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ASTROPHYSIQUE THEORIQUE

CONSIDERATIONS
SUR LES EQUATIONS DE L'EQUILIRRE RADIATIF

ET DU TRANSFERT D'ENERGIE

PAR

Georges TIEKCY

1. — Rappel. Les problemes qui se posent ä propos de 1'equi-
libre radiatif stellaire sont resolus ä l'aide de quelques equations
fondamentales, qui sont les suivantes:

a) l'equation de transfert d'energie:

4— • cos 0 B — «7 ;
d t

b) l'equation de l'equilibre radiatif:

c) l'expression du flux radial:

F J" J (t, 0) cos 0 d<o
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Lorsque la matiere presente une symetrie spherique autour
du centre, on utilise volontiers la solution que voici1:

„ cos 0 dB dB
J — B — — B j- cos 0 1

kp dr st
(solution de l'equation de transfert)

4 7Ü
'U — • B (densite d'energie) (2)

s 1 1 d / r2 dB\
k 3k p r2 dr\kp dr) '

(solution de l'equation d'equilibre radiatit)

(3)

_ 4tt dB 4tt dB
r~~~Wp"dF~ Y'T-r'

(expression du flux radial)

4 7Z

p' — B (pression de radiation) ; (5)

tf est l'intensite de la radiation, B celle du rayonnement noir,
caracterise, comme on sait, par la relation:

B — T4 (6)

oil T est la temperature absolue; 4tts est l'energie liberee par
unite de masse et par seconde; c la vitesse de la lumiere, et
k le coefficient d'absorption avec l'hypothese du corps gris.
On utilise couramment la variable t definie par l'egalite:

dx kpdr ; (7)

les equations (1), (3) et (4) s'ecrivent alors respectivement:

J B — cos 0 B'(x) (8)

- 1 - A (r* —^ (9)
k 3 r2dx\ dx/'

F -^B'(x); (10)

1 G. Tiercy, L'equilibre radiatif dans les etoiles. Gauthier-Villarsr
Paris, 1935, p. 151.
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et dans le cas oü il est possible de negliger la courbure de la
surface, c'est-ä-dire dans les couches peripheriques d'une etoile
de grand rayon, l'equation de l'equilibre radiatif prend la
forme tres simple relative ä la stratification en couches planes:

II est evident que s est une fonction de t. En premiere
approximation, les choses se simplifient notablement, grace au fait
que, dans les conditions stellaires, la valeur de e est tres petite
par rapport ä celle de B (t), comme l'a montre M. Eddington;
dans la partie peripherique de l'etoile, on a s 0 et. l'on peut
poser:

B (t) ax + aaT (12)

oü et «2 sont des constantes; cette forme est encore valable,
avec une bonne approximation, loin au-dessous de la surface,
ä cause de la petitesse de s.

II faut cependant remarquer que l'expression (12) a ete

obtenue en admettant que B (t) füt developpable en serie

suivant les puissances de t; cette hypothese est tout ä fait
admissible en ce qui concerne l'interieur de la masse stellaire,
c'est-ä-dire tant que t ne prend pas des valeurs infiniment
petites; lorsque t est tres petit, c'est-ä-dire pour la « pellicule »

de surface, il se produit, comme nous l'avons montre 1, une
chute brusque de temperature; et le developpement de B (t)
en serie de Taylor n'est plus admissible; la fonction admet une

singularite pour t 0, en ce sens que sa derivee B' (t) devient

infinie, B (0) restant finie.

Lorsqu'il s'agit du flux de surface, cette singularite n'est

guere genante, car B (0) possede une valeur bien connue, qui
est seule importante.

2. — Du jeu des equations. — La solution courante des pro-
blemes s'obtient essentiellement en combinant les equations de

1 Loc. cit., p. 386.
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transfert et d'equilibre radiatif1; admettant la forme reduite

B (t) + a2x

comme solution de 1'equation d'equilibre, on porte cette forme
dans l'expression qui donne la solution de 1'equation de transfert:

T

J (x, 0) e~Tsec6 |*B (t) eisec0 sec 0 dt + J (x1; 0) e-(T"Ti)sece

^1

ou Ton fait 0 ä la frontiere du corps:

J (x, 0) |"b (t) e(t-T>sece .sec O.dt + J (0, 0) e'rsec<> ;

8

on tient alors compte du fait qu'il doit y avoir raccord entre
le flux ainsi calcule et le flux de surface; on trouve, apres deux

approximations successives 2:

J 0) yq & —12" ^ (T ~~ cos 9)' M13'

T4 — T4 fl — x16 e V 14

oü Zi' est determine par F nZF, F etant le flux total. On a

done determine les valeurs de et a2; les formules (13) sont
celles qui nous ont servi ä etablir un raccord numerique entre
la solution polytropique valable au cceur de l'etoile jusqu'ä

3
r' — A1,, et la solution valable dans la couche peripherique.

Le jeu consiste done ä passer de l'une ä l'autre des deux

equations principales, en procedant par approximations successives.

Mais on voit bien le defaut du procede: d'une part, e n'est
nul que dans la partie peripherique; d'autre part, la fonction
B (x) presente une singularity de surface.

1 G. Tiercy, loc. cit., p. 153 et p. 383.
2 Ibid., p. 385.
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3. — Considerations sur s et B. Reprenons l'equation appro-
chee (3) de l'equilibre radiatif:

^ 1_ j_ d^(C_ dB\
k 3 k p r2 dr \k p dr) '

au lieu de l'equation reduite (11) des couches planes. On peut
envisager ici deux problemes: ou bien donner la valeur de sjk en
fonction de t et chercher l'expression correspondante de B,
ou bien trouver la fonction s (t) en tirant parti de renseigne-
ments connus sur B.

Le premier de ces problemes-a ete souleve par J.-H. Jeans

en 1926 1; on trouve la solution2:

'(l) 36 "'(f)
B'(t) s(^) + | +

en appliquant la methode du retour des series ä la relation
etablie pour le cas de la stratification en couches planes:

_ |~B"(t) B'"(T) B<2">(T) 1

Lb + 5 + 2 a + 1 " • J >

et qui donne l'equation (11) par abandon des derivees de B
d'ordre superieur au deuxieme.

Nous aborderons ci-apres le second probleme; nous cherchons
done ä exprimer e en fonction de t, en utilisant l'equation (3)

et ce que l'on sait de B (t).
L'equation (3) peut etre ecrite comme suit:

d_( 1 dBN 2 1 dB _dr\kp dr r kp dr

Posons alors:
d/B^ _ _ dOt

kp dr d-c dr
(15)

en rappelant que p et k sont des fonctions de r, et que le rapport
p/T3 reste constant dans toute la masse lorsque la classe poly-
tropique est n — 3.

1 Monthly Notices, 86.
2 G. Tiercy, loc. cit., p. 140.

Archives. Vol. 21. — Mai-Juin 193S.
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L'equation de l'equilibre radiatif devient:

dHt 2 did
j-r + - -r- + 3ep 0 16
ar- r ar

dont les deux premiers termes ont la meme forme que ceux
de l'equation d'Emden rencontree dans l'etude des equilibres
polytropiques.

Le probleme ä resoudre est le suivant: peut-on trouver une

expression de e en fonction du rayon, telle qu'on ait s 0
ä partir d'une certaine valeur du rayon L'etude de la constitution

d'une etoile montre que l'energie Lr liberee par une
sphere de rayon r passe par un maximum Lr„ pour un rayon r";

3
cette valeur r" est elle-meme inferieure ä la valeur r' — r0 qui

marque la limite d'applicability de la solution polytropique
dans le noyau le calcul montre que r" atteint ä peine 0,5 r0;
Lr„ etant maximum, on a alors pour le taux de liberation
d'energie: 4to 0.

Nous avons d'ailleurs montre, dans l'ouvrage cite, que Lr,
vaut 2 environ les 3/5 de la radiation maximum L,"; comme il
ne saurait etre question de faire s < 0 en dehors de la sphere r",
on est amene ä considerer Lr„ comme egale ä la puissance effec-

tivement rayonnee et mesuree L, et ä faire s 0 a l'exterieur
de la sphere r"; de telle sorte que la solution polytropique du

noyau ne serait en realite applicable que jusqu'ä r", et non pas
jusqu'ä r'. A partir de r", il faudrait adopter une autre solution,
conservant la valeur Lr„ L de la puissance rayonnee et se rac-
cordant sur la sphere r", en ce qui concerne les T et les p, avec
la solution polytropique valable dans la partie centrale. Mais,
comme Lr, est du meme ordre de grandeur que Lr„, on voit vite
que la distribution des temperatures entre r" et r', quelle que soit
la solution adoptee ä l'exterieur de la sphere r", ne serait pas
tres dilferente de la distribution obtenue en appliquant la solu-

3
tion polytropique jusqu'ä la valeur r' —r0 du rayon; les

valeurs respectives de T" seraient comparables. Aussi, pratique-

1 Voir G. Tiercy, loc. cit., p. 234 ä 240.
2 r' est le rayon pour lequel T 106; en dehors de la sphere r', il

n'v a plus que le 0,83% de la masse de l'etoile.
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ment, pourra-t-on utiliser la solution polytropique jusqu'ä la
sphere r', sur laquelle T' est de l'ordre de grandeur de 106 degres,
comme on sait. Ainsi s est positif ä l'interieur de la sphere r",
et devient nul pour r" (ou pour r', comme on vient de voir);
mais, d'autre part, on sait que le coefficient k d'absorption
augmente lorsqu'on va du centre ä la peripheric; il s'ensuit

que le quotient zjk est fonction du rayon, fonction qui s'annule

pour r" (ou r'); si l'on pouvait preciser le type de cette fonction,
il serait possible de trouver la distribution de T en profondeur.
C'est bien lä notre probleme.

La question se complique du fait que la fonction B (t) pre-
sente une singularity ä la surface, comme on l'a rappele au n° 1.

4. — Resolution de Vequation (16):

d2'U 2 d'U „ n ,A,.
~d^ + 7'^T + 3sp - 0 • (16)

Posons:

dlI dB
dr d t '

1'equation devient:

~ + - X + 3ep 0 (17)
dr r

Une solution particuliere de 1'equation privee de second

membre:

dr r
est:

X' ~ ;ri

ensuite, en posant X X'.Y, il vient:

y dY - qp„X -ITr ~ "~3ep '

dY
— 3spr2 (18)

dr
r

Y — 3 f epr*dr ; (19)
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d'oü:
r

x x'-Y S "i/"spr*dr' (20)

expression qui se reduit a X C°"ast' dans le cas oü s 0, c'est-

ä-dire lorsqu'il n'y a plus aucune energie liberee; c'est ce qui
arrive en dehors de la sphere de rayon r" dont nous avons parle
au numero precedent; alors, on voit, d'apres l'equation (4),

que le flux radial varie comme 1/r2, comme cela doit etre

puisque la puissance rayonnee L ne varie plus.
Si, en plus, le rayon est assez grand pour qu'on puisse negliger

la courbure des couches interessees et considerer celles-ci comme
planes, l'expression de X se reduit ä une constante a2 et l'on a:

B (t) % + <z2 t

sous reserve de la singularity de surface, dont nous reparlerons
plus loin.

La solution (20) sera valable jusqu'ä r" (ou /•'), valeur ä

partir de laquelle on a e 0.
<7 T4

Rappelons qu'on a aussi: B ~^r, et que p/T3 reste constant

dans toute la masse du noyau, si la classe polytropique est 3;
ce qui donne, avec dz kpdr:

dB dT
—— (nj ou aB rvj paT
a x kdr

5. — De la forme de B (t) imposee par les faits de surface.
const

Prenons le cas de s 0, pour lequel X —j—' ; nous ecrirons:

V - a rl-dA (211X — a2 r2 — (21)

dB
expression qui se reduit ä -j- a2 pour la surface. Pour l'hypo-

these des couches planes, cette derniere valeur de la derivee

reste valable en profondeur et l'on a:

B ax + a2x (22)
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sous la reserve indiquee pour t 0; cette solution approchee
ne s'applique pas, en effet, ä la peripheric extreme de la photo-

sphere; la necessite d'obtenir une valeur infiniment grande de ^ -
ä la surface entraine ä completer (22) en lui ajoutant un terme
logarithmique:

B (t) % + a2t + At Log (— t) ; (23)

nous conservons ici la notation de nos precedentes recherches,
oil t est compte positivement vers l'exterieur 1; comme on part
de la surface (t 0) pour s'enfoncer dans la masse, la quantite
(— t) est positive. Les valeurs ax et a2 sont celles que nous avons
determinees en seconde approximation2 :

7 27
B (t) — f — — y T + At Log (— t) (24)

le flux net ä la surface valant F —iF; derivant par rapport ä t
on a done:

^5 + a2 + A[l + Log (— t)] + ^ T Log (- t) (25)

Conservons en profondeur, au moins jusqu'ä t t', la forme
(24) imposee par les faits relatifs ä la pellicule limite; nous
introduisons ainsi une correction au terme en t de (22); mais

il ne faut pas oublier que la forme (22) n'etait qu'approchee en

profondeur, oil B" (t) es tres petit, mais non nul, et oü la syme-
trie est spherique. La correction revient ä remplacer le coefficient

a2 par un coefficient variable:

B (f) ^ 57 + T [«2 + A Log (— t)] (26)

Remarquons que:

lim [(— t) Log (— t)1 0
T=0 J

de sorte quer
B (0) ax ;

on obtient bien la valeur convenable de B pour la surface.

1 Loc. cit., p. 133, 155, 379.
2 Loc. cit., p. 385.
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Dans l'expression (26), le terme complementaire At Leg (-t)
est d'abord nul, pour t 0. Gonsiderons pour l'instant le cas
de A constant et positif.

On connait la courbe de variation de la fonction y x Log x;
la valeur de y change de signe pour x 1; le minimum a lieu

1

pour x —, la derivee par rapport ä x etant:

Log x + 1

La fonction Y At Log (— t) — A (— t) Log (— t)
—AzLogx, dont la derivee par rapport ä (—t) est

Yl =—A [Log (—t) + 1], presente un maximum ^ pour

— t — 0,37.
e '

Ainsi, lorsqu'on s'enfonce sous la surface, alors que le terme

ö2t, de valeur positive, de (26) devient de plus en plus grand en
meme temps que la temperature augmente, le terme
complementaire A t Log (-+ t) vient tout d'abord en addition du
precedent jusqu'ä (—t) 1, apres quoi il devient negatif et
diminue l'effet du terme precedent.

Mais remarquons que le domaine de (— t) qui va de 0 ä 1 est

fort peu de chose. On sait que, si l'on utilise la variable i;
d'Emden pour le rayon, ona1:

Ir
co uc

oil co et uc sont des constantes; celles-ci sont telles que le

rayon total r0 de 1'etoile correspond a 6,9; et dans la
couche 2 allant de £ 6,888 ä i; 6,886 la variable (— t)
passe de la valeur 0 ä 14,72; or cette couche est la pellicule
limite, dans laquelle se produit la chute brusque de temperature

3; cette pellicule est tres mince; cependant, la valeur
(— t) 1 ne represente que le 1/15 environ de son epaisseur.

1 G. Tiercy, loc. cit.
2 G. Tiercy, loc. cit., p. 387.
3 La temperature passant, par exemple, de T 9700° ä

T 4200°.
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Considerons le dernier terme de (26): A t Log (—t); ii est

\positif jusqu'ä (— t) 1; sa valeur maximum est ~ 0,37 A;

eile est atteinte pour (— t) — 0,37.

Considerons maintenant la valeur correspondante du second

terme de (26), c'est-ä-dire —t), oü S1 et

(5,75). 10—5; si l'on admet par exemple une temperature
effective de 5000°, on trouve que (0,1144).10u; ainsi le

Isecond terme de (26) vaut, pour (— t) — :

(0,1144) 10" ~ (0,0357) 10" ~ (0,4) 1010

On voit qu'en prenant A < 0,4.1010, le dernier terme de (26)
1

restera en valeur absolue, inferieur au second pour (—r) —

Mais il n'en sera plus de meme ä la longue, e'est-a-dire lorsque
(—t) augmentera; le crochet de (26) pourra devenir positif
pour (— t) suffisamment grand; de telle sorte que B (t) dimi-
nuera finalement lorsqu'on s'approchera du centre de l'etoile.

Cela veut dire que Feffet du terme complementaire de (26),

avec A constant positif, sera d'accentuer l'accroissement de

temperature dans la pellicule de surface en penetrant sous
celle-ci (c'est bien ce qu'il faut), mais de provoquer une
diminution de T pres du centre L II faudra done choisir A sufii-
samment petit pour que, malgre 1'augmentation de Log (— t),
le crochet de (26) reste negatif; mais, de toute fa^on, la valeur
absolue de ce crochet diminuera dans les regions profondes de la

masse. Nous verrons d'ailleurs au numero suivant qu'une petite
valeur numerique de A serait incompatible avec une nouvelle
exigence que nous allons justement etudier, du moins lorsqu'on
utilise les equations courantes de solution.

6. — Be la quantite 3sp qui figure dans Vequation du n° 4.

Conservons un instant l'hypothese de A constant et positif;
quelle que soit la valeur attribuee ä cette constante, la presence

1 On s'arretera d'ailleurs au niveau r x'.
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du terme [t Log (— t)] dans (26) assure une valeur negative

infiniment grande ä ^ quand on fait i 0, ce qui est essentiel.

II s'agit maintenant de voir si l'on peut trouver une loi de

repartition de sp correspondant ä (26), et permettant d'obtenir
e 0 sur la sphere de rayon r" ou /, comme on a dit au n° 3.

On a vu par (20) que:

v .dB 1
X X Y — avee X ^ ;

d t r2

il vient done;

Y r2 X r2 ^ ; (27)
d t

Or, (26) donne, avec A quelconque, fonetion de t:

^ a2 + A [l + Log (— t)] + t Log (— t) ^ (28)

expression qui se reduit ä la suivante dans l'hypothese de A
constant:

~ a, + A [l + Log (- t)] (29)

II vient ainsi:

Y r2 { a2 + A [l + Log (- t)] } (30)

et par derivation par rapport ä r:

f 2r{ a2 + A[1 + Log (- t)] } + Ar2 - i • ^ ;

Or, on a par (7):
dr
d7 kp :

d'oü Fexpression:

rfY
2r{a2 + A[l + Log (- t)]} + A^-" ; (31)dr

et comme, ä cause de (18), le premier membre de (31) est egal
ä (—3spr2), on trouve la relation:

3eP' l{-a2-A[l + Log x)]} • (32)
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On aurait ainsi, sous reserve du choix de A, la valeur de sp,
27 —oil a, conserve sa valeur — -2 32

Cette valeur (32) peut-elle devenir nulle pour r" ou pour
r' 0,725 r0 La question est essentielle.

On sait qu'avec les variables d'Emden, la valeur r' 0,725 r0
correspond ä E, 5, alors qu'ä la surface on a Eo 6,90; prati-
quement, on prendra E,0 6,888 qui correspond ä la temperature
T0 de surface, temperature non nulle '.

D'autre part, on a calcule2 que, pour l'etoile Capella oü la
temperature effective Te vaut 5200° et oü T0 4230°, 1'opacite
totale (— t) correspondant ä p' 5 est egale a (2,159) 109;

avec ces valeurs, et en rappelant que (0,1144). 1011 dans le

cas de Capella, on tire de (32):

2 / 97
3£P

o^257o
"

32
<0'1144) " 1011 ~ + LoS <2'159) 109] | +

+ (2,159) 109
'

II est necessaire de rappeler ici les notations utilisees dans la
solution polytropique 3; et 'j etant les variables d'Emden;
on a, pour la classe n —3:

p r ^c> et

k_h P

H X7/2

*1.
co et uc sont des constantes, de meme que — ; dans le cas de

Capella, uc 0,500, -1 (11,82). 1026, et r0 (9,5). 1011 cm.
I-1

Enfin, pour 5, c'est-ä-dire pour r r', on a encore:

<]/ 0,11079 (table d'Emden)

T' 1.100.000°

1 G. Tiercy, loc. cit., p. 156.
2 G. Tiercy, loc. cit., p. 387.
3 G. Tiercy, loc. cit., divers paragraphes.



146 ASTROPHYSIQUE THEORIQUE

d'oü:

p' (0,5)3 (0,11079)3 0,00017

(Ty/s (i ,39594) 1031

/(' 144

L'egalite (33) s'-ecrit alors:

0,00051 s

ou bien:

(6,8875) 1011

,0888 / 9,3342526\
io11 — A I 1 H—32 V 0.4342945/

A (0,02448)
+ 72,159) 109 '

+

0,00051 E 0,028 — A (1 + 21,493) 0'^^38 + A\ > / |Q11 IQ11

0,00051 E 0,028 — A (34)
1 Oii-

Si, dans cetle egalite qui correspond ä 5, on fait
A A' (0,5115) 10», on obtient e 0.

Mais cette valeur positive constante de A fait que le crochet
de la relation (26) s'annule et devient positif tres vite, entre r0
et r', alors que ce crochet doit rester negatif, comme on l'a dit
ä la fin du numero 5. Cette valeur de A est done trop grande

pour satisfaire ä la condition du n° 5; mais si l'on prend A plus
petit que A' (0,5115) 109, la quantite e ne sera pas nulle

pour 5. II y a contradiction entre les deux exigences.
La solution avec A constant dans toute l'etoile n'est done pas

satisfaisante; du moins lorsqu'on fait le calcul au moyen de

l'equation (3) ou (14), qui est une forme approchee de 1'equation
de l'equilibre radiatif. II faut alors reprendre la relation (26),

avec l'idee que A est une fonction de t. C'est ce que nous essaye-

rons dans les numeros, 8, 9, 10 et 11.

7. — Les conditions ä remplir. Faisons tout d'abord le tableau
des conditions ä satisfaire par la fonction B (t):

1° La valeur B (0) est finie; ou la mesure par le flux total
exterieur;
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2° La derivee B' (t) doit prendre une valeur negative tres

grande ä la surface, pour r 0;

3° II faut que s 0 pour la valeur r" ou r' du rayon, et pour
r' < r < r0;

4° II faut enfln que cette fonction B (-) donne une valeur
convenable finie pour l'intensite du flux, designee par
<7 (t, 6), oil 6 designe Tangle forme par la radiation
consideree avec Ie rayon.

Les deux premieres conditions sont facilement satisfaites,
abstraction faite de la troisieme; elles le sont meme avec A
constant.

Nous reprendrons plus loin, aux nos 9 ä 13, l'etude de la
troisieme condition, etude dejä amorcee au n° 6.

Quant ä la quatrieme condition, il n'en a pas encore ete question

dans ce qui precede; nous allons lui consacrer le numero 8.

8. — L'intensite <7 (f, 0) da flux rayonnant, et la singularity
de surface de la fonction B (t). L'equation de transfert d'energie

s'ecrit, comme on sait:

^ cos 6 B — 3 ;
a t

nous avons rappele au n° 1 que la solution usuelle est la suivante,
tant dans le cas des couches planes que dans celui de la svmetrie

spherique:
J (t, 0) B (t) — cos 6 B' (t) ; (35)

mais cette solution n'est valable ä la surface que si la fonction
B (t) ne presente pas de singularite pour t 0; c'est le cas

pour 1'approximation lineaire souvent utilisee:

B (t) + C2T (36)

que Ton choisit apres avoir constate que la derivee seconde

B" (t) reste en moyenne tres petite devant B (t) dans l'interieur
profond de l'etoile, et s'annule en vertu de l'equation (3)

lorsque s 0, c'est-a-dire dans la partie exterieure de l'etoile
oü il n'y a plus aucune liberation d'energie.
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Nous avons dit au n° 5 que les faits de surface suggerent
d'ajouter ä B (t) un terme complementaire; la fonction devient:

B (t) Uj + a2t+ At Log (— t) (37)

de telle sorte que B (0) conserve sa valeur frnie, tandis que
B' (t) prend une valeur negative tres grande pour t 0.

II est alors visible que l'expression (37) donne ä J (0, 0) une
valeur extremement grande, du moins si l'on conserve la relation

(35) comme solution de l'equation de transfert d'energie.
Gette expression (35) n'est done pas satisfaisante pour la pelli-
cule de surface; la premiere chose ä faire est ainsi de chercher

une forme plus convenable pour Ö (t, 0).

La solution complete de l'equation de transfert s'ecrit, comme
on sait:

J(t, 6) <rTSec9 f B(t) e'sec9 sec 6 dt + 0 (tx 6) e<n~^ece ;

(38)

oil l'on admet connaitre la valeur J(t15 0) de l'intensite du flux
pour un certain niveau caraeterise par la valeur tx de l'opacite.

Dans le cas d'une etoile, e'est ä la frontiere (tx 0) que l'on
peut connaitre l'intensite; de sorte que nous eerirons la solution
sous la forme:

T

Ö (t 0) f B (l) e(t'T)sec9 sec 6 dt + 3 (0 6) <r^sec9 (39)

0

oü t prend alors des valeurs negatives puisqu'on penetre sous

la surface; autrement dit, la quantite (— t) augmente de plus
en plus ä mesure que l'on s'approche du centre de l'etoile.

En general, on utilise la forme (38); et l'on suppose donnee

l'intensite J (tx, 0) ä un niveau tres bas au-dessous de la frontiere

; on considere alors que le dernier terme de (38) est negli-
geable, ä cause de l'enorme valeur negative de tx; et l'on ne

conserve que le premier terme du second membre, en remplagant

Tj par — oo ä la limite inferieure de 1'integrale; e'est ainsi que
l'on est conduit ä la solution (35) en supposant encore B (t)
developpable en serie.
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Remarquons ici qu'on peut se demander si l'on a vraiment
le droit d'abandonner le dernier terme de (38), car on ne sait
rien de l'ordre de grandeur de J (t17 0).

Nous nous proposons d'utiliser la formule (39), oil le terme
integre n'est pas negligeable 1; l'emploi de cette relation (39)
sous-entend que l'on connait l'intensite Ö (0, 0) ä la frontiere
du corps; nous dirons plus loin comment on en a connaissance

effectivement.
Tout d'abord, cherchons ä simplifier la relation (39); posant:

(t — t) sec 0=4^» sec 9 • dt d 41 i

on obtient:

o

J(T,0) =y B(T + 4/ COS Ö) + J(0, 0) sec6
;

-T sec 6

ne nous preoccupons pas pour l'instant du fait que la fonction
B (t) pourrait presenter une singularity pour t 0; et suppo-
sons-la developpable en serie, comme on le fait ordinairement;
il vient:

B(t + 41 cos 0) =B'(t) + * "

^°S 9B'(t) B'(t) + ;

de sorte qu'apres integration, et en tenant compte du fait que
B" (t) est un nombre tres petit en moyenne devant B (t),
c'est-ä-dire que B" (t) est negligeable pratiquement, on trouve

pour Ö (t, 0) l'expression:

3(T, 6) B(x) [l — e"TSece] + \

(40)

+ cos 6 B'(t) [— 1 + e"TSece (xsecO + 1)] + J (0, 6) c"TSece

ou encore:

3 (t 0) B (t) — cos 0 B' (t) +
(41)

+ e~rsec6 ^— B (t) + cos 0 B' (t) {t sec 6 + l} + 3 (0 0)] j

1 G. Tiercy, C. R. de la Societe de Physique et d'Histoire naturelle,
Geneve, 1938, I.
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Telle est la nouvelle expression que nous employerons pour
l'intensite.

Remarquons en passant que, si Ton adopte pour B (t) la
forme lineaire (36), le crochet du second membre de (41) se

reduit ä une constante; et il arrive que cette constante est nulle,
comme il est facile de le voir.

Pour cela, il faut connaitre la valeur de l'intensite de surface
0 (0, 0); celle-ci peut etre obtenue experimentalement, grace ä

l'observation attentive du disque solaire; on constate en effet

que l'intensite de la radiation partant dans la direction de

1'observateur varie avec la distance au centre du disque visuel;
le bord du disque est assombri; et la loi de cet assombrissement
est la suivante:

."<(0,0) 14 27

Ö]Ö70) 4T + 41" C°S 9 '' (42)

c'est la une relation experimentale, oü .'<(0,0) est l'intensite au

centre du disque. On trouve d'ailleurs immediatement que:

•'< (0.0)= 4| T (43)

oil 1'on a: tz F — flux total de surface =oT'; en effet,
il vient:

Y
it y F 2 7t I J (0 0) cos 0 sin 0 d 0

0

c'est-ä-dire, grace ä (42).

J(o. 0) §
On a done flnalement:

J(0'9) ~k'J + fi5-003 0 (44)

Telle est la formule pratique fournie par l'observation du

disque solaire T

1 G. Tiercy, L'equilibre radiatif dans les etoiles, p. 384 et p. 408.
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Or, cette relation reste evidemment valable pour le probleme
qui nous occupe, oü pous avons justement besoin de connaitre
la variation de 1'intensite en fonction de 0.

D'autre part, il est facile de voir qu'avec l'approximation
lineaire habituelle de B (t), c'est-ä-dire :"wmle crochet de (41) est nul, et que l'expression de J (t, 0) se

reduit ä (35).
Mais revenons ä l'expression (37) de B (t), avec le terme

complementaire At Log (— t); la derivee devient infinie negative

pour t 0, si A est convenablement choisi. Remarquons

que dans la nouvelle formule (40), le coefficient de B' (t)
devient nul pour t 0; de sorte que, avec la forme lineaire (36)

ou (45), il vient:
J (0 6) 3 (0 0)

Or cela est encore vrai si l'on tient compte de la singularity de

B (t) imposee par les faits de surface; on a:

B (t) «1 + «j T + At Log (— t)

dA
d tB'(t) a2 + A[l + Log(— T)] + ^ • T Log (— t)

nous admettrons pour l'instant1 que la fonction A ne devient

pas elle-meme infinie pour t 0; on a d'ailleurs B (0) aq;

tandis que la fonction B' (t) contient un terme en Log (— t),
qui devient infini pour t 0; cependant le terme en B' (t) de la
formule (40) disparait encore; car la vraie valeur du produit

Log (— t) [— 1 + e~TSec6 (T sec 6 + 1)]

pour t 0 est nulle, comme il est facile de s'en assurer. Ainsi
l'expression (40) peut etre eonservee ä la surface, oü l'experience
donne la valeur (44).

1 Voir au n° 12.
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Mais il y a mieux; il faut chercher ä ramener la formule (40)
ä la forme (35) pour les valeurs de (— t) n'appartenant pas ä la
pellicule extreme de surface; on sait que la pellicule exterieure,
dans laquelle se produit une chute brusque de temperature ä

l'approche de la surface photospherique, correspond1 aux
valeurs de (— t) comprises entre 0 et 15, domaine pour lequel
la variable \ d'Emden varie 2 de 6,888 ä 6,886; il s'agit de

considerer maintenant des valeurs de t telles que — t >15.
Nous admettrons que le coefficient A de begabte (37) est

une fonction de t ä choisir; et nous poserons, pour —• t > 15:

A + C
: (46)

T Log (— T)

c'est-ä-dire:

+ C At Log (— t) (47)

oil nous prendrons C < 0, comme on verra au n° 13.

Avec cette valeur de A, la fonction (37) devient lineaire en t:

B (t) (a1 + C) + a2 T i (48)

analogue ä l'expression (13) de B(r) que nous avons donnee, en
seconde approximation, dans notre ouvrage cite 3, et qui correspond

au cas oil la courbure des couches peut etre negligee,

comme cela arrive pour les couches exterieures de l'etoile.

II faut remarquer ici que la formule (48) ne sera pas utilisable

jusqu'aux regions les plus profondes de l'etoile, oil la courbure
des couches n'est plus negligeable; la formule ne sera appliquee

que jusqu'ä la couche oii-r t', au-dessous de laquelle on peut
appliquer la solution polytropique.

Quant ä la valeur de la constante C, on pourra la prendre tres

petite ä cote de ax, comme on verra au n° 13; par exemple, on

pourra faire G — 1.

1 G. Tiercy, L'equilibre radiatij dans les etoiles, loc. cit., p. 387.
2 Idem, p. 387.
3 G. Tiercy, loc. cit., p. 385.
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Ainsi, en profondeur (du moins jusqu'ä la valeur t t'),
on aura la solution habituelle:

BW-(g» + c)-g».,,
pour la pellicule de surface (— t < 15), on partira de la valeur

15 15 Log 15 '

valable pour —t 15; des lors, de —t 15 a t 0, on

remplacera C par une fonction convenable t, qui ne sera pas
autre chose 1

que t Log (— t).
II va sans dire que, dans les conditions creees par l'adoption

de la relation (46), la derivee B" (t) reste constamment nulle

pour —t > 15, meme lorsque (—t) devient tres grand; et
l'on a pour Tintensite, comme le veut l'expression (35):

J (t 0) (ax + C) + a2 (x — cos 0) (49)

On peut d'ailleurs arriver ä l'expression (46) de A justement
en exigeant que Ö (t, 6) se reduise ä (35). Partons en effet de

l'expression (39) de Ö (t, 6), en integrant de -tq — 15 ä t; en y
faisant encore (t — t) sec 6 on trouve la relation suivante
ä la place de (40):

J (t, 0) B (t) [l — ePi-v>sec0j +

+ cos 0 B'(-r) [— 1 + 1 — (tx — t) sec 0 }] +

+ 0)

ou encore, au lieu de (41):

<3 (t 0) B (t) — cos 0 B' (t) + 1

+ e<^-T>sec0 [- B (t) + B' (t) { cos 0 - (tl - t) } + 3 (tx 0)] ;
(50)

1 Voir au n° 13.

Archives. Vol. 21. — Mai-Juin 1939. 10
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si l'on veut que J (t, 6) se reduise aux deux premiers termes,
il faut que le crochet de 1'expression ci-dessus soit nul; il restera
alors:

3 (t, 0) % + a2T + At Log (— t) —

— cos 0 | a2 + A + A Log (— t) + ^ t Log (— x) |

d'oix:

(Ti > ®) ax + Atj Log (— Tj) + a2 {r-i — cos 6) —

cos 6 S A t Log (— t)d T ,T ;Tl -

en ecrivant que le crochet de (50) est nul, on a l'equation:

ATj Log (— Tj) — At Log (— t) + (cos 0 — + t) ~ At Log (— t) —
a T

— cos 0 j ~ A t Log (— t) | 0
[a T

x

T

qui est visiblement satisfaite par 1'expression (46):

A t Log (— t) const G

L'egalite (50) devient ainsi (49):

3 (t 0) + C + a2 (t — cos 0)

expression qui donne bien la valeur voulue:

3 (0, 0) % — a2 cos 0

si C est remplacee par une fonction tendant vers zero avec t
dans la pellicule de surface (voir n° 13).

9. — La condition z 0, de r r' ä — t 15. Une

complication nouvelle surgit ici.
La forme (48) de B (t) a ete admise des que — t > 15:

B(t) + C + a.2-z

7 27
/«x l6^, at — 32^ ;

(51)



ASTROPHYSIQÜE THEORIQUE 155

eile est satisfaisante sous, certains rapports; mais il est facile
de voir qu'elle est incapable de fournir la valeur s 0 pour
r r', (£' 5), si Ton s'en tient ä l'equation habituelle
approchee de l'equilibre radiatif1. Rrprenons, en effet, les

egalites du n° 4:
dY o 2
~dr -3eP''

_X _ dB v/ __
1

V' ' J > 2 5A aT rz

on a ici, par (48):

dB
7 (Z2 J

ttT

O Q 2— 2ap — 3Epr2

d'oü:
2 a»

£ ~~ ~~ §7r ' (52)

On trouve aussi (52) en utilisant directement 1'egalite (17)
du n° 4:

dX 2 _ dB
—]— + — A-— — osp A — —
ar r ai

comme on a toujours di kpdr, on trouve 2:

/cPB"(t) + yB'(x) — 3sp ; (53)

et comme B" (x) 0 a cause de la forme lineaire de B (t), il
vient:

2 dB
-j— — 3spr at

d'oü 1'egalite (52).

Or, cette expression (52) ne peut pas s'annuler pour t t'
our r'. Elle fournit bien une valeur positive pour e, valeur

1 Nous reviendrons, ä la fin de l'article, ä l'equation complete de

l'equilibre radiatif.
2 II faut relever que 1'egalite (53) a ete etablie dans l'hypothese

que B (t) est developpable en serie suivant les puissances de t ;

c'est le cas de (48).
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qui est extremement grande lorsque r est tres petit, qui diminue
d'abord lorsqu'on s'eloigne du centre, mais qui se met ä

augmenter ensuite lorsqu'on tend vers la peripheric. Cette expression

(52) est inadmissible. Cela nous conduit ä retoucher la
valeur de B (t).

Raisonnons cependant encore avec 1'equation approchee (53)
de l'equilibre radiatif; et essayons l'expression:

R (t) ax + [aa + A Log (— t) + D ez " T] r (54)

qui se reduit ä la suivante, des que — t > 15:

B (t) a. + C + [a2 + D ez _T] t (55)

Lorsque t 0, on a bien B (0) av puisque dans la couche

superficielle la quantite C varie avec t et s'evanouit pour r 0.

Nous ne retiendrons, dans ce n° 9, que le cas de — t ^ 15,

c'est-ä-dire le cas de l'expression (55), oil on suppose que B (t)
est developpable. On a alors:

B' (t) a2 + D eT _T (1 — t) + D' t eT ; (56)

B"(t) D eT'"T. (t - 2) + 2D'.eT'-'.(l-T) + D" t eT'~z (57)

expressions qui, portees dans (53), donnent l'egalite approchee
suivante:

eT_T [&P(TD — 2D + 2D' — 2tD' -(- TD') + J

o o
> (58)

+ | (D - tD + tD')] + ^= -3sp,

qui fournira la valeur de e quand D sera connu. Nous voulons
maintenant realiser la condition e 0 pour — t < —t'.
L'egalite (58) donne 1'equation:

icpr(TD — 2D + 2D' — 2TD' + TD") +
9/7

+ 2 (D — TD + TD') =p- ;
eT z

ou encore:

kpr tD" + D'[ftpr(2 — 2t) + 2t] + D [ftpr(T — 2) +2 —• 2t]
— 2a2 ez~z (59)
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Telle est l'egalite fournissant la valeur de la fonction D,
lorsqu'on part de l'equation approchee (53) de l'equilibre
radiatif. En fait, cette equation (53) definit la forme de B (t)
sans qu'on ait ä s'occuper de l'equation de transfert. On verra
par la suite que ee mode de faire ne donne pas des resultats
entierement satisfaisants.

Remarquons que kpr reste superieur ä 10000 dans la couche

qui va de r r' ä la surface; on a en effet1:

| r„ 9,5 1011 cm

r' (0.725) r„ cm 6,9 1011,
I p' 0,00017
1 — T' ~ (2,2) 109

j (1,144) 1010

% ~ 3 (0,503) 10"

I
a2 — |Z 5 — (0,97) 10" no — 10"

I T' 106 ; Tc 107 ;

d1 autre part 2:

j_

k k'(^f) • Äc~5°;
de sorte que:

J k' 50 (3,1) 155

k'p' 155 (0,00017) 0,026

D'ailleurs, si l'on conserve l'approximation de la solution

polytropique de classe n 3, on sait qu'on a, avec les

variables \ et ^ de la theorie d'Emden 3:

T ("vj et p rvj 4f3 ;

d'oii l'on deduit que:

k no et A-p no

1 Valeurs numeriques etablies pour Capella.
2 G. Tiercy, jL'equilibre radiatif, loc. cit., p. 173 et 185.
3 Ibid., p. 83.
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Ainsi

le tableau reproduit ci-dessous montre que la quantite <|/2'5

devient 106 fois plus petite quand on passe de la sphere r r'
ä la sphere r0. Ce tableau indique, pour chaque valeur de i;

de £' 5 ä i;0 6,888 (c'est-ä-dire pour chaque valeur de r
de r' ä r0), les valeurs correspondantes de t];, ij/'5 et de l'opacite
(— t) 1; les valeurs de l'opacite y sont calculees au moyen de la
formule (7), en tenant compte de la variation du coefficient k

d'absorption 2.

c, r 0 t^2-5 r\j k o - - valeurs corrigtes
de (— t)

5' 5,000 0,11080 (4,086) 10"3 (2,448) 109 (2,159) 109

5 5,500 0,07426 (1,503) 10--" (7,462) 108 (5,411) 108

6,000 0,04371 (3,994)10"4 (1,445) 108 (8,822) 107

6,500 0,01784 (4,251) 10"5 (8,597) 10" (4,114) 106

6,800 0,00414 (1,103) 10"6 (5,608) 104 (1,817) 104

6,876 0,00100 (3,163) 10-8 (2,748) 102 (8,848) 10
6,886 0,00052 (6,237) 10~9 (7,350) 10 (1,472) 10

50 6,888 0,00043 (3,834) 10~9 0 0

p p
Le rapport — passant de 0,725 a l'unite alors que

^0 So

4»2,5 devient a peu pres 106 fois plus petit, il en resulte que la
quantite kpr passe de 0,026 r' 1,8 1011 ä (0,03) 1CT6/

2,1 104; elle est done toujours superieure a 10000.

En consequence, dans les deux crochets de l'equation (59),
coefficients de D' et de D, on peut laisser tomber les termes qui
ne sont pas multiplies par kpr-, et 1'on peut simplifier l'equation
comme suit, en negligeant 2 devant t, du moins jusqu'ä la
sphere \ 6,886 pour laquelle — t 15:

kpr tD" — 2kpr tD' + kpr tD — 2a2eT~T (60)

1 Valeurs calculees dans le cas de 1'etoile Capella.
2 G. Tiercy, L'equilibre..., loc. cit., p.381-387.
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II est bien evident que cette equation ne pourra pas etre
utilisee pour la pellicule extreme de surface, dans laquelle
l'opacite prend des valeurs de plus en plus petites. La pellicule
extreme devra done etre traitee ä part L On obtient ainsi une

equation ä coefficients constants pour trouver le facteur D:

D" — 2D' + D —
2"a •

gT T

(61)
kpr t

Mais kpr varie avec t; et si kpr devient 107 fois plus petite 2

quand on passe de £, 5 ä E, 6,886, l'opacite (— t) devient
simultanement environ (1,5) 108 fois plus petite 3. Le facteur
kpr varie done comme (—t)'/s, ou en gros comme (— t); et
l'on peut poser:

kpr 103 (— t) (62)

approximation valable dans la couche en question, e'est-a-dire

jusqu'ä £ 6,886.

L'equation ä resoudre prend alors la forme approchee:

D"-2D'+ D (63)

On apergoit immediatement une solution particuliere D0,

qui s'ecrit:

Do - !jjI.eT-T'.Log(-T) ; (64)

quant ä l'equation sans second membre:

D" — 2D' + D 0 (65)

eile est ä coefficients constants. Avec D eXr, l'equation
caracteristique est:

X2—2X + 1 0

qui possede une racine double X 1.

1 Voir n° 11.
2 Passant de (1,8)
3 Passant de (2,2)

1011 ä (2,1) 10b
109 a (1,5) 10l.
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La solution 0? de (65) d'ecrit done comme suit:

a e'fCi + C2t) ; (66)

de sorte que la solution complete de (63) est:

D e" (Cj + C2t) - Log (- t) (67)

On remarquera que, dans 1'expression (54) de B (t):

B (t) % + [a, + A Log (— t) + DeT ~T] t
le terme en Cj est simplement lineaire en t, tandis que celui en

C2 est proportionnel ä t2; de sorte qu'on peut poser:

B (t) a, + (a2 + CieT') t + C2eT' t» + (a - t Log (- t) (68)

La quantite Dt e~'~T tend vers zero lorsque t—> 0. D'ailleurs,
dans la couche consideree ici, on a At Log (— t) C; B (t)
prend la forme (55), et (68) se simplifie comme suit:

B (t) (% + C) + (a2 + C1eT') t + C2 e~'. t2 — t Log (— t)
(69)

Bemarquons qu'on a ainsi introduit dans B(t) un nouveau
terme en t Log (— t), distinct de At Log (— t) C; le

coefficient en est bien determine.
Telle est 1'expression de B (t) que 1'on peut utiliser pour la

couche allant de r — r' ä la surface; cette expression satisfait
k l'equation (59), c'est-ä-dire ä la condition £ 0 dans toute
la couche en question. Nous rappelons que cette solution a ete
obtenue en utilisant l'equation approchee (53) de l'equilibre
radiatif.

II reste ä fixer la valeur des constantes arbitraires Cx et C2;

ä defaut de toute autre indication experimentale, nous pren-
drons C2 0; d'autre part, remarquons que la valeur de D

pour t t' est:

CleT' — Log (— t') ;
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ce qui suggere de poser:

Cl e • W ^ Log (~ T,) ; (70)

on ne connait pas de condition interieure supplementaire per-
mettant de trouver la valeur de <3; constatons simplement qu'ä
toute valeur numerique de (3 correspond une valeur determinee

Td de l'opacite pour laquelle D 0; D est alors negatif en
dehors de cette sphere et devient positif ä l'interieur. Nous

prendrons <3 1, de sorte que D s'annule pour la valeur

id t' ; D est done negatif dans la couche qui nous interesse,
entre r / et la pellicule superficielle; en dedans de la sphere r',
D devient positif. On a done:

D eT~T' [L°g <- T') - L°s <- T)] ' <71>

et

B (t) % + G + a2 t + ^ t [Log (— r'j — Log (— x)] (72)

II convient de remarquer qu'ä l'interieur de la sphere t',
D devient positif, mais reste petit; il passe par un maximum,
puis tend vers zero ä mesure que l'on s'approche du centre;
cela se voit immediatement par l'expression (71) oü l'on fait
— t > — t'. Le maximum de D se determine par D' 0,

e'est-a-dire:

Log (— t') — Log (— x) — - 0
T

ou:

Log (— x) — Log (— x') ;

(— t') etant egal ä (2,2) 109, on voit vite que la difference

(— Tm) — (— T T' — Tm donnant le maximum de D est

inferieur ä l'unite; eile est de l'ordre de 0,5; d'oü, pour le

maximum de D, avec — im 2,2 109:

n _ 2a2 0.5 r 1 T _ 2 to10 e"'5 _max "103 " e |^-T~J 103
'

2,2 10» ' '

apres quoi, D tend vers zero, lorsque (— t) augmente.



162 ASTROPHYSIQUE THEORIQUE

Par contre, l'effet du facteur D, c'est-ä-dire le terme comple-
mentaire

T [Log (— t') — Log (— -)]

de la formule (72) de B (t), tout d'abord tres petit ä cote du
terme a2 t et de signe contraire, augmente peu ä peu de valeur
absolue lorsque (— t) augmente; si done on conservait ce terme
complementaire dans (72) pour la region centrale de l'etoile,
le coefficient global de t diminuerait et atteindrait zero pour
— t 10220 environ. Mais r < / est la region centrale oü la
solution polytropique est valable; et Ton admettra que D

reste nul ä partir de t t'.
Ainsi, dans la partie centrale de l'etoile, on aurait la solution

polytropique, avec raccord pour t t', tandis que la formule
(72) serait valable de t t' jusqu'ä la pellicule de surface,
c'est-ä-dire jusqu'ä — t 15. C'est ce que nous admettrons

pour l'instant.
D'ailleurs, le terme complementaire de B (t) tend vers zero

lorsque r —>• 0.

L'expression (72) presente done un terme complementaire
en t Log (— t) des la couche oil t a la valeur t'; du moins lors-

qu'on base le calcul sur 1'equation approchee (53) de l'equilibre
radiatif L

II convient d'examiner si, avec cette valeur de B (t), l'inten-
site A (v, 6) conserve la forme simple (35):

J(t, 6) B(t) — cos 0 B'(t)

ce qui, d'ailleurs, n'est nullement obligatoire. Pour cela, il
faudrait que, en tenant compte de la valeur de J (0, 0) aq —
a2 cos 0, on ait:

— B(t) + (t + cos 0) B'(t) + J(0 0) 0

1 Nous verrons au n° 12 qu'en realite la forme simple
B (t) ax + C + a3-r peut etre conservee jusqu'ä la couche
superficielle.
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comme le montre l'egalite (41). On trouve, au contraire, que le

premier membre de l'egalite ci-dessus vaut:

^ cos 9 [Log (— t') — Log (— t)] — C (73)

quantite non nulle et positive, G etant negatifL. L'intensite
0 (t, 0) ne se reduit done pas ä la forme simple (35); il faut y
ajouter le terme (73). Mais cela ne gene en rien le calcul des

elements dans la couche consideree, au-dessous de la pellicule
de surface jusqu'ä t =t'; l'intensite J (t, 0) augmente tout
d'abord un peu plus vite, lorsqu'on va de — t 15 vers t t',
que dans le cas (35), voilä tout. On obtiendra done, dans cette
region, des temperatures un peu superieures ä Celles obtenues

7 — 27 —
au moyen de la formule reduite B(t) — 32"'' ' T' or

cela n'est pas pour deplaire, puisque l'emploi de cette formule
reduite dans la couche consideree ne donne pas entiere
satisfaction; on n'y obtient en eilet une distribution convenable
de la temperature T qu'ä condition d'introduire un facteur
correctif / > 1, ce qui conduit aux valeurs corrigees de —t
donnees dans la derniere colonne du tableau reproduit plus
haut 2.

Avec la nouvelle fonction (72) de B (t), la repartition de la

temperature est donnee par le calcul suivant 3:

B(t) — T4 — T*
n T: "

B (t) a, + C + a,T + ^T[Log(-T') -Log(-x)]
7 27

«1 «2 ~ ^ Log (- T) ~ 21

T- - n t: [' + -u' - T - w' Log (- +

+ T-i5StL"8(-t|] '

T' ÄT<.[1 + *c^S'-S' + ^I»i'Los|-T|]' ,7i|

1 Calcul de C au n° 13.
2 G. Tiercy, L'equilibre..., loc. cit., p. 386-390.
3 Oü C < 0, voir au n° 13.
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ou encore:

81 27
To3 ~~ T. io3 Log(— T)j

(75)

On voit que le dernier crochet, qui s'annule pour t x',
reste positif de — t 15 ä x x' ; la temperature donnee par
(75) est done superieure ä Celle fournie par la formule reduite:

A l'interieur de la sphere /, le terme correctif en D reste nul,
et l'on peut conserver la relation (76); il vaut d'ailleurs mieux

y appliquer la solution polytropique, car la courbure des couches

n'y est plus negligeable.

10. — De la derivee seconde B"(-r). II s'agit encore ici du cas

de — x > 15, jusqu'ä la sphere r'. La fonetion B(t) est donnee

par l'expression (72):

(76)

B (t) «! + C + a2x + T [Log (— t') — Log (— t)[

oil le crochet s'annule pour x t'. II vient:

B' (D =a* + W [L°g (- ^ - L°g (- ^)] - W >

de sorte que le rapport de B"(t) ä B(t) est le suivant:

B"(t)
2a_2 1
103

'
T

B(t) a1+ C + a2x + ^x[Log(- x') - Log (- x)]

ce rapport est tres petit dans la region consideree; pour t i',
il vaut (v 10~21; pour — t 15, il vaut 4.10~6. On peut done dire

que, si ce rapport est tres petit pour r r', il reste petit pour
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— t 15, c'est-ä-dire ä la limite inferieure de la pellicule de

surface; dans toute la couche consideree, il presente une valeur

moyenne tres petite.
Ainsi la forme (72) de B (v) verifie, d'une facon qui parait

satisfaisante, cette condition resultant des etudes d'Eddington:
la derivee seconde B" (t) est tres petite ä cote de la fonction elle-

meme.
Le calcul d'Eddington indique, pour le rapport de B" a B,

une valeur de l'ordre de 1CT20 pour une temperature absolue de

106 degres; or, une telle temperature est celle qui regne au
niveau r', pour lequel nous avons trouve la valeur de 10~21 du

rapport en question. Pour la region centrale de l'etoile, la
comparaison des deux calculs n'est pas possible; le taux de

liberation d'energie 4res utilise par Eddington est en effet une

moyenne concernant toute l'etoile.

(a suivre)
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CONSIDERATIONS

SUR LES EQUATIONS DE L'EQUILIBRE RADIATIF
ET DU TRANSFERT D'ENERGIE

PAR

Georges TIEKCY
(suite)

11. — La pellicule de surface. II reste ä voir si la solution (54)
de B (v) est capable d'assurer encore la nullite de s dans la

pellicule de surface, c'est-a-dire entre — t 15 et t 0. On a

alors, en ecrivant At Log (— t) ä la place de C:

B (t) «! + djT +At Log (— t) + Dt e""' ;

2 ci
B(t) ax + a2 t + At Log (— t) + —32 t [Log (- t') - Log (— t)]

(77)

oil le coefficient A, donne par 1'expression (46) Iorsque — t > 15,

prend la valeur:

A
15 Log 15 '

valeur positive puisque G < 0.

On remarquera que le terme DTe"'"' de (77) devient nul en

meme temps que t, done ä la surface de la photosphere. Si A est

un nombre fini, on a bien:

B (0) ax

valeur de surface.

Archives. Vol. 21. — Juillet-Aoüt 1939. 11
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170 ASTROPHYSIQUE THEORIQUE

Dans 1'application de la formule (77) ä la pellicule extreme,
on pourra, pratiquement, considerer celle-ci comme formee de

couches tres minces, dans chacune desquelles la quantite
At Log r) Ca prendrait une valeur determinee, qui serait
constante pour la couche. On pourrait aussi envisager que A
est constante dans chaque couche. Ou bien Ton considerera

que Ca est une fonction de t ä trouver.
Dans l'une ou l'autre de ces interpretations, la derivee B' (t)

prendra une valeur infinie negative pour t 0. Jusqu'ici, tout
va bien.

Mais qu'en est-il de la quantite s? L'expression (77) permet-
elle d'avoir encore e 0, comme il le faut

Rappelons que, d'apres (14) ou (53), on a, dans le cas d'une
fonction B (t) developpable, et en premiere approximation:

en y faisant e 0, on peut etre tente d'en tirer une valeur de A
pour chaque couche mince. On aurait alors, avec (77) et en

traitant A comme une constante ä I'interieur de chaque couche
mince:

APB"(t) + |b'(t) -3sp ; (79)

B'(t) — a2 + A [Log (— t) + l] +

+ idi [Lo§ T'> ~ Lo^ T>J - l?i ;

/ 2a,\ Ap 2 / 2a2\ 2[ 2 a2
(A — löi; + T CA — löi; Lo- (-*) + 7[a' + A- 10* +

+ Log (~t')J o ;

r „ 4 Cla 4 da T da T
"1 2 da

T I- 202 + To* — To^ Log (— T * + iö» s (~ T)J + "To5 pr

t r

Apr + 2t [l + Log (— t)]
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ou, en reduisant le crochet ä ses termes essentiels :

A
r\— 2a* + ihiLo^ (— T)] +

kpr + 2t[1 + Log (— t)]
(80)

mais cette expression de A n'est pas acceptable; dans la couche

qui va de — t 15 ä i 0, le denominateur reste positif,
tandis que le numerateur est negatif; il est impossible d'annuler
ce dernier, meme en penetrant dans I'etoile jusqu'ä la valeur
(— t') de l'opacite 2. Or A est positif pour — t > 15.

II convient done de reprendre la question en traitant A
comme une nouvelle fonction de t. II nous faut une expression
de A qui parte de la valeur (78) pour — t 15, qui rende B' (t)
infinie negative pour r 0, et qui donne e 0. Est-il possible
de satisfaire ä ces trois conditions

Reprenons (77), en y considerant A comme fonction de t.
On obtient:

B(t) Oj + a2T + At Log (—t) + |^x[Log {—t') — Log (— t)] ;

B(t) =a1+ | a2 + Log (1 -t')1 t + [a ~^|1 t Log (- t) ; (81)

B' W L°8 (- T') +

+ [A-lS] [Log(-T)+l]+^.TLog (-T) ;

T-> / / \
^ (Za - d

B (T)=a2 + ^|Log(-T) +s- A — Töl.)'cLog(— T)

B" (x) A ISO t Lo? {~

(82)

1 On a:

Log (— t') 21,5

r„ ~ 1012

a, — 1010

(MpeHicu.e (0-026) l(Tb ;

(kpr)0 (0,026) 10+6 (2,6) 10*

2 En posant que le numerateur est nul, on obtient l'equation:
(— T) [4 107 Log (— t) — 2 1010] (5,2) 1011

qui ne peut etre satisfaite pour — t < — t'.
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et essayons d'utiliser encore l'equation approchee (79); celle-ci

devient, en y faisant s 0:

p ' A ~~ T Log (~~ t) +

2 2
T „ d \ 1. 2 a»\ T

7 «2+-^Log(-T)+— ~~ 1Ö3) T g (~ T) 0 (83)

Repetons que cette equation (53) ou (79) a ete etablie dans

l'hypothese d'une fonction B (t) developpable en serie suivant
les puissances de t; ce n'est plus le cas actuellement; de sorte

qu'on ne peut plus attacher une importance primordiale ä

l'equation (83).

Gardons-la cependant; et voyons ce qu'on en peut tirer.
Posons:

X (A ~ S) T Log T) ' (84)

oü A serait une certaine fonction de t; l'equation (83) devient:

d2 X 2 dX 2 [ ,2 a2r ,.1
kp • ~d^ + 7 "d7 - — 7 P + To2 Log T >J -

_ 2^ (1>04g) ^ ^g5)

On voit immediatement une solution particuliere de cette
condition:

^j— const. — a2 j^l + Log (— t')| — 1,043 o2 ;

Xt — 1,043 a2t ; (86)

quant ä la solution de l'equation sans second membre, on
l'obtient en posant:

X eXT

ce qui donne l'equation caracteristique suivante:

kg .X2 + 0 ; (87)
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il est vrai que r varie legerement ä travers la pellicule de surface;
mais cette variation est si peu de chose en face du rayon lui-
meme qu'on peut traiter r comme constante et l'egaler prati-
quement ä r0, ä condition, bien entendu, de ne considerer
ici que la pellicule en question. On fera de meme kp const.

(£p)0 2,6.10~8; ce qui donne, avec r0 1012:

kpra 2,6 104

Les racines de (87) sont:

X 0 et X — y—— — 0,8 10"4 — 8 10~5 ;
kpr0

et la solution de ]' equation differentielle privee de second

membre s'ecrit:

_ üi 8T

Ke 105 + K'e° Ke 105 + Q

od K et Q sont des constantes arbitraires; la solution generale
de (85) est done la suivante:

8t
X Ke~Wb + Q-t[«2 + Log (- t')] (88)

Remarquons qu'en faisant K 0, on trouve:

X_ 0 Q et B (0) % + Q ;

B (0) est done une valeur finie; la condition e 0 de (85) est

satisfaite, puisque X Q — a2 t est une solution de cette

equation; par contre, on trouve que:

B'O) |9L°g T'' COnst '

ce qui ne convient pas pour t 0.

II convient done de faire K ^0. On obtient alors:

8 T
dX 8 K iqo 2 a2 T ,.1 /ofki
17 ~ ~ We L052 To5 s T d '

d'oü par (81):



174 ASTROPHYSIQUE THEORIQUE

expression qui, malheureusement, ne contient plus de terme en

Log (—t); on voit qu'alors, si l'on veut queB' (0) prenne une
valeur tres grande negative, il faut faire K tres grand.

On a:

B'lO) - - ;

exigeons par exemple que B' (0) 1000 a2 ~ — 1013; on
Itrouve que K doit recevoir la valeur K —1018, soit K rv> 1017.

La condition s 0 est satisfaite; B' (0) prend une valeur

negative tres grande; cela va bien. Mais y a-t-il raccord avec
la valeur (78):

C
A,. — 15 Log 15 '

que prend A pour — t 15

Avec K im 1017, on trouve par l'egalite (88) et pour — t 15:

1017 eo,ooi2 + q _ 1010 15 1 043 2 a.A 15Logl5 + iö*'

A —
(L00t2) 10" + Q — 1,56 10" _ 2 10?

15 Log 15 ' '

mais remarquons que, par (88), X doit s'annuler pour t 0;
c'est-ä-dire qu'on doit avoir:

K + Q 0 ou Q — K;
de sorte qu'avec K 1017, la valeur de A devient- pour
— t 15:

_ (0,0012) 1017 — 1,56 1011

40,62
2 107

valeur visiblement negative; en l'egalant ä (78), on trouve que
G doit valoir + 1,2 1014, valeur positive dependant de celle

adoptee pour K. Cela ne vas pas. D'ailleurs, il faut tenir compte
du fait que X doit s'annuler, non seulement pour t 0, mais

encore pour — t 1; ce qui donne deux conditions auxquelles
doivent satisfaire les valeurs de K et Q:

K + Q 0

-5 (91)
K e8'10 + Q + 1,043 a2 0 ;
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on en tire:

Q — K

L043 a2 _ iQi. (1,043) _V 0,00008 0,00008
1 ' ' ' '

K + (1,3) 1014 ;

valeurs incompatibles avec le calcul precedent, base sur l'hy-
pothese que B'(0) serait de l'ordre de 1000 a2; si, par contre, on
adopte pour K la valeur 1014 ci-dessus, on trouve que
B'(0) — 1010 a2, valeur negative insufflsante; B'(0) ne

prendrait pas une valeur infinie negative, puisqu'il n'y a plus
de terme en Log (— t) dans B(t).

On en conclut qu'il faut retoucher l'expression (88) de X,
solution de l'equation approchee (83); cela n'a rien d'etonnant,
puisque cette equation, qui traduit que s 0, correspond au
cas oü B(t) est developpable en serie suivant les puissances
de t, et meme au cas des couches planes.

II est d'ailleurs facile de verifier que, si le second membre
de (88) s'annule pour — t 1, la vraie valeur correspondante
de A est finie; elle est en effet donnee par:

— K.e 1,043 a2

Log (— t) + 1

2a2 8K 8.10—5

A-lö'=-lb^e - 1,043«,.
-T=l

(92)

12. — Nouvelle approximation de B (r). Au lieu de partir
des equations approchees usuelles (1) ä (5), nous partirons ici
des equations generales de la theorie de l'equilibre radiatif. Ce

sont les suivantes:

1° Solution de l'equation de transfert d'energie sous la
forme (39) ou (93):

J(Tj 0) f B(t) e<(--)sece sec0 _ dt + 0) _
e~-sec6

> (93)

OU

7 27
Ö (0 0) — & + — & cos 0 — — a2 cos 0 ; (94)
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2° Equation de l'equilibre radiatif:

ek=B—kf ; (95)

3° Expression du flux radial:

F y J(t 9) cos d da (96)

Lorsqu'il y a equilibre radiatif proprement dit, c'est-ä-dire
lorsque le taux de liberation d'energie est nul, comme c'est le

cas dans la partie exterieure de l'etoile, l'equation de l'equilibre
radiatif devient, avec z 0:

cette derniere equation remplace l'equation approchee (77).
De sorte que nous allons des lors baser le calcul essentiellement

sur les egalites (93) et (97).
En posant:

(t — x) sec 9 t' — 9 sec 0 dt — d<?

l'egalite (93) devient:

J(t, 0) fB(t — 9 cos 0) er* d<t + J(0, 0) e'xSec6

0 (93 bis)

U est evident que les equations (97) et (93 bis) permettent
un jeu d'approximations successives.

Relevons tout d'abord une simplification considerable de la
solution cherchee. Nous avons montre au n° 8 que si B (t) a la
forme lineaire (36):

l'intensite J(t, 0) se reduit ä l'expression (35):

3 (t 0) B (t) — cos 0 B' (t) ax + a2 (t — cos 0) ;

c'est en effet le cas oil B (t) est developpable.

B (t) =| /* 3 (t 0) sin 0 d% ; (97)

0

-rsec 0

B (t) ax + az t
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On voit alors immediatement qu'en portant cette valeur .de

l'intensite dans 1'egalite (97), on retrouve:

B (t) ay + a2x

Ainsi, tant que B (t) reste developpable et garde la forme

lineaire, 1'equation (97) de l'equilibre radiatif strict (e 0) est

satisfaite, de meme que l'equation de transfert d'energie. Or, ces

conditions sont verifiees, au moins d'une fafon approchee,
tant qu'on n'aborde pas la pellicule superlicielle. II resulte de

cette remarque que, dans la couche comprise entre t t' et

— t 15, il n'est nullement besoin de faire intervenir dans
B (t) le terme complementaire en t Log (— t), qui ne s'etait
introduit dans l'expression (77) que pour satisfaire ä l'equation
approchee (53) de l'equilibre radiatif. C'est lä la simplification
ä laquelle nous faisions allusion plus haut. Ainsi, un terme
complementaire en t Log (— t) n'interviendra que dans la
pellicule de surface, pour laquelle nous ecrirons simplement:

B(t) + a2 t — a% r Log (—t) (98)

comme on l'a propose au n° 5. Remarquons d'ailleurs que cela

revient, ä tres peu pres, ä poser simplement

2®,
10s 3 con

dans l'expression (77) ecrite comme suit:

B (t) % + ^ Log (— r') ] t + |^A — t Log (— t) ;

car le coefficient 1,043 a2 du terme en t n'y differe guere de a2.

Au n° 6, alors que le calcul etait base sur l'equation approchee

(14) de l'equilibre radiatif, on etait arrive ä la conclusion

que la solution (23) avec A constant n'etait pas satisfaisante.
Avec l'expression (98), oü a3 est une constante, on revient ä

cette premiere idee.

Contrairement ä ce qu'on a cru pouvoir affirmer ä la fin du
n° 6, nous allons constater que la forme (98) est admissible, ä

condition de baser le calcul sur l'equation exacte (97) de l'equilibre

radiatif, et non plus sur l'equation approchee (3) ou (14).
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Ii faut d'ailleurs rappeler ici que la forme (98) n'est applicable
qu'ä la pellicule superficielle; tandis que, pour —x > 15, on a

pose (46):

A
C

T Log (— xj '

qui, avec la notation de (98), devient:

— «3 T Log (— t) C (99)

oü C est negatif.
Partons done de la forme (98) de B (x) ; et portons cette

expression dans l'integrale de (93 bis).
En designant cette integrale par S, on trouve:

t sec 0

S f[ai + a2 (x — cp cos 0) —
0

— a3(x — 9 cos 0) Log (9 cos 0 — x)] e-9 d<p ; (100)

xsece Tsecß xsecö \

S eq y" e-9 dtp + a2 x f e~'* dp — a2 cos Q f 9 • e
^

dp — J

Ö Ö 0
'

t sec 6

— az J" (t — 9 cos 0) Log (9 cos 0 — t) e~9 dp ; j
0 /

S BX(1 — e-'sec6) + a,x(l — e-^sec6) - j

- cos 0 [1 - e"TSec9 - x sec 0 e~vsec91
L J

(101
t sec 0

— az f (T — 9 cos 6) • Log (9 cos 0 — t) e~9 d9 1

Prenons ä part le dernier terme; il donne:

xsecO

S' — a3x y* Log (9 cos 0 — x) e-9 dp +
0

t sec 6

+ a3 cos 0 f 9 Log (9 cos 0 — x) e~9 dp ;

0

S' — as x Sx + as cos 0 S2 ; (102)
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on trouve facilementL

51 (1 _e-sec6) _ Log {_T) _ g-Tsec6 jTgec Q + (^C0)" + _ j _

\

52 — (xsec6 + l)e~TSec9 Log (—t) + Log(-x) _e^sec9 + 1- (103)

— (xsec0 + l)e"TSec6 j^T sec 6 + + ...j ;

1 On a en effet:

t sec 6

Si ~ f [Logcos 0 + Log (9 — xsec 0)]e 'dip
b

t sec 0 t sec 6

Log cos 0 f e~v dtp + j e-' Log (9 — xsec 0) dtp ;

0 0

Log cos 0 (1 — e~TSec9) + [— e-t?. Log (9 — xsec 0)J[SeC6 + j
t sec0

secO f* e~^ d<$

9 — t seel
0

Si Log cos 0 (1 — e TSec9) -1- ^— e f Lt>g (9 — x sec 0)]^S6C
6

+0

xsecf)

e-x sec 0 A-fa-T3ec8).d(9-x sec0)
/ 9 — x sec 0 '

0

l'integrale du dernier terme est de la forme:

>e^xdx x-re dx x2 a?
J const + Logx ~ x + T7J2~ i727¥ + '

Sx Log cos 0 (1 — eTT sec 9) + [— Log (9 — x sec 0)]^SeC
6

+

+ e~TSec9 j^Log (9 — xsec0) — (9 —xsec0) + + ...]

comme le produit (e-xsece— g-x) Log (9— x sec 0) donne zero
pour 9 x sec 0, il reste:

Sx Log cos 0 (1 — e-Tsec0j _j_ ^ —g-Tsec0j _ j^og ^— TSec q> —

-xsecfl n (xsec0)2
e

[ (xsec0)2 ]
[xsec0 + LTT^L+ ...J ;

Sx (1 —e TSec9) [Log cos 0 + Log(—xsec0)]

— e

d'oü la valeur indiquee sous (103).

e-TSec6[xsec0 + iTiSe^2 +
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d'oü pour S':

S' — a3 x(l _e"Xsec0) Log (_ T) + a3 x e~TSece |Tsec0 + + •••j

— a8cos 0 (xsec 0 + 1) e~TSec0 Log (— x) + a3cos 0 Log (— x) +

+ a3cos0(l—e~TSec0) —«3cos0(xsec0 + l)e~TSec8 j^xsec© + +

S' — a3x(l _e~"sec0) Log (— x) — a3 (x + cos 0)e~TSecO Log (— x) —

— a8cos0 <rTSec0 [xsec0 + ...] + a8cos0[Log (—x) „e~TSec6 + ij ;

S' — a3xLog(-x) -a3cos0 e-*sec0 • Log (-x) + a3cos0 Log (-x) -
— a3cos0 e~Tsec0 4- a3 cos 0 — a3 cos 0 e~TSec0 Jxsec0 + +

En portant cette expression dans la valeur (101) de S, on
obtient pour l'intensite J(t, 0)'par (93 bis), apres suppression

(Suite de la note p. 179.)
De meme on a pour S2:

S2 J 9 [Log cos 0 + Log (9 — xsec0)]e9d9 ;

0

xsecfl

S2 Log cos 0 ftp e 9 d, 9 + ftp Log (9 — x sec 0)e 9 d 9
0 b

Log cos 0 [l —e-xsece (TSec0 _j_ _j_

t sec. s

+ y*Log(<p — xsec0) d[— e~v{tp + 1)] ;

0

S2 Log cos 0 [l — e~TSec0 (Tsec 0 + 1)J +

0

rsece
yv OCL \j -T A;J T

tsecO

r T- / "i~sec0 C e~V (9 + 1)^9+ [— e y(9 + 1) Log(9 — xsec0)]o + / ~9 — x sec
ö

S2 Log cos 0 [l —e_'sec6(xsec0 + 1)] +

+ [— e-9(<p + 1) Log (9 — x sec 0)]J +
xsece

-xseco f e ^secn). (9- x sec 0 + x sec 0 + 1) • d (9- t sec 0)
e J 9 — xsec0
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des termes qui s'annulent entre eux, et en rappelant que
3(0, 0) — a2 cos 0:

3(x 0) ax + a2x — a2 cos 0 — a3x Log (— t)

+ a3 cos 0 Log (- t) [l-<TTSCC0] + a3 cos 0 [l - e~TSec0] >

j1Q4j

(x sec 0)2
a3 cos 6 e

TSec8
|^x sec 0 + + • • j

valeur qui se reduit k ö (0, 6) oq — a2 cos 0 pour t 0,

comme il le faut.
Remarquons en passant qu'en portant directement l'expres-

sion (98) de B (t) dans 1'egalite (40) du n° 7, on retrouve la
valeur (104) ci-dessus, avec la seule difference que le crochet du
dernier terme se reduit alors ä [t sec 0]; or t reste petit, puis-
qu'il s'agit ici de la pellicule de surface; si done le coefficient a3

est lui-meme petit ä cote de a1 et a2, on peut dire que 1'egalite
(40) est valable pres de la surface; nous avons d'ailleurs dejä

remarque au n° 7 que son second membre reste fini, meme si

B' (t) devient infinie pour t 0.

L'expression (104) peut etre allegee. D'abord, le crochet du
dernier terme est tres peu different du developpement de

(Suite de la note p. 179.)
L'integrale du dernier terme est du type:

C e~x (x + x sec 0 + 1) dx C -x i „ Cj — - J e dx + (rsec 0 + 1) j
—e~x + (xsec0 + 1) ^Loga;— x +

e x dx

X
+ ;

+

1 22 1 2 32

S2 Log cos 0 [l — e~TSec0(xsec0 + 1)] +

+ [-e-f (9 + 1) Log (9 — xsec 9)] jSeC9 + c"TSeCf) (cTSec0-l) +

(xsec 0 + 1) e~~sec0 |\og (9 — x sec 0) — (9 — xsec 0) + ^ TSec®)
_

1

1.2* -J0
comme le produit [(xsec 0 + 1) ,e~xsece _e-cp (<p _|_ i)].Log (9 - xsec 0)
donne zero pour 9 xsecO, il reste:

S2 Logcos0[l —e~~sec9 (xsecO + 1)] + Log (—xsec 0) +

— (xsec 0 + 1) e"TSec6 j^Log (—xsec 0) + xsec 0 + ^'CC^ + ...j

d'oü la valeur indiquee sous (103).

+ l_e-Tsece
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j-gxseco — gor^e que ce (jernjer terme peut etre remplace

par — a3 cos 0 [1 — e~TSecfl], annulant ainsi le terme precedent.

II reste:

J(t 0) % + a2x — a2 cos 0 — a3x Log (— x) +

+ a3 cos 0 Log (— x) [l •— e-TSec0] ;

constatons ensuite que la presence d'un terme contenant sec 0

en exposant positif est genante, car un tel terme devient infini

pour 0 ; or, il est certain que J (t, 0) ne devient pas

infinie. Nous sommes ainsi conduit ä retoucher le dernier
crochet en l'ecrivant [1 — e~T]; de sorte qu'il vient pour
J(t, 0)1:

<7(x 0) eq + a2x — a2 cos 0 — a3T Log (— t) + j

+ aa cos 0 Log (— t) [l — e~T] ^

II est maintenant facile de voir que la constante a3

negative; en effet, la derivee B' (t) soit devenir infinie

pour t 0; on a par (98):

B' (t) a2 — a3 [l + Log (— t)] ;

pour que B' (0) — oo il faut evidemment que a3 <
ä la valeur absolue de a3, on en reparlera au n° 13.

Si enfin on porte ä son tour l'expression (105) dans l'integrale
(97), on voit immediatement que les termes presentant cos 0

en facteur dans J (t, 0) ne donnent rien dans l'integrale; de

sorte qu'on retrouve l'expression (98) de B (t):

B (t) a3 + a2 t — a3 t Log (— t)

comme il le faut.

1 Le fait qu'on a du modifier l'expression de J (x, 0) de facon ä
faire disparaitre le facteur sec 0 dans l'exponentielle montre que la
solution de l'equation de transfert appelle une retouche. II semble
des lors que le coefficient k d'absorption doive etre traite, non comme
une quantite independante de 0, mais comme une fonction de 0.

(105)

doit etre

negative

(106)

0. Quant
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13. — Conditions verifiees.

1° Valeur de B (t) pour t 0. — La formule (98) donne

immediatement:
B(0) a, ; (107)

rappelons que B (0) ~ To; de sorte que a1 et a2 varient

avec T0; nous savons en effet que:

7 - 27 ^ai rr" et aa 53 §2

oü l'on a F ctT* flux de surface, et

2

2 it f J(0 0) cos 0 sin 0 d0 ; (108)
ti

on a aussi:

B
z

(0) 3(0, 0) sin 0 d0 ; (109)

ce sont ces deux dernieres egalites qui permettent de proceder

par approximations successives pour calculer 1
a1 et a2.

2° Valeur de B' (t) pour t 0. — La formule (106), oü l'on
a fait a3 < 0, donne: B' (0) — oo.

3° Raccord entre la pellicule superficielle et Vinterieur. —
Rappelons qu'au n° 12 nous avons pose la relation (99):

— a3 t Log (— t) C ;

C est done, dans la pellicule superficielle, une fonction de t,
alors qu'elle represente une constante des que — t > 15. II
doit done y avoir raccord des valeurs de G sur la sphere pour
laquelle — t 15. D'oii la condition de raccord suivante:

C15 a3 15 Log 15 40,62 a3 (110)

1 G. Tiercy, L'equilibre..., loc. cit., p. 384-385.
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On trouve ainsi que la constante C C15 valable ä l'interieur
est negative, comme on l'a annonce au n° 8.

On voit que si Ton choisit a3 petit en valeur absolue, la
constante C pour l'interieur (— z > 15) sera petite et viendra ä

peine diminuer la valeur de a1 dans la formule

B (x) (% + C) + a2~z (111)

valable ä l'interieur de la sphere — t 15.

A partir de — t 15, et dans toute la pellicule superficielle,
la quantite C, partant de la valeur (110), varie avec z suivant
la formule (99).

4° Expression correspondante de 0 (t, 0). — C'est 1'expression
(105) etablie au n° 12, et dont nous avons dit qu'elle pouvait
etre obtenue par le moyen de la formule (40).

Nous avons dejä dit qu'en portant cette expression (105) de

0(t, 6) dans 1'integrale (97), on retrouve la fonction B (t)
donnee par (98). Cela est necessaire, puisque l'egalite (97) n'est

pas autre chose que 1'equation de l'equilibre radiatif pour
2=0.

Mais alors, il importe de rappeler qu'on a du retoucher
1'expression 0(t, 0) donnee par (104), et qui est la solution de

1'equation de transfert d'energie; on est ainsi amene ä se

demander si la solution de cette equation de transfert a bien la
forme convenable, comme on l'a dejä remarque ä la fin du n° 12

(note).

5° Equation de l'equilibre radiatif strict s 0. — II s'agit de

l'egalite (97):
rr

B (t) ~ fs(z, 0) • sin 0 d%

0

Cette egalite est verifiee par 1'expression (105), comme on
vient de la rappeler au chiffre 4 ci-dessus.

Remarque. — II vient par (98), pour z 0:

B (0) ;
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d'ailleurs, oil a aussi:
7Z

T
B(0) =i / <7(0,6) sin e M

o

car Ö (0, 6) est donnee par (44) et (94):

7 27
3'°' ^ 16

5 + 32 ^ " C0S 6 Ü1 ~ C0S 6 '

Resume.

La distribution des temperatures ä l'interieur d'une etoile
depend de la valeur attribuee ä l'intensite B du rayonnement
noir. Gette intensite est fonction de l'opacite t, celle-ci etant
definie par la relation:

dx kp dr

oil k est le coefficient d'absorption et p la densite de la matiere.
II s'agit done de trouver la forme convenable de la fonction
B (t).

Une forme souvent consideree est la fonction lineaire:

B (t) ax + a2 t ;

on y arrive en combinant une solution approchee de 1'equation
de transfert d'energie et une solution approchee de 1'equation
de 1'equilibre radiatif, dans le cas des couches planes.

Mais cette solution de B (t) ne peut convenir qu'ä deux
conditions: d'une part, il faut pouvoir negliger la courbure des

couches; d'autre part, il faut laisser de cote la pellicule super-
ficielle, car B (t) presente une singularite pour r 0.

La presente etude envisage une solution plus generale. On

peut diviser la masse en trois parties concentriques:

a) La partie centrale, comprenant une sphere de rayon
r' 0,725 r0; la valeur x' correspondant au niveau de la sphere
r' est de l'ordre de 2 109. Dans cette partie centrale, le coefficient

s de liberation d'energie n'est pas nul; et la recherche de

la forme de B (t) y est malaisee. C'est d'ailleurs la region dans

laquelle la solution polytropique est applicable;

Archives. Vol. 21. — Juillet-Aoüt 1939. 12
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b) La couche s'etendant de t t' ä — t 15; le coefficient e

y est nul (equilibre radiatif strict); la formule (48) y est valable:

B (t) (ax + C) + a2T

od G est une constante negative tres petite ä cote de aq;

c) La pellicule de surface, allant de — t 15 ä t =0; le

coefficient e est encore nul. La formule (98) donne alors la
solution:

B (t) % + a2z — a3z log (— t) ;

eile revient ä poser, dans la formule precedente:

G — a3 t log (— t) ;

c'est l'egalite (99), qui, dans cette couche superficielle, remplace
la constante G de l'interieur par une fonction de t.

On verifie ainsi les conditions suivantes:

1° Pour t 0, on a B (0) aq;
2° Pour t 0, on a B' (0) — co ;

3° II y a raccord pour — t 15, entre les deux expressions
de B (t); il suffit de choisir, pour la constante G de

l'interieur, la valeur:

C C15 15 a3 log 15
*

Quant ä «3, c'est une constante negative, d'ailleurs
tres petite en face de cq;

4° L'equation de l'equilibre radiatif strict s 0 est verifiee

jusqu'au bord de l'etoile:
7T

B(t) ~ f J(t,0) sin 0 d0

0

On constate done, en fin de compte, que, pour satisfaire aux
conditions de la peripheric, la fonction B (t) doit presenter un
terme logarithmique complementaire.

Enfin, il convient de relever que la fonction J (t, 0), donnee

comme solution de l'equation de transfert d'energie, ne peut
etre utilisee par la suite, dans l'equation de l'equilibre radiatif,
qu'en y apportant des retouches. Cela suggere l'idee que la
resolution habituelle de l'equation de transfert n'est peut-etre
pas sans defaut.
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