I’équation (97) de Iéquilibre radiatif strict (e = 0) est
satisfaite, de méme que I'équation de transfert d’énergie. Or, ces
conditions sont vérifiées, au moins d’une fagon approchée,
tant qu’on n’aborde pas la pellicule superficielle. 11 résulte de
cette remarque que, dans la couche comprise entre T = 1’ et
— 7 =15, il n’est nullement besoin de faire intervenir dans
B (7) le terme complémentaire en 7 Log (— <), qui ne s’était
mtroduit dans expression (77) que pour satisfaire a I'équation
approchée (53) de I'équilibre radiatif. Cest 14 la simplification
& laquelle nous faisions allusion plus haut. Ainsi, un terme
complémentaire en 7 Log (— 1) n’interviendra que dans la
pellicule de surface, pour laquelle nous écrirons simplement:

B(tr) = a + ay7 — ay7 Log (— 1) , (98)

comme on I’a proposé au n° 5. Remarquons d’ailleurs que cela
revient, & trés peu pres, & poser simplement

2
/ _Tgf = — @, = const.

dans l'expression (77) écrite comme suit:

2a,

22, _
103

1’*0*3’ " LOg \('_ T’):I T 4+ [A

Bs) = o + |4, + | 7Log =) ;
car le coefficient 1,043 a, du terme en 7 n'y différe guére de a,.

Au n° 6, alors que le calcul était basé sur I’équation appro-
chée (14) de I'équilibre radiatif, on était arrivé & la conclusion
que la solution (23) avec A constant n’était pas satisfaisante.
Avec I'expression (98), ol a5 est une constante, on revient a
cette premiere idée.

Contrairement & ce qu'on a cru pouvoir affirmer a la fin du
n° 6, nous allons constater que la forme (98) est admissible, a
condition de baser le calcul sur I'équation exacte (97) de I'équi-
libre radiatif, et non plus sur I’équation approchée (3) ou (14).
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11 faut d’ailleurs rappeler ici que la forme (98) n’est applicable
qu’a la pellicule superficielle; tandis que, pour — t > 15, on a
posé (46):

C

7 Log (— 1)

I

qui, avec la notation de (98), devient:

. —aztLog (—1) = C, (99)
ou C est négatif.
Partons donc de la forme (98) de B(t); et portons cette
expression dans l'intégrale de (93 bis).
En désignant cette intégrale par S, on trouve:

TsecH
8= [l[al + a,(t — @ cos ) —
0
— ay(t — g cos ) . Log (pcos O — 1)] . e¥de ;  (100)

TsecH TsecH TsecH
S = my ['e"""dcp + ayT fe—‘?dcp—az cos 0 .lfcp . e—godcp— )
0 0 0 \
Tsech
—aaf(-r——cpcosﬂ).Log(cpcosﬁ——-c).e“"dcp; S
0
S = Ctl(l _ 6—75606) e azr(l _e—rSBCB) _ k
— aycos0[1 — ™50 —rsech . e"sew] 2
, (101)
T8ecH
—aaf(‘r—-qJCOSO).LOg(cpCOSB—T).e_"’dcp. S
0
Prenons & part le dernier terme; il donne:
TsecoH
B = —H3TfLOg(CPCOSB—T) .e®do +
0
TsectH
+ ascos O ['_cp.Log(tpCOSB—-—T).e—"pdcp :
0

S" = — a7t .8, + a;cos0 .8, ; (102)
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on trouve facilement !:

1.2 T

8, = (1 —¢7%%  Log (~—7) — g 700 [T sec 6 + /
Sy = —(rsecO +1)e %%  Log (—1) + Log(—t) —e ™50 4 1 (103)

(v sec 0)2 ] \

2
— (tsec O + 1)3_75806 [-r: sec 0 + (_‘Elsec—;:) + ] ;|

1 On a en effet:

TsecH
By == f[Log cos O + Log (p — 7 sec B)]e“qu: =
.0
T SecH Tseco
= Log cos 0 fe“”dq; + /e‘Q . Log (¢ — vsec0)do ;
0 0
T seco
8; = Logcos 6. (1—¢ %% 4 [— ¢7% . Log —rqecﬂ‘}rsece - i
k & ) ’ @ T TR o —7tsect ’
0
—rsecH — ', TSéCB
S, = Logcos0(1 —e~ )+[—e .Log(cp_rsecﬁ)]o +
TsechH
4 gTsecs grip=maechy, d(p—7vsech)
' . @ — tsecH ’
0
Iintégrale du dernier terme est de la forme:
e *dx 22 23
f = _-const.—|—Loga:—:c+1‘22m1-2.32+...,
o —_ » '@
S, = Logcos 6. (1 —e %% 4 [— ¢ Log(p— vsec 6)];‘39C
_ s g)2 Tseco
S i [Log (¢ —7secH) — (@ —rsech) + (jg—-—iiq;c ) } :
4 0

comme le produit (e—7SecO — %) . Log (p — 7 sec 0) donne zéro
pour ¢ = tsec 0, il reste:

S, = Logcos 0. (1 — ¢ 750 4 (1 ¢ 75€¢Y) [0 (—rsech) —

—rsec (vsec0)? .
____eTSBC [:TSQCG‘I'W‘}'... 3

8, = (1—¢ 7% . [Logcos 6 + Log (—rsec)| —

—sech ' (Tsec0)?
—_ g TseC [Tsece + 195 + ...,

d’ou la valeur indiquée sous (103).
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d’ou pour S’:

8 = —a,t(1—e "0 Log (— <) + ag7. e 750 [-rsecﬂ -+ {rsect)? + ] —

1 22

—azcos0 . (vsec® + 1) . e 7Y Log (— =) 4+ azcos0 . Log (— 1) +

- - ‘l 2
+ 50080 (1 —e 750 g cos 0 (tsecd + 1) e 7560 [-rsecﬂ 4 frsech) ] .

1.2
g S = —a,t(1—e "%  Log(— 1) —a,(t + cos0)e "% Log (— 1) —
? —a;c080. ¢ 50 [rsec O + .] + a5 cos 0[Log (— 1) —e R0 L]
S’ = —a;tLog (— 1) —aycosf . e 7560 . Log (— 1) + azcos0 . Log(—7)—
—a;c080 .6 75 4 4 cos0— a,cos0 . e TSECY [‘r sec O + (—T;?CQS)Z + ] .

En portant cette expression dans la valeur (101) de S, on
obtient pour l'intensité J(t, 6) par (93 bis), aprés suppression

(Suile de la note p. 179.)
De méme on a pour S,:

T8€ech
S, =f P - [Logcosﬂ + Log(qpmrsece)]e“‘° de ;
0
Tseco TSEeCcH
S, = Logcos 0. fcp e ¥do + fcp .Log(p—=secO)e ¥do =
0 0
= Logcos 0 . [1 — e 7%¢% (zsec 6 + 1)] +

TsecH

—I—‘fLog(q:—frsecB) . d[—e"@-(q; I 1)] :
0

S, = Logcos 6. {1 — ¢ 750 (1 5ec O + 1)] +
T5ech

TSeco e’ +1)d
secd [ Clo+1)de

- [— e %(p+1).Log (¢ — 7sec 0)]0 = :

J e—r7sech

0
S, = Log cos0 . [1 — 800 (rgec ) + 1)} +

+ [—- e ¥(p41). Log.(cp—m-sec B}]Zsece +

—secH
4 gTseco /" e (e T8C) (5 —7sec O + Tsec O+ 1).d(p—TsecH)
e — Ttsech '

(%
0
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des termes qui s’annulent entre eux, et en rappelant que

J(0, 0) = a; — a, cos 0:

J(t, 0) = a + ayt — a, cos 0 — a,7 Log (— 7)
+ azcos 0. Log (— ) . [1—¢ 758 4 g, cos 0 [1 —e 75¢CY] (104)
_=gech (x sec 0)2
— a; cos O . ¢ TS€C [rsecG+W oy ] ,

valeur qui se réduit & J (0, 0) = a; — a, cos 0 pour v = 0,
comme il le faut.

Remarquons en passant qu’en portant directement I'expres-
sion (98) de B (t) dans I'égalité (40) du n® 7, on retrouve la
valeur (104) ci-dessus, avec la seule différence que le crochet du
dernier terme se réduit alors a [t sec 0]; or T reste petit, puis-
qu’il s’agit ici de la pellicule de surface; si donc le coefficient a4
est lui-méme petit & coté de a; et a,, on peut dire que I'égalité
(40) est valable prés de la surface; nous avons d’ailleurs déja
remarqué au n® 7 que son second membre reste fini, méme si
B’ (7) devient infinie pour t = 0.

L’expression (104) peut étre allégée. D’abord, le crochet du
dernier terme est tres peu différent du développement de

{ Suite de la note p. 179.)
L’intégrale du dernier terme est du type:

ez + tsecO +lydr o e *dx
] o ,,__fe dx—e—(-.sece—]—l).f'
. 32 i
= —¢ x+(~cse06+1)_.[Logx—a:+1 T ?2+...] 5

S, = Logcos 9. [i — ¢ 75O (r5ec O + 1)} +

Tsect

+ I:-‘e‘f*’(cp + 1) . Log (¢ — = sec 6)]0 R L | e

(o—sa0)”
1,95 "1y

comme le produit [(tsec 6 + 1).e-75€c0 —e=% (o + 1)].Log (¢ — Tsec 9)
donne zéro pour ¢ = tsec, il reste:

Tseco
+ (tsecO 4 1) . ¢ 58O [Log (@ —7secO) — (@ —7Tsech) + ] ;

S: = Logcos 01 — ¢~ 75 (r5ec 6 + 1)] + Log (—~sec8) +

2
+1 H_e—'rsecﬂ_ (TSCCG + ,1) . e~:sece [Lﬂg (—TSBC ﬁ) + Tsec 6 4+ ‘(‘f;l'lcz'eé)— -+ ]

d’ou la valeur indiquée sous (103).
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[e75¢¢® — 1]; de sorte que ce dernier terme peut étre remplacé

par — az cos 6 [1 — ¢ 7%°¢%]  annulant ainsi le terme précé-
dent. Il reste:

J(t, 0) = a, + a1 — a, cos O — azt Log (— 1) +
+ ay cos 0. Log (— ) . 1 — e--:sec()] ;

constatons ensuite que la présence d’un terme contenant sec 0
en exposant positif est génante, car un tel terme devient infini

pour 0 = ; or, il est certain que J (1, 0) ne devient pas

T
B
infinie. Nous sommes ainsi conduit & retoucher le dernier
crochet en 'écrivant [1 — e™7]; de sorte qu’il vient pour
J(z, 0) 1

J(r, 0) = a, + a7 — a, cos 6 — a,t Log (— 1) + l

(105)
4+ azcos 0. Log (—=) . [1—e "] .

Il est maintenant facile de voir que la constante a; doit étre
négative; en effet, la dérivée B’ (1) soit devenir infinie négative
pour T = O; on a par (98):

B'(c) = a,—az[1 + Log (— )] ; (106)

pour que B’ (0) = — o0, il faut évidemment que a3 <C 0. Quant
a la valeur absolue de as, on en reparlera au n° 13.

Si enfin on porte & son tour 'expression (105) dans I'intégrale
(97), on voit immédiatement que les termes présentant cos 0
en facteur dans <J (t, 6) ne donnent rien dans I'intégrale; de
sorte qu’on retrouve I'expression (98) de B (7):

B(z) = a3 + ayt— agt Log (— 1) ,

comme 1l le faut.

1 Le fait qu’on a di modifier ’expression de J (t, 6) de fagon a
faire disparaitre le facteur sec 6 dans ’exponentielle montre que la
solution de I’équation de transfert appelle une retouche. Il semble
dés lors que le coefficient k& d’absorption doive étre traité, non comme
une quantité indépendante de 0, mais comme une fonction de 9.
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13. — Conditions vérifiées.

1o Valeur de B () pour = = 0. — La formule (98) donne
immeédiatement:
B(0) = a; ; | (107)

rappelons que B (0) = %TZ; de sorte que a, et a, varient

avec T,; nous savons en effet que:

2
a,:%gifl" et aZE—g—;c“J",
oulonaF = nF = oT, = flux de surface, et
7
F:ana(o,e).cose.sine.de; (108)
b
on a aussi:
. i)
B (0) :—Q—IJ(O, 6) sin 6 . d6 : (109)
0

ce sont ces deux derniéres égalités qui permettent de procéder
par approximations successives pour calculer ! a; et a,.

20 Valeur de B’ (1) pour + = 0. — La formule (106), ou I'on
a fait a; << 0, donne: B’ (0) = — .

30 Raccord entre la pellicule superficielle et Uintérieur. —
Rappelons qu’au n°® 12 nous avons posé la relation (99):

— a7 Log (— 1) = C

C est donc, dans la pellicule superficielle, une fonction de =,
alors qu’elle représente une constante dés que — 7t > 15. 1l
doit donc y avoir raccord des valeurs de G sur la sphére pour
laquelle — 17 = 15. D’ou la condition de raccord suivante:

1 G. Tiercy, L’équilibre..., loc. cit., p. 384-385.
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On trouve ainsi que la constante C = C,; valable a I'intérieur
est négative, comme on I’a annoncé au n° 8. _

On voit que si I'on choisit a; petit en valeur absolue, la cons-
tante C pour l'intérieur (— v > 15) sera petite et viendra a
peine diminuer la valeur de ¢, dans la formule

B(x) = (¢, + C) 4+ ap7, (111)

valable & I'intérieur de la sphére — v = 15.

A partir de — © = 15, et dans toute la pellicule superficielle,
la quantité C, partant de la valeur (110), varie avec T suivant
la formule (99).

40 Expression correspondante de JJ (1, §). — C’est I'expression
(105) établie au n° 12, et dont nous avons dit qu’elle pouvait
étre obtenue par le moyen de la formule (40).

Nous avons déja dit qu'en portant cette expression (105) de
J(t,0) dans lintégrale (97), on retrouve la fonction B (7)
donnée par (98). Cela est nécessaire, puisque I’égalité (97) n’est
pas autre chose que 1'équation de I'équilibre radiatif pour
& = 0L

Mais alors, il importe de rappeler qu’'on a di retoucher
Uexpression J (7, 0) donnée par (104), et qui est la solution de
Iéquation de transfert d’énergie; on est ainsi amené a se
demander si la solution de cette équation de transfert a bien la
forme convenable, comme on I'a déja remarqué a la fin du n° 12
(note).

50 Equation de U'équilibre radiatif strict ¢ = 0. — Il s’agit de
I'égalité (97):

Bit) =

bo| =

i
fﬁ(r,e).sinﬂ.dﬁ.
0

Cette égalité est vérifiée par 'expression (105), comme on
vient de la rappeler au chiffre 4 ci-dessus.

Remargue. — 11 vient par (98), pour = = 0:

B(0) =a, ;
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d’ailleurs, on a aussi:

B(O)=% J(0,0) .sin6.d6 =aqa, ,

O\w]:l

car J (0, 6) est donnée par (44) et (94):

7

:4’«__{_%5.(3056:&]:—@20086.

REsuMmE.

La distribution des températures & l'intérieur d’une étoile
dépend de la valeur attribuée a I'intensité B du rayonnement
noir. Cette intensité est fonction de I'opacité t, celle-ci étant

définie par la relation:
drv = ko dr ,

ou k est le coefficient d’absorption et p la densité de la matiére.
Il s’agit donc de trouver la forme convenable de la fonction
B (7).

Une forme souvent considérée est la fonction linéaire:

Blr) =a, + a,7; )
on y arrive en combinant une solution approchée de I’équation
de transfert d’énergie et une solution approchée de I'équation
de I'équilibre radiatif, dans le cas des couches planes.

Mais cette solution de B (t) ne peut convenir qu'a deux
conditions: d’une part, il faut pouvoir négliger la courbure des
couches; d’autre part, il faut laisser de coté la pellicule super-
ficielle, car B (1) présente une singularité pour v = 0.

La présente étude envisage une solution plus générale. On
peut diviser la masse en trois parties concentriques:

a) La partie centrale, comprenant une sphere de rayon
r' = 0,725 r,; la valeur <’ correspondant au niveau de la sphére
r’ est de 'ordre de 2 . 10°. Dans cette partie centrale, le coeffi-
cient ¢ de libération d’énergie n’est pas nul; et la recherche de
la forme de B (1) y est malaisée. C’est d’ailleurs la région dans
laquelle la solution polytropique est applicable;

ArcHIvEs, Vol, 21. — Juillet-Aout 1939. 12



186 ASTROPHYSIQUE THEORIQUE

b) La couche s’étendant de 1 = 7" &4 — 7 = 15; le coefficient €
y est nul (équilibre radiatif strict); la formule (48) y est valable:

B(t) = (&, + C) + a7,
ou C est une constante négative tres petite a coté de a;
¢) La pellicule de surface, allant de —t =154 7 =0; le

coefficient ¢ est encore nul. La formule (98) donne alors la

solution:
B(t) =a; + a3t — azt log (— 1) ;

elle revient & poser, dans la formule précédente:
' C=—a;7log (— 1) ;

c’est I'égalité (99), qui, dans cette couche superficielle, remplace
la constante C de I'intérieur par une fonction de .
On vérifie ainsi les conditions suivantes:

10 Pour 1 = 0, on a B (0) = a;;
20 Pour 1t = 0,ona B’ (0) = —w ;
3¢ Il y a raccord pour — t = 15, entre les deux expressions
de B (7); il suffit de choisir, pour la constante C de
I'intérieur, la valeur:
C=0C,;=15a; log15.

Quant a a,, c’est une constante négative, d’ailleurs
trés petite en face de a,;

40 1'équation de 'équilibre radiatif strict € = 0 est vérifiée
jusqu’au bord de I'étoile:

™
B(ﬂ:%fﬂ(—:,e).sine.da.
0

On constate donc, en fin de compte, que, pour satisfaire aux
conditions de la périphérie, la fonction B (7) doit présenter un
terme logarithmique complémentaire.

Enfin, il convient de relever que la fonction J (1, 0), donnée
comme solution de I’équation de transfert d’énergie, ne peut
étre utilisée par la suite, dans I'équation de I’équilibre radiatif,
qu'en y apportant des retouches. Cela suggere I'idée que la
résolution habituelle de I'équation de transfert n’est peut-étre
pas sans défaut.
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