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SUR

LA DISTRIBUTION DES TEMPERATURES

A L'INTERIEUR DES ETOILES

PAR

Georges TIEltCV

1. — Generalites; histoire. — On connait l'enchainement des

faits. Les chercheurs se sont tout d'abord attaches ä notre
Soleil; et le premier probleme qu'ils ont tente de resoudre a

consiste ä evaluer la temperature probable de la surface solaire;
cette recherche n'a pu etre faite avec quelque precision qu'apres
1837, date ä laquelle J. Herschel et Pouillet entreprirent de

mesurer ce que Pouillet a appele la « constante solaire ».

Ce premier probleme en declancha un second: celui de

l'entretien de la chaleur solaire; et c'est ä propos de ce second

probleme qu'on fut amene ä envisager la distribution des

temperatures et des pressions ä l'interieur du Soleil. Plus tard,
on parla non plus seulement du Soleil, mais de tous les soleils.

II ne sera pas inutile de rappeler ici ce qu'on appelle la
«temperature effective» du Soleil; c'est celle qu'aurait un

corps noir, c'est-ä-dire une surface qui absorberait egalement
et totalement toutes les radiations, et qui, place ä la distance
du Soleil, nous enverrait exactement la quantite de chaleur

correspondant ä la constante solaire (lcal,93 par cm2 et par min.).
Cette temperature effective est la seule qui soit ä la portee de

nos moyens d'investigation, puisque nous ne pouvons connaitre
la chaleur solaire que de loin.
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Encore fallut-il attendre 1880 pour obtenir des valeurs
raisonnables de cette temperature effective. Les lois utilisees
avant cette date reposaient, en effet, uniquement sur des

resultats experimentaux limites ä des temperatures de labora-

toire; or, toute experience est impossible ä la temperature de

la surface solaire, et il fallait proceder par extrapolation de

formules purement empiriques. Les resultats etaient affreuse-

ment discordants. C'est la loi de Stefan-Boltzmann, decouverte

en 1879, qui permit d'obtenir des valeurs concordantes; eile

s'exprime par l'egalite bien connue:

E cT4 (o 5,75 • 10~5 ergs/cm2, sec.) ;

en adoptant pour E la valeur: (6,25) • 1010 ergs par sec. et par
cm2 de surface solaire (valeur tiree de la constante lcal,93), on
trouve une temperature absolue T 5.800° environ.

La loi de Wien, demontree en 1901, et resultant, comme celle
de Stefan, d'un raisonnement rigoureux, donne une autre
determination de T; elle s'exprime comme suit:

_ C4* 0,289T — —— (Xm en cm)
m m

oü 7^ est la longueur d'onde correspondent au maximum
energetique de remission du corps noir. Comme, pour le Soleil,

(4,70) -10~5 cm, on trouve T 6.150° absolus.
Plus tard, la loi de Planck1, appliquee au spectre solaire:

CX"5 \ c (3,71) • 10"5

^ — ¥ ' j k 0,623
lO11 1 X en cm

donna pour T des valeurs allant de 5.800° ä 6.200°. On peut
done dire que les divers resultats s'accordent bien, donnant une
valeur proche de 6000°. Mais il faut rappeler ici que les corps noirs,
ä temperature egale, rayonnent plus de chaleur que les autres;
il resulte de cette remarque que la temperature dite effective ne
saurait indiquer qu'un minimum strictement necessaire pour

1 M. Planck, Vorlesungen über Wärmestrahlung. Leipzig, 1923.
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produire le rayonnement observe. D'ailleurs le Soleil n'est pas
dans les conditions que Ton trouve dans les laboratoires de

physique, oii les corps noirs sont des enceintes creuses ne

rayonnant que par un trou minuscule, alors que le rayonnement
solaire concerne la surface entiere du Soleil et part dans toutes
les directions. II serait done imprudent de penser que la temperature

de fait de la photosphere est tres voisine de la temperature
effective. En tenant compte de tous les renseignements possibles,
il semble que la valeur la plus vraisemblable pour la temperature

veritable de la surface solaire soit voisine de 7.000° ou
8.000°. II va sans dire que cela ne gene en rien l'emploi de la

temperature effective dans les calculs.
Comme on l'a rappele plus haut, ce premier probleme souleva

celui de l'entretien de la ckaleur solaire.
Nous ne rappellerons ici que pour memoire les theories

fameuses de Mayer, de Helmholtz et de Lord Kelvin, dont
aucune n'est capable de repondre ä toutes les exigences du

probleme, notamment celle d'arriver ä une indication sur la
duree du Soleil.

D'autres idees ont ete mises en jeu apres 1880; notamment
celle qui proposait que, aux temperatures du Soleil, les atomes
des elements chimiques fussent dissocies en corps plus simples,
inconnus jusqu'alors; e'est lä le principe pose par Sir Norman

Lockyer en 1887, et base sur la seule consideration des spectres,
sans egard ä l'entretien de la chaleur solaire; on sait que ces

vues se sont trouvees confirmees en 1920, ä la suite des

travaux de M. N. Saha sur l'ionisation. Mais nous sortons
ici de notre sujet.

Revenons ä notre probleme, celui de l'entretien de la chaleur
solaire et de l'equilibre thermodynamique du Soleil.

2. —De Homer Lane ä T.-J. See. — Le premier grand progres
dans la question a ete realise par J. Homer Lane en 1870.

Lane innove en admettant que le Soleil est constitue par un
melange de gaz parfaits, et en mettant par consequent en jeu la
loi de Mariotte et de Gay-Lussac; en outre, considerant pour la

masse solaire un equilibre du type adiabatique, il introduit la
loi de Poisson. Admettant ensuite la theorie de Helmholtz-
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Kelvin sur l'entretien de la chaleur solaire par le fait d'une
concentration progressive de la masse, il cherche ä determiner
la repartition des densites et des temperatures en fonction des

distances au centre du Soleil ou d'une etoile. Cette fois, le

probleme est bien pose; c'est bien lä la question qu'il faut
elucider.

En fait, Lane considere dejä un equilibre qu'on peut appeler
« equilibre adiabatique generalise », comme on l'a fait plus tard;
c'est-ä-dire que, dans l'equation de Poisson:

p K • pTi ;

Lane admet que l'exposant yx n'est pas forcement le rapport,
£

Y — des chaleurs specifiques ä pression et ä volume cons-
cv

tants. Envisageant dejä le cas d'une contraction uniforme, Lane
4

trouve la valeur — qui correspond ä ce cas fondamental

qui sera repris plus tard dans les solutions de caractere poly-
tropique et dans le probleme de l'equilibre radiatif, jouant ainsi

un role d'une importance considerable.

II n'est pas inutile de rappeler que la question qui s'est

posee ä l'esprit de Lane etait celle-ci: une masse chaude rayon-
nante tendant ä se contracter, et la contraction tendant ä

produire un echauffement, comment va se comporter la masse

Va-t-elle s'echautfer ou se refroidir en perdant de la chaleur
On sait que Lane est arrive ä son fameux paradoxe, qu'on peut
enoncer comme suit: «le coefficient de dilatation est negatif »;

autrement dit, quand la sphere se contracte, la temperature
s'eleve.

Le probleme traite par Lane a ete repris en 1887 par
Sir W. Thomson, ä un point de vue un peu plus general, qui a

conduit l'auteur ä des conclusions nouvelles interessantes,
notamment pour la physique cosmique; il trouva en particulier
que la densite centrale etait 22,5 fois plus forte que la densite

moyenne, ce qui donnait pour le Soleil une densite centrale

egale ä 31,5, tandis que Lane avait obtenu 28,2.
Plus recemment encore, en 1905, l'astronome americain

T.-J.-J. See a repris le probleme de Lane, admettant en general
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les memes bases, suivant la meme voie et verifiant les resultats,
en evitant les erreurs commises par Lane dans ses approximations.

Comme Lane, M. See regarde le Soleil comme un melange
de corps simples dissocies, reduits ä 1'eta.t monoatomique par
l'effet de la haute temperature; de sorte que y 5/3- M. See

calcule la temperature centrale ä l'aide de la formule

T-r (ff,
en se plagant dans deux hypotheses: temperatures superficielles
de 6.000° et 12.000°, entre lesquelles est certainement comprise
la temperature veritable de la photosphere. En outre, il consi-
dere que la densite de la matiere solaire est comprise entre 1/10

et 1/100 de celle de l'atmosphere terrestre; ce n'est lä qu'une
base de calcul, l'atmosphere solaire n'ayant pas de limite reelle.

La densite centrale ayant ete trouvee egale ä p0 28,417 dans

des developpements prealables, M. See obtient la distribution
suivante:

Dist. au centre
en fraction

de r0

T

(T' 6000° et

T

(T'=f2000° et j'-^)
1,00 6.000° C 12.000° C

0,95 379.200 3.520.300
0,90 797.900 7.407.200
0,70 2.878.700 26.723.100
0,50 5.446.100 50.557.000
0,30 7.932.900 73.642.900
0,10 9.500.200 88.191.600
0,00 9.714.200 90.178.400

On voit qu'il trouve une temperature centrale comprise entre
10 et 100 millions de degres C. La pression centrale correspon-
dante a une valeur de l'ordre de 10 milliards d'atmospheres.
Quant ä l'etat de la matiere solaire, M. See se declare en faveur
de la dissociation generale. II admet, nous l'avons dit, avec Lord
Kelvin, la concentration progressive de Helmholtz; il l'admet
au moins jusqu'ä ce que le rayon ait diminue de moitie; de

sorte qu'en fin de compte, sa theorie attribue au Soleil une duree
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ä venir d'au moins 30 millions d'annees environ, comparable ä

la duree passee. Cette duree, nous le savons, est encore beaucoup

trop courte, tant aux yeux des astronomes qu'ä ceux des

geologues.

Remarquons que M. See, apres Homer Lane, etudie la question

de la vitesse que peuvent avoir les particules constituant
le Soleil, gazeux, comme on a dit, dans sa totalite; et il constate

que la desagregation de la masse ne peut etre evitee que grace
ä la viscosite, qui s'oppose ä une evaporation menacante. De

meme, M. See procede ä l'etude de la rigidite des corps celestes;
et il trouve que la valeur de la rigidite moyenne de la matiere
solaire est plus de 6000 fois superieure ä celle de racier-nickel.
II trouve encore que la tenacite, ou force de rupture suivant
un plan diametral serait, pour la masse solaire, voisine de

deux milliards d'atmospheres.
On le voit, M. See, apres Homer Lane, arrive ä des chiffres

enormes. II importe de rappeler ici une conclusion capitale de

See: c'est que, dans une masse soumise, comme celle du Soleil,
ä des pressions internes considerables, et possedant une rigidite
6000 fois plus grande que celle de l'acier le plus rigide, il n'est

plus possible de concevoir des courants de convection en pro-
fondeur; des courants ne peuvent exister que dans les couches

superficielles, oü la pression est faible et ne s'y oppose pas.
Mais, comme il faut bien expliquer l'entretien du rayonnement
solaire, M. See fait intervenir le mecanisme des ondulations
lumineuses; et il pense que la vitesse de propagation de l'energie
rayonnante au sein de la masse profonde du Soleil doit etre ä

peu pres la meme que celle de la lumiere.
On voit qu'il faut relever, dans les idees de See, une evolution

par rapport ä Celles de Lane; alors que Lane envisageait un
equilibre convectif, generalise il est vrai par l'admission d'un
exposant yx different de y dans la loi de Poisson, See abandonne
les courants convectifs et fait progresser la radiation, des

couches profondes vers la surface, par le mecanisme des ondes

lumineuses. Ne peut-on pas apercevoir, dans cette idee, l'amorce
de la theorie actuelle de l'equilibre radiatif, dont nous parlerons
plus loin

Quoi qu'il en soit, il faut constater qu'en 1905, apres les
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travaux de Lane et de See principalement, on possedait pour
le Soleil (et par consequent pour les etoiles) un modele de

distribution des temperatures. Sans doute ce modele etait-il
encore bien imparfait, puisque la pression de radiation n'y
jouait encore aucun role. C'etait cependant un premier pas,
donnant un ordre de grandeur pour les temperatures des couches

profondes.

3. — Equilibres polytropiques. — A peu pres ä la meme

epoque parurent les recherches de P. Rudzki sur la contraction
uniforme (1902), oü l'auteur analyse ce processus mis ä contribution

dans les travaux anterieurs, notamment ceux de Lane.
C'est aussi en 1902 que parurent les premieres recherches de

R. Emden sur l'equilibre interne du Soleil, travaux qui se

rattachent ä ceux de Helmholtz et de Lord Kelvin. Mais la
contribution la plus importante due ä R. Emden parut en 1907;
elle a pour titre « Gaskugeln»; eile codilie en quelque sorte les

idees qui etaient dans Fair depuis quelques annees, et qui
prenaient en consideration un equilibre plus general que l'equilibre

adiabatique, l'equilibre polytropique. Les transformations
polytropiques sont des modifications thermodynamiques ä

chaleur specifique constante, definies par l'egalite:

dQ E, • dT ;

elles comprerment, comme cas particuliers, les transformations
anterieurement envisagees, notamment la transformation de

Lane:

p K • ph.

C'est en quelque sorte une extension du point de vue de Lane
et de See. II va sans dire que cette extension est encore
incapable de donner une solution satisfaisante au probleme pose

par l'existence d'une sphere gazeuse en equilibre, puisqu'elle
ignore, comme les theories anterieures, la pression de radiation.
Cependant, les recherches d'Emden constituent une etape
importante sur le chemin qui mene ä la solution; les travaux
les plus recents, ceux de Bialobrzeski, d'Eddington, de Jeans,
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de Milne, d'autres encore, utilisent constamment les conditions
d'equilibre polytropique; or, toute la fin d'un probleme d'equi-
libre polytropique depend de la resolution d'une certaine equation

differentielle du second ordre, qui a ete resolue numerique-
ment pour la premiere fois par Emden, et qui porte le nom de

cet auteur. Cependant, tous les travaux d'astrophysique theo-
rique publies jusqu'en 1913 presentaient, malgre leurs merites
indeniables, une meme lacune regrettable; aucun d'eux ne
tenait compte de la pression de radiation dans l'etablissement
des conditions d'equilibre thermodvnamique des masses stel-

laire; or, la pression de radiation joue ici un role essentiel.

4. — Introduction de la pression de radiation. Equilibre
radiatif stellaire. — Ce fut le grand merite de M. C. Bialobrzeski
d'introduire cette pression de radiation dans les equations de

l'equilibre stellaire; dans son celebre Memoire de 1913, il a

resolu le probleme en tenant compte de ce nouvel element et
en admettant qu'on avait affaire ä un equilibre polytropique.
II fut conduit ä une equation differentielle du deuxieme ordre,
passablement compliquee dans sa forme la plus generale,
c'est-ä-dire celle correspondant ä un equilibre polytropique de

classe n quelconque, mais qui se ramenait ä une equation du

type d'Emden des qu'on supposait n — 3; Bialobrzeski n'hesita

pas ä faire n 3, ce qui ramenait d'ailleurs le probleme ä

celui d'une contraction uniforme. Et il put ainsi offrir une
distribution complete des temperatures, des pressions et des

densites. Cette solution, acquise en 1913, est identique ä celle

que donna Sir Eddington trois ans plus tard, en partant
d'autres hypotheses, et en precisant, ce que Bialobrzeski n'avait
pas fait, la nature de l'equilibre radiatif; Eddington a fait faire
ä la solution un nouveau bond en avant. Sa theorie recolta une
serie de succes; et, en 1924, il pouvait annoncer que la concordance

des resultats avec les donnees astronomiques s'averait
remarquable aussi bien pour les etoiles naines que pour les

geantes, alors que la theorie avait ete construite pour ces

dernieres. Mais il faut remarquer que la distribution des

temperatures, c'est-ä-dire le probleme qui nous interesse ici, etait
dejä donnee des 1913.
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Qu'il me suffise de rappeler le jeu de formules qui etablissent
la solution; elles sont rassemblees dans le tableau 1 suivant:

dV
T>— -gp, p P + p

f, /»{.f.,
p ßP p' (i — ß)P £- 1 ^

const. ;
P P

T3 3R(1 — ß)
T ©

3

aßp.

a _ [3R(1 - ß)l 3

_
•

aml. ;
L a ß[i J

0
L a ß p. J

T
D r< -T „ R© r3R4(i - ß)l3p - c p ' c - It l «ßV J '

M masse totale ; r0 rayon total ;

91M2 p4ß4 + ß — 1 0 (91 7,83 • KT70)

(equation d'Eddington) ;

— @4 _|_ ?10 71 ^
3 [x to2

2
3 it Gp

04 H -0 jy 0 (equation de Bialobrzeski) ;

3 R 0 + d[i04 '

et avec les variables £ et ^ d'Emden:

d'oü to2 ;

F

— co uc d'oü uc

U + + *
(equation d'Emden, classe polytropique n 3) ;

3,3 ,3 3

P ^ Pc+ *> Pc Mc 5

T uc- 0- 4- Tc^ ; Tc uc@ ;

7tG 4 ,4 nil n 1 R© 4
P ^*^=pc4<; pc ^-"c -^"o-
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On a, par exemple, pour l'etoile Capella:

ß 0,717

0 (1,824) • 107

uc 0,500

pc 0,125 gr/cm3

Tc (0,914) • 107 degres

Pc (6,15) • 1013 dynes/cm2

Le probleme stellaire de la distribution parait done resolu

completement. Un instant d'attention montre qu'il n'en est

rien.
Le probleme etudie est en effet celui d'une sphere gazeuse

en equilibre polytropique (classe n 3); la theorie montre

que si une telle sphere doit etre fmie, la temperature doit etre
nulle ä la surface, oü Ton a p0 0, i|j0 0, T0 0. Or, cela

ne joue pas.
Rappelons la formule fondamentale d'Eddington donnant la

puissance rayonnee:

L _ 4tccGM • (1 — ß)

kt\ '

oü k est le coefficient d'absorption de la matiere, et oü. y) a ete

defini par la relation:

wr *m-> <3>

la solution polytropique donne a la peripherie kt] co conclusion

evidemment inacceptable. Rappelons aussi que la puissance

rayonnee s'exprime comme suit en fonction de la temperature
effective:

L 4 7zr2 sT* (41
0 6 * '

et que, d'autre part, la temperature effective est liee ä celle de

surface par l'egalite:
T0 0,813 T (5)
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Or Te, qui correspond au flux observe, peut etre estimee

experimentalement, par exemple par la voie spectrographique;
Te ne saurait etre nulle, puisque l'etoile rayonne; il en est de

meme de T0. Nous pouvons done dire qu'en tout cas, la solution
polytropique ne peut pas etre utilisee jusqu'au voisinage imme-
diat de la peripheric de l'etoile L

Ainsi, si l'on accepte comme acquises les valeurs trouvees

pour L, M, ß, r0, Te, pc, Tc, Pc, il convient de rechercher mainte-
nant jusqu'ä quel point la distribution polytropique est valable.

On considere en general deux regions dans l'etoile: 1° la

region centrale, de beaucoup la plus importante en etendue et
en masse, avec des temperatures allant de plusieurs millions
de degres au centre, ä 1 million de degres ä une certaine distance
du centre; dans cette region, que l'on peut appeler «le noyau
polytropique», on peut utiliser les proprietes simplifiees de la
matiere ä ces enormes temperatures; 2° la region peripherique,
entourant le noyau dont nous venons de parier, et oü les

temperatures vont de 1 million de degres ä T0; ä ces temperatures

relativement basses, on sait beaucoup moins ce qui se

passe dans la matiere.
La table calculee par Emden pour le cas de l'equilibre

polytropique de classe n 3 montre qu'une temperature de l'ordre
de 1.000.000° est atteinte pour la valeur 5 5 de la variable
radiale; et l'on constate qu'une sphere de rayon 5 5 contient
les 99,13% de la masse totale de l'etoile; il suffit, pour s'en
rendre compte, de considerer le tableau suivant, extrait de la
table d'Emden:

i
(c-—i r)

* dl
(cvj Mr)

0,0 0,0000
0,5 0,0387
1,0 0,2522
2,0 1,0450
3,0 1,6553

(cxj r)

5
dt

(rx; Mr)

4,0 1,9197
5,0 2,0007
6,0 2,0156
6,9 2,0182

(limite)

1 En pratique, e'est la photosphere qui est consideree comme la
surface de l'etoile, la chromosphere etant envisagee ä part.

Archives. Vol. 20. Mai-Juin 1938. 10
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on en tire immediatement:

m~5 2,0007
M 2,0182

°'9913 '

Ainsi une sphere de rayon r 0,725 r0 contient presque
toute la masse de 1'etoile; c'est le noyau polytropique. La
masse de la partie peripherique est inferieure ä 1 pour 100 de

la masse totale M. Dans cette region peripherique, il faut
renoncer ä appliquer la distribution polytropique; il faut
trouver une autre loi, qui permette de distribuer les temperatures

entre la sphere \ 5 et la surface de 1'etoile, en respec-
tant, cela va sans dire, la continuity de la pression et de la

temperature pour E, 5. En designant les valeurs de raccord

par les lettres primees, on doit avoir:

(0,11110) Tc

(0,00137) pc

(0,0001523) Pc

(0,9913) M

5. — Region peripherique. Les equations du probleme. — On

arrive ä une solution, au moins approximative, en se basant

sur la theorie de l'equilibre radiatif, celle-lä meme sur laquelle
Eddington s'est appuye des 1916. Le principe n'en etait
d'ailleurs pas nouveau ä cette epoque, puisqu'on le rencontre
dejä en 1906 dans un travail de K. Schwarzschild sur l'equilibre
de 1'atmosphere solaire.

Lorsqu'il s'agissait d'examiner uniquement la solution
valable dans l'interieur de la masse stellaire, on pouvait se

contenter de mettre en jeu l'equation fondamentale du flux:

_ 4 re ciB
r 3 k p dr '

ou la fonction B n'est autre chose que l'intensite du rayonne-
ment noir; c'est une fonction de la distance au centre ou, si

l'on veut, de la temperature. C'est cette equation qui a conduit
ä la solution d'Eddington. Mais lorsqu'il s'agit d'etudier
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l'equilibre de la couche peripherique, on a besoin de la theorie

generale de l'equilibre radiatif, qui exige le maniement de deux

autres equations importantes.
C'est E.-A. Milne qui s'est, le premier, des 1921, occupe

de resoudre exactemenl les equations de l'equilibre radiatif pres
de la frontiere du corps. II existait dejä des solutions approchees,
telle celle de K. Schwarzschild, ou Celle de W.-T. Humphreys,
ou celle de J.-H. Jeans; mais ces solutions presentaient le

defaut de ne pas fournir une valeur correcte pour le flux net
d'energie ä la frontiere. C'est Milne qui s'est, le premier, avise
de chercher une formule fournissant ce flux net correct ä la
surface de l'etoile. Apres lui, d'autres auteurs ont propose des

solutions approchees un peu differentes, mais tendant toutes ä

satisfaire ä l'exigence du flux de surface.
Nous nous bornons ä donner, ci-apres, les equations aux-

quelles il s'agit d'obeir, les equations fondamentales de l'equilibre

radiatif.

1° L'equation de transfert d'energie, avec 1'approximation
des corps gris

^ -Ap(J-B) (6)

ou J est l'intensite du rayonnement considre et ds l'epaisseur
de la couche materielle traversee.

2° L'egalite donnant la densite d'energie

'It - f 3 dco (7)
c J

oü l'integrale est etendue ä l'angle solide entier.

3° L'equation de l'equilibre radiatif:

energie emise — energie absorbee energie liberee

4ttAB — k J* 3 • da 4tce, (8)

en designant par 4tcs le taux de l'energie liberee par unite de

A.rchives. Vol. 20. — Mai-Juin 1938. 10*
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masse et par seconde. Cette equation peut s'ecrire aussi comme
suit:

B~^ J4k k

4° L'egalite generale donnant le flux net:

F cos 0 • da> (10)

oü 0 est Tangle forme par la direction de Tintensite J avec la
normale ä un element de surface. L'expression donnee plus
haut pour Fr est une valeur approchee de (10).

5° L'expression de la pression de radiation:

I.'intensite est evidemment fonction de 0 et de la temperature,

ou si Ton veut du rayon. Pour effectuer le calcul, on

change d'ailleurs de variable; et, ä la place de r, on introduit
ce qu'on appelle Vopacite t, definie par l'egalite suivante:

d-z kpds

(12)
j*kpds

L'intensite est alors une fonction J (t, -0) de v et de 0, la
fonction B devient B(t), et l'equation de transfert d'energie
s'ecrit;

~ cos 0 B — J (14)
ai

II saute aux yeux que tout revient des lors ä determiner la
fonction B (t) ; sa connaissance entrainera celle des autres

quantites utiles; et Ton en deduira la distribution des

temperatures T; on a en effet:

B (t) - T4 (15)
TT
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6. — Solution approchee. — La solution complete de l'equa-
tion (14) de transfert s'ecrit comme suit, la frontiere de l'etoile
etant caracterisee par la condition t 0:

J(t, 6) f B (t) • e(t"-)^«sec0 dt + J(0, 6) • e'^"" (16)
Ö

ou t prend des valeurs negatives, puisqu'on penetre sous la
surface du corps. La quantite J (0, 0) qui figure dans le terme

integre peut etre connue par l'observation. Lorsqu'on etudie,
en effet l'intensite de la radiation issue d'un point quelconque
du disque solaire en direction de l'observateur, on constate

que cette intensite varie avec la distance au centre du disque;
le bord du disque parait assombri; et la loi de cet assombrisse-

ment est la suivante L

>1(0, 0) 14 27
0

JJÖTÖ) 41 41
C0S '

dont les coefficients resultent des mesures faites; J(0, 0) est

l'intensite au centre du disque, et 1'on a:

0) '

ou if designe ce qu'on appelle l'intensite moyenne äquivalente,
defmie par l'egalite F nif, oü F est le flux total de surface
F alt. On a alors:

Ktr F 2 7t I J (0 0) • cos 0 sin 0 • dB
0

c'est-ä-dire, grace ä la loi d'assombrissement:

* J>(0, 0,.|| ;

on a done finalement:
7 27

>(<>, Ö) + 55?- COS 6 (17)

1 G. Tiercy, L'equilibre radiatif dans les etoiles. Paris, 1935,
p. 408.
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oü &' est connue; c'est la une valeur due ä l'observation du

disque solaire; eile reste evidemment valable pour representer
la variation de l'intensite en fonction de 0 dans le cas qui nous

occupe.
Si l'on suppose que la fonction B (t) est developpable en

serie suivant les puissances croissantes de t, on obtient, en

abandonnant la derivee seconde B" (t) dont la valeur est negli-
geable devant B (t) :

>, 0) B(t) • [l — e-"0] + cos 0 • B'(t) -'[—1 + e~'xc" (t sec 0 + 1)]

+ J(0, 0) • e-0® ;

cette egalite se reduit ä «7 (0, 0) <7 (0, 0), meme si B'(t)
contient un terme en Log (— t) ; mais si B"(t) est pratiquement
nul, on a aussi:

B (x) aL + ;

il vient:

3 (t, 0) B (t) — cos 6 • B'(t) + e_"'ec — o1 + a2 cos 0 + 3(0, 0)] ; (19)

et l'on voit que si l'on ecrit L

l'intensite se reduit ä:

3 (t 0) B (t) — cos 0 B' (t) ax + t — a2 cos 0 (21)

Si l'on admet que (20) est valable ä la surface, on verifie
aisement qu'elle fournit le flux net correct de surface F reft.

Une expression lineaire telle que (20) a ete souvent utilisee.
Malheureusement, cette expression donne aussi:

B'(x) — const. ;

et si cette valeur constante negative peut etre admise pour
l'interieur de la masse, eile ne convient plus pour la derniere

1 G. Tiercy, loc. cit., p. 385.
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pellicule de surface; on tire en effet de (15), (20) et de

F re t/' a T* :

T* ^Ti(' ~nT) • i22»

r

t f k p dr ;

ro

la distribution (22) des temperatures sera connue des qu'on
aura calcule les opacites t; pour cela, on sait que 1:

k
{j. x '2

ou

(11,82) • 1026 ;

on montre alors qu'en fonction des variables E, et d'Emden,
on a pour t (mais ce ne peut etre qu'une premiere approximation)

:

e _L

T (1,3) • 1012 f • d?, ; (23)

'0

on a ainsi les valeurs approchees de t correspondant ä chaque £,

c'est-ä-dire ä chaque valeur du rayon; il n'y a plus qu'ä porter
ces valeurs dans (22) pour obtenir la distribution des

temperatures. C'est lä le calcul que nous avons fait precedemment

pour etablir le raccord entre la temperature T" 106 correspond

ä \ 5 et la temperature T0 de surface, calcul qui appelle
d'ailleurs une correction2. Cette distribution (apres mise au

point) montre que la temperature baisse brusquement dans

la derniere pellicule de surface, celle qui va de \ 6,886 ä

E0 6,888, ou encore de — x 15 ä x 0. Cela revient ä

dire que la derivee de B (t) doit prendre une valeur negative
tres grande pour t 0. C'est la un point que Milne avait

1 G. Tiercy, loc. cit., p. 382.
2 G. Tiercy, loc. cit., p. 383-387.
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dejä signale, en proposant d'ajouter ä B (t) un terme en

t Log t, qui est nul pour t 0, et dont la derivee devient
simultanement infinie negative.

7. — Solution plus approchee. — II s'agit done de voir si une

expression comme:

B (t) «! + fl2T + At Log (24>

est convenable. Nous avons mis le denominateur 15 au dernier
terme afm que le Log devienne negatif des que — r < 15.

Remarquons d'abord que l'egalite (18) peut s'ecrire comme
suit:

J(r, 0) B (t) — cos0 • B'(t)
j + e-^ect[—B(T) + (r + cosd) -B'(t) + J(0, 6)] ;

(25)

or, quel que soit t ou 0, l'intensite J (t, 0) ne saurait jamais
devenir infinie; l'expression (25) contient le facteur e~~sec®

genant pour 0 ^; il convient de se debarrasser de cet

inconvenient; nous, simplifierons l'expression (25) qui, d'ailleurs,
n'est qu'approchee, en rcmplacant l'exponentielle par l'unite,
ce qui fait disparaitre plusieurs termes; il reste:

J(T> 0) t - B'(x) + J(0, 6) (26)

oü J (0, 0) est donnee par (17). Telle est la forme approchee
dont nous nous servirons; le premier terme sera nul pour

t 0, meme si B' (t) contient un terme en Log (— t).
Adoptons maintenant l'expression (24) de B (t), et suppo-

sons A const., pour la partie peripherique du corps; on a:

B' (t) a2 + A [l + Log (j^)\ 5 (27)

d'oü pour l'intensite:

J (t 0) B (T) + At — a2 cos ® J

et si A est tres petit ä cöte de a.2:

J (t 0) % + a2t + At Log j — ai cos 0 (28)
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On trouve le meme resultat en portant directement l'expres-
sion (24) dans (16), et en faisant ensuite les simplifications que
nous avons faites ä partir de (25); mais le calcul est plus long.

Pour savoir si cette expression peut etre retenue, il faut tenir
coinpte du fait que, pres de la surface, on a e 0; la matiere
stellaire ne libere plus aucune energie; elle ne fait que trans-
mettre celle-ci; de sorte que 1'equation fondamentale (8) de

l'equilibre radiatif s'ecrit:

4 tcB J* J (t 0) • do

ou bien:

B(t) fj(T, 0) • sine • de ; (29)

0

cette egalite est visiblement satisfaite par l'expression appro-
chee (28) de 1'intensite.

L'expression (24) peut done etre admise; et e'est elle qui
reglera la distribution des temperatures. Cette valeur de B (t)
repond bien aux conditions suivantes, qu'il etait necessaire de

verifier:

1° Valeur de B(t) pour r 0. On obtient:

B(°)

2° Valeur de B'(t) pour t 0. En donnant ä A, pour la
pellicule de surface, une valeur positive, d'ailleurs tres petite
devant ax et a2, on trouve:

B' (0) — oo

3° L'equation de l'equilibre radiatif strict (29) est verifiee.

4° II est facile d'etablir le raccord entre la pellicule de

surface, pour laquelle nous poserons — t ^ 30, et dans laquelle
l'expression (24) est prise avec A constante positive, et la
partie plus profonde de la masse. II suffit de prendre encore,
dans celle-ci, l'egalite (24), en y considerant A comme une
fonction de t; cela revient, en soxnme, ä imaginer que l'etoile
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est divisee en un grand nombre de couches minces spheriques
concentriques, dans chacune desquelles le facteur A prend une
valeur numerique determinee.

On sait que la pellicule exterieure, dans laquelle se produit
une chute brusque de temperature ä l'approche de la surface,

correspond aux valeurs de (— t) comprises entre 0 et 15,

domaine pour lequel la variable \ d'Emden varie de 6,888 ä

6,886. On considerera done A comme fonetion de t en dedans
de la sphere E 6,886, c'est-ä-dire pour — t > 15, ou plutöt,
comme nous l'avons dit, pour — t > 30. On constate de suite

que si l'on admet pour le nombre A la loi de variation suivante,
ou C est une constante:

A — (— > 30) (SO)

l'expression (24) donnant B(t) devient plus simplement:

B (t) ax + a2T + C (at + C) + a2-z (31J

expression lineaire que Ton utilisera en dessous de la pellicule
de surface. Pour — t 30, on a:

A" " SÖZW2 ' |M|

et e'est cette valeur constante qu'on gardera dans la formule (24)
ä travers la pellicule extreme. Comme cette valeur doit etre
positive, afm que B'(0) soit infinie negative, on voit que la
constante C est negative, d'ailleurs tres petite en valeur absolue,
aussi petite qu'on voudra.

Dans cette partie de l'etoile comprise entre E, 5 et
E — 6,886, on a done B(t) donnee par (31); l'egalite (28) donne
alors pour l'intensite:

3 (t 0) a2 T + 3 (0 0) + C

3 (t 0) (aj + C) + a2 t — a2 cos 0

valeur qui, portee dans (29), donne pour B(t):

B (t) ax + a2T + C ;
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on retrouve done (31), ce qui signifie que 1'equation de l'equi-
libre radiatif strict reste verifiee.

8. —- Distribution de la temperature. —• Pour fixer les idees,
faisons C — 1; on a:

d'oü la distribution des temperatures:

m* 4 m4
16 e

"

27 _
16 _tt_

14
T

7
'
„T*

(33)

puisque Sf< — T*; cette expression (33), dans laquolle le

dernier terme du crochet est tres petit et pratiquement negli-
geable devant l'unite, est valable pour — t > 30, avec e 0.

Dans la pellicule de surface, oil il faut appliquer la formule (24),
1

on trouve:avec A.30 30 Log 2 :

BW n?-
m4 ^ m4" 16 e

;

rp4
^ rri4~ 16 e

n. 27 ,16 TT

14
T T ' ' 30 T Lob(tv) • (34;

On trouve ainsi, entre la lirnite i;' 5 du noyau polytropique
et la surface de l'etoile, la distribution numerique que voici,
pour une temperature centrale Tc ~ 107 et Te 5200°:

T

5,00
5,50
6,00
6,50
6,80
6,876
6,886
6,888

oo 106

760.000°
480.000°
225.000°

58.000°
15.000°

9.700°
4.230
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9. — Remarques. — Faisons encore quelques remarques sur
les solutions admises ci-dessus pour B(t) et J(t, 0):

tB'(t) + J(0, 6)

— at + a2r + At Log (— x) — a2 cos 6 ; (35)

eq + a2T + Ax Log (— t) ;

1
dans la couche peripherique, on a A A30

30 2 > Pour

— t > 30, il vient At Log (— t) C — 1.

Dans l'un et l'autre cas, l'equation (29) de l'equilibre radiatif
parfait est verifiee.

Par contre, l'equation de transfert d'energie ne Test pas
toujours; eile l'est dans l'interieur, pour — t > 30, puisque
B (t) prend la forme lineaire (31):

B (t) (cq + C) + a2r (cq — 1) + a2x ;

tandis que D (t, 6) s'ecrit:

0 (t 0) («q + C) + a2r — a2 cos 0 {a1 — 1) + «2t — a2 cos 0 ;

il vient:

cos 0 a, cos 0 B — ö
a t

Par contre, l'equation de transfert n'est pas verifiee pour
-— t ^ 30, car nous n'avons alors garde pour D(t, 0) qu'une
forme simplifiee de la solution complete de l'equation. Pourtant
l'equation de l'equilibre radiatif est satisfaite, et c'est lä
l'essentiel. Dans cette pellicule de surface, il semble que l'equation

de transfert (14) ne puisse plus etre appliquee. L'intensite
J (t, 0) ne saurait devenir infmie, pas davantage que B(t); le

second membre de (14) ne peut done pas prendre une valeur
infmie, alors que la derivee de D par rapport ä t doit prendre,
comme celle de B, une valeur negative tres grande pour r 0.

Cette difficulty provient du fait que l'equation (14) a ete etablie

pour l'interieur de la masse, oü les variations sont pour ainsi
dire regulieres; on y a pose que l'intensite varie de la quantite f/D

en traversant un element de longueur ds:

dJ — k pJ • ds + j pds oü j — ÄB (t)

J
6)

1

B (t)
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Cette egalite n'est plus satisfaisante ä la frontiere. Mais ce

detail ne presente en somme que peu d'importance; 1'essentiel

est de satisfaire ä la condition de l'equilibre radiatif parfait et

d'avoir obtenu une fonction B(t) restant fmie pour t 0,

tout en presentant une derivee infmie negative au meme
moment.

En ce qui concerne la region — t > 30, les deux equations

y sont toujours verifiees par la fonction (24) ou (31); comme
celle-ci est encore valable ä la surface, on peut dire que la
solution est satisfaisante.

Resume.

Les quatre premiers numeros de 1'article donnent un apercu
des premieres recherches relatives au probleme de la distribution
des temperatures: ils rappellent notamment les travaux de

Homer Lane, de T.-J. See, de P. Rudzki, de R. Emden, pour
arriver au fameux memoire de C. Bialobrzeski qui, en 1913,

introduisait la pression de radiation dans les equations de

l'equilibre stellaire. La solution donnee par Bialobrzeski, puis
en 1916 par Eddington, s'applique ä ce qu'on appelle le « noyau
polytropique» de l'etoile.

La region peripherique doit etre traitee separement; les

derniers numeros lui sont consacres. Iis rappellent les equations
fondamentales de l'equilibre radiatif, et en donnent une solution

approchee qui parait satisfaisante, et qui conduit ä une
distribution des temperatures dans cette partie du corps entourant
le noyau.
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