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REMARQUES

SUR LE RESEAU RECIPROQUE

ET

LES SURFACES DE DISPERSION

PAR

Jean WEIGLE
(Avec 18 fig.)

I. — INTRODUCTION,

La propagation des ondes (électromagnétiques, électroniques,
mécaniques) dans les milieux périodiques (principalement les
cristaux) forme le sujet d'un chapitre important de la physique.

On sait que lorsqu’une onde plane, de rayons X par exemple,
tombe sur un cristal, elle est diffractée par ce milieu périodique.
Le champ d’ondes diffractées est en quelque sorte une image
du cristal et ¢’est ainsi qu’en étudiant la direction et I'intensité
des ondes diffractées, on peut reconstruire le cristal. C’est la
une méthode puissante d’investigation, qui permet, par des
mesures macroscopiques sur des ondes planes, de donner une
représentation précise des molécules et de leur structure interne.
Cette méthode n’est du reste pas limitée aux rayons X et aux
cristaux, chaque onde et chaque milieu périodique peuvent étre
étudiés de cette maniere. La méthode inverse, qui consiste a
é¢tudier la structure de l’onde incidente en la faisant passer
dans un milieu périodique connu, pour produire la diffraction
qu’on observera, est aussi trés employée en spectroscopie. Les
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réseaux optiques étant en effet des milieux a structure pério-
dique connue.

11 est important, par conséquent, d’avoir une théorie rigou-
reuse de la propagation des ondes dans les milieux périodiques
si 'on veut pouvoir déduire, de Pobservation des ondes diffrac-
tées, la structure du milieu qui leur a donné naissance ou inver-
sément. On possede aujourd’hui différentes théories de ces
phénomenes, car les conditions des problémes a résoudre font
intervenir différentes approximations. Ainsi, lorsque la lumiére
se propage dans des milieux-stratifiés, dont la période de stra-
tification est beaucoup plus grande que la longueur d’onde de la
lumiére, la théorie (lumiére-ultrasons) est bien différente de
celle de la propagation des rayons X dans les cristaux, pour
laquelle les ondes et la périodicité du milieu sont du méme ordre
de grandeur. Malgré cette diversité, on peut obtenir des ren-
seignements précieux sur tous ces phénomenes grace a une
représentation géométrique simple: celle du réseau réciproque 1.

La notion de réseau réciproque a été introduite dans cette
partie de la physique par Ewald et Laue. Nous désirons, dans
cet article, en donner une analyse du point de vue des séries
de Fourier, comme cela a déja été fait par Ewald et Patterson 2,
puis généraliser la notion de réseau réciproque par ce que nous
appellerons le réseau de couplage. Pour montrer clairement
I'utilité de cette description, nous serons obligés d’étudier la
réfraction des ondes et leur diffraction. Ainsi nous introduirons
les surfaces de dispersion d’Ewald qui, associées au réseau
réciproque, nous donneront une description graphique, compléte
du point de vue géométrique, de la propagation des champs
d’ondes dans les milieux homogénes ou périodiques.

Nous pourrons alors comprendre comment la notion d’angle
de Bragg varie des rayons X & Poptique des réseaux graveés,
comment cet angle dépend de I'indice de réfraction moyen du
milieu, comment la largeur du domaine de réflexion totale par

1 Voir, au sujet de I’histoire du réseau réciproque, un article
d’EwaLp dans Zeit. f. Krist., 93, 396, 1936.

2 Voir, pour la littérature, I’article d’EwaLp dans le Handb. der
Phys., vol. 23/2, 1933.
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diffraction est fonction de I’angle d’incidence et de I’amplitude
de fluctuation des propriétés périodiques, comment aussi des
milieux sinusoidaux donnent lieu, par action détournée, a des
ordres nombreux de diffraction. Nous verrons aussi d’autres
problémes, sans en donner la solution, pour montrer comment
ils se simplifient a la lumiére de ces représentations graphiques.

Avant d’introduire le réseau réciproque des milieux pério-
diques, nous étudierons rapidement la propagation des ondes
dans les milieux homogenes. Cela nous permettra d’introduire
certaines notions dont nous ferons un usage constant par la
suite.

II. — MILIEUX HOMOGENES ISOTROPES ET SURFACES
DE DISPERSION,

1. Equation d’onde, vecteur d’onde.

I.’équation de propagation des ondes scalaires! dans un
milieu caractérisé par la quantité ¢ (zyz) est

02y

B o

=0 . (1)

Ul o

Dans cette expression, u est I’amplitude de I'onde et ¢ est
la vitesse avec laquelle elle se propagerait dans un milieu pour
lequel e = 1. Le parameétre ¢ (zyz) qui, pour les milieux homo-
génes, est constant, représentera, suivant les cas, la constante
diélectrique pour les ondes électromagnétiques, le potentiel
pour les ondes électroniques, etc.

Cherchons maintenant quelles ondes planes de fréquence
donnée v satisfont a I’équation (1). Ecrivons donc I'onde plane
sous la forme

o s unegﬁi((g'ﬁ_"t) (2)
dans laquelle T est un vecteur tracé a partir d’une origine O
arbitrairement choisie (fig. 1) et f est un vecteur constant qu’on
appelle le vecteur d’onde. 1.’expression (2) est bien une onde

1 La théorie s’applique, du reste, facilement aux ondes vecto-
rielles.
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plane puisque, a un temps donné ¢, tous les points de I’ 'espace
pour lesquels le produit intérieur des deux vecteurs (f r) est
constant ont la méme phase et que (f. r) = conste est I’équation
d’'un plan. On voit d’autre part
que le vecteur d’onde f est per-
pendiculaire au plan d’onde. En
plus, on voit aussi que, si l'on

appelle A la longueur d’onde, 5
0 ¥
1
f=-- Fig. 1.
Onde plane.
Le vecteur d’onde (d’une onde f est le vecteur d’onde.

plane) définit done la direction de
propagation de ’onde et sa longueur d’onde (ou sa vitesse
s1 la fréquence est connue). On pourra donc représenter géo-
métriquement une onde plane par son vecteur d’onde, mais
cette représentation devra se faire dans ’espace « réciproque »,
puisque f a, comme dimension, I'inverse d’une longueur. Cette
représentation ne donne évidemment pas I’amplitude del’onde.

On trouve, par substitution de (2) dans (1), que, poursatis-
faire I’équation des ondes, il faut avoir:

£ = s% (3)

et que, comme on devait s’y attendre puisque le milieu est
homogeéne, la grandeur de f ne dépend pas de sa direction.
Pour représenter toutes les ondes planes de fréquence v pouvant
se propager dans le milieu homogeéne, on tracera autour d’une
origine quelconque une sphére de rayon &£ donné par (3); on
dira alors que toutes les ondes planes de fréquence v dont les
vecteurs d’onde prennent naissance sur cette sphére pour se
terminer au point O, sont des ondes possibles du milieu. Cette
surface sphérique, tracée donc dans 1’espace réciproque, est une
représentation de la solution de I’équation (1). Nous I'appelle-
rons la surface de dispersion; c¢’est ’analogue des surfaces de
Fresnel de 'optique cristalline. On pourrait dire aussi que la
surface de dispersion donne le « spectre en direction » des ondes
planes de fréquence v.
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On aurait obtenu une représentation tout aussi simple dans
I’espace vrai si I’on avait tracé dans celui-ci une spheére de rayon

(4 . . .
= oy’ Mais nous verrons plus loin qu’il n’en est plus de
gV

méme dans les milieux périodiques et qu’alors c’est seulement
dans ’espace réciproque que les représentations géométriques
sont simples. Du reste, dans tous les problémes ou la direction
des ondes intervient, comme dans celui de la réfraction que
nous allons traiter, c’est ’espace des vecteurs d’onde qu’il
convient de considérer.

. Conditions aux limiies.

Lorsque les ondes passent d’un milieu g dans un second
milieu caractérisé par le parametre ¢, elles doivent satisfaire a
certaines conditions de continuité sur la surface de séparation
des deux milieux. Ces conditions sont toujours de la forme

n i i i ¢ 2 e
zAn (1 X+, 1t) _ A262 z([’%a—’-twy ot) ()

ou ’on a écrit que, sur la surface de séparation (z = 0), cer-
taines des propriétés des ondes (incidentes et réfléchies) du
milieu 1 caractérisé par leurs fréquences v, et les vecteurs
d’onde f;, doivent étre identiquement égales a celle de I’onde
(réfractée) du milieu 2. On sait, du reste, par ce que nous
venons de voir, que les ondes de frécLuence v; du premier milieu

. . i
doivent avoir des vecteurs d’ondes f;, de grandeur

—_— Vn
= Ve - (5)

puisque seules ces ondes sont des solutions de 1’équation (1);
leurs orientations, dénotées par l'indice n, peuvent étre diffé-
rentes (onde incidente et onde réfléchie, par exemple). Pour
le second milieu, dans lequel on désire connaitre 'onde produite

par la réfraction des premiéres, le vecteur I, doit avoir la gran-
deur

= Ve, "2 (6)

tandis que la fréquence v, est, pour I'instant, indéterminée.
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‘Mais on voit que si (4) doit étre identiquement satisfaite
pour toutes les valeurs de z, y et ¢, il est nécessaire que toutes
les exponentielles aient le méme exposant. Il faut donc écrire

\ v? =y, =V
(=%, (n quelconque) - (7)
8 f?y = f?y

Ces conditions aux limites tout a fait générales nous montrent
que la fréquence ne change pas d'un milieu a I’autre. En plus,
les composantes dans la surface de séparation des vecteurs de
chacune des ondes, soit du milieu 1, soit du milieu 2, doivent
étre égales entre elles, Seules les composantes £, normales a la
surface de séparation peuvent étre différentes, mais elles sont,
elles aussi, déterminées par (7), (5) et (6). Autrement dit, les
conditions aux limites (4) déterminent complétement la direc-
tion des ondes si I'on tient compte des surfaces de dispersion.
Il n’est pas nécessaire de connaitre plus précisément le type
des conditions aux limites pour que la géométrie de la réfrac-
tion et de la réflexion soit déterminée. Par contre, pour-calculer
les intensités des différentes ondes, il faut spécifier exactement
les conditions (4). On voit donc bien, sur cet exemple, comment
on peut scinder les problémes concernant la propagation des
ondes en deux types de problémes: a) le probleme géométrique
s’occupant de la direction des ondes, et d) le probléme éner-
gétique s’occupant de leurs intensités. Nous retrouverons, pour
les milieux périodiques, cette méme division naturelle, et nous
verrons que, la aussi, les surfaces de dispersion suffisent &
déterminer complétement les directions des différentes ondes.

3. Réfraction et réflexion.

On peut donner une construction géométrique trés simple.
dans l'espace réciproque, permettant de satisfaire les deux
derniéres équations (7). Si, en effet, I’on trace, & partir d’une

ArcHIVES. Vol. 20. — Juillet-Aout 1938. 12
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origine O quelconque (fig. 2), les deux surfaces de dispersion,
on a deux sphéres de rayon! f; = f4/e; et £, = f4/¢,, ou

f= .
c

Si, maintenant, on donne la direction AO de I’onde (incidente)
dans le milieu 1, les directions des ondes possibles associées a

Réflexion et réfraction.
SS- direction de la surface de séparation des milieux 1 et 2.
n  normale A cette surface.
ek . - g o ’ ’ . o ’ #
AO onde incidente, BO réfléchie, CO réfractée.

celle-ci1, seront données par la construction suivante: par A on
méne la normale n a la surface de séparation S5’ des deux
milieux. Celle-ci coupe les surfaces de dispersion en B, C et D.
Et les ondes possibles ont alors les vecteurs d’onde BO (onde
réfléchie se propageant dans le milieu 1), co (onde réfractée
du milieu 2), et DO. En effet, cette construction assure que les
composantes selon la surface de séparation de tous les veeteurs
d’onde sont égales (& A'O’), comme le veut (7) et que, d’autre
part, ils ont les bonnes grandeurs selon (5) et (6). L’onde DO

! On pourrait appeler 4/ Pindice de réfraction du milieu, et ¢
la grandeur du vecteur d’onde dans le vide en supposant £ = 1
pour ce milieu.
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n’existe pas d’une facon générale; elle n’interviendrait que dans
le cas ou le milieu 2 aurait la forme d’une plaque paralléle, car
—_—
alors la réflexion de CO sur la face inférieure donnerait précisé-
——
ment I’onde ! DO,
4. Réflexion tolale.

Quand I’onde incidente passe du milieu pour lequel le para-
metre € est le plus grand dans le milieu pour lequel € est plus
petit, on peut avoir réflexion totale (fig. 3). En effet, si
I’onde incidente est A’ 6, on a comme onde réfractée 5;6, mais

S A S
s E 1o CY

Réflection totale.

1.’onde de vecteur AO passe du milieu 2 au milieu 1 avee
fop >Ff ou g >¢g.

L’onde réfléchie totalement est BO tandis qu’a lintersection
complexe (schématisée par C, D) de 7 avec la sphere f,, on a en co
et DO des ondes évanescentes.

si ’angle d’incidence augmente jusqu’a donner une onde _A—d
la normale & SS" ne coupe plus la sphére f; en des points réels.
I1 y a, par contre, une intersection complexe, que nous avons
schématisée dans la figure 3 par les points C et D. Comme nous

1 Ces questions ont été étudiées par Ewavrp et Scumio (Z. f. Krist.,
94, 150, 1936), sans cependant que ces auteurs parviennent 4 donner
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avons spécifié que les composantes tangentielles des vecteurs
d’onde doivent étre égales, on voit que, seules, les composantes
selon la normale n des vecteurs de ces ondes peuvent étre
imaginaires. En posant, pour la valeur de la composante tan-
gentielle de toutes les ondes,

EO' = f, = a > f

<X

on trouve, pour les composantes du vecteur de I’onde réfractée
les valeurs

¢ 3 . .2

On voit que l'intersection complexe donne un double point
(C, D), mais, comme précédemment, une seule des ondes existe
(voir 'onde DO de la figure 2). C’est la valeur positive de ky.
que ’on prendra. L’onde réfractée a alors la forme

—2:4/ a2z 2mi(ox—1t)
€ : e .

(C’est une onde inhomogeéne, a laquelle on donne souvent le nom
d’onde évanescente. Elle se propage dans le milieu 1 dans la
direction X, c’est-a-dire parallelement a la surface de séparation

ey . v .
des deux milieux, avec une vitesse PE Cette vitesse est plus

petite que celle des ondes ordinaires dans le méme milieu.
L’amplitude de cette onde diminue dans une direction perpen-

une régle précise permettant de supprimer cette onde supplémentaire.
La difficulté provient de ce qu’on considére le milieu (2) comme
semi-infini; dans ce cas, 'onde DO n’existe pas car, si elle existait,
les conditions de Fresnel ne seraient plus suffisantes pour déterminer
les amplitudes des ondes. Si le milieu 2 est fini et a la forme d’une
plaque a faces paralléles, 'onde DO existe et provient de la réflexion
de CO sur la face inférieure et le probléeme énergétique est compléte-
ment déterminé. Mais, sur la face inférieure, les mémes difficultés
se présentent par rapport au troisieme milieu limitant le second.
En plus, sile milieu a une forme prismatique, la face inférieure n’étant
pas paralléle 4 la premiére, I’onde CO ne se réfléchira pas suivant DO.
Il semble qu’il faudrait alors tenir compte du fait que le second
milieu est limité en largeur aussi bien qu’en profondeur. Ces pro-
blémes n’ont pas recu jusqu’ici de solution complétement satisfai-
sante.
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diculaire & la surface de séparation et son coefficient d’absorp-
tion est proportionnel & 4/a® — 2, donc d’autant plus grand
que a est plus différent de f;,. Ces ondes évanescentes ont pu
étre étudiées expérimentalement, d’une facon remarquable,
dans le domaine des ondes ultra-courtes de radio.

III. — MILIEUX PERIODIQUES.

Les problémes classiques que nous avons traités jusqu’ici
devaient servir & montrer comment les méthodes que nous
emploierons pour I’étude des milieux périodiques donnent une
image géométrique simple de la propagation des ondes. Ces
méthodes n’étaient pas nécessaires pour I’étude de la réfraction
ou de la réflexion totale. Pour I’étude des milieux périodiques,
dans lesquels la diffraction vient augmenter considérablement
le nombre des ondes, elles jouent un role essentiel.

1. Description du milien.

Nous supposerons un milieu fait de cellules semblables,
juxtaposées les unes aux autres, et nous appellerons ce milieu
un réseau cristallin. La cellule élémentaire ou la maille sera

R

définie par trois vecteurs d’axe, a,, a5, @3, non coplanaires, le
parallélipipéde construit sur ces trois vecteurs constituant la
maille. La distribution de la matiére remplissant cette cellule
est donnée par le paramétre s(;), avec

-> — - -
P = oy + 030, + ogay
les coordonnées o, oy, a3, prenant toutes les valeurs entre 0
et 1. Comme le milieu est périodique, on a

-> — — —>

5(_5 + _T:) = <(p) avec 1, = La, + lya, + l;a, (I entiers) .

(8)

On peut donc représenter la fonction e(r) par une série de
Fourier, que nous écrirons

—>

5 + ‘:.% .
e(r) = Z 2 Z En1n2n382 Oy ngng " ¥ (9)

Ny Mg N3
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avec
—

- = — )
ningng — Mby + nyby 4 ngby (n entiers)

-

les by, by, b, étant définis par les relations

- - =

(@.5) =0 (=) . (10

=Y
o
I
-

On peut voir facilement que (9) est bien périodique, comme le
veut (8). En effet, en remplacant r par

T4+ =14 ba + la + la; . (L entiers)
on trouve des exponentielles de la forme

L= =
271 (by - v+nili+nela+ngls)

en vertu des définitions (10). Comme les n et les I sont entiers
I’exponentielle prend la forme

—_ = —_ =
o271 (by - v+ entier) _ 2=i(by, 1)
On a donc bien
— — —
e(t + 1) = ev)
— —+ - . . , .
Les vecteurs b,, b,, b; ainsi défi inis sont les vecteurs d’axe

-

réciproques des vecteurs d’axe a,, a,, a3 Avec les deﬁmtlons (10)
on peut toujours passer du systéeme a au systeme b et, par
conséquent, les vecteurs d’axe réciproques définissent la
géométrie du réseau tout aussi bien que les vecteurs a. On voit
aussi que les vecteurs b se mesurent par 'inverse d’une lon-
gueur; c’est donc dans l’espace réciproque qu’il faudra les
dessiner.

L’expression en série de Fourier (9) peut étre considérée
comme une triple somme d’ondes planes figées dans 1’espace,
les exponentielles ne contenant pas le temps. Les vecteurs

b, = nl_l;l + nz_l;2 + ny by (n entiers) (11)

sont alors les vecteurs d’onde de ces ondes matérielles planes,
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dont les amplitudes sont les g,. Ils donnent, par leur direction,
la normale aux plans matériels, qu'on appelle les plans réti-

: ; 1
culaires, et 'inverse de leur grandeur d, = 7 mesure la lon-

n
gueur d’onde ou, si 'on préfére, la distance entre deux plans

réticulaires immédiatement voisins, Les nombres (ny, ny, i)
sont alors ce que I’on appelle en cristallographie les indices de
Miller du plan considéré.

On a ainsi deux facons «réciproques» de décrire le milieu
périodique:

a) par le reseau prat ou réseau crtstallm en donnant les
vecteurs al, a2, a3, et la fonction matérielle s(p) a 'intérieur
de la maille, ou

b) par les ondes matérielles, en donnant les vecteurs d’onde
des ondes matérielles et la suite infinie €,,n,n, de leurs ampli-
tudes. Tous les vecteurs d’onde sont définis par (11) & partir
de 7;] , 5;, b: , qu’il suffit de connaitre.

Les problémes qui nous intéressent concernent la propagation
d’ondes (non matérielles, en général, et progressives) dans les
milieux périodiques. C’est l'interaction d’un réseau matériel
avec ces ondes qu’il nous faudra étudier. 11 est donc naturel de
penser que c’est la description du réseau réciproque qui sera
la plus utile pour cette étude, description qui fera intervenir
I'interaction de deux systémes d’ondes, les unes figées, les
autres progressives, On pourra donc s’attendre & trouver
dans la théorie des termes contenant le produit des deux types
d’ondes

i Do) . g2mily, D) — g2ril((by+ DD~

ce qu’on interprétera en disant qu’il y a de nouvelles ondes
progressives (diffractées) dont les vecteurs d’onde nouveaux
sont donnés par

T+ bn
On voit 1a de nouveau 'utilité de la description « réciproque »
puisque ce sont les vecteurs d’ondes qui s’ajoutent (vectorielle-
ment) et non pas les longueurs d’ondes.
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2. Réseau réciproque géométrigue.

Dans le réseau vrai formé de la juxtaposition des mailles

e e e

a;, Ay, a3, les points de I'espace déterminés par les vecteurs
— - - - .
a = La, + La, + L, (I entiers)

n’ont aucune signification physique; ils divisent simplement
I’espace en cellules ou. mailles semblables. Nous appellerons ce
réseau le réseau cristallin.
. — — — , .
Les vecteurs réciproques by, b,, by, définis par (10), peuvent
aussi servir & former un réseau de points dans l’espace réci-
proque, chacun des points étant donné par

— —

b = nyb, + nyby + nyb,  (n entiers) (11)

n

Ce réseaun réciproque peut sembler artificiel car, en effet, les
relations (10) ne définissent que les trois vecteurs fondamentaux
7))1, 32, l_;;, ou, si I’on préfére, une maille élémentaire construite
sur ces trois vecteurs dans l'espace réciproque. Le réseau
réciproque (11) est, lui, formé de la juxtaposition infinie de ces
cellules. On voit cependaht que, dans la série de Fourier (9),
qui déerit complétément le milieu matériel, les vecteurs b—,;
interviennent naturellement. Ils sont associés, il est vrai,
chacun a un coefficient de Fourier ¢,; c¢’est-a-dire que si 'un
des coefficients ¢, était nul, le 1_7; correspondant n’apparaitrait
pas dans la série de Fourier. Nous verrons toutefois qu’il est
utile d’introduire la division de I’espace réciproque donnée par
(11). Nous appellerons ce réseau le réseau réciproque géométrique
ou simplement le réseau réciproque. Il est donc indépendant de
la distribution de la matiere dans l’espace étant entiérement
défini par les vecteurs de base al, a_;, as, suivant (10) du réseau
cristallin. Le réseau réciproque géométrique n’est qu’une
charpente divisant ’espace réciproque; chacun des points est
équivalent, il n'y a pas d’origine définie, chacun de ces points
pouvant servir a cet effet.
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3. Réseau de couplage.

Si I’on veut obtenir une représentation compléte du milieu
périodique, c’est-a-dire une image du réseau cristallin et de la
distribution de matiére dans celui-ci, il faut «charger» le
réseau réciproque géométrique en attribuant a chacun de ses
points gn un poids e,. On choisira arbitrairement un point
quelconque de ce réseau comme origine (coordonnées 0, 0, 0)
auquel on donnera le poids gy A tous les autres points dont
les coordonnées (n,, ny, ny) sont alors déterminées, on donnera
les poids Sy g Ainsi, on aura une représentation compléte de
la fonction (1) (9) qui donnait la distribution de matiére dans
I’espace. Remarquons une fois encore que, dans le réseau
cristallin, la matiére était distribuée de facon continue et qu’il
suffisait de connaitre cette distribution dans une maille élémen-

R =S

taire a,, a5, ag, pour qu’elle soit donnée dans tout ’espace.
Dans le réseau réciproque chargé, par contre, il est nécessaire
de connaitre les poids de tous les points du réseau (qui s’étend
jusqu’a I'infini) pour que la distribution de matiére soit connue
a son tour. Nous verrons plus loin que les coefficients e, «les
amplitudes des ondes matérielles », déterminent en partie
I'intensité des ondes non matérielles diffractées; ils couplent
des ondes les unes avec les autres, le coefficient ¢, liant deux

ondes dont les vecteurs d’ondes différent d’un vecteur 3,1 Cest
ce phénoméne qui nous a amenés ! & nommer ce réseau réci-
proque chargé le réseau réciproque de couplage, ou plus simple-
ment le réseau de couplage. Les deux réseaux réciproques que
nous venons de définir (géométrique et de couplage) jouent
évidemment un réle important dans 1’étude de la propagation
des ondes. Nous avons parlé jusqu’ici de milieux périodiques
dans trois dimensions, mais il est bien évident que nos défini-
tions s’appliquent tout aussi bien aux cas plus simples dans
lesquels la périodicité est a deux dimensions, ou méme a une
seule (milieux stratifiés).

1 Au cours d’une conversation avec P. P. EwaLp.
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Avant de donner quelques exemples simples marquant bien
la différence de ces deux réseaux, il est nécessaire de résoudre
I’équation des ondes pour les milieux périodiques et de voir
ainsi quel est le champ d’ondes (diffractées) qui prend la place
de 'onde plane que nous avions trouvée dans l’étude des
milieux homogenes.

4. Champs d’ondes.

Dans I’équation des ondes

2
g — B2 g )

R

-
il faut maintenant introduire le parameétre périodique &(r),
que nous écrirons sous la forme d’une série de Fourier, comme
précédemment

2(f) = D) g, e 1m0 (9)

ou n représente trois indices, la somme étant évidemment
triple. Cherchons alors une solution de (1) sous la forme d’une
somme d’ondes planes de fréquence v donnée

U= Z umegzi((fm =) (12)

dans laquelle I'indice m représente trois indices m,, m,, ms, la
somme étant triple elle aussi, car, en effet, le vecteur d’onde
E,Tprenant différentes directions dans I’espace, il est nécessaire
de spécifier ses trois composantes pour qu’il soit déterminé.
Pour trouver une solution de (1), il faudra done choisir conve-
nablement les u,, (’amplitude des ondes) et les —f;,:(la direction
dans laquelle elles se propagent et leurs longueurs d’ondes).
On voit donc que le probléme se sépare naturellement en deux
parties, comme le probléme de la réflexion: I’un, géométrique,
qui est la recherche des qf:,: I’autre, « énergétique », concernant
les u,y, .
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En remplacant (9) dans (1), on trouve

S il DD = 1 SV STy 2wl by D0
mm s n-q
m n g

g W
Pour que ces deux expressions soient identiques en 1 et ¢, il
faut que les mémes exposants des exponentielles figurent dans
chaque somme. On doit donc écrire

fo + bn =1

..+.

ou, comme la numérotation des ondes est entierement arbitraire,
i BN
tm =ty + bm (14)

Nous discuterons en détail ces équations ci-dessous. Ayant

choisi les E-: de cette facon, I’équation (13) donne, en égalant
les coefficients des exponentielles,

2
fm

Y\
&' um = Z.l B gy (15)
q

Ces équations de récurrence pour les u,, constituent, avec (14),
les équations fondamentales du probléme. Si donc on peut:
trouver une suite de u,, satisfaisant a (15), avec des m choisis
selon (14), nous aurons trouvé quelles sont les ondes de fré-
quence déterminée v pouvant se propager dans le milieu pério-
dique. On voit que, d’une facon générale, la solution du probléme
de la propagation d’ondes dans un milieu périodique fait inter-
venir, non plus une onde, mais tout un champ d’ondes associées
les unes aux autres par les équations fondamentales (14) et
(15). I1 y a autant d’ondes que de points du réseau réciproque
géométrique. Seul ce champ d’ondes est dynamiquement
stable. Remarquons encore que toutes les ondes de ce champ
sont équivalentes, en ce sens que I’onde numérotée par I'indice
zéro (vecteur d’onde —f:,) n’a pas de propriétés spéciales, n’est
pas nécessairement une onde de grande amplitude, n’est pas
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non plus une onde incidente puisque, jusqu’ici, nous n’avons pas
considéré comment le champ d’onde était excité. Les amplitudes
relatives des différentes ondes sont déterminées completement
par les équations (15).

5. Conditions géométriques (directions et vitesses des ondes).

L’équation fondamentale (14) nous montre comment, il faut
choisir la direction et la longueur d’onde des ondes formant le
champ (12) qui est la solution de notre probléme: si nous savons
qu’une onde de vecteur que nous appellerons E:, se propage
dans le milieu matériel, les autres ondes nécessairement asso-
ciées & la premiére auront des vecteurs d’ondes donnés par (14).
La figure (4) montre comment le champ d’ondes est représenté

Fig. 4.

Le champ d’ondes solution de la propagation dans le milieu
périodique.

Les vecteurs d’onde de toutes les ondes sont construits & partir
de f, (supposé connu). Ayant choisi arbitrairement un point du
réseau réciproque géométrique comme origine, on y a fait aboutir

=

—_
fy; ensuite, & partir de l'origine de f,, on trace tous les vecteurs
aboutissant a tous les points du réseau.

Cette construction assure que f?n = f: + bm;l .

dans le réseau réciproque géométrique. On voit ainsi comment
la décomposition en une somme d’ondes planes de la solution
du probléme de la propagation des ondes dans les milieux
périodiques fait nécessairement intervenir le réseau réciproque
géométrique. Certaines des ondes du champ auront peut-étre
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des amplitudes trés petites, et ne joueront donc pas un role
mmportant dans la solution finale du probléme. Cela dépendra
des valeurs des g, et de 'orientation du champ d’ondes dans le
réseau cristallin (orientation de f; dans le réseau réciproque
de la figure 4). Mais, d’une facon générale, pour qu’une onde du
champ ait une intensité rigoureusement nulle, il faudra que des
conditions trés spéciales sur les g, et sur I’orientation soient
réalisées. Si, pour une valeur nl, Ny, N3, de n le ey, nyng COTTES-
pondant au vecteur bn = nlb + ngb + n3b (ou plus simple-
ment au point (n,, n,, ny) du réseau réciproque géométrique),
est nul, cela n 1mphque aucunement que I’amplitude de ’onde
dont le vecteur fn = fﬂ + bn aboutit en ce point est nulle.
(Pest du reste la la raison pour laquelle nous avons di introduire
le réseau réciprogque géométrigue en plus du réseau de couplage.
~ Pour connaitre les directions et les vitesses des différentes
ondes, 11 est done nécessaire de caleuler 'un des vecteurs d’onde
disons f[,, car (14) donne alors tous les autres. Nous avons, du
reste, di procéder & un calcul semblable pour les milieux
homogenes; on avait trouvé que 'onde plane devait avoir un
vecteur d’onde de grandeur

£, = Vet

indépendante de sa direction. On avait appelé 4/c I'indice de
réfraction du milieu et fla grandeur du vecteur d’onde dans le
vide (en supposant que le vide soit caractérisé par ¢ = 1). Dans
le milieu périodique, il n’y a plus d’indice de réfraction puisque ¢
est variable, et, par conséquent, on peut s’attendre a trouver
une expression plus compliquée, dépendant principalement de
la valeur moyenne de e. Pour obtenir f,, on remarquera que les
équations de récurrence (15) sont homogénes et linéaires pour
les uy,. Pour qu’elles aient des solutions différentes de zéro, il
est nécessaire que le déterminant des coefficients s’annule. Cela
donne une équation dans laquelle la seule inconnue est f, (en
remplacant les f,, par leurs valeurs (14)). En général, on
trouvera, pour une direction donnée de a, plusieurs solutions
annulant le déterminant. Ainsi les surfaces de dispersion, qui
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sont le lieu des origines des vecteurs d’ondes dans l’espace
réciproque, auront plusieurs nappes. C’est ce que nous allons
montrer sur un exemple simple.

6. Milien stratifié sinusoidal.

Supposons donc que le milieu soit périodique dans une

dimension seulement et que le parameétre = soit donné par
e =g, + 2¢, c0s 2wbr = ¢ + 21(62'_'”"6‘—!- ewztibx)
Le milieu est stratifié dans la direction x et le vecteur d’axe
—

réciproque est b dirigé selon x. Le réseau réciproque géomeé-
trique est constitué par une suite infinie de points équidistants
de b dans la direction z, tandis que le réseau de couplage est

formé par les points 0, 1 et 1 seulement, auxquels on a attribué
les poids g, &, et g, respectivement (fig. 5).

o
b b b b
O o >O 0] O O @] o
1 0 1
(a) ()
Fig. 5.
Les équations de récurrence (15) deviennent
| goff — £
\ g, u-2 + — e + g Uy =0
] fzau — 1—(2}
5 g u-1 + % + =u, . =0
, f2 Eo i ff
_ ;1u0+~—-—u1+slu2:0

2
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et, pour qu’elles aient des solutions non nulles, il faut que le
déterminant des coeflicients s’annule:

Eo f2 — t&__l
g 2 € 0 0
80 fz - tﬁ )
0 g, = & 0 - | = 0 (16)
0 0 8 > N

Pour voir clairement & quoi correspondent les solutions de
I’équation (16) nous allons prendre un cas limite dans lequel g,
est peu différent de 'unité, tandis que g, est trés petit. Ainsi
les fluctuations du parametre £ sont de trés faible amplitude
autour de la valeur moyenne g, & 1 et le milieu est donc presque
homogéne. En outre nous supposerons que 4 et f sont du méme
ordre de grandeur. (La grandeur b intervient dans le déter-
minant car les f,, sont liés & f, par les relations (14).

Si on néglige les ¢, le déterminant devient

gt — B
0 1
> 0 0
gl — £
0 B 0 =0
€°f2 et f?
0 0 =
ou
(o —B) (2o — %) (2 —18) ... =0

et les solutions deviennent

fm = Vet (m quelconque). (17)
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On a donc un nombre de solutions égal au nombre des points
du réseau réciproque géométrique; il v en a ainsi une infinité.
Elles ne sont pas données dans les expressions (17) en fonction
de f, mais on peut facilement retrouver toutes les valeurs de f
correspondantes en se servant de la relation Q: f: -+ mz

Remarquons en plus qu’a chaque racine (17) du déterminant
correspond tout un champ d’ondes dont nous dénoterons les
vecteurs au moyen d’un indice supérieur indiquant la racine a
laquelle ils appartiennent. Ainsi, si on considére la racine

tn = V/eof
les vecteurs du champ d’ondes de cette solution seront

0= Vetn i B = Vs + pb

—

n étant un vecteur unité dans la direction de f, (supposée

donnée). On peut représenter cela facilement dans I’espace
réciproque (fig. 6).

Fig. 6.
Vecteurs du champ d’ondes de la solution f, = 1/¢,f .

Pour avoir une représentation complete dans le réseau réci-
proque des solutions (17) nous choisirons comme origine un
—

des points de celui-ci et nous tracerons les vecteurs d’ondes f,
(i quelconque) de facon a ce qu’ils aboutissent en ce point.

—

Automatiquement les vecteurs d’ondes f,, ayant la méme origine

que fi aboutiront au point m (pour satisfaire I’équation (14)).
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Les valeurs (17) étant indépendantes de 1’orientation des vec-

—_——

teurs f,, on voit que toutes les ondes £ dont le vecteur a la
grandeur V/g,f sont des ondes possibles et le lieu des origines

des £ est donc une sphére de rayon A/e,f. Ce lieu est ce que
nous avons appelé la surface de dispersion. Ainsi a chaque
solution (17) correspond une sphere de rayon £4/c, tracée
autour de chaque point du réseau réciproque géométrique
(fig. 7).

Fig. 7.

Figures de dispersion du réseau sinusoidal (; — 0).

En réalité ces solutions doivent correspondre a celles que
nous avons trouvées pour le milieu homogene puisque nos
calculs ont été effectués avec la supposition que g = 0. En
effet, si nous voulons calculer I’amplitude des différentes ondes
d’un champ, par exemple le champ ¢, pour lequel £ = \/s_of les

équations de récurrence nous donnent (avec g, =
q 1
& ) . 03
;f Eof f’l:—]. i . O
\ {2 Ui =
2 __ glg
gof £ Go— o
2 i
2 i
| gof? — i, i —o
\ £2 Uivr =

Nous avons indiqué par ’indice supérieur ¢ des amplitudes
que nous ne considérions que le champ i. Toutes les valeurs

ARcCHIVES. Vol. 20. — Juillet-Aout 1938. 13
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(sf2 — 2.2) pour m =4 i étant différentes de zéro il faut que les
m soient nulles, Par contre comme (g, {2 — £12) = 0 Pamplitude

u; peut avoir une valeur quelconque. Le champ d’onde 7 se
réduit donc & une seule onde, dont le vecteur a la grandeur
f4/c. Pour chaque champ cela est vrai et comme deux vecteurs
d’onde paralléles et égaux en grandeur représentent la méme
onde, tous les champs sont équivalents. Nous retrouvons bien
ainsl les résultats que nous avons décrits pour les milieux homo-
génes a savoir que la solution du probléme était donnée par
une onde.plane de vecteur £4/c.

Si on avait introduit des g, trés petits dans les équations de
récurrence on aurait trouvé (pour le champ zéro avec f, > f4/,
pour simplifier les notations)

g2 — 2 u U-
a) i il -l—sl<1 +""):0
f2 U, U,
g fZ — f' u-
o Moy 1)
b) fg + E1( X + uo) 0
e f2 — /
c) 0 1 U e g (,1 1 u2> — 0
(1}

- P : S — . P g . u
Si f, était exactement égal & £v/g, il serait nécessaire que —*
0 0 Uy

U—
et — fussent nuls pour satisfaire a (b) mais alors (a) ne pourrait

Uy
étre satisfaite qu’avec uz/u, de I'ordre de l'unité. Mais alors
] g2 — f— uz
puisque est de 1'ordre de I’unité, il faudrait que — fit

t2 Uqy
de lordre de /e;, c’est-a-dire trés grand et I’équation suivante

. UL s s 4 1 o .
montrerait que ﬂi doit étre de I'ordre de — et ainsi de suite.
0 €
1

On aurait done divergence ! et les ondes m seraient d’amplitude

! La condition que le déterminant s’annule peut étre considérée
justement comme la condition de convergence du systéme infini
d’équation de récurrence.
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g PP — fe
T
est de Dordre de sl on a de nouveau dwergence 11 faut donc
que cette quantité soit de I’ordre de s et on trouve alors que
les ondes u, et u- ont une amplitude relative de l’ordre de g,
tandis que les ondes uy et uz sont de Iordre de ¢
suite. : ’

infinie. Un raisonnement semblable montrerait que si

€,, et ainsi de

Ces raisonnements sont vrais pour chaque champ d’ondes,

On peut done dire que dans chaque champ si 'onde dont le

vecteur a la grandeur £1/¢,, ¢’est-a-dire une vitesse de propa-

gation correspondant & l'indice de réfraction moyen, a une

amplitude uﬁ-, les ondes immeédiatement voisines, dont les vee-
. :

-

teurs sont fi + b, ont des amplitudes de ’ordre de ¢ ui. On
pourrait donc interpréter approximativement ces résultats et
les équations de récurrence en disant qu’une onde f; seule ne
peut pas se propager dans le cristal. Les fluctuations de I'indice
de réfraction produisent par diffraction des ondes secondaires
dont les vecteurs sont %; +b= f—:; couplées a la premiere,
le coefficient de couplace étant ¢, . Mais ces ondeszsecondaire:s'
sont couplées elles aussi & des ondes

£) f‘,+bib:< £) fo——btb:<
t, \fz-

par le méme coefficient de couplage ¢, et ainsi de sulte
L’« énergie » de ’onde fo passe ainsi en partle aux ondes f et £

—

celles-ci repassent de 1’énergie aux ondes fo et fz, et £, et t , et
cela continue ainsi avec des ondes d’indices plus élevés dont
I’amplitude diminue du reste a cause des couplages d’ordres de
plus en plus élevés qu’elles font intervenir. C’est ce jeu d’échange
d’énergie entre les ondes d’un champ que décrivent les équations
de récurrence et ¢’est en ce sens qu’on peut dire que ces équations
donnent un état dynamiquement stable du milieu périodique
parcouru par les ondes. Nous avons représenté cela schémati-
quement dans la figure 8 au moyen du réseau de couplage dont
on comprend maintenant I’importance, et la raison pour laquelle
il est différent du réseau réciproque géométrique. Ce dernier
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est bien comme nous I'avions dit une sorte de charpente de
I’espace réciproque qui détermine les directions des ondes asso-
ciées formant un champ. Tandis que le réseau de couplage se
déplace de point en point du réseau réciproque pour coupler

Réseau de couplage et réseau réciproque.

les ondes les unes aux autres. En généralisant ce que nous
venons de démontrer pour le coefficient g, on peut dire que les
coefficients e, couplent les ondes dont les vecteurs d’ondes différent
de 113 = ?;n .

Nous reviendrons sur ce point un peu plus loin. Auparavant
il nous faut compléter notre représentation en décrivant un
phénomeéne de résonance, dont nous n’avons pas parlé jusqu’ici
et qui peut jouer un role trés important dans la diffraction.
Cest le phénoméne qui fait intervenir ce qu’on appelle I’angle
de Bragg dans I'étude des cristaux pour les rayons X.

7. Résonance el angle de Bragg.

Il peut arriver que dans nos équations deux ondes d’un champ
alent simultanément des vecteurs d’ondes égaux approxima-
tivement en grandeur a £4/¢. Cela se produira effectivement a
chaque intersection des sphéres de dispersion de la figure 7.
Le champ d’ondes est alors placé symétriquement par rapport

au réseau réciproque (voir fig. 9). Dans ce cas deux facteurs

gof2 —
G——fz——'ﬂ du déterminant (16) deviennent simultanément nuls
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et la méthode d’approximation que nous avons employée n’est
plus valable. I1 faut alors écrire pour le déterminant

£ (eo 72— f% gof2 — f%)
ER T =

1 0 0 0
sof? —
©1 f2 1 o (so 7 — fg)
_ =0
_ 5 g
s°f2 e t
0 El f2_ El
0 0 0 1

Fig. 9.

« Réflexion » de Bragg.

ou encore
2 :2
gof fo X
r° &
gy f2 — fi
gy f2
puisque nous avons supposé que seuls fo et £, avaient des valeurs
qui annulaient presque les termes

2
-0 2
Eot — fl

f2
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On trouve ainsi pour cette orientation particuliére du champ
d’ondes que I, et f; doivent satisfaire & I’équation
2 o2 TR
(eofz — fo) (so ?— fl) —He =0
En posant alors

fu:f'\/s—o“-*io et f1:f\/3_(;_51

on trouve
2

£, 8, = f—;;f" (18)

car &, et &; sont petits dans la région qui nous intéresse pour
laquelle f, et f;, ont des valeurs proches de £4/¢,. Nous avons
représenté dans la figure 10 les sortes d’hyperboles que donne

Y 1

R, RIE,

~
o= s' =
F/CQ\:' e —
I R
~—
— ~—
= 5 =
— =

Fig. 10.
Séparation des surfaces de dispersion sous ’angle de Bragg.

Les deux spheéres de rayon £4/¢, tracées autour des points 0 et 1
du réseau réciproque ont dégénéré, vu I’échelle du dessin, en deux
plans et les variables £, et £, sont alors les coordonnées perpendi-
culaires a ces plans.
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(18) dont les spheéres f\/a—{, sont les asymptotes. L’axe des
hyperboles se calcule facilement car on voit que le sommet de
I’hyperbole a pour coordonnées

g f

S VS

et done
, et 22

Ss s oo = -— 5
t4/c sin® b

La séparation est donc de 'ordre de g, c’est-a-dire trés petite,
et ¢’est seulement dans une région trés petite autour de Pinter-
section des sphéres que les surfaces de dispersion se séparent
de celles-ci. Si, du reste, au lieu de considérer I'intersection des
spheéres tracées autour des points 0 et 1 du réseau réciproque,
on avait pris les sphéres 0 et m on aurait obtenu des résultats
semblables. En effet le déterminant (16) peut alors se mettre
sous la forme

| e 2 —t
R
= 0 ;
| g f2 —
I El “..W.,..Eé-_,_ ——
ce qui donne
2
£ o
E()gm = r;o f

comme précédemment. Mais on trouve alors que la séparation

des hyperboles devient
21

—_— ,
mb *

donc m fois plus petite que précédemment. D’une fagon géné-
rale les surfaces de dispersion vont done prendre la forme des
surfaces de révolution, dont la figure 11 donne une intersection
avec un plan passant par le réseau réciproque.

Mais revenons maintenant a I'amplitude des ondes. Nous
savons déja que, dans un champ, les ondes dont les vecteurs
sont trés différents de 4/, ont des amplitudes relatives de
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Pordre ¢, ou &}, etc. Nous les négligerons en premiére approxi-
mation et les équations de récurrence deviennent simplement

fe,u, + 2'\/3-050% = 0
2'\/‘551% + fe,uy = 0

Fig. 11.

Surface de dispersion du réseau sinusoidal.
En pointillé les sphéres de rayon £/ gg -

On trouve alors

U _ _2‘\/5_050 __

. 9
o fer T 24/e,8,
et 'on voit que pour &, = &, (sommet de I’hyperbole) ce
rapport vaut 1 en valeur absolue. Les deux ondes u, et u, ont
donc méme amplitude, et cela indépendamment de la valeur de
ey, qui peut étre aussi petit qu’on le veut. Les autres ondes u,
du méme champ ont, par contre, des amplitudes relatives a u,
et u,, qui sont au maximum de ’ordre de ¢;. Ce phénomeéne est
important pour la raison suivante: Supposons que nous ayons
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envoyé sur le cristal une onde incidente extérieure qui donne-
rait par réfraction simple (en considérant donc le milieu comme
homogéne) une onde intérieure dans la direction _f:] correspon-
dant au sommet de I'hyperbole. Cette onde seule, nous le
savons, n’est pas une solution du probléme de la propagation
dans le milieu périodique. Lorsqu'une onde se propage dans le
cristal, tout un champ d’ondes lui est associé. Dans le cas qui
nous occupe, le champ est celui que nous venons d’étudier.
Ainsi cette onde E} est accompagnée d'une onde f; qui a la
méme amplitude, méme si e, est extrémement petit, ¢’est-a-dire
méme lorsque les fluctuations de I'indice de réfraction sont
tres faibles. Les autres ondes du champ ont une intensité
négligeable; on peut dire alors que l'onde incidente s’est
«réfléchie » sur le plan réticulaire d’indice 1 (voir fig. 12)
et si on appelle 20 1’angle entre ﬁ, et f;, on a la relation (en
négligeant les £ qui sont trés petits)

b
§ b

£4/<, sin 6 =

TG

W e ] NENENNAS
r .
Vi

Fig. 12.

« Réflexion » de Bragg.

ou encore sl g, a une valeur trés proche de 'unité

2a8in0 = A,
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car f est P’inverse de la longueur d’onde A et & I'inverse de la
période @ du milieu. Cette relation qu’on appelle équation de
Bragg détermine 1’angle 8 (angle de Bragg) sous lequel on doit
envoyer l'onde pour que ce phénoméne de «réflexion» se
produise.

Quoique ce phénomene soit un peu plus compliqué que nous
ne 'avons dit, il reste vrai que ’amplitude de 1’onde u,; est
indépendante de g, c’est-a-dire du couplage. Il y a pour cet
angle 0 une résonance qui se produit et c’est alors le domaine
de résonance, le domaine angulaire dans lequel u; a une grande
intensité qui est déterminé par le couplage «,.

‘Pour résumer ce que nous avons vu jusqu’ici, nous pouvons
dire que dans le milieu stratifié sinusoidal seuls des champs
d’ondes peuvent se propager. Si les fluctuations de I'indice de
réfraction sont petites ces champs d’ondes sont constitués par
une onde principale dont le vecteur d’onde a la grandeur
t4/ %, les autres ondes ayant des amplitudes relatives a celle-ci
trés petites (I’ordre de grandeur des plus fortes est g;). Dans les
cas particuliers (orientation bien définie) ou les vecteurs de
deux ondes d’un champ ont approximativement la méme
grandeur f4/g, ces deux ondes sont relativement fortes, les
autres faibles.

8. Conditions aux limites de la réflexion de Bragg.

- Pour montrer comment on peut utiliser les surfaces de dis-
persion de l’espace réciproque nous étudierons rapidement la
réflexion des ondes comme nous l’avons fait pour les milieux
homogeénes. Nous avons tracé dans la figure 13 les figures de
dispersion et la construction qui permet d’obtenir graphique-
ment les vecteurs des champs d’ondes.

Comme on le voit le phénomeéne de résonance de Bragg
produisant une séparation des surfaces de dispersion a pour
conséquence des intersections imaginaires et donc des ondes
inhomogeénes. Et ces ondes inhomogénes donnent une «ré-
flexion » totale. Le domaine angulaire de réflexion totale
diminue rapidement avec I’ordre m de réflexion puisque nous
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avons vu que la séparation des hyperboles était donnée par
28e,/mb. .

Nous avons ainsi montré rapidement sur ’exemple simple
du réseau sinusoidal comment on pouvait employer les notions

o]

Lo
b -
51
o

Fig. 13.

Construction graphique des champs d’ondes.
Excitation par onde incidente.
ss’ est la surface du cristal supposé semi-infini.
Lorsque I’orientation de 1’onde incidente (vecteur de longueur f)

est aD les intersections de la normale au cristal avec les surfaces de
dispersion sont A et A’. Les champs d’ondes possibles sont donc les

T Tk

ondes A, et A (m représentant les points du réseau géométrique).

Entre ﬁ et :,-_]5 les intersections sont imaginaires et on trouve que
le champ est fait d’ondes inhomogénes, dont Pamplitude diminue a
mesure qu’elles pénétrent dans le cristal ou augmente lorsqu’elles

en sortent comme les ondes 1. Toute 1’énergie incidente se retrouve
dans I’'onde réfléchie. Lia région v+’ est un domaine de réflexion totale.

de réseaux réciproques géométriques et de couplage. En plus
nous avons pu donner quelques regles qui permettent de
construire les surfaces de dispersion. Nous allons étudier
maintenant quelques applications qualitatives de ces notions.
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IV. — QUELQUES APPLICATIONS DES RESEAUX RECIPROQUES
ET DES SURFACES DE DISPERSION,

1. Déviations de la loi de Bragg.

Par la réfraction des ondes dans le milieu périodique 1l se
produit des déviations de la loi de Bragg

2a sin Gn = ni

car I’angle 0,, entre I’onde incidente et I’onde réfléchie n’est pas
celui formé par les deux ondes du champ se propageant dans
le milieu. En négligeant la séparation des surfaces de dispersion
(e, trés petit) on voit que si ’incidence a lieu sur une face du
cristal parallele a la stratification on a pour une réflexion
d’ordre n
tcosf, = t4/¢, cos 0

et

2f\/5;sin6;1:nb avec t = et b:E ;

1
By
La figure 14 montre ce qui se passe dans I’espace réciproque.
On généraliserait sans peine cette construction si l'incidence
avait lieu sur une face du cristal différente de celle que nous
avons choisie.
En éliminant 0, entre les deux équations précédentes on

I 2
2asin6n=nl\/1—m- (19)

n2a?

trouve

Cette formule a souvent été employée soit pour mesurer l'indice
de réfraction moyen g, des cristaux pour les rayons X, soit pour
calculer exactement la longueur d’onde A a partir des observa-
tions de 0,,.

2. Réseau optigue el réseau cristallin.

On sait que lorsqu’on fait tomber de la lumiére normalement
sur un réseau de transparence, elle est diffractée et ’'onde qui
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sort, faisant un angle 6 avec ’onde incidente, a une longueur

d’onde donnée par
asinf, = nx

n étant 'ordre de diffraction et a la distance entre les traits
du réseau. Cette formule est différente de celle de Bragg qui

donnait
2a sin On = ni

SONOSONONONC NN NN S ONONNNS S

Fig. 14.

Déviation de la loi de Bragg.

Les surfaces de dispersion sont les sphéres de rayon f1/c, La
sphére f est la surface de dispersion pour le vide. L’onde incidente

est Xﬁ, elle donne & lintérieur du cristal le champ co et—(]_;> puis

comme onde réfléchie A0 (ou A;L). I’angle sous lequel on doit
envoyer I’onde incidente pour avoir « réflexion » de Bragg est donc 6x.

mais dans cette derniére, 20,, est ’angle entre 1’onde incidente
et 'onde réfléchie. On peut comprendre facilement pourquoi
ces deux formules sont différentes. Si ’on schématise le réseau
optique par un milieu stratifié en supposant que les traits
forment des creux rectangulaires on voit que les coefficients
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g, &, etc. sont alors relativement grands puisque le milieu est
fait de couches caractérisées par ¢ = 1 (vide) superposées a
des couches dans lesquelles £ a une valeur d’environ 1,5 (verre),
Les couplages seront forts et les champs d’ondes constitués par
des ondes nombreuses. L’angle de Bragg n’a plus besoin d’étre
réalisé pour que par simple couplage beaucoup d’ondes soient
intenses,

|

’

S

— -

i |
|
-~ - T T e e o — T

Fig. 15.

Réseau optique.

ss” représente la surface du milieu (perpendiculaire aux strati-
fications). Les surfaces de dispersion sont schématisées par les

—_
hyperboles que coupe la normale n a la face du réseau. Les ondes
ty, f,, £, , etc. provenant des différents champs se réunissent
— —_—
en une onde f = OA en dehors du réseau ayant méme composante

tangentielle. Les ondes fm ayant une composante tangentielle plus
grande que f sont réfléchies totalement et restent & lintérieur du
réseau. ' '
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La figure 15 représente alors ce qui se passe. On voit que
quelles que soient les directions des ondes a I'intérieur du milieu,
on a pour 'onde sortante de ’ordre n

tsin B, = nb
ou

asmen = ni .

Cette expression est exacte et I'indice de réfraction n’intervient
pas comme dans la loi exacte de Bragg donnée par (19).

3. Milien périodigue ¢ deux dimensions.

Supposons un milieu périodique & deux dimensions, la maille
€lémentaire étant un prisme rectangulaire (infini en hauteur)
défini par les vecteurs 31 et a_;. Comme nous le savons, ces
données suffisent pour déterminer le réseau réciproque géo-
métrique. En effet, les vecteurs d’axe réciproques sont

—
— a - —
e i — —
bl—T’ bz—_= bs_“o
al

Par conséquent le réseau formé sur la maille &;, b,, by est plan
et consiste d’une série de points disposés aux coins de rectangles

dont les cotés valent 1 et 1 respectivement (voir figure 16a).

L] ta
D’une facon générale ¢ sera donné par
__ 27 i(Ny byx+nabg )
M= Z zenlﬂze (20)
ny -Ng

-

a) Réseau géométrique. b) Réseau de couplage.
Fig. 16.

Réseaux réciproques d’un milieu périodique & deux dimensions.
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et le réseau de couplage est composé du réseau géométrique a
chaque point (n,, n,) duquel on a attribué le poids ¢, »,. Pour
simplifier supposons que (20) dégénére en deux fonctions
périodiques

I 5 2ning byx 271 Na by
s == }—J enlzoe + 2 309 1126 ) (21)
ny Ng

Cela signifie que les coefficients mixtes ¢, ,, avec n; 32 0 ou
ny 7= 0 sont nuls. Le réseau de couplage prend donc la forme
donnée dans la figure 16h. Il n’y a donc pas de couplage diagonal
direct: le point (1,1) par exemple n’est pas couplé a (0, 0) ni
aux points (2, 0) (0,2) et (2, 2), ce qui serait arrivé si les coeffi-
cients €, ¢ 41 n’avaient pas été nuls. Mais cela ne veut pas dire
que les champs d’ondes ne contiendront pas une onde f_lf En
effet, une onde f_o:, par exemple, donne entre autres, par couplage
direct, des ondesf_u: et F:, Pour savoir ce que celles-ci vont
donner, il faut placer le réseau de couplage sur (1,0) et (0, 1)
(comme orlgmes) On voit alors que fﬂ—; donnera par le couplage
£19 I’onde fu qui sera aussi donnée par fm par couplage gy, . Ce
phénomene important a recu le nom d’action détournée.

La présence des Ondes_%mn2 change naturellement les sur-
faces de dispersion qui ne sont pas constituées simplement par
la superposition des deux surfaces qu'on aurait calculées pour
chacune des deux fonctions de (20).

4. Milieux fints.

Lorsque le milieu est fini on ne peut plus le représenter par
une série de Fourier et on ne peut plus appliquer directement
les méthodes que nous avons esquissées. Si le milieu est rela-
tivement trés petit, c’est-a-dire ne contient qu’un trés petit
nombre de périodes, il n’est plus nécessaire de considérer les
champs d’ondes planes et il suffit de calculer comme si seule
I’onde incidente avait dans le milieu une intensité non négli-
geable. Cependant, lorsque le milieu est relativement grand et
contient ainsi un grand nombre de périodes, la théorie des
champs d’ondes doit commencer a s’appliquer. Si on représente
alors le milieu par une intégrale de Fourier on peut montrer
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facilement que tout se passe comme si les coeflicients de la
série de Fourier s’étaient étendus de facon continue autour des
points du réseau réciproque. Le réseau de couplage peut alors
étre représenté par un dessin semblable & la figure 17. Plus le

L

Fig. 17.

Réseau de couplage du milieu fini.

milieu sera grand, plus le domaine continu des = sera petit.
On se rend compte alors que les champs d’ondes sont trés
compliqués (car en réalité la notion d’onde plane ne s’applique
pas aux milieux finis). En principe, toutefois, on voit que les
ondes que nous avons considérées jusqu’ici seront remplacées
par des faisceaux d’ondes créés par le couplage continu
(fig. 18). Les diffractions ne se feront plus dans une direction

Fig. 18.

bien déterminée et la largeur angulaire de la diffraction sera
une mesure de l’extension dans ’espace du milieu fini. Ces
phénomenes qui jouent un rodle important dans I'étude de la
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matiere par les rayons X n’ont pas été jusqu’ici étudiés
théoriquement d’une facon compléte. Ainsi ne ne sait pas si
la correction (19) de la loi de Bragg doit étre employée lorsqu’on
a affaire a des cristaux treés petits.

V. — CONCLUSIONS.

Nous avons montré dans cet article I'utilité des notions
d’espace réciproque et de surfaces de dispersion dans I'étude
de la propagation des ondes. Tout d’abord, pour les milieux
homogenes, ces notions nous ont permis de donner une repré-
sentation simple des lois de la réfraction et de la réflexion
totale. Ensuite nous avons considéré les milieux périodiques
pour lesquels nous avons été obligé d’'introduire les réseaux
réciproques géométrique et de couplage. Grace a ceux-ci une
analyse relativement compléte des phénoménes de diffraction a
pu étre faite. Enfin quelques exemples de nature qualitative
ont donné une idée des renseignements qu’on pourrait tirer
de I’application de ces notions.

Institut de Physique, -
Université de Genéve.
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