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1938 Vol. 20 Septembre-Octobre

LA THEORIE
DE LA RELATIVITE DITE GENERALE

ET LES

OBSERVATIONS ASTRONOMIQUES

PAR

Georges TIERCY

§ 1. — L’EQUATION DE L’ORBITE D'UNE PLANETE
ET LA REVOLUTION ANOMALISTIQUE.

1. — Les faiblesses et les contradictions de la théorie
einsteinienne de la Relativité ont été signalées a plusieurs
reprises . Nous y reviendrons par la suite. Dés 1'apparition
des formules de la théorie de la Relativité dite générale, on a
prétendu que I’ Astronomie apportait, en faveur de ces formules
et de cette théorie, des preuves irréfutables et décisives; on

1 J. Le Roux, Relativité restreinte et géométrie des systémes ondu-
latoires. Paris, 1922,

H. Varcorrier, La Relativité dégagée d’hypothéses métaphysiques.
Paris, 1925.

G. JovLy, Les erreurs philosophiques de M. Einstein. Paris, 1925.

E. A. MiLnE, Relativity, Graeitation and World-Structure. Oxford.
1935. Clarendon Press.

— On the foundations of dynamics. (Proc. of the Royal Society
of London, 1936.)

— The inverse square law of gravitation. (7bid., 1936-1937.)

— Kinematics, dynamics and the scale of time. (Ibid., 1937.)

P. Dive, Difficultés dans I'interprétation einsteinienne du Temps
et de I’Espace relatifs. (Actes de la Soc. helvétique des Sc. naturelles,
Soleure, 1936, et Enseignement mathém., 1937.)

— Sur la géométrie d’'un champ gravifique d’Einstein-Schwarz-
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206 LA THEORIE DE LA RELATIVITE DITE GENERALE

lui a fait dire ce qu’en réalité elle ne dit pas. Il semble done
utile de faire le point a ce sujet ..

Je voudrais tout d’abord reprendre le sujet d'un article
qui a paru récemment % et qui traite de 'emploi des unités de
temps astronomique et relativiste; cet article met en jeu un
certain coeflicient A et quelques formules de passage, sur
lesquels il convient d’apporter un complément d’information et
une rectification.

Nous aborderons le calcul en partant du ds® de Schwarz-
schild:

2M dr?
2 — (o2 2 2 (462 20.dop?
ds? = (c : )dt oM r? (d6? + cos? 0-dg?) |

czr

ou les angles sont définis comme fractions d’un tour entier, et
non comme des rapports entre une longueur propre d’arc et la
longueur du rayon 3.

schild. (Académie des Sciences, Belles-Lettres et Arts de Clermont-
Ferrand, 1937.)

— La géométrie du disque tournant dans la métrique d’Einstein.
(C. R. des séances de la Soc. de Physique et d’'Hist. natur. de Genéve,
1937, 1.)

— Les temps propres relatifs de la théorie d’Einstein. Clermont-
Ferrand, 1937.

— Le principe de Relativité selon Poincaré et la Mécanigue inva-
riante de Le Roux. Paris, 1937, Dunod.

E. EscLanNcoN, La notion de Temps. Paris, 1938, Gauthier-Villars.

Etc.

! Comme le présent travail tend & montrer que les observations
astronomiques, contrairement a4 ce qu’on a si souvent avanceé,
n’apportent pas la preuve décisive espérée en faveur de la théorie
de la Relativité dite générale, je tiens a dire ici combien j’admire le
bel effort d’Einstein. Et ce n’est pas diminuer le mérite de celui-ci
que de rappeler les exigences insatisfaites de la Mécanique céleste
et de I’Astronomie physique.

2 G. Tiercy, Sur ’emploi des unités de temps astronomique et
relativiste. (Annales francaises de Chronométrie, 1937.)

8 (’est 1a, en effet, la définition considérée dans les ouvrages sur
la théorie de la Relativité. M. A.-S. Eddington nous écrivait & ce
sujet les lignes suivantes, dans une critique de notre article cité:
« Il est possible de définir un angle, soit comme rapport d’une lon-
gueur propre d’arc 4 la longueur du rayon, soit comme une fraction
de la circonférence entiére. Mais la derniére définition est toujours
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Remarquons d’ailleurs qu'en chaque point P de Dlespace
représenté par le ds® de Schwarzschild, la eariable r désigne le
quotient par 2n de la longueur effectivement mesurée ! des
circonférences de centre O passant par P. Cette variable r a
donc la méme valeur que le rayon vecteur du systéme habituel
des coordonnées polaires de 'espace; dans les applications a
la Mécanique céleste, les propriétés de la variable 7 et celles du
rayon vecteur ordinaire sont les mémes; et 'on peut traiter r
comme le rayon vecteur classique. (Voir la fin du n° 2 suivant.)

2. — Considérons les équations, newtonienne et relativiste,
de I'orbite:
Eu M, dw, MM
d? v By d 2 2 ¢* ’

ou M, est la masse gravitationnelle et i, la constante des aires.
En mécanique céleste, ces deux constantes s’expriment au
moyen de I'unité de temps (jour solaire moyen) et de I'unité
de longueur (demi-grand axe de l'orbite terrestre). Quant a
Punité de masse, on la définit par la relation suivante, carac-
térisant un mouvement circulaire uniforme autour d’un centre

attractif:
w o= ¢%.r

ou p représente pratiquement la masse centrale.

Ainsi, en Mécanique céleste, si 'on désigne par L une lon-
gueur transversale et par L’ une longueur radiale, la masse
est homogéne A I'expression symbolique L2L'T™, alors que h,
a les dimensions de LL' T,

prise en considération dans les livres de Relativité; et, dans ’équation
relativiste de 'orbite:

@ - M_ 3Mu?
d<p2 e — p2 7027 ’

o suit la seconde définition ».

L J. Cuazy, La théorie de la Relativité et la Mécanique céleste. Paris,
1930; II, p. 24.

P. Dive, Espace non euclidien, Temps relatif. (Bull. de U’ Académie
des Sc., Belles-Lettres et Arts de Clermont-Ferrand, 1938, p. 65.)
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Il est dés lors bien évident que, si 'on change les unités de
longueur et de temps, les valeurs des constantes M, et A,
changeront. Au moyen des formules donnant les dimensions
de M, et h;, on pourra facilement passer du systéme usuel a
tout autre systéme d’unités qu’'on voudra. D’ailleurs, lorsque
les deux systémes d’unités envisagés different peu l'un de
I'autre, les formules de passage prennent une forme trés simple;
entre I'unité de temps cosmique S et 'unité de temps propre S’
du mobile, on a la relation:

S =81+ A,
ou A est une petite quantité qu’il est facile de calculer.

Relevons ici qu’en pratique, dans le calcul courant de I'orbite
relativiste d'une planéte, tel qu’il est exposé dans les traités de
Relativité, le temps astronomique universel est identifié au
temps dit cosmique; on n’énonce pas la chose expressément;
mais cette identification est obligatoire, si 'on veut que I’appli-
cation de la théorie einsteinienne & l'orbite de Mercure donne
une avance séculaire de 43" pour le périhélie. C’est ce que
remarque trés pertinemment P. Dive dans les termes suivants: !

« En fait, dans la théorie des avances séculaires des péri-
hélies des planétes, le temps cosmique doit étre identifié au
temps astronomique universel; c¢’est a cette condition que les
calculs d’Einstein peuvent concorder avec 1’observation. »

Il est entendu que ces deux temps sont des temps absolus.
Mais a-t-on vraiment le droit de les identifier sans autre pré-
caution ? La chose n’est pas certaine.

Le temps cosmique ¢ est le temps indiqué par une horloge
immobile & I'infini. Pour étre rigoureux, il faudrait évidemment
utiliser un ds? qui tienne compte de toutes les masses du systéme
solaire 2. Mais, précisément, la théorie d’Einstein n’y parvient

1 P. Dive, Espace non euclidien, Temps relatif. (Bull. de ’Acad.
des Sciences, Belles-Leitres et Arts de Clermont-Ferrand, 1938, t. LVII,
p. 71).

2 Comme ceux de J. Le Roux. _
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pas. Ce temps cosmique ¢, défini a I'infini par un ds® complet,
devrait en principe fournir par le calcul le mouvement des
astres; il devrait donc étre dans un rapport défini avec le temps
astronomique. Quel est ce rapport ? Est-ce 'unité ? Rienne
Pindique.

Remarquons d’ailleurs que nous n’avons pas de ds* complet,
et I'on doit prendre pour les planétes des ds* indépendants;
c¢’est le cas, par exemple, pour la Terre et Mercure; on est alors
amené & admeltre que, dans ces deux ds2, les temps cosmiques ¢
sont identiques. Mais, encore une fois, on ignore le rapport qu'’il
y a entre ce temps cosmique et le temps astronomique.

Comment donc se tirer d’affaire ? Les ouvrages relativistes
sous-entendent qu’il y a identité entre les deux, alors que rien
n’impose cette classification 1.

Il est facile de voir que notre temps propre de telluriens
pourrait aussi servir & définir un temps cosmique. Rappelons
qu’un temps quelconque peut étre considéré comme cosmique,
pourvu qu’il soit transmis sans altération par les ondes a tout
point du champ; ¢’est le cas du temps du ds? de Schwarzschild:

2MY dr?
2 — o2 e e 2 — 2 2 2 . 2\ {
ds ¢ (’1 = r)dt oM (d0% + cos?2 0-do? . (1)
ctr

Si I'on désigne la mesure d’un temps propre par dr, 'inter-
valle de temps propre séparé par les instants ¢ et (¢ + dt) du
temps cosmique a pour mesure Pexpression suivante, en un
point fixe de ’espace, de coordonnées 0, ¢, r

2
do = By Mg

e2

dr—\/'l—hA-%Ed (1——)61;, (2)

d= (1 —xAdt, avec A=
cr

la marche d’une horloge immobile dans un champ de gravita-
tion semble ralentie. C’est 1a une formule générale; on peut
d’ailleurs y remplacer M par M,, en négligeant les termes en 2.

1 Sinon le désir involontaire d’arriver aux 43” de Mercure.
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Pour la Terre, le rayon r, ou plutot la variable r de I'orbite,
varie relativement peu; et I'on peut considérer la quantité A,
d’ailleurs trés petite, comme pratiquement constante; de sorte
que le temps propre terrestre T, est pratiquement proportionnel
au temps absolu, cosmique ou astronomique. Alors, lorsqu’on
veut confronter les calculs de la théorie de la Relativité avec les
résultats de I'observation, quel est le temps qu’il convient
d’identifier avec le temps astronomique universel observeé ?
Sera-ce di ou dt, ? Suivant le cas, le facteur (1 — ) tellurien
interviendra ou n’interviendra pas.

Nous reviendrons sur ce point au n° 7. Pour I'instant, suppo-
sons que nous avons directement affaire au temps cosmique 1.

D’autre part, avec di = d = do = 0, on tire du ds? I'égalité
sulvante:

dr?
2o 2 — s
dliz2 — ds oM
1 — 22—
cr
d d d )
dl B AER....i L= dr(1 + )

la distance radiale dl est mesurée par un nombre plus grand
que dr; d’ou une apparence analogue a la contraction de
Lorentz. La quadrature donnant [ est:

et 'on voit immédiatement que les variables r et [ resteront
partout trés peu différentes; on a, en effet, en réduisant a ses
deux premiers termes le développement du radical:

. M r rl.
| = Iy — rg) + 7 [1 +62_r-1ogr—0] — (I, — rg) + r[i + )\logr—o],

s1, en un point, les valeurs r, et [, sont trés peu différentes,
toutes les différences (I — r) sont excessivement petites, &
cause de la petitesse du terme logarithmique.
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« Ces différences sont excessivement faibles, non seulement
par rapport aux valeurs connues du rayon du Soleil ou de la
distance du Soleil 4 la Terre, mais méme par rapport aux incer-
titudes existant, dans la conception ordinaire de l’espace, sur
la valeur commune des deux variables 1. »

Ainsi, quand on passe des données cosmiques aux mesures
propres du point P, une durée At est représentée par un nombre
A~ plus petit que At, tandis que la distance radiale [ peut étre
numériquement identifiée a la variable r. 1l est alors facile de
voir I'influence de ce passage sur la valeur du coefficient %3

0
qui figure dans l'équation différentielle newtonienne de la

trajectoire: :
d*u M, 1 '
d 2 +u = e (u = ““) "y (4)

Le second membre de cette équation est, comme chacun des
. - |
deux termes du premier membre homogéne & 5 en effet, M, a

les dimensions de L2L/T7?, tandis que /%, posséde celles de
LL'T™!, ot I’ désigne une longueur radiale. Il vient ainsi:

M M |
= g (5)

By
on a aussi, aprés le passage, et pour une horloge immobile dans
le champ:

M =M, (1 + 32~ M, (1 + 22,

; ' (6)
[ = hy (1 + 2) .
Nous reviendrons au n° 10 sur ces relations (6).
3. — Portons notre attention sur la quantité A:
M, |
A= g2 (7)

., N . . . .
La quantité % vaut & trés peu prés 1,5 km; si 7 est la

distance d'une planéte au Soleil2, A est inférieur a TT107 c’est

1 J. Cuazy, loc. cit., 11, p. 28.
2 Au moins (4,6)-10'2 cm; en effet, pour Mercure, la distance
moyenne est de (5,8) - 1012 cm, et ’excentricité vaut 0,2.



212 LA THEORIE DE LA RELATIVITE DITE GENERALE

donc une trés petite valeur, en regard de 'unité. On peut, sans
erreur appréciable, remplacer 7 au dénominateur par @ ou par p,
dans le cas d’une orbite planétaire 1.

L’égalité qui correspond a 'intégrale des aires s’écrit, comme
on sait, dans le plan 6 = 0:

d
e e (8)
ou bien:
249
r E; = h ’ (9)
ou encore:
r2e’
e B (10)
cz_m_ T —rig”
r 1 2M

une autre intégrale premiére des équations différentielles du
mouvemant dans son plan est la suivante 2:

2M
o

[a_ 2M r2

_ p2.472

\/ r 2M e
1— =
cer

ou A est une seconde constante arbitraire, inférieure & ¢. En
divisant 1'une par Pautre ces deux intégrales premiéres, on
trouve I’égalité des aires sous cette autre forme:

IM.G
Yo . %(1 — QM) = 93(1 — ‘w") : (12)

2

dt A r A c2r
Le calcul de la durée de révolution anomalistique conduit &

la connaissance de la coustante% ; J. Chazy donne [’expres-
sion que voiei 2:
A ¢ [ o 2M, }
b A/Mya (1 — € cta (1 — €2

(13)

! Lorsqu’on tient compte du fait que I’horloge est entrainée dans
le champ sur une orbite presque circulaire, on est amené a considérer
une valeur de A égale a: A, = 2371\52. (Voir nos 7 et 8.)

2 J. Guazy, loc. cit., 1, p. 67, équation 8.

8 J. Cuazy, loc. cit., I, p. 82.
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Mais cette expression peut s’écrire plus simplement; le
. 2 ; : A
crochet devient [1 _62—1\2’] ; il différe extrémement peu de

Punité, comme on a vu; et ,avec une approximation du méme
ordre, on peut en écrire le second terme :

M, M,

= —— , Cest-a-dire 2 ;
cer cd

de sorte que la constante A est donnée par I'égalité:

A p—aj =P
'\/Mop

£ —‘\/Moa(i—ez) =23

et comme % = Myp, il vient finalement:

1—22) = (1 +2(1—20N~(1—2) ;

o
&

¢ 1
——'_1—1+7\,

b

on constate en passant que A < -
Ainsi, l'intégrale dite des aires devient bien I'égalité (9):

249 _

& T

B4+ 0)(1—20 =h(1—2) = h

. .
Dans le mouvement newtonien, on avait:

zdm

g

= hy' . (14)
Comme la variable r est identique dans les deux cas, on voit
par la qu’un angle donné est mesuré par deux nombres égaux
= w; c’est-a-dire que I'unité de mesure des angles est la
méme; ¢’est le « tour ». |
Par contre, le calcul, & partir du ds® de Schwarzschild, de
la révolution anomalistique donne pour celle-ci 'angle ® exprimé
en « tours » L:

3M

1-J. CrAzy, loc. cit., 1, p. 74-76.
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d’ou Pavance du périhélie de 43" par siécle pour Mercure. Nous
reprendrons cette question plus loin.

4. — Ainsi, on passe de I’équation newtonienne des aires
do
r2— = h,
dt

a l'intégrale correspondante de la théorie relativiste

de
2 _ T —
dr b

r

2

par les substitutions suivantes:

/ = M,(1 + 2%) ,
T =t{(1—27) ;

_ .

on néglige les termes de I'ordre de A2.
Les mémes substitutions ne permettent pas de passer de
I'équation différentielle newtonienne de la trajectoire

d?u M,

d_(oz + u = h2 (16)
0
a I'équation relativiste:
d?u M 3M -
dcpg_[_u:}?—i_c_zuz; (17)

cela provient du fait suivant: dans I’équation du mouvement
newtonien, I'angle « est mesuré en fraction de tour sidéral,
celui-ci étant justement la période de la fonction u; tandis que,-
dans I'équation relativiste, I'angle ¢, qui est encore mesuré en
fraction de la révolution sidérale, n’est pas exprimé en fraction
de la période de u. o -

Cette derniére période est la révolution anomalistique ® = 2x;
tandis que, dans le cas newtonien, la révolution anomalistique
se confond avec la révolution sidérale. Si donc on veut se placer
dans les mémes conditions angulaires que celles du cas newto-
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nien, il faut exprimer 'angle ¢ en prenant comme unité, non
plus le tour sidéral, mais le tour anomalistique ® = 2w (1 + 32).

Alors, a chaque angle « du cas newtonien correspond un
angle ¢, = F (¢), qui vaut presque la méme fraction de la
révolution anomalistique relativiste qu’est l'angle o de la
révolution sidérale; I’angle ¢, augmente donc de 27 en méme
temps que 'angle w, la quantité 27 désignant une révolution
complete. L’ancien angle relativiste ¢ est alors mesuré par un
nombre ¢, (presque égal & w) plus petit que le nombre ¢.

On ne peut cependant pas écrire simplement:

¢1 =9 (1 —3%\ ou o =9g(l+3%,
en ne prenant en considération que I'égalité relative a la
révolution totale anomalistique:

® = 2x(1 + 3 ;

et Pon doit écrire une relation de la forme:
¢ = 9 [1 + 3% + f(p)] - (18)

En effet, I’équation de la trajectoire, aprés élimination de la
différentielle dt entre les deux intégrales premiéres citées plus
haut, se met sous la forme:

(du)z__@ 1 1 2M  A? — ¢

%‘ 2 + B + 2 = P(u) ; (19)

c? rs

et 1l vient:

/' du
@ == + const.

VP (u)

On sait que le polynéme P (u) posséde deux racines simples
u= o et u=70 oul'on supposera o < 3. La variable u est
comprise entre a« et 3. La troisiéme racine vy est positive et
beaucoup plus grande que les deux premiéres; elle vaut:

c2

Y=k
On peut donc écrire quei

() = Fw—wp—ur—u,

c2
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et:
du + const. (20)

- f
Y rr—

Si I'on désigne la distance aphélie et la distance périhélie

respectivement par:

-:Z“——a(i—i-e) et g———-a(i—e),
on obtient:
1 1
>a—a(1+e)’ B_a(i_e)’
c? 2

[ v =m i

Faisons maintenant le changement de variable suivant:

_ 1+ ecos ¢
= (21)

tel que u passe de B & « lorsque I’angle ¢, varie de 0 & w. On

trouve:
QP = - + const ,
\/ 1 +, e coi_(gljl
a(l —e?)
ou bien:
g = a9 + const |,
\/ 2Me cos ¢,
1 — €Y a1l —e?)

$1
= const - (22
i f\/i—ﬁl—?lecos¢1+ 22)

On peut alors développer la fonction suivant les puissances
de A et intégrer terme a terme par rapport a ;. On trouve, si
les zéros des arguments ¢ et ¢, se correspondent, la relation

suivante, du type (18):

® =fd<pl[1 + 8% + Aecos ¢,] = @, (1 + 3%) + Resin @, ,
(23)
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ou:
o = ¢ (1 — 3A) — Ae (1 — 37)sin ¢, ;

en abandonnant les termes de 'ordre de 22, il reste:
¢y = o (1 — 37) — Aesin ¢ . (24)
La trajectoire est donc donnée par la forme newtonienne

1 _ 1+ ecoso

- - , (25)
r P

ou ¢, a la valeur (24) indiquée ci-dessus.

On peut d’ailleurs écrire:
cos @, = ¢os [ (1 — 3N)] + sin[p (1 — 3A)]-resin ¢ ,

ou, avec 'approximation indiquée, et en posant

$=o(1—3): - (26)
cos @, = c0s ¢ + resin® ¢ ; (27)

de sorte que ’équation de la trajectoire s’écrit:

1_1+ecosq)+le2sin2¢
r P p (28)
ol ¢ = g (1 —32%) .

C’est I’équation indiquée par Trousset 1.
Mais remarquons que la période anomalistique relativiste ®
vaut simplement:
Q = 2x (1 + 3%) ,

car, dans l'intégrale (23) prise de 0 & =, le terme en Ae tombe.

Ainsi, lorsqu’'on prend soin d’exprimer I’argument ¢ en
fraction de révolution anomalistique, comme dans le cas du
mouvement newtonien pour , I’équation relativiste de la
trajectoire prend la forme newtonienne. Mais, & cause de la
relation (24), on trouve cependant bien une avance du périhélie.
Et, pour Mercure, on sait que cette avance, calculée ainsi qu’il

1 Troussket, Comples rendus, 1922, p. 1160.
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vient d’étre dit, est de 43" par siécle, comme le résidu géné-
ralement admis et qu’il s’agit d’expliquer.

Mais rappelons que nous avons supposé, au n° 2, avoir affaire
directement au temps cosmique £ Or, le tout est de savoir
comment faire intervenir les «siécles » dans la vie de Mercure.
Nous P’avons dit plus haut: les temps propres devraient étre
liés entre eux et au temps cosmique par un ds? général; celui-ci
n’existe pas, la théorie d’Einstein ne parvenant pas a tenir
compte de toutes les masses du systéme solaire. Nous repren-
drons ce point au no 7.

§ 2. — REMARQUES SUR LA THEORIE EINSTEINIENNE
DE LA RELATIVITE ET SUR D’AUTRES THEORIES GENERALES.

5. — ]l faut rappeler tout d’abord qu’en chaque point A
de 'espace correspondant au ds? de Schwarzschild, la variable r
désigne le quotient par 2w de la longueur des circonférences
de centre O et passant par A 1.

(Cest-a-dire qu’on a, comme dans I’espace ordinaire:

«dans les applications & la Mécanique céleste, il n'y a pratique-
ment aucune différence entre les propriétés de la variable r
et les propriétés du rayon vecteur classique, et nous raison-
nerons comme s’il y avait identité 2. » '

Et siT'on se rappelle que le temps cosmique ¢ qui figure dans
le ds® est un temps absolu, conforme & la notion classique, on
constate qu'on est bien prés de la conception ordinaire de
I'espace et du temps.

On ne s’en étonnera pas, si 'on veut bien considérer que le
ds? de Schwarzschild et toutes les formules relativistes qui en
découlent peuvent étre obtenues par le moyen d’autres théories

1 J. Cuazy, loc. cut., 11, p. 24.
2 J. Cuazy, loc. cit., I, p. 62.
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générales, par exemple d’une théorie générale de I’aberration
des ondes et des forces, dans le temps et 'espace ordinaires 1.

Maillard disait aussi: « Il existe une aberration gravifique,
égale a 'aberration de la lumiére » 2.

En relativité restreinte, « 'aberration créée par le mouve-
ment d’un récepteur quelconque est représentée par une trans-
formation de Lorentz, absolument comme lorsqu’il s’agit du
mouvement d’une source: d’ou disparition des antinomies. Et
pour le récepteur aussi bien que pour la source, la transforma-
tion de Lorentz est une simple forme mathématique, parmi
d’autres possibles, de la correspondance physique, dans
I'Espace et le Temps classiques, entre un organe matériel
mobile et un milieu fixe » 3.

En relativité généralisée, « le caractére curviligne de I’ Espace-
Temps dans les calculs d’Einstein traduit en réalité une aniso-
tropie de propagation, provenant de I'état particulier du milieu
en présence de masses graves ou accélérées ».

« I’hypothése de la courbure de 'Espace-Temps ¢ peut étre
aisément remplacée, en ce qui concerne son influence sur la loi
de gravitation, par ’hypothése de l'influence de la transmission
par le milieu, ¢’est-a-dire celle de 'aberration des forces appli-
(quées aux masses en mouvement . »

N’est-ce pas le lieu de rappeler cette conclusion de Maillard:
« Ce n’est point diminuer le relativisme, c’est au contraire en
souligner I'intérét, que d’énoncer cet axiome: De par la nature
méme de nos moyens de controle, tous les faits nouveaux
découverts grace a la Relativité sont et seront interprétables
dans I’espace euclidien et le temps. terrestre ».

! H. VARCOLLIER, La Relativité dégagée d’hypothéses métaphysiques.
Paris, 1925. ‘

P. DivEe, Le principe de Relativité selon Poincaré, et la Mécanique
invartante de Le Roux. Paris, 1937,

— HEspace non-euclidien, Temps relatif (Bull. Ac. de Clermonit-
Ferrand, loc. cit., t. LVIII, 1938, p. 100).

% L. MaiLrarp, Cosmogonie et gravitation. Lausanne, 1922,

3 H. VARCOLLIER, loc. cit., p. XIV.

4 La théorie générale de Milne, dont il sera question au n° 6, sup-
prime aussi toute allusion a une courbure de I’Espace-Temps.

® H. VARCOLLIER, loc. cit., p. 269.
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Une théorie générale de I'aberration permet en particulier
d’atteindre ce but.

En relativité restreinte, par exemple, le principe d’Einstein
parait inutile, de méme que sont inutiles les régles idéales et les
chronomeétres idéaux qui sont introduits dans les raisonnements
einsteiniens.

D’ailleurs, les faits expérimentaux auxquels on applique le
principe de relativité restreinte d’Einstein peuvent s’expliquer
d’une maniére beaucoup plus simple par une étude analytique
de I’équation de la propagation des ondes dans un milieu iso-
trope; cela méne, d’autre part, a la solution du probléme de
I'aberration dans le cas le plus général 1.

Et I'on voit bien que, si la transformation de Lorentz se
présente dans I'étude des interférences de n’importe quel
systéme ondulatoire, les conclusions que la théorie de la
Relativité restreinte en a tirées dans le cas particulier de la
lumiére ne sont pas toutes fondées.

Relevons ici une observation justifiée de Varcollier; c’est
que les récepteurs physiques inclus dans un milieu transmetteur
sont, eux aussi, des milieux, et qu’il faut les traiter comme tels.
« Uniquement capables d’enregistrer a4 tout instant 'état du
milieu transmetteur & ’endroit ou ils se trouvent, ils réagissent
sous cette influence comme le ferait un milieu quelconque. Et
cela seul suffit & faire sentir pourquoi la formule d’aberration
de Bradley, qui exprime un entrainement d’ensemble, rigide
jusqu’a I'infini, est certainement inexacte; un tel entrainement
des ondes, sans apparition d’une propagation, est physique-
ment, impossible dans un milieu. » 11 a donc fallu concevoir une
théorie plus convenable et plus générale de I’aberration. Ce
fut le mérite de M. H. Varcollier.

Si 'on adopte ce point de vue, on est conduit aux formules
mémes de la théorie de la Relativité dite générale; mais on reste
dans I’espace et le temps classiques; et I’on n’a plus que faire de la
métaphysique einsteinienne, qu’aucune expérience ou observa-
tion ne permet jusqu’ici d’imposer. Du méme coup, on supprime

1 J. LE Roux, Relativité restreinte et Géométrie des systémes ondu-
latoires. Paris, 1922.
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les difficultés engendrées par cette interprétation, difficultés que
M. P. Dive a si clairement mises en évidence, soit dans les
études qu’il a publiées sur ce sujet dés 1936 1, soit dans son
dernier ouvrage 2.

Mais il v a d’autres difficultés encore, que nous exposerons
aux n° 9 a 12, et qui font que les formules relativistes tirées
du ds? de Schwarzschild ne sauraient donner satisfaction &
'astronome. |

6. — On peut aussi arriver aux équations relativistes a
partir de la théorie générale de E. A. Milne 3.

Cette nouvelle théorie, & laquelle plusieurs auteurs ont
apporté des contributions 4, est complétement logique; elle
met en jeu deux temps: un temps ® dit cinématique ou naturel,
et un temps dynamique T, qui n’est autre chose que notre
temps newtonien ?; ces deux temps sont liés par I'équation:

. ® 5
T = L"o'IOg@—; + g,
0

a laquelle on peut comparer celle proposée par W. de Sitter ©.

Suivant qu’on opére en temps © ou en temps T, les lois du
" mouvement prennent la forme générale ou la forme newto-
nienne; et ’on conserve la notion habituelle de 'espace. Dans
cette théorie, aucun appel n’est fait a prior: & une loi empirique
quelconque de gravitation; et il n’y est pas besoin de considérer

1 P. Dive, loc. cit.

® P. Dive, Les interprétations physiques de la théorie d’Einstein.
Préface de M. Ernest Esclangon, directeur de 1'Observatoire de
Paris. Dunod, Paris, 1938.

# E. A. MiLNE, Relativity, Gravitation and World-Structure.
Oxford, 1935. Clarendon Press. ,

— On the foundations of dynamics (Proc. of the Royal Soc., A,
1936).

— The inverse square law of gravitation (Ibid., 1936-1937).

— Kinematics, dynamics and the scale of time (/bid., 1937). ,

4 Voir, par exemple, les travaux de: Whitrow (1935-1936-1937);
Nuut (1935); McVittie (1935); Lewis (1935); Narlikar (1935);
A.-A. Robb (1936).

® Milne écrit ¢ pour le premier et = pour le second; pour éviter
toute confusion, nous les désignons ici par % et T.

® W. pE SitTER, The astronomical aspect of the theory of Rela-
tivity (University Calif. Publ. in Math., 1933).

ArcHives. Vol. 20, — Septembre-Octobre 1938. 15
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une courbure locale de I’espace dans le voisinage d’une particule
massive. La dynamique gravitationnelle de Milne se réduit a
la mécanique classique lorsqu’on passe du temps cinématique ®
au temps T, les descriptions en temps T étant essentiellement
éphémeéres; c’est-a-dire que le temps T est le temps dynamique
présent 1,

Milne constate que la Relativité dite générale est une combi-
naison de la méthode de signalisation par signaux lumineux
(qui se fait dans le temps cinématique ®) avec les généralisa-
tions d’Einstein des lois newtoniennes de la dynamique (qui
emploient le temps T); comme on a:

'dT)
—_— i ’1 3
(d‘@’ T=1,

la mécanique relativiste est probablement plus ou moins apte
a représenter les conditions actuelles; mais elle cesse de I’étre
lorsqu’il y a une différence appréciable entre T et ®. De la,
par exemple, son impuissance a représenter d’une facon satis-
faisante le probléme des spirales.

Notons que le ds® prend, dans la théorie de Milne, les formes
suivantes:

1° pour l'observateur utilisant le temps ©:

3

dst = A% — L ger
C
(29) -
ds® = do? _gé[dzz + 12(d6® + sin® 8- de?)] ;

20 pour I'observateur utilisant le temps T:

& 1 <
ds? = e ™0 -[a’.T2 _—-édsz] , . ou
f
ded = d)? ®,)2 - sinh? » (d 62 in% 0 -do?) 30
& = + (c®,)? - sin TR + sin caet) (30)
=
T, ; T, ;
B = By-e 0 .cosh— , = %,re ® sinh - ;
c‘@o i C.(“ﬂ

1 (Cette théorie générale résoud, par exemple, la question relative
a la récession des nébuleuses lointaines, qui apparaissent stationnaires
en temps T, tandis qu’elles s’éloignent pour I’observateur qui emploie
le temps naturel &,
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et Pon voit que de? définit la métrique d’un espace statique
hyperbolique 1.

Quant au type de ds* de la Relativité dite générale, il est
donné en introduisant une nouvelle variable temporelle ¢, qui
est le temps cosmique relativiste:

T3, T-8, . dT ;
= Byee 0 dp=¢e %
on a alors:
2 2 1‘ 4 2 2
ds* = dt —=lg -de? (31)

égalité qui définit un Espace-Temps avec un espace hyper-
bolique en expansion.

Les systémes de coordonnées (I, ®) et (A, T) peuvent étre
appelés des systémes cohérents de coordonnées; tandis que la
combinaison mixte (A, {) de la Relativité conduit a des diffi-
cultés considérables. '

D’ailleurs la signification du ds* relativiste einsteinien est
essentiellement différente de celle des deux premiers ds?, (29)
et (30). Les métriques de ceux-ci ne jouent aucun role physique
dans la théorie de Milne; ce sont simplement des formules
algébriques convenables. Ce n’est pas le cas en Relativité
générale, ou le choix des géodésiques de 1’Espace-Temps
comme trajectoires des particules libres est fait & titre de
postulat indépendant 2. 11 faut ensuite introduire les équations
de champ d’Einstein, qui sont essentiellement empiriques; il
est donc impossible a la théorie relativiste dite générale
d’extrapoler avec sécurité; ses extrapolations ne sont pas
légitimes.

Il convient de rappeler ici une remarque que McCrea et
Milne ont faite et développée en 1934 et 1935 3; c’est que les

7)

1 La coordonnée A n’a rien de commun avec le facteur de dilata-
tion x employé dés le début. La lettre A n’est employée ici que momen-
tanément pour indiquer la transformée de la coordonnée [.

2 Cf. EinsTEIN et BoseN, Phys. Reo., 1935, vol. 48, p. 76.

2 MiLNE, Quart. J. math., 1934.

McCreA and MILNE, Quart. J. Math., 1934.

MiLNE, Relatioity, Gravitation and World-Structure. Oxford, 1935.
Chap. 16.



224 LA THEORIE DE LA RELATIVITE DITE GENERALE

équations de la cosmologie relativiste sont identiques avec
les équations qu’on obtient en traitant I'Univers entier par les
méthodes mémes de la mécanique gravitationnelle locale de
Newton, en utilisant le temps cosmique { comme temps newto-
nien T. C’est la I'identification dont nous parlerons dés le n° 7
suivant.

D’ailleurs, I'idée que les équations de la mécanique doivent
garder leur forme inchangée dans toute transformation de
coordonnées, idée qui est & la base de la théorie de la Relativité
dite générale, est trés diseutable; valable peut-étre dans ’espace
vide, elle est inapplicable dés qu’on considére la distribution
générale de la matiére dans I'Univers.

Faisons encore cette remarque que, dans une question scien-
tifique, il faut toujours partir de I'expérience et y revenir.
Nous ne pouvons parler qu’en langage terrestre, d’observations
effectuées de la Terre, et par des observateurs telluriens.

Cela nous améne a réfléchir sur I'identification usuelle sous-
entendue du temps cosmique des formules relativistes et du
temps astronomique universel.

(¢ suivre)
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