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REMARQUES

SUR EE RESEAU RECIPROQUE
ET

LES SURFACES DE DISPERSION

PAR

Jean WEKil.K
(Avec 18 flg.)

I. — Introduction.

La propagation des ondes (electromagnetiques, electroniques,
mecaniques) dans les milieux periodiques (principalement les

cristaux) forme le sujet d'un chapitre important de la physique.
On sait que lorsqu'une onde plane, de rayons X par exemple,

tombe sur un crista!, eile est diffractee par ce milieu periodique.
Le champ d'ondes diffractees est en quelque sorte une image
du cristal et c'est ainsi qu'en etudiant la direction et l'intensite
des ondes diffractees, on peut reconstruire le cristal. C'est lä

une methode puissante d'investigation, qui permet, par des

mesures macroscopiques sur des ondes planes, de donner une
representation precise des molecules et de leur structure interne.
Cette methode n'est du reste pas limitee aux rayons X et aux
cristaux, chaque onde et chaque milieu periodique peuvent etre
etudies de cette maniere. La methode inverse, qui consiste ä

etudier la structure de l'onde incidente en la faisant passer
dans un milieu periodique connu, pour produire la diffraction
qu'on observera, est aussi tres employee en spectroscopie. Les
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reseaux optiques etant en effet des milieux ä structure perio-
dique connue.

II est important, par consequent, d'avoir une theorie rigou-
reuse de la propagation des ondes dans les milieux periodiques
si l'on veut pouvoir deduire, de l'observation des ondes diffrac-
tees, la structure du milieu qui leur a donne naissance ou inver-
sement. On possede aujourd'hui differentes theories de ces

phenomenes, car les conditions des problemes ä resoudre font
intervenir differentes approximations. Ainsi, lorsque la lumiere
se propage dans des milieux'stratifies, dont la periode de

stratification est beaucoup plus grande que la longueur d'onde de la
lumiere, la theorie (lumiere-ultrasons) est bien differente de

celle de la propagation des rayons X dans les cristaux, pour
laquelle les ondes et la periodicite du milieu sont du meme ordre
de grandeur. Malgre cette diversite, on peut obtenir des ren-
seignements precieux sur tous ces phenomenes grace ä une

representation geometrique simple: celle du reseau reciproque
La notion de reseau reciproque a ete introduite dans cette

partie de la physique par Ewald et Laue. Nous desirons, dans

cet article, en donner une analyse du point de vue des series

de Fourier, comme cela a dejä ete fait par Ewald et Patterson2,
puis generaliser la notion de reseau reciproque par ce que nous

appellerons le reseau de couplage. Pour montrer clairement
l'utilite de cette description, nous serons obliges d'etudier la

refraction des ondes et leur diffraction. Ainsi nous introduirons
les surfaces de dispersion d'Ewald qui, associees au reseau

reciproque, nous donneront une description graphique, complete
du point de vue geometrique, de la propagation des champs
d'ondes dans les milieux homogenes ou periodiques.

Nous pourrons alors comprendre comment la notion d'angle
de Bragg varie des rayons X ä l'optique des reseaux graves,
comment cet angle depend de l'indice de refraction moyen du

milieu, comment la largeur du domaine de reflexion totale par

1 Voir, au sujet de l'histoire du reseau reciproque, un article
d'EwALD dans Zeit. f. Krist., 93, 396, 1936.

2 Voir, pour la litterature, l'article d'EwALD dans le Handb. der
Phys., vol. 23/2, 1933.
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diffraction est fonction de Tangle d'incidence et de l'amplitude
de fluctuation des proprietes periodiques, comment aussi des

milieux sinusoi'daux donnent lieu, par action detournee, a des

ordres nombreux de diffraction. Nous verrons aussi d'autres
problemes, sans en donner la solution, pour montrer comment
ils se simplifient ä la lumiere de ces representations graphiques.

Avant d'introduire le reseau reciproque des milieux
periodiques, nous etudierons rapidement la propagation des ondes

dans les milieux homogenes. Cela nous permettra d'introduire
certaines notions dont nous ferons un usage constant par la
suite.

II. — Milieux homogenes isotropes et surfaces
de dispersion.

1. Equation d'onde, vecteur d^onde.

L'equation de propagation des ondes scalaires1 dans un
milieu caracterise par la quantite s (xyz) est

(1)

Dans cette expression, u est l'amplitude de l'onde et c est
la vitesse avec laquelle elle se propagerait dans un milieu pour
lequel s 1. Le parametre e (xyz) qui, pour les milieux homo-

genes, est constant, representera, suivant les cas, la constante

dielectrique pour les ondes electromagnetiques, le potentiel
pour les ondes electroniques, etc.

Cherchons maintenant quelles ondes planes de frequence
donnee v satisfont ä l'equation (1). Ecrivons done l'onde plane
sous la forme

2-i( (f • r) - /()
u=utse (2)

—^

dans laquelle r est un vecteur trace ä partir d'une origine 0
arbitrairement choisie (fig. 1) et f est un vecteur constant qu'on
appelle le vecteur d?onde. L'expression (2) est bien une onde

1 La theorie s'applique, du reste, facilement aux ondes vecto
rielles.
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plane puisque, ä un temps donne t, tous les points de l'espace
^

pour lesqueis le produit interieur des deux vecteurs (f.r) est
—^ ^

constant ont la meme phase et que (I. r) conste est l'equation
d'un plan. On voit d'autre part
que le vecteur d'onde f est per-
pendiculaire au plan d'onde. En
plus, on voit aussi que, si l'on
appelle X la longueur d'onde,

Le vecteur d'onde (d'une onde

plane) defmit done la direction de

propagation de l'onde et sa longueur d'onde (ou sa vitesse
si la frequence est connue). On pourra done representer geo-
metriquement une onde plane par son vecteur d'onde, mais

cette representation devra se faire dans l'espace « reeiproque »,

puisque f a, comme dimension, l'inverse d'une longueur. Cette

representation ne donne evidemment pas l'amplitude del'onde.
On trouve, par substitution de (2) dans (1), que, poursatis-

faire l'equation des ondes, il faut avoir:

V2
f2 ^ (3)

et que, comme on devait s'y attendre puisque le milieu est

homogene, la grandeur de f ne depend pas de sa direction.
Pour representer toutes les ondes planes de frequence v pouvant
se propager dans le milieu homogene, on tracera autour d'une

origine quelconque une sphere de rayon k donne par (3); on
dira alors que toutes les ondes planes de frequence v dont les

vecteurs d'onde prennent naissance sur cette sphere pour se

terminer au point O, sont des ondes possibles du milieu. Cette

surface spherique, tracee done dans l'espace reeiproque, est une

representation de la solution de l'equation (1). Nous l'appelle-
rons la surface de dispersion; c'est l'analogue des surfaces de

Fresnel de l'optique cristalline. On pourrait dire aussi que la
surface de dispersion donne le « spectre en direction » des ondes

planes de frequence v.

Fig. 1.

Onde plane.
I est le vecteur d'onde.
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On aurait obtenu une representation tout aussi simple dans

l'espace vrai si Ton avait trace dans celui-ci une sphere de rayon

X Mais nous verrons plus loin qu'il n'en est plus de
V £ v

meme dans les milieux periodiques et qu'alors c'est seulement
dans l'espace reciproque que les representations geometriques
sont simples. Du reste, dans tous les problemes ou la direction
des ondes intervient, comme dans celui de la refraction que
nous allons traiter, c'est l'espace des vecteurs d'onde qu'il
convient de considerer.

2. Conditions aux limites.

Lorsque les ondes passent d'un milieu dans un second

milieu caracterise par le parametre s2, elles doivent satisfaire ä

certaines conditions de continuite sur la surface de separation
des deux milieux. Ces conditions sont toujours de la forme

2 An + A2e2"<<f2>'x + V'/?'-"i!l) (4)

n

ou l'on a ecrit que, sur la surface de separation (z 0),
certaines des proprietes des ondes (incidentes et reflechies) du
milieu 1 caracterise par leurs frequences et les vecteurs
d'onde fj, doivent etre identiquement egales ä celle de l'onde
(refractee) du milieu 2. On sait, du reste, par ce que nous

venons de voir, que les ondes de frequence vj du premier milieu
-y

doivent avoir des vecteurs d'ondes de grandeur

/—
C A/Sl f (5)

puisque seules ces ondes sont des solutions de l'equation (1);
leurs orientations, denotees par l'indice re, peuvent etre diffe-
rentes (onde incidente et onde reflechie, par exemple). Pour
le second milieu, dans lequel on desire connaitre l'onde produite
par la refraction des premieres, le vecteur f2 doit avoir la grandeur

fs ^ (6)

tandis que la frequence v2 est, pour l'instant, indeterminee.
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Mais on voit que si (4) doit etre identiquement satisfaite

pour toutes les valeurs de x, y et t, il est necessaire que toutes
les exponentielles aient le meme exposant. II faut done ecrire

Ces conditions aux limites tout ä fait generates nous montrent
que la frequence ne change pas d'un milieu a l'autre. En plus,
les composantes dans la surface de separation des vecteurs de

chacune des ondes, soit du milieu 1, soit du milieu 2, doivent
etre egales entre elles. Seules les composantes fz normales ä la
surface de separation peuvent etre differentes, mais elles sont,
elles aussi, determinees par (7), (5) et (6). Autrement dit, les

conditions aux limites (4) determinent completement la direction

des ondes si l'on tient compte des surfaces de dispersion.
II n'est pas necessaire de connaitre plus precisement le type
des conditions aux limites pour que la geometrie de la refraction

et de la reflexion soit determinee. Par contre, pour calculer
les intensites des differentes ondes, il faut specifier exactement
les conditions (4). On voit done bien, sur cet exemple, comment
on peut scinder les problemes concernant la propagation des

ondes en deux types de problemes: a) le probleme geometrique
s'occupant de la direction des ondes, et b) le probleme ener-

getique s'occupant de leurs intensites. Nous retrouverons, pour
les milieux periodiques, cette meme division naturelle, et nous

verrons que, lä aussi, les surfaces de dispersion suffisent ä

determiner completement les directions des differentes ondes.

On peut donner une construction geometrique tres simple,
dans l'espace reciproque, permettant de satisfaire les deux
dernieres equations (7). Si, en effet, l'on trace, ä partir d'une

V

(n quelconque)

3. Refraction et reflexion.

Archives. Vol. 20. — Juillet-Aoüt 1938. 12
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origine 0 quelconque (fig. 2), les deux surfaces de dispersion,
on a deux spheres de rayon1 ^ f 0,1

I *
c

Si, maintenant, on donne la direction AO de l'onde (incidente)
dans le milieu 1, les directions des ondes possibles associees ä

Reflexion et refraction.
SS' direction de la surface de separation des milieux 1 et 2.

n normale ä cette surface.

AO onde incidente, BO reflechie, CO refractee.

celle-ci, seront donnees par la construction suivante: par A on

mene la normale n ä la surface de separation SS' des deux
milieux. Celle-ci coupe les surfaces de dispersion en B, C et D.

Et les ondes possibles ont alors les vecteurs d'onde BO (onde
reflechie se propageant dans le milieu 1), CO (onde refractee
du milieu 2), et DO. En effet, cette construction assure que les

composantes selon la surface de separation de tous les vecteurs
d'onde sont egales (ä A'O'), comme le veut (7) et que, d'autre

part, ils ont les bonnes grandeurs selon (5) et (6). L'onde DO

1 On pourrait appeler -y/s l'indice de refraction du milieu, et f
la grandeur du vecteur d'onde dans le vide en supposant e 1

pour ce milieu.
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n'existe pas d'une fagon generale; eile n'interviendrait que dans
le cas oü le milieu 2 aurait la forme d'une plaque parallele, car
alors la reflexion de CO sur la face inferieure donnerait precise-

ment l'onde 1 DO.

4. Reflexion totale.

Quand l'onde incidente passe du milieu pour lequel le para-
metre e est le plus grand dans le milieu pour lequel e est plus
petit, on peut avoir reflexion totale (flg. 3). En effet, si

l'onde incidente est A'O, on a comme onde refractee C'O, mais

Fig. 3.

Reflection totale.

L'onde de vecteur AO passe du milieu 2 au milieu 1 avec

f2 > ou e2 >
L'onde reflechie totalement est BO tandis qu'ä l'intersection

complexe (schematisee par C, D) de re avec la sphere f,, on a en CO

et DO des ondes evanescentes.

si l'angle d'incidence augmente jusqu'ä donner une onde AO,
la normale ä SS' ne coupe plus la sphere fj en des points reels.

II y a, par contre, une intersection complexe, que nous avons
schematisee dans la figure 3 par les points C et D. Comme nous

1 Ces questions ont ete etudiees par Ewald et Schmid (Z. /. Krist.,
94, 150, 1936), sans cependant que ces auteurs parviennent ä donner
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avons specifie que les composantes tangentielles des vecteurs
d'onde doivent etre egales, on voit que, seules, les composantes
selon la normale n des vecteurs de ces ondes peuvent etre
imaginaires. En posant, pour la valeur de la composante tan-
gentielle de toutes les ondes,

EO' f2x a > f,

on trouve, pour les composantes du vecteur de l'onde refractee
les valeurs

flx hx a ' hy 0 ' flz ± tl/«2 — f
On voit que l'intersection complexe donne un double point
(C, D), mais, comme precedemment, une seule des ondes existe

(voir l'onde DO de la figure 2). G'est la valeur positive de kiz

que l'on prendra. L'onde refractee a alors la forme

-2z\/a?-f?z •iT.i(a,x--it)
e e

C'est une onde inhomogene, ä laquelle on donne souvent le nom
d'onde evanescente. Elle se propage dans le milieu 1 dans la
direction X, c'est-ä-dire parallelement ä la surface de separation

des deux milieux, avec une vitesse —. Cette vitesse est plus' a

petite que Celle des ondes ordinaires dans le meme milieu.
L'amplitude de cette onde diminue dans une direction perpen-

une regie precise permettant de supprimer cette onde supplementaire.
La difficulte provient de ce qu'on considere le milieu (2) comme
semi-infmi; dans ce cas, l'onde DO n'existe pas car, si elle existait,
les conditions de Fresnel ne seraient plus süffisantes pour determiner
les amplitudes des ondes. Si le milieu 2 est fini et a la forme d'une
plaque ä faces paralleles, l'onde DO existe et provient de la reflexion
de CO sur la face inferieure et le probleme energetique est complete-
ment determine. Mais, sur la face inferieure, les memes difficultes
se presentent par rapport au troisieme milieu limitant le second.
En plus, si le milieu a une forme prismatique, la face inferieure n'etant
pas parallele ä la premiere, l'onde CO ne se reflechira pas suivant DO.
II semble qu'il faudrait alors tenir compte du fait que le second
milieu est limite en largeur aussi bien qu'en profondeur. Ces pro-
blemes n'ont pas reiju jusqu'ici de solution completement satisfai-
sante.
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diculaire a la surface de separation et son coefficient d'absorp-

tion est proportionnel ä V«2 — f?, done d'autant plus grand

que a est plus different de fj. Ces ondes evanescentes ont pu
etre etudiees experimentalement, d'une fagon remarquable,
dans le domaine des ondes ultra-courtes de radio.

III. — Milieux periodiques.

Les problemes classiques que nous avons traites jusqu'ici
devaient servir ä montrer comment les methodes que nous

emploierons pour F etude des milieux periodiques donnent une

image geometrique simple de la propagation des ondes. Ces

methodes n'etaient pas necessaires pour l'etude de la refraction
ou de la reflexion totale. Pour l'etude des milieux periodiques,
dans lesquels la diffraction vient augmenter considerablement
le nombre des ondes, elles jouent un role essentiel.

1. Description du milieu.

Nous supposerons un milieu fait de cellules semblables,
juxtaposees les unes aux autres, et nous appellerons ce milieu
un reseau cristallin. La cellule elementaire ou la maille sera

definie par trois vecteurs d'axe, a1; a2, a3, non coplanaires, le

parallelipipede construit Sur ces trois vecteurs constituant la
maille. La distribution de la matiere remplissant cette cellule

est donnee par le parametre e(p), avec

p at ax + a2a2.+ a3a3

les coordonnees ax, a2, otg, prenant toutes les valeurs entre 0

et 1. Comme le milieu est periodique, on a

s(p + Vj) e(p) avec r( lxax + f2a2 + l3a3 (I en tiers)

(8)

On peut done representer la fonction s(r) par une Serie de

Fourier, que nous ecrirons

*nln3n/rA(5nin*n*'T) O)
ni n2 n3
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avec

^nin%ri3 ~ä~ ^2 ^2 ~f~ ^3^3 GIltiGrs)

—^ —y ->
les bl7 b2, b3 etant definis par les relations

K • bd — 1 K • fy) 0 {i 9^ i) (10)

On peut voir faeilement que (9) est bien periodique, comme le

veut (8). En effet, en remplacant r par
'V —> —> —> —>• ">
v -J- q r -j- Ii di "l- /g ctg L d3 (l entiers)

on trouve des exponentielles de la forme

e2r.i(bn <c+nili+n2l2+nzh)

en vertu des definitions (10). Comme les n et les l sont entiers

l'exponentielle prend la forme

e2,:i(6„-'?+entier) _ g^-ri(bn- r)

On a done bien

e(r + i';) s(r)

Les vecteurs bx, b2, b3 ainsi delink sont les vecteurs d'axe

reeiproques des vecteurs d'axe av a2, a3. Avec les definitions (10)

on peut toujours passer du Systeme a au Systeme b et, par
consequent, les vecteurs d'axe reeiproques definissent la

geometrie du reseau tout aussi bien que les vecteurs a. On voit
aussi que les vecteurs b se mesurent par l'inverse d'une

longueur; e'est done dans l'espace reeiproque qu'il faudra les

dessiner.

L'expression en serie de Fourier (9) peut etre consideree

comme une triple somme d'ondes planes figees dans l'espace,
les exponentielles ne contenant pas le temps. Les vecteurs

bn riibi + n3b3 + n3b3 (n entiers) (11)

sont alors les vecteurs d'onde de ces ondes materielles planes,
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dont les amplitudes sont les e^. Iis donnent, par leur direction,
la normale aux plans materiels, qu'on appelle les plans reti-

lculaires, et l'inverse de leur grandeur dn mesure la

longueur d'onde ou, si l'on prefere, la distance entre deux plans
reticulaires immediatement voisins. Les nombres (/i,, «2, n3)

sont alors ce que l'on appelle en cristallographie les indices de

Miller du plan considere.
On a ainsi deux facons « reciproques » de decrire le milieu

periodique:
a) par le reseau vrai ou reseau cristallin, en donnant les

vecteurs a1, a2, a3, et la fonction materielle s(p) ä l'interieur
de la maille, ou

b) par les ondes materielles, en donnant les vecteurs d'onde
des ondes materielles et la suite infinie srll„2n;j de leurs amplitudes.

Tous les vecteurs d'onde sont defmis par (11) ä partir
de bi, b2, b3, qu'il suffit de connaitre.

Les problemes qui nous interessent concernent la propagation
d'ondes (non materielles, en general, et progressives) dans les

milieux periodiques. C'est l'interaction d'un reseau materiel
avec ces ondes qu'il nous faudra etudier. II est done naturel de

penser que c'est la description du reseau reciproque qui sera

la plus utile pour cette etude, description qui fera intervenir
l'interaction de deux systemes d'ondes, les unes figees, les

autres progressives. On pourra done s'attendre ä trouver
dans la theorie des termes contenant le produit des deux types
d'ondes

e2 zi ((?.!)-,t) e2,i(bn-t)= e^i[((4+ !)•?)-,(]

ce qu'on interpretera en disant qu'il v a de nouvelles ondes

progressives (diffractees) dont les vecteurs d'onde nouveaux
sont donnes par

t + bn

On voit lä de nouveau l'utilite de la description «reciproque »

puisque ce sont les vecteurs d'ondes qui s'ajoutent (vectorielle-
ment) et non pas les longueurs d'ondes.
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2. Reseau reciproque geometrique.

Dans le reseau vrai forme de la juxtaposition des mailies

a1, o2, «3, les points de l'espace determines par les vecteurs

o ^ /, (i^ -f- ^2^2 en tiers)

n'ont aucune signification physique; ils divisent simplement
l'espace en cellules ou mailles semblables. Nous appellerons ce

reseau le reseau cristallin.
Les vecteurs reciproques b1, b2, b3, definis par (10), peuvent

aussi servir ä former un reseau de points dans l'espace

reciproque, chacun des points etant donne par

—^ —> —v "y

bn n1bl + n2b2 + nzb3 (n entiers) (11)

Ce reseau reciproque peut sembler artificiel car, en effet, les

relations (10) ne definissent que les trois vecteurs fondamentaux

bi, b2, b3, ou, si l'on prefere, une maille elementaire construite
sur ces trois vecteurs dans l'espace reciproque. Le reseau

reciproque (11) est, lui, forme de la juxtaposition infinie de ces

cellules. On voit cependant que, dans la serie de Fourier (9),
* —>

qui decrit completement le milieu materiel, les vecteurs bn

interviennent naturellement. Iis sont associes, il est vrai,
chacun ä un coefficient de Fourier sn; c'est-ä-dire que si l'un
des coefficients zn etait nul, le bn correspondant n'apparaitrait
pas dans la serie de Fourier. Nous verrons toutefois qu'il est

utile d'introduire la division de l'espace reciproque donnee par
(11). Nous appellerons ce reseau le reseau reciproque geometrique

ou simplement le reseau reciproque. II est done independant de

la distribution de la matiere dans l'espace, etant entierement
defini par les vecteurs de base at, a2, a3, suivant (10) du reseau

cristallin. Le reseau reciproque geometrique n'est qu'une
charpente divisant l'espace reciproque; chacun des points est

equivalent, il n'y a pas d'origine definie, chacun de ces points
pouvant servir ä cet effet.
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3. Reseau de couplage.

Si l'on veut obtenir une representation complete du milieu
periodique, c'est-ä-dire une image du reseau cristallin et de la
distribution de matiere dans celui-ci, il faut «charger» le

reseau reciproque geometrique en attribuant ä chacun de ses

points bn un poids zn. On choisira arbitrairement un point
quelconque de ce reseau comme origine (coordormees 0, 0, 0)

auquel on donnera le poids A tous les autres points dont
les coordonnees (re1, n2, ns) sont alors determinees, on donnera
les poids enin2n3. Ainsi, on aura une representation complete de

—^

la fonction e(r) (9) qui donnait la distribution de matiere dans

l'espace. Remarquons une fois encore que, dans le reseau

cristallin, la matiere etait distribute de faijon continue et qu'il
suffisait de connaitre cette distribution dans une maille elemen-

taire ax, a2, as, pour qu'elle soit donnee dans tout l'espace.
Dans le reseau reciproque charge, par contre, il est necessaire

de connaitre les poids de tous les points du reseau (qui s'etend

jusqu'ä l'infini) pour que la distribution de matiere soit connue
ä son tour. Nous verrons plus loin que les coefficients sn, «les

amplitudes des ondes materielles», determinent en partie
l'intensite des ondes non materielles diffractees; ils couplent
des ondes les unes avec les autres, le coefficient sn liant deux

ondes dont les vecteurs d'ondes different d'un vecteur bn. C'est

ce phenomene qui nous a amenes 1 ä nommer ce reseau

reciproque charge le reseau reciproque de couplage, ou plus simple-
ment le reseau de couplage. Les deux reseaux reciproques que
nous venons de definir (geometrique et de couplage) jouent
evidemment un role important dans l'etude de la propagation
des ondes. Nous avons parle jusqu'ici de milieux periodiques
dans trois dimensions, mais il est bien evident que nos definitions

s'appliquent tout aussi bien aux cas plus simples dans

lesquels la periodicite est ä deux dimensions, ou meme ä une
seule (milieux stratifies).

1 Au cours d'une conversation avec P. P. Ewald.



178 REMARQUES SUR LE RESEAU RECIPROQUE

Avant de donner quelques exemples simples marquant bien
la difference de ces deux reseaux, il est necessaire de resoudre

l'equation des ondes pour les milieux periodiques et de voir
ainsi quel est le champ d'ondes (diffractees) qui prend la place
de l'onde plane que nous avions trouvee dans l'etude des

milieux homogenes.

4. Champs (Toncles.

Dans l'equation des ondes

A«-^S ° w

il faut maintenant introduire le parametre periodique s(v),

que nous ecrirons sous la forme d'une serie de Fourier, comme

precedemment

sft) 2 'r> (9)
n

od n represente trois indices, la somme etant evidemment

triple. Cherchons alors une solution de (1) sous la forme d'une

somme d'ondes planes de frequence v donnee

u 2, «me2z,((fm 'r> "l) (12)
m

dans laquelle l'indice m represente trois indices mx, m2, ms, la

somme etant triple eile aussi, car, en effet, le vecteur d'onde

im prenant differentes directions dans 1'espace, il est necessaire
de specifier ses trois composantes pour qu'il soit determine.
Pour trouver une solution de (1), il faudra done choisir conve-
nablement les um (l'amplitude des ondes) et les tm (la direction
dans laquelle elles se propagent et leurs longueurs d'ondes).
On voit done que le probleme se separe naturellement en deux

parties, comme le probleme de la reflexion: l'un, geometrique,
qui est la recherche des tm, l'autre, « energetique », concernant
les um.
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En remplacant (9) dans (1), on trouve

t2 ^y,.nune2"1 + bn) • r)- v(]

m n q

avec f2 -- (13)

Pour que ces deux expressions soient identiques en r et t, il
faut que les memes exposants des exponentielles iigurent dans

chaque somme. On doit done ecrire

fg + bn fj

ou, comme la numerotation des ondes est entierement arbitraire,

fm to + bm (14)

Nous discuterons en detail ces equations ci-dessous. Ayant
choisi les fm de cette faijon, 1'equation (13) donne, en egalant
les coefficients des exponentielles,

~ Um 2 zm-quq (15>

q

Ces equations de recurrence pour les um constituent, avec (14),
les equations fondamentales du probleme. Si done on peut
trouver une suite de um satisfaisant ä (15), avec des im choisis

selon (14), nous aurons trouve quelles sont les ondes de

frequence determinee v pouvant se propager dans le milieu perio-
dique. On voit que, d'une facon generale, la solution du probleme
de la propagation d'ondes dans un milieu periodique fait inter-
venir, non plus une onde, mais tout un champ d'ondes associees

les unes aux autres par les equations fondamentales (14) et

(15). II y a autant d'ondes que de points du reseau reciproque
geometrique. Seul ce champ d'ondes est dynamiquement
stable. Remarquons encore que toutes les ondes de ce champ
sont equivalentes, en ce sens que l'onde numerotee par l'indice

zero (vecteur d'onde f0) n'a pas de proprietes speciales, n'est

pas necessairement une onde de grande amplitude, n'est pas
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non plus une onde incidente puisque, jusqu'ici, nous n'avons pas
considere comment le champ d'onde etait excite. Les amplitudes
relatives des differentes ondes sont determinees completement
par les equations (15).

5. Conditions geometriques (directions et vitesses des ondes).

L'equation fondamentale (14) nous montre comment il faut
choisir la direction et la longueur d'onde des ondes formant le

champ (12) qui est la solution de notre probleme: si nous savons

qu'une onde de vecteur que nous appellerons f0 se propage
dans le milieu materiel, les autres ondes necessairement asso-
ciees ä la premiere auront des vecteurs d'ondes donnes par (14).
La figure (4) montre comment le champ d'ondes est represents

Le champ d'ondes solution de la propagation dans le milieu

Les vecteurs d'onde de toutes les ondes sont construits ä partir
de f0 (suppose connu). Ayant choisi arbitrairement un point du
reseau reciproque geometrique comme origine, on y a fait aboutir
— ^f0; ensuite, a partir de l'origine de f0, on trace tous les vecteurs
aboutissant ä tous les points du reseau.

—> —> —>

Cette construction assure que fm f0 + bm

dans le reseau reciproque geometrique. On voit ainsi comment
la decomposition en une somme d'ondes planes de la solution
du probleme de la propagation des ondes dans les milieux
periodiques fait necessairement intervenir le reseau reciproque
geometrique. Certaines des ondes du champ auront peut-etre

O'

Fig. 4.

periodique.
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des amplitudes tres petites, et ne joueront done pas un role

important dans la solution finale du probleme. Gela dependra
des valeurs des et de l'orientation du champ d'ondes dans le

reseau cristallin (orientation de f0 dans le reseau reciproque
de la figure 4). Mais, d'une facon generale, pour qu'une onde du

champ ait une intensite rigoureusement nulle, il faudra que des

conditions tres speciales sur les £„ et sur l'orientation soient
realisees. Si, pour une valeur n1, n2, ra3, de n le snin3n3 corres-

pondant au vecteur bn n1b1 + n2b2 + n3bs (ou plus simple-
ment au point (rel5 na, n3) du reseau reciproque geometrique),
est nul, cela n'implique aucunement que l'amplitude de l'onde

—> —^ —
dont le vecteur fn f0 + bn aboutit en ce point est nulle.
C'est du reste lä la raison pour laquelle nous avons dü introduire
le reseau reciproque geometrique en plus du reseau de couplage.

Pour connaitre les directions et les vitesses des differentes
ondes, il est done necessaire de calculer l'un des vecteurs d'onde,
disons f0, car (14) donne alors tous les autres. Nous avons, du

reste, dii proceder ä un calcul semblable pour les milieux
homogenes; on avait trouve que l'onde plane devait avoir un
vecteur d'onde de grandeur

f0 \/e f

independante de sa direction. On avait appele Vs l'indice de

refraction du milieu et f la grandeur du vecteur d'onde dans le

vide (en supposant que le vide soit caracterise par s 1). Dans
le milieu periodique, il n'y a plus d'indice de refraction puisque e

est variable, et, par consequent, on peut s'attendre ä trouver
une expression plus compliquee, dependant principalement de

la valeur moyenne de s. Pour obtenir f0, on remarquera que les

equations de recurrence (15) sont homogenes et lineaires pour
les um. Pour qu'elles aient des solutions differentes de zero, il
est necessaire que le determinant des coefficients s'annule. Cela

donne une equation dans laquelle la seule inconnue est f0 (en

remplagant les tm par leurs valeurs (14)). En general, on

trouvera, pour une direction donnee de f0, plusieurs solutions
annulant le determinant. Ainsi les surfaces de dispersion, qui
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sont le lieu des origines des vecteurs d'ondes dans l'espace

reciproque, auront plusieurs nappes. C'est ce que nous allons

montrer sur un exemple simple.

6. Milieu stratifie sinusoidal.

Supposons done que le milieu soit periodique dans une
dimension seulement et que le parametre e soit donne par

£ £0 + 2% cos 2 7ibx £, + £1(e2"tbx + e~2r-lbx)

Le milieu est stratifie dans la direction x et le vecteur d'axe

reciproque est b dirige selon x. Le reseau reciproque geome-
trique est constitue par une suite infinie de points equidistants
de b dans la direction x, tandis que le reseau de couplage est

forme par les points 0, 1 et 1 seulement, auxquels on a attribue
les poids e0, Sj et respectivement (flg. 5).

b b b b

CH——-o-—>o
(a)

Fig. 5.

0 o o
1 0 1

(b)

Les equations de recurrence (15) deviennent

U-2
Sof2-^

H"

ZlU-l + ^ UQ +

0

0

f2So -E1 "0 -I
£2

«1 + Sjitj 0
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et, pour qu'elles aient des solutions non nulles, il faut que le

determinant des coefficients s'annule:

Si f2
£1 0 o

• 0
S.P-«;

E1
[2

E1 o • 0 (16)

' 0 0 £1 (2 si ;

Pour voir clairement ä quoi correspondent les solutions de

l'equation (16) nous allons prendre un cas limite dans lequel s0

est peu different de l'unite, tandis que s2 est tres petit. Ainsi
les fluctuations du parametre s sont de tres faible amplitude
autour de la valeur moyenne s0 ^ 1 et le milieu est done presque
homogene. En outre nous supposerons que b et f sont du meme
ordre de grandeur. (La grandeur b intervient dans le
determinant car les tm sont lies ä f0 par les relations (14).

Si on neglige les sx le determinant devient

s„f2 -
f2

0 o ;

0
£of2 - ?0

(2
0

0 0
e.P-1

f2

(s„f2- ii (s0P-f2) 0

et les solutions deviennent

{m quelconque). (17)
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On a done un nombre de solutions egal au nombre des points
du reseau reeiproque geometrique; il y en a ainsi une infinite.
Elles ne sont pas donnees dans les expressions (17) en fonetion
de f0 mais on peut facilement retrouver toutes les valeurs de f0

correspondantes en se servant de la relation tm f0 + mb.

Remarquons en plus qu'a chaque racine (17) du determinant

correspond tout un champ d'ondes dont nous denoterons les

vecteurs au moyen d'un indice superieur indiquant la racine ä

laquelle ils appartiennent. Ainsi, si on considere la racine

fn VM

les vecteurs du champ d'ondes de cette solution seront

Vsoti • • • t"fp Vsot" + P b

n etant un vecteur unite dans la direction de !„ (supposee

donnee). On peut representer cela facilement dans l'espace
reeiproque (fig. 6).

Vecteurs du champ d'ondes de la solution fn A/s0t •

Pour avoir une representation complete dans le reseau

reeiproque des solutions (17) nous choisirons comme origine un

des points de celui-ci et nous tracerons les vecteurs d'ondes t'0

(i quelconque) de facon a ce qu'ils aboutissent en ce point.

Automatiquement les vecteurs d'ondes fm ayant la meme origine

que aboutiront au point m (pour satisfaire l'equation (14)).
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Les valeurs (17) etant independantes de l'orientation des vec-

teurs fm on voit que toutes les ondes I dont le vecteur a la

grandeur -\/s0 sont des ondes possibles et le lieu des origines

des fm est done une sphere de rayon V^o ^ es^ ce clue

nous avons appele la surface de dispersion. Ainsi & chaque
solution (17) correspond une sphere de rayon fV^o tracee

autour de chaque point du reseau reeiproque geometrique
(fig- 7).

Fig. 7.

Figures de dispersion du reseau sinusoidal (s, —> 0).

En realite ces solutions doivent correspondre ä Celles que

nous avons trouvees pour le milieu homogene puisque nos

calculs ont ete effectues avec la supposition que 0. En

effet, si nous voulons calculer l'amplitude des differentes ondes

d'un champ, par exemple le champ i, pour lequel t\ les

equations de recurrence nous donnent (avec sq 0)

M2 - ti
f2 "i-1

£„ f2 —

«L, o

f2
u] =0

\ f2 M'+l

Nous avons indique par l'indice superieur i des amplitudes

que nous ne considerions que le champ i. Toutes les valeurs

Akchives. Vol. 20. — Juillet-Aoüt 1938. 13
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(ef2 — im2) pour i etant differentes de zero il faut que les

ulm soient nulles. Par contre comme (s0f2 —fl2) 0 l'amplitude
u\ peut avoir une valeur quelconque. Le champ d'onde i se

reduit done ä une seule onde, dont le vecteur a la grandeur
iVe. Pour chaque champ cela est vrai et comme deux vecteurs
d'onde paralleles et egaux en grandeur representent la meme

onde, tous les champs sont equivalents. Nous retrouvons bien
ainsi les resultats que nous avons decrits pour les milieux homo-

genes ä savoir que la solution du probleme etait donnee par
une onde .plane de vecteur f-v/s.

Si on avait introduit des sx tres petits dans les equations de

recurrence on aurait trouve (pour le champ zero avec f0 ^ f\/s0
pour simplifier les notations)

£o f2 — f'r u-\ u
®) I — „ + 1 + - 0

1 t U0 \ U(i

»I +•.(? + ?)-«
»> "n~': + 2>-«

Si f0 etait exactement egal ä fVeo ü serait necessaire que —
Uq

U1
et — fussent nuls pour satisfaire ä (b) mais alors (a) ne pourrait

Uq

etre satisfaite qu'avec u^/u0 de l'ordre de l'unite. Mais alors

£o P — f| UJ
puisque —75 est de l'ordre de l'unite, il faudrait que — füt

t" Uq

de l'ordre de 1jzv c'est-ä-dire tres grand et l'equation suivante

ut 1
montrerait que — doit etre de l'ordre de — et ainsi de suite.

U0 t 1

On aurait done divergence 1 et les ondes m seraient d'amplitude

1 La condition que le determinant s'annule peut etre consideree
justement comme la condition de convergence du Systeme inflni
d'equation de recurrence.
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E() f2
inünie. Un raisonnement semblable montrerait que si ———(2

est de l'ordre de sx on a de nouveau divergence. II faut done

que cette quantite soit de l'ordre de st et on trouve alors que
les ondes ut et u- ont une amplitude relative de l'ordre de

^
2

tandis que les ondes u2 et 115 sont de l'ordre de s15 et ainsi de

suite.
Ces raisonnements sont vrais pour chaque champ d'ondes,

On peut done dire que dans chaque champ si l'onde dont le

vecteur a la grandeur fVsoi c'est-ä-dire une vitesse de propagation

correspondant a l'indice de refraction moven, a une
amplitude u], les ondes immediatement voisines, dont les vec-

teurs sont ± b, ont des amplitudes de l'ordre de e1u\. On

pourrait done interpreter approximativement ces resultats et

les equations de recurrence en disant qu'une onde f0 seule ne

peut pas se propager dans le cristal. Les fluctuations de l'indice
de refraction produisent par diffraction des ondes secondaires

dont les vecteurs sont f0 ± b f^t couplees ä la premiere,
le coefficient de couplace etant Ej Mais ces ondes secondaires

sont couplees elles aussi ä des ondes

y f0 + b ± b ^ fr) f0 - b ± b ^\ r ^ f-l2 l2

par le meme coefficient de couplage eq, et ainsi de suite.

L'« energie » de l'onde f0 passe ainsi en partie aux ondes fx et ft
celles-ci repassent de l'energie aux ondes f0 et f2, et f0 et fy, et

cela continue ainsi avec des ondes d'indices plus eleves dont

l'amplitude diminue du reste ä cause des couplages d'ordres de

plus en plus eleves qu'elles font intervenir. C'est ce jeu d'echange

d'energie entre les ondes d'un champ que decrivent les equations
de recurrence et c'est en ce sens qu'on peut dire que ces equations
donnent un etat dynamiquement stable du milieu periodique

parcouru par les ondes. Nous avons represente cela schemati-

quement dans la figure 8 au moyen du reseau de couplage dont

on comprend maintenant l'importance, et la raison pour laquelle

il est different du reseau reciproque geometrique. Ce dernier
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est bien comme nous l'avions dit une sorte de charpente de

l'espace reciproque qui determine les directions des ondes asso-
ciees formant un champ. Tandis que le reseau de couplage se

deplace de point en point du reseau reciproque pour coupler

Fig. 8.

Reseau de couplage et reseau reciproque.

les ondes les unes aux autres. En generalisant ce que nous
venons de demontrer pour le coefficient ^ on peut dire que les

coefficients £„ couplent les ondes dont les vecteurs diondes different
de nb ba

Nous reviendrons sur ce point un peu plus loin. Auparavant
il nous faut completer notre representation en decrivant un
phenomene de resonance, dont nous n'avons pas parle jusqu'ici
et qui peut jouer un role tres important dans la diffraction.
C'est le phenomene qui fait intervenir ce qu'on appelle l'angle
de Bragg dans l'etude des cristaux pour les rayons X.

7. Resonance et angle de Bragg.

II peut arriver que dans nos equations deux ondes d'un champ
aient simultanement des vecteurs d'ondes egaux approxima-
tivement en grandeur ä f V £ • Cela se produira effectivement ä

chaque intersection des spheres de dispersion de la figure 7.

Le champ d'ondes est alors place symetriquement par rapport
au reseau reciproque (voir fig. 9). Dans ce cas deux facteurs
Eof2 — C

du determinant (16) deviennent simultanement nuls
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et la methode d'approximation que nous avons employee n'est
plus valable. II faut alors ecrire pour le determinant

0 0 0

£„f2 — f
f2

0

e,p -1;
f2

0

Fig. 9.

« Reflexion » de Bragg.

ou encore

s„f2 — r

puisque nous avons suppose que seuls f0 et fx avaient des valeurs
qui annulaient presque les termes

Sot2 —f-
f2
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On trouve ainsi pour cette orientation particuliere du champ
d'ondes que f0 et doivent satisfaire ä l'equation

(^"0 («oP-O-P«^0

En posant alors

f0 f "\/£q Gt f ^1

on trouve
2

5.5, ^ (18)
ft e0

car et sont petits dans la region qui nous interesse pour
laquelle f0 et tj ont des valeurs proches de fv^o- Nous avons

represents dans la figure 10 les sortes d'hyperboles que donne

Separation des surfaces de dispersion sous l'angle de Bragg.

Les deux spheres de rayon f \/z0 tracees autour des points 0 et 1

du reseau reciproque ont degenere, vu l'echelle du dessin, en deux

plans et les variables ^ et sont alors les coordonnees perpendi-
culaires ä ces plans.
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(18) dont les spheres fV^o sont ^es asymptotes. L'axe des

hyperboles se calcule facilement car on voit que le sommet de

l'hyperbole a pour coordonnees

5, 5. - Slf
^Vei

et done
ej2 2f2

ss — — £
f Ve, sin 0 "

La Separation est done de l'ordre de c'est-ä-dire tres petite,
et e'est seulement dans une region tres petite autour de l'inter-
section des spheres que les surfaces de dispersion se separent
de celles-ci. Si, du reste, au lieu de considerer l'intersection des

spheres traeees autour des points 0 et 1 du reseau reeiproque,
on avait pris les spheres 0 et m on aurait obtenu des resultats
semblables. En effet le determinant (16) peut alors se mettre
sous la forme

f
0

ce qui donne

^ 4s„

comme precedemment. Mais on trouve alors que la separation
des hyperboles devient

2f2
mb '

done m fois plus petite que precedemment. D'une fagon generale

les surfaces de dispersion vont done prendre la forme des

surfaces de revolution, dont la figure 11 donne une intersection
avec un plan passant par le reseau reeiproque.

Mais revenons maintenant ä l'amplitude des ondes. Nous

savons dejä que, dans un champ, les ondes dont les vecteurs
sont tres differents de f a/s0 ont des amplitudes relatives de
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l'ordre ou s?, etc. Nous les negligerons en premiere approximation

et les equations de recurrence deviennent simplement

i tsjiq + 2\/£o?oMo 0

< 2Veo?i"i + f£i"o 0

Fig. il.
Surface de dispersion du reseau sinusoidal.

En pointille les spheres de rayon f \/£o •

On trouve alors

f^i

et l'on voit que pour ^ (sommet de l'hyperbole) ce

rapport vaut 1 en valeur absolue. Les deux ondes m0 et ux ont
done meme amplitude, et cela independamment de la valeur de

s1; qui peut etre aussi petit qu'on le veut. Les autres ondes um
du meme champ ont, par contre, des amplitudes relatives ä u0

et Hj, qui sont au maximum de l'ordre de sq. Ce phenomene est

important pour la raison suivante: Supposons que nous ayons

ux ^ A/ e0

Uq f Ej
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envoye sur le cristal une onde incidente exterieure qui donne-
rait par refraction simple (en considerant done le milieu comme
homogene) une onde interieure dans la direction f0 correspon-
dant au sommet de l'hyperbole. Cette onde seule, nous le
savons, n'est pas une solution du probleme de la propagation
dans le milieu periodique. Lorsqu'une onde se propage dans le
cristal, tout un champ d'ondes lui est associe. Dans le cas qui
nous occupe, le champ est celui que nous venons d'etudier.
Ainsi cette onde f0 est accompagnee d'une onde fx qui a la
meme amplitude, meme si s, est extremement petit, e'est-a-dire
meme lorsque les fluctuations de l'indice de refraction sont
tres faibles. Les autres ondes du champ ont une intensite
negligeable; on peut dire alors que l'onde incidente s'est
«reflechie» sur le plan reticulaire d'indice 1 (voir fig. 12)
et si on appelle 20 l'angle entre f0 et ft, on a la relation (en
negligeant les £ qui sont tres petits)

f Vs0 sin 6 |
S

/
/

/
//

/
s •

Fig. 12.

« Reflexion » de Bragg.

ou encore si s0 a une valeur tres proche de l'unite

2 a sin 0 A
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car f est l'inverse de la longueur d'onde X et b l'inverse de la

periode a du milieu. Cette relation qu'on appelle equation de

Bragg determine Tangle 9 (angle de Bragg) sous lequel on doit

envoyer Tonde pour que ce phenomene de «reflexion» se

produise.

Quoique ce phenomene soit un peu plus complique que nous
ne Tavons dit, il reste vrai que Tamplitude de Tonde ux est

independante de £1; c'est-ä-dire du couplage. II y a pour cet

angle 9 une resonance qui se produit et c'est alors le domaine
de resonance, le domaine angulaire dans lequel u} a une grande
intensite qui est determine par le couplage s1.

Pour resumer ce que nous avons vu jusqu'ici, nous pouvons
dire que dans le milieu stratifie sinusoidal seuls des champs
d'ondes peuvent se propager. Si les fluctuations de Tindice de

refraction sont petites ces champs d'ondes sont constitues par
une onde principale dont le vecteur d'onde a la grandeur
f V'zq, les autres ondes ayant des amplitudes relatives ä celle-ci

tres petites (l'ordre de grandeur des plus fortes est EjJ. Dans les

cas particuliers (orientation bien definie) oii les vecteurs de

deux ondes d'un champ ont approximativement la meme

grandeur f \/e0 ces deux ondes sont relativement fortes, les

autres faibles.

8. Conditions aux limites de la reflexion de Bragg.

Pour montrer comment on peut utiliser les surfaces de

dispersion de l'espace reciproque nous etudierons rapidement la
reflexion des ondes comme nous Tavons fait pour les milieux
homogenes. Nous avons trace dans la figure 13 les figures de

dispersion et la construction qui permet d'obtenir graphique-
ment les vecteurs des champs d'ondes.

Comme on le voit le phenomene de resonance de Bragg
produisant une separation des surfaces de dispersion a pour
consequence des intersections imaginaires et done des ondes

inhomogenes. Et ces ondes inhomogenes donnent une
«reflexion » totale. Le domaine angulaire de reflexion totale
diminue rapidement avec l'ordre m de reflexion puisque nous
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avons vu que la separation des hyperboles etait donnee par
2

Nous avons ainsi montre rapidement sur l'exemple simple
du reseau sinusoidal comment on pouvait employer les notions

Fig. 13.

Construction graphique des champs d'o ndes.
Excitation par onde incidente.

ss' est la surface du cristal suppose semi-inflni.
Lorsque Fomentation de l'onde incidente (vecteur de longueur f)

est aD les intersections de la normale au cristal avec les surfaces de
dispersion sont A et A'. Les champs d'ondes possibles sont done les

ondes Am et Am (m representant les points du reseau geometrique).

Entre yD et y'D les intersections sont imaginaires et on trouve que
le champ est fait d'ondes inhomogenes, dont l'amplitude diminue ä

mesure qu'elles penetrant dans le cristal ou augmente lorsqu'elles
en sortent comme les ondes 1. Toute l'energie incidente se retrouve
dans l'onde reflechie. La region yy' est un domaine de reflexion totale.

de reseaux reciproques geometriques et de couplage. En plus
nous avons pu donner quelques regies qui permettent de

construire les surfaces de dispersion. Nous allons etudier
maintenant quelques applications qualitatives de ces notions.
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IV. — Quelques applications des reseaux reciproques
ET DES SURFACES DE DISPERSION.

1. Deviations de la loi de Bragg.

Par la refraction des ondes dans le milieu periodique il se

produit des deviations de la loi de Bragg

2 a sin 0n n A

car l'angle %n entre l'onde incidente et l'onde reflechie n'est pas
celui forme par les deux ondes du champ se propageant dans

le milieu. En negligeant la separation des surfaces de dispersion
tres petit) on voit que si l'incidence a lieu sur une face du

cristal parallele ä la stratification on a pour une reflexion
d'ordre n

f cos 0n f \/za cos Qn

et
/— 1 1

21 V e„ sin 6„ nb avec f — et b —- •

" A a

La figure 14 montre ce qui se passe dans l'espace reciproque.
On generaliserait sans peine cette construction si l'incidence
avait lieu sur une face du cristal differente de celle que nous

avons choisie.
En eliminant 6„ entre les deux equations precedentes on

trouve

2a sin0n »Ay/l —
(1 ~a£^4a • (19)

Cette formule a souvent ete employee soit pour mesurer l'indice
de refraction moyen s0 des cristaux pour les rayons X, soit pour
calculer exactement la longueur d'onde X ä partir des observations

de 0n.

2. Reseau optique et reseau cristallin.

On sait que lorsqu'on fait tomber de la lumiere normalement
sur un reseau de transparence, eile est diffractee et l'onde qui
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sort, faisant un angle 0 avec l'onde incidente, a une longueur
d'onde donnee par

a sin 0n reX

n etant l'ordre de diffraction et a la distance entre les traits
du reseau. Cette formule est differente de celle de Bragg qui
donnait

2 a sin 0n nX

Fig. 14.

Deviation de la loi de Bragg.

Les surfaces de dispersion sont les spheres de rayon f \/e0- La
sphere f est la surface de dispersion pour le vide. L'onde incidente

est AO, eile donne ä l'interieur du cristal le champ CO et Cn puis
comme onde reflechie A'O (ou A^). L'angle sous lequel on doit
envoyer l'onde incidente pour avoir « reflexion » de Bragg est done 0n.

mais dans cette derniere, 20n est l'angle entre l'onde incidente
et l'onde reflechie. On peut comprendre facilement pourquoi
ces deux formules sont differentes. Si 1'on schematise le reseau

optique par un milieu stratifie en supposant que les traits
forment des creux rectangulaires on voit que les coefficients
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£j, e2, etc. sont alors relativement grands puisquele milieu est

fait de couches caracterisees par e 1 (vide) superposees a
des couches dans lesquelles s a une valeur d'environ 1,5 (verre).
Les couplages seront forts et les champs d'ondes constitues par
des ondes nombreuses. L'angle de Bragg n'a plus besoin d'etre
realise pour que par simple couplage beaucoup d'ondes soient
intenses.

Fig. 15.

Reseau optique.

ss' represente la surface du milieu (perpendiculaire aux
stratifications). Les surfaces de dispersion sont schematisees par les

hyperboles que coupe la normale n a la face du reseau. Les ondes

' 'n' ' e',c- provenant des differents champs se reunissent

en une onde f OA en dehors du reseau ayant meme composante
tangentielle. Les ondes fm ayant une composante tangentielle plus
grande que f sont reflechies totalement et restent a l'interieur du
reseau.
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La figure 15 represente alors ce qui se passe. On voit que
quelles que soient les directions des ondes ä l'interieur du milieu,
on a pour l'onde sortante de l'ordre n

f sin 6n nb

ou
a sin 0n nX

Cette expression est exacte et l'indice de refraction n'intervient
pas comme dans la loi exacte de Bragg donnee par (19).

3. Milieu periodique ä deux dimensions.

Supposons un milieu periodique ä deux dimensions, la maille
elementaire etant un prisme rectangulaire (infmi en hauteur)

—> —•>

defini par les vecteurs a1 et a2. Comme nous le savons. ces

donnees suffisent pour determiner le reseau reciproque geo-
metrique. En effet, les vecteurs d'axe reciproques sont

h b -*U2 2 ' K o

Par consequent le reseau forme sur la maille fq, b2, b3 est plan
et consiste d'une serie de points disposes aux coins de rectangles

1 1
dont les cotes valent — et — respectivement (voir figure 16a).

D'une facon generale e sera donne par

SS'
ni ri2

2*t (m bxx+n2 b2y)
(20)

a) Reseau geometrique. b) Reseau de couplage.

Fig. 16.

Reseaux reciproques d'un milieu periodique ä deux dimensions.
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et le reseau de couplage est compose du reseau geometrique ä

chaque point (nlt n2) duquel on aattribue le poids snin2- Pour
simplifier supposons que (20) degenere en deux fonctions
periodiques

£ S«n1,0^<niblSC+ Ee0,n/"<n,!,,V " <21)

ri\ n2

Cela signifie que les coefficients mixtes eni „2 avec n1 ^0 ou

re2^0 sont nuls. Le reseau de couplage prend done la forme
donnee dans la figure 16ft. II n'y a done pas de couplage diagonal
direct: le point (1,1) par exemple n'est pas couple ä (0,0) ni
aux points (2, 0) (0, 2) et (2, 2), ce qui serait arrive si les
coefficients n'avaient pas ete nuls. Mais cela ne veut pas dire

que les champs d'ondes ne contiendront pas une onde fn. En

effet, une onde f00, par exemple, donne entre autres, par couplage

direct, des ondes f10 et f01. Pour savoir ce que celles-ci vont
donner, il faut placer le reseau de couplage sur (1,0) et (0,1)
(comme origines). On voit alors que f01 donnera par le couplage

e10 1'onde fu qui sera aussi donnee par f10 par couplage s01. Ce

phenomene important a regu le nom d'action detournee.

La presence des ondes fni„2 change naturellement les
surfaces de dispersion qui ne sont pas constitutes simplement par
la superposition des deux surfaces qu'on aurait calculees pour
chacune des deux fonctions de (20).

4. Milieux finis.

Lorsque le milieu est fini on ne peut plus le representer par
une serie de Fourier et on ne peut plus appliquer directement
les methodes que nous avons esquissees. Si le milieu est rela-
tivement tres petit, e'est-a-dire ne contient qu'un tres petit
nombre de periodes, il n'est plus necessaire de considerer les

champs d'ondes planes et il suffit de calculer comme si seule

l'onde incidente avait dans le milieu une intensite non negli-
geable. Cependant, lorsque le milieu est relativement grand et
contient ainsi un grand nombre de periodes, la theorie des

champs d'ondes doit commencer ä s'appliquer. Si on represente
alors le milieu par une integrale de Fourier on peut montrer
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facilement que tout se passe comme si les coefficients de la
serie de Fourier s'etaient etendus de facon continue autour des

points du reseau reciproque. Le reseau de couplage peut alors

etre represents par un dessin semblable ä la figui'fe 17. Plus le

milieu sera grand, plus le domaine continu des s sera petit.
On se rend compte alors que les champs d'ondes sont tres

compliques (car en realite la notion d'onde plane ne s'applique
pas aux milieux finis). En principe, toutefois, on voit que les

ondes que nous avons considerees jusqu'ici seront remplacees

par des faisceaux d'ondes crees par le couplage continu
(fig. 18). Les diffractions ne se feront plus dans une direction

A A
Fig. 17.

Reseau de couplage du milieu flni.

o

Fig. 18.

bien determinee et la largeur angulaire de la diffraction sera

une mesure de l'extension dans l'espace du milieu fini. Ces

phenomenes qui jouent un role important dans l'etude de la
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matiere par les rayons X n'ont pas ete jusqu'ici etudies

theoriquement d'une facon complete. Ainsi ne ne sait pas si

la correction (19) de la loi de Bragg doit etre employee lorsqu'on
a affaire ä dbs cristaux tres petits.

V. — Conclusions.

Nous avons montre dans cet article l'utilite des notions

d'espace reciproque et de surfaces de dispersion dans I'etude
de la propagation des ondes. Tout d'abord, pour les milieux
homogenes, ces notions nous ont permis de donner une
representation simple des lois de la refraction et de la reflexion
totale. Ensuite nous avons considere les milieux periodiques

pour lesquels nous avons ete oblige d'introduire les reseaux

reciproques geometrique et de couplage. Grace ä ceux-ci une

analyse relativement complete des phenomenes de diffraction a

pu etre faite. Enfin quelques exemples de nature qualitative
ont donne une idee des renseignements qu'on pourrait tirer
de l'application de ces notions.

Institut de Physique,
Universite de Geneve.
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