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SUR

LA DISTRIBUTION DES TEMPERATURES
A L’'INTERIEUR DES ETOILES

PAR

Georges TIER(QY

1. — Généralités ; histoire. — On connait I’enchainement des
faits. Les chercheurs se sont tout d’abord attachés a notre
Soleil; et le premier probleme qu’ils ont tenté de résoudre a
consisté & évaluer la température probable de la surface solaire;
cette recherche n’a pu étre faite avec quelque précision qu’apres
1837, date a laquelle J. Herschel et Pouillet entreprirent de
mesurer ce que Pouillet a appelé la « constante solaire ».

Ce premier probleme en déclancha un second: celui de
I’entretien de la chaleur solaire; et ¢’est & propos de ce second
probléme qu’on fut amené & envisager la distribution des
températures et des pressions & l'intérieur du Soleil. Plus tard,
on parla non plus seulement du Soleil, mais de tous les soleils.

Il ne sera pas inutile de rappeler ici ce qu’on appelle la
« température effective » du Soleil; c’est celle qu’aurait un
corps noir, c¢’est-a-dire une surface qui absorberait également
et totalement toutes les radiations, et qui, placé a la distance
du Soleil, nous enverrait exactement la quantité de chaleur
correspondant & la constante solaire (1°2,93 par cm? et par min.).
Cette température effective est la seule qui soit a la portée de
nos moyens d’investigation, puisque nous ne pouvons connaitre
la chaleur solaire que de loin.
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Encore fallut-il attendre 1880 pour obtenir des valeurs
raisonnables de cette température effective. Les lois utilisées
avant cette date reposaient, en effet, uniquement sur des
résultats expérimentaux limités & des températures de labora-
toire; or, toute expérience est impossible a la température de
la surface solaire, et il fallait procéder par extrapolation de
formules purement empiriques. Les résultats étaient affreuse-
- ‘ment discordants. C’est la loi de Stefan-Boltzmann, découverte
‘en 1879, qui permit d’obtenir des valeurs concordantes; elle
s’exprime par 1'égalité bien connue:

E =o6T¢, (6 = 3,75 - 107° ergs/cm?, sec.) ;

en adoptant pour E la valeur: (6,25)-1019 ergs par sec. et par
em? de surface solaire (valeur tirée de la constante 1°%,93), on
trouve une température absolue T = 5.800° environ.

La loi de Wien, démontrée en 1901, et résultant, comme celle
de Stefan, d’un raisonnement rigoureux, donne une autre
détermination de T; elle s’exprime comme suit:

C* _ 0,289
A, A,

m m

T = en cm) ,

(A
ou A, est la longueur d’onde correspondant au maximum
énergétique de 1’émission du corps noir. Comme, pour le Soleil,
A, = (4,70)-107 em, on trouve T = 6.150° absolus.

Plus tard, la loi de Planck !, appliquée au spectre solaire:

b | C = (3,71) 107 |
By=—%—> k — 0,623 |,
10T — 1 ) en cm

donna pour T des valeurs allant de 5.800° a 6.200°. On peut
donc dire que les divers résultats s’accordent bien, donnant une
valeur proche de 6000°, Mais il faut rappelerici que les corps noirs,
a température égale, rayonnent plus de chaleur que les autres;
il résulte de cette remarque que la température dite effective ne
saurait indiquer qu’un minimum strictement nécessaire pour

1 M. Pranck, Vorlesungen tiber Wdrmestrahlung. Leipzig, 1923.
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produire le rayonnement observé, D’ailleurs le Soleil n’est pas
dans les conditions que I’on trouve dans les laboratoires de
physique, ou les corps noirs sont des enceintes creuses ne
rayonnant que par un trou minuscule, alors que le rayonnement
solaire concerne la surface entiére du Soleil et part dans toutes
les directions. Il serait donc imprudent de penser que la tempé-
rature de fait de la photosphére est trés voisine de la température
effective. En tenant compte de tous les renseignements possibles,
il semble que la valeur la plus vraisemblable pour la tempé-
rature véritable de la surface solaire soit voisine de 7.000° ou
8.000°. Il va sans dire que cela ne géne en rien ’emploi de la
température effective dans les calculs.

Comme on I’a rappelé plus haut, ce premier probléme souleva
celui de Dentretien de la chaleur solaire. |

Nous ne rappellerons ici que pour mémoire les théories
fameuses de Mayer, de Helmholtz et de Lord Kelvin, dont
aucune n’est capable de répondre a toutes les exigences du
probléme, notamment celle d’arriver a4 une indication sur la
durée du Soleil.

D’autres idées ont été mises en jeu apres 1880; notamment
celle qui proposait que, aux températures du Soleil, les atomes
des éléments chimiques fussent dissociés en corps plus simples,
inconnus jusqu’alors; ¢’est la le principe posé par Sir Norman
Lockyer en 1887, et basé sur la seule considération des spectres,
sans égard a D’entretien de la chaleur solaire; on sait que ces
vues se sont trouvées confirmées en 1920, a4 la suite des
travaux de M. N. Saha sur l'ionisation. Mais nous sortons
ici de notre sujet,.

Revenons & notre probleme, celui de ’entretien de la chaleur
solaire et de I’équilibre thermodynamique du Soleil.

2. — De Homer Lane a T'.-J. See. — Le premier grand progreés
dans la question a été réalisé par J. Homer Lane en 1870.
Lane innove en admettant que le Soleil est constitué par un
mélange de gaz parfaits, et en mettant par conséquent en jeu la
loi de Mariotte et de Gay-Lussac; en outre, considérant pour la
masse solaire un équilibre du type adiabatique, il introduit la
loi de Poisson. Admettant ensuite la théorie de Helmholtz-
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Kelvin sur l'entretien de la chaleur solaire par le fait d’une -
concentration progressive de la masse, il cherche & déterminer
la répartition des densités et des températures en fonction des
distances au centre du Soleil ou d’une étoile. Cette fois, le
probléme est bien posé; c’est bien la la question qu’il faut
élucider.

En fait, Lane considere déja un équilibre qu’on peut appeler
« équilibre adiabatique généralisé », comme on I’a fait plus tard;
c’est-a-dire que, dans I’équation de Poisson:

p=K-p¢h;

Lane admet que I’exposant vy, n’est pas forcément le rapport,

C

= -2 des chaleurs spécifiques a pression et a volume cons-
Y (4
v

tants. Envisageant déja le cas d’une contraction uniforme, Lane
4 . 1 s
trouve la valeur v, = 7 qui correspond & ce cas fondamental

qui sera repris plus tard dans les solutions de caractére poly-
tropique et dans le probleme de I’équilibre radiatif, jouant ainsi
un role d’une importance considérable.

Il n’est pas inutile de rappeler que la question qui s’est
posée a I’esprit de Lane était celle-ci: une masse chaude rayon-
nante tendant a se contracter, et la contraction tendant a
produire un échauffement, commment va se comporter la masse ?
Va-t-elle s’échautfer ou se refroidir en perdant de la chaleur ?
On sait que Lane est arrivé & son fameux paradoxe, qu’on peut
énoncer comme suit: «le coefficient de dilatation est négatif »;
autrement dit, quand la sphére se contracte, la température
s’éleve,

Le probleme traité par Lane a été repris en 1887 par
‘Sir W. Thomson, a un point de vue un peu plus général, qui a
conduit P'auteur a des conclusions nouvelles intéressantes,
notamment pour la physique cosmique; il trouva en particulier
que la densité centrale était 22,5 fois plus forte que la densité
moyenne, ce qui donnait pour le Soleil une densité centrale
égale & 31,5, tandis que Lane avait obtenu 28,2,

Plus récemment encore, en. 1905, 1’astronome américain
T.-J.-J. See a repris le probléme de Lane, admettant en général
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les mémes bases, suivant la méme voie et vérifiant les résultats,
en évitant les erreurs commises par Lane dans ses approxima-
tions. Comme Lane, M. See regarde le Soleil comme un mélange
de corps simples dissociés, réduits a 1’état monoatomique par
Peffet de la haute température; de sorte que y = 5/5. M. See
calcule la température centrale & I’aide de la formule

2
_ ey
T=1(5)
en se placant dans deux hypothéses: températures superficielles
de 6.000° et 12.000°, entre lesquelles est certainement comprise
la température véritable de la photosphére. En outre, il consi-
dére que la densité de la matiére solaire est comprise entre 1/,,
et 1/,oo de celle de ’atmosphére terrestre; ce n’est 12 qu’une
base de calcul, I’atmosphére solaire n’ayant pas de limite réelle.
La densité centrale ayant été trouvée égale a4 g, = 28,417 dans

des développements préalables, M. See obtient la distribution
suivante:

Dist. au centre T T
e gEaskin (T’: 6000° et o — %0) (T' — 12000° et ' — 1—(1)0)
1,00 6.000° C 12.000° C
0,95 379.200 3.520.300
0,90 797.900 7.407.200
0,70 2.878.700 26.723.100
0,50 5.446.100 50.557.000
0,30 7.932.900 . 73.642.900
0,10 9.500.200 88.191.600
0,00 9.714.200 90.178.400

On voit qu’il trouve une température centrale comprise entre
10 et 100 millions de degrés C. La pression centrale correspon-
dante a une valeur de 'ordre de 10 milliards d’atmospheéres.
Quant a I’état de la matiére solaire, M. See se déclare en faveur
de la dissociation générale. 11 admet, nous ’avons dit, avec Lord
Kelvin, la concentration progressive de Helmholtz; il ’admet
au moins jusqu’d ce que le rayon ait diminué de moitié; de
sorte qu’en fin de compte, sa théorie attribue au Soleil une durée
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a venir d’au moins 30 millions d’années environ, comparable a
la durée passée. Cette durée, nous le savons, est encore beaucoup
trop courte, tant aux yeux des astronomes qu’a ceux des
géologues.

Remarquons que M, See, aprées Homer Lane, étudie la ques-
tion de la vitesse que peuvent avoir les particules constituant
le Soleil, gazeux, comme on a dit, dans sa totalité; et il constate
que la désagrégation de la masse ne peut étre évitée que grace
a la viscosité, qui s’oppose 4 une évaporation menacante. De
méme, M, See procede a I’'étude de la rigidité des corps célestes;
et il trouve que la valeur de la rigidité moyenne de la matiere
solaire est plus de 6000 fois supérieure a celle de I’acier-nickel.
Il trouve encore que la ténacité, ou force de rupture suivant
un plan diamétral serait, pour la masse solaire, voisine de
deux milliards d’atmospheéres.

On le voit, M. See, apres Homer Lane, arrive a des chiffres
énormes. Il importe de rappeler ici une conclusion capitale de
See: c’est que, dans une masse soumise, comme celle du Soleil,
a des pressions internes considérables, et possédant une rigidité
6000 fois plus grande que celle de ’acier le plus rigide, il n’est
plus possible de concevoir des courants de convection en pro-
fondeur; des courants ne peuvent exister que dans les couches
superficielles, ou la pression est faible et ne s’y oppose pas.
Mais, comme il faut bien expliquer I’entretien du rayonnement
solaire, M. See fait intervenir le mécanisme des ondulations
lumineuses; et il pense que la vitesse de propagation de I’énergie
rayonnante au sein de la masse profonde du Soleil doit étre &
peu pres la méme que celle de la lumiére.

On voit qu’il faut relever, dans les idées de See, une évolution
par rapport a celles de Lane; alors que Lane envisageait un
équilibre convectif, généralisé il est vrai par ’admission d’un
exposant v, différent de + dans la loi de Poisson, See abandonne
les courants convectifs et fait progresser la radiation, des
couches profondes vers la surface, par le mécanisme des ondes
lumineuses. Ne peut-on pas apercevoir, dans cette idée, I’amorce
de la théorie actuelle de I’équilibre radiatif, dont nous parlerons
plus loin ?

Quoi qu’il en soit, il faut constater qu’en 1905, aprés les
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travaux de Lane et de See principalement, on possédait pour
le Soleil (et par conséquent pour les étoiles) un modeéle de
distribution des températures., Sans doute ce modele était-il
encore bien imparfait, puisque la pression de radiation n’y
jouait encore aucun role. C’était cependant un premier pas,
donnant un ordre de grandeur pour les températures des couches
profondes.

3. — Equilibres polytropiques. — A peu prés a la méme
époque parurent les recherches de P. Rudzki sur la contraction
uniforme (1902), ou I’auteur analyse ce processus mis & contri-
bution dans les travaux antérieurs, notamment ceux de Lane.
C’est aussi en 1902 que parurent les premieres recherches de
R. EmMpEN sur 1’équilibre interne du Soleil, travaux qui se
rattachent & ceux de Helmholtz et de Lord Kelvin. Mais la
contribution la plus importante due & R. Emden parut en 1907;
elle a pour titre « Gaskugeln »; elle codifie en quelque sorte les
idées qui étaient dans D'air depuis quelques années, et qui
prenaient en considération un équilibre plus général que I’équi-
libre adiabatique, I'équilibre polyiropigue. Les transformations
polytropiques sont des modifications thermodynamiques a
chaleur spécifique constante, définies par .1’égalité:

dQ = & -dT ;

elles comprennent, comme cas particuliers, les transformations
antérieurement envisagées, notamment la transformation de
Lane:

p=K-ph.

C’est en quelque sorte une extension du point de vue de Lane
et de See. Il va sans dire que cette extension est encore inca-
pable de donner une solution satisfaisante au probleme posé
par I'existence d’'une sphére gazeuse en équilibre, puisqu’elle
ignore, comme les théories antérieures, la pression de radiation.
Cependant, les recherches d’Emden constituent une étape
importante sur le chemin qui méne a la solution; les travaux
les plus récents, ceux de Bialobrzeski, d’Eddington, de Jeans,
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de Milne, d’autres encore, utilisent constamment les conditions
d’équilibre polytropique; or, toute la fin d’un probléme d’équi-
libre polytropique dépend de la résolution d’une certaine équa-
tion différentielle du second ordre, qui a été résolue numérique-
ment pour la premiere fois par Emden, et qui porte le nom de
cet auteur. Cependant, tous les travaux d’astrophysique théo-
rique publiés jusqu’en 1913 présentaient, malgré leurs mérites
indéniables, une méme lacune regrettable; aucun d’eux ne
tenait compte de la pression de radiation dans I’établissement
des conditions d’équilibre thermodynamique des masses stel-
laire; or, la pression de radiation joue ici un rdle essentiel.

4. — Introduction de la pression de radiation. Egquilibre
radiatif stellaire. — Ce fut le grand mérite de M. C. Bialobrzeski
d’introduire cette pression de radiation dans les équations de
I’équilibre stellaire; dans son célebre Mémoire de 1913, il a
résolu le probleme en tenant compte de ce nouvel élément et
en admettant qu’on avait affaire & un équilibre polytropique.
Il fut conduit & une équation différentielle du deuxiéme ordre,
passablement compliquée dans sa forme la plus générale,
c¢’est-a-dire celle correspondant a un équilibre polytropique de
classe n quelconque, mais qui se ramenait a une équation du
type d’Emden dés qu’on supposait n = 3; Bialobrzeski n’hésita
pas a faire n = 3, ce qui ramenait d’ailleurs le probléme &
celui d’une contraction uniforme. Et il put ainsi offrir une
distribution compléte des températures, des pressions et des
densités. Cette solution, acquise en 1913, est identique a celle
que donna Sir Eddington trois ans plus tard, en partant
d’autres hypotheéses, et en précisant, ce que Bialobrzeski n’avait
pas fait, la nature de I’équilibre radiatif; Eddington a fait faire
a la solution un nouveau bond en avant. Sa théorie récolta une
série de succes; et, en 1924, il pouvait annoncer que la concor-
dance des résultats avec les données astronomiques s’avérait
remarquable aussi bien pour les étoiles naines que pour les
géantes, alors que la théorie avait été construite pour ces
derniéres. Mais il faut remarquer que la distribution des tempé-
ratures, c’est-d-dire le probléme qui nous intéresse ici, était
déja donnée dés 1913, '
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Qu’il me suffise de rappeler le jeu de formules qui établissent
la solution; elles sont rassemblées dans le tableau 1 suivant:

T — 3R‘(1'—"B) . T . ? g
aBu ’
1

_ [3R(t—@)]° _ :

O = [ B ] = const. ;

1

= RO 3R4(1 — B)] 3
et o=y = Mo

M = masse totale ; r, = rayon total ;

MNM2psBt + B—1 =0, (N =783-107),
(équation d’Eddington) ;
2.ty B—@ — if = 0 (équation de Bialobrzeski) ;
3 W ()
3nGu
3RO + aqu®t’

w? =

d’ol w? ;

et avec les variables £ et ¢ d’Emden:

G

r

J— AT
o—m U, d’ol1 u,

2y 2 dy
ae " Ea

(équation d’Emden, classe polytropique n = 3) ;

+¢3:05

p=url’® = p,9°; 5, = U }
T=u,-0-¢="T,4¢; T, = u,0 ;

c
“_Gu4¢4zpc¢4; P :E_Q.u‘*=§{_®u4

0.)2 [ c c*)2 C B y. (&
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On a, par exemple, pour 1’étoile Capella:

B = 0,717 ,

® = (1,824) - 107 ,

u, = 0,500 ,

p. = 0,125 gr/cm?® ,

= (0,914) - 107 degrés ,

c
P, = (6,15) - 10*® dynes/cm? .

Le probleme stellaire de la distribution parait donc résolu
complétement. Un instant d’attention montre qu’il n’en est
rien.

Le probléme étudié est en effet celui d’une sphére gazeuse
en équilibre polytropique (classe n = 3); la théorie montre
que si une telle sphere doit étre finie, la température doit étre
nulle & la surface, ou 'on a g, = 0, ¢, = 0, Ty = 0. Or, cela
ne joue pas.

Rappelons la formule fondamentale d’Eddington donnant la
puissance rayonnée:

__hmeGM - (1 — B)
kn

L ) (2)

ou % est le coefticient d’absorption de la matiere, et oL v a été
défini par la relation:

= = N ; (3)

la solution polytropique donne a la périphérie kv, = o0, conclu-
sion évidemment inacceptable. Rappelons aussi que la puissance
rayonnée s’exprime comme suit en fonction de la température
effective:

L = 471:1':-0’1‘4

e ? ([i)
et que, d’autre part, la température effective est liée a celle de
surface par 1’égalité: ‘

T, = 0,813T, . (5)
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Or T,, qui correspond au flux observé, peut étre estimée
expérimentalement, par exemple par la voie spectrographique;
T, ne saurait étre nulle, puisque ’étoile rayonne; il en est de
meéme de T,,. Nous pouvons done dire qu’en tout cas, la solution
polytropique ne peut pas étre utilisée jusqu’au voisinage immé-
diat de la périphérie de I’étoile 1,

Ainsi, si I'on accepte comme acquises les valeurs trouvées
pour L, M, 8, r,, T,, ¢, T, P,, il convient de rechercher mainte-
nant jusqu’a quel point la distribution polytropique est valable.

On considére en général deux régions dans I'étoile: 1° la
région centrale, de beaucoup la plus importante en étendue et
en masse, avec des températures allant de plusieurs millions
de degrés au centre, a 1 million de degrés & une certaine distance
du centre; dans cette région, que ’on peut appeler «le noyau
polytropique », on peut utiliser les propriétés simplifiées de la
matiere & ces énormes températures; 2° la région périphérique,
entourant le noyau dont nous venons de parler, et ou les
températures vont de 1 million de degrés a T;; a ces tempéra-
tures relativement basses, on sait beaucoup moins ce qui se
passe dans la matiére,

La table calculée par Emden pour le cas de 1’équilibre poly-
tropique de classe n = 3 montre qu’'une température de ’ordre
de 1.000.000° est atteinte pour la valeur £ = 5 de la variable
radiale; et ’on constate qu'une sphére de rayon & = 5 contient
les 99,139, de la masse totale de D’étoile; il suffit, pour s’en
rendre compte, de considérer le tableau suivant, extrait de la
table d’Emden:

£ 2 dr £ ¥

T dz ‘ Tz

(o) (~ Mr) (o) (oo Mr)

0,0 0,0000 4,0 1,9197

0,5 0,0387 5,0 2,0007

1,0 0,2522 6,0 2,0156

2,0 1,04350 6,9 2,0182
3,0 1,6553 (limite)

1 En pratique, c’est la photosphére qui est considérée comme la
surface de I’étoile, la chromosphére étant envisagée a part.

ARCHIVES, Vol. 20, — Mai-Juin 1938.
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on en tire immédiatement:

M._s 20007
~2,0182

= 0,9913 .

Ainsi une sphere de rayon r = 0,725r, contient presque
toute la masse de I’étoile; c’est le noyau polytropique. La
masse de la partie périphérique est inférieure & 1 pour 100 de
la masse totale M. Dans cette région périphérique, il faut
renoncer a appliquer la distribution polytropique; il faut
trouver une autre loi, qui permette de distribuer les tempéra-
tures entre la sphére £ = 5 et la surface de 1'étoile, en respec-
tant, cela va sans dire, la continuité de la pression et de la
température pour £ = 5. En désignant les valeurs de raccord
par les lettres primées, on doit avoir:

T = (0,11110) T, ,
¢’ = (0,00137) g, ,
P’ = (0,0001523) P, ,
M = (0,9913) M .

5. — Région périphérique. Les équations du probléme. — On
arrive a une solution, au moins approximative, en se basant
sur la théorie de I’équilibre radiatif, celle-la méme sur laquelle
Eddington s’est appuyé dés 1916. Le principe n’en était
d’ailleurs pas nouveau a cette époque, puisqu’on le rencontre
déja en 1906 dans un travail de K. Schwarzschild sur I’équilibre
de ’atmospheére solaire.

Lorsqu’il s’agissait d’examiner uniquement la solution
valable dans l'intérieur de la masse stellaire, on pouvait se
contenter de mettre en jeu 1’équation fondamentale du flux:

4 dB

B = = Ske @

ou la fonction B n’est autre chose que I'intensité du rayonne-
ment noir; ¢’est une fonction de la distance au centre ou, si
I’on veut, de la température. C’est cette équation qui a conduit
a la solution d’Eddington. Mais lorsqu’il s’agit d’étudier
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I’équilibre de la couche périphérique, on a besoin de la théorie
générale de I’équilibre radiatif, qui exige le maniement de deux
autres équations importantes.

(C’est E.-A. Milne qui s’est, le premier, dés 1921, occupé
de résoudre exactement les équations de ’équilibre radiatif pres
de la frontiéere du corps. 1l existait déja des solutions approchées,
telle celle de K. Schwarzschild, ou celle de W.-T. Humphreys,
ou celle de J.-H. Jeans; mais ces solutions présentaient le
défaut de ne pas fournir une valeur correcte pour le flux net
d’énergie a la frontiere. C’est Milne qui s’est, le premier, avisé
de chercher une formule fournissant ce flux net correct a la
surface de I’étoile. Apres lui, d’autres auteurs ont proposé des
solutions approchées un peu différentes, mais tendant toutes a
satisfaire a Iexigence du flux de surface.

Nous nous bornons a donner, ci-aprés, les équations aux-
quelles il s’agit d’obéir, les équations fondamentales de 1’équi-
libre radiatif.

10 I’équation de transfert d’énergie, avec ’approximation
des corps gris
ad

= —kel9—B), (6

ou J est I'intensité du rayonnement considré et ds 1’épaisseur
de la couche matérielle traversée.

20 L’égalité donnant la densité d’énergie

~1
—

‘u:%fa-dm, (

ou l'intégrale est étendue & I'angle solide entier.
30 1’équation de I’équilibre radiatif:
énergie émise — énergie absorbée — énergie libérée ,
énkB_kIJ-dm:ltns, (8)

en désignant par 4rme le taux de I’énergie libérée par unité de

ARCHIVEs. Vol. 20. — Mai-Juin 1938. 10*
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masse et par seconde. Cette équation peut s’écrire aussi comme
suit:

el >

pery e ey B (9)

A~k
40 1égalité générale donnant le flux net:
F:fJ-cosﬁ-dco, (10)

ou 0 est I'angle formé par la direction de l'intensité J avec la
normale a un élément de surface. L’expression donnée plus
haut pour F, est une valeur approchée de (10).

50 L’expression de la pression de radiation:

1 1
== .U == J . ; 11
P 3 3¢ . 4e ( )
L’intensité est évidemment fonction de 0 et de la tempé-
rature, ou si 'on veut du rayon. Pour effectuer le calcul, on
change d’ailleurs de variable; et, & la place de r, on introduit

ce qu'on appeile Popacité =, définie par I’égalité suivante:

dtv = keds,

8 ;

12}

T = /'lfpds. (
0

L’intensité est alors une fonction J(z,-0) de 7 et de 0, la
fonction B devient B(x), et I’équation de transfert d’énergie
s’écrit:

ad

E-COSQ:‘—B—J. (14)

Il saute aux yeux que tout revient deés lors a déterminer la
fonction B(x); sa connaissance entrainera celle des autres
quantités utiles; et ’on en déduira la distribution des tempé-
ratures T; on a en effet:

B(t) =2 T4 (15)

kL3
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6. — Solution approchée. — La solution compleéte de I'équa-
tion (14) de transfert s’écrit comme suit, la frontiére de I'étoile
étant caractérisée par la condition T = O:

J(r, 0) = fB(t) cetseelgan L gy 4+ J(, 0) - g (16)
0 .

ou 7 prend des valeurs négatives, puisqu’on pénétre sous la
surface du corps. La quantité J (0, 0) qui figure dans le terme
intégré peut étre connue par ’observation. Lorsqu’on étudie,
en effet I'intensité de la radiation issue d’un point quelconque
du disque solaire en direction de l’observateur, on constate
que cette intensité varie avec la distance au centre du disque;
le bord du disque parait assombri; et la loi de cet assombrisse-
ment est la suivante 1:

JO,0) 16 27
70,0 — &1 T a1

dont les coefficients résultent des mesures faites; J (0, 0) est
I'intensité au centre du disque, et ’on a:

JO,0) =T,

ou & désigne ce qu’on appelle I'intensité moyenne équivalente,
définie par I'égalité F = =¥, ou F est le flux total de surface
F =¢T.. On a alors:

2

oF = F = 2=n /'J(O, 0) -cosB-sinb-do,

0

c¢’est-a-dire, grace a la loi d’assombrissement:

_y 32
Lo J P
d (01 O) ‘!11 7
on a done finalement:
: 7 _ 27 .
d JE— o i .
(O,B)m——iﬁd —]——32J cos 0 , (17)

1 G. Tiercy, L’équilibre radiatif dans les étoiles. Paris, 1935,
p. 408. ,
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o

ou ¢ est connue; c’est la une valeur due & I’observation du
disque solaire; elle reste évidemment valable pour représenter
la variation de I'intensité en fonction de O dans le cas qui nous
occupe.

Si 'on suppose que la fonction B (f) est développable en
série suivant les puissances croissantes de 7, on obtient, en
abandonnant la dérivée seconde B” (z) dont la valeur est négli-
geable devant B (7):

Iz, 6) = Br) - [1 — & "] + cos 0 B'(z) - [— 1 + ¢ (vsec 6 + 1)] 18
+ J(0, 0) - e
cette égalité se réduit a J(0, 6) = J(0, 0), méme si B'(7)
contient un terme en Log (— 7); mais si B”(7) est pratiquement
nul, on a aussi:
B{t) = a, + ax7 ;

1l vient:
J(zr,0) =B (z) —cosB-B'(1) + e—fsec”[‘_ a; + a; cos 0 4 J(0, 9):' ; (19)

et I'on voit que si I'on écrit 1:
B(t) = ZF —.1, (20)
I'intensité se réduit a:
J(v, ) = B(tr) —cos0-B'(1) = a, + a7 —aycos6 . (21)

Si 'on admet que (20) est valable a la surface, on vérifie
aisément qu’elle fournit le flux net correct de surface F = &,
Une expression linéaire telle que (20) a été souvent utilisée,
Malheureusement, cette expression donne aussi:
27 -

4 = — 8 = Y

B’ (%) 33 const. ;
et s1 cette valeur constante négative peut étre admise pour
I'intérieur de la masse, elle ne convient plus pour la derniére

1 G. Tiercy, loc. cit., p. 385.
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pellicule de surface; on tire en effet de (15), (20) et de
F=xnF = cTz:

4 7 il 27

r
.'rx(/.kpdr;

To

la distribution (22) des températures sera connue dés qu’on
aura calculé les opacités t; pour cela, on sait que !:

_ ke
Wi’
ou
k, .
21 = (11,82) - 10% ;
w

on montre alors qu’en fonction des variables £ et ¢ d’Emden,
on a pour 7 (mais ce ne peut étre qu’une premiére approxima-
tion):

)
T = (1,3)- 102 [ ¢ . dE ; (23)
20

on a ainsi les valeurs approchées de © correspondant a chaque %,
c¢’est-a-dire a chaque valeur du rayon; il n’y a plus qu’a porter
ces valeurs dans (22) pour obtenir la distribution des tempé-
ratures. C’est 1a le calcul que nous avons fait précédemment
pour établir le raccord entre la température T’ = 10® corres-
pond & £ = 5 et la température T, de surface, calcul qui appelle
d’ailleurs une correction 2. Cette distribution (aprés mise au
point) montre que la température baisse brusquement dans
la derniére pellicule de surface, celle qui va de £ = 6,886 a
£, = 6,888, ou encore de — 1 =15 & 1 = 0. Cela revient &
dire que la dérivée de B (t) doit prendre une valeur négative
tres grande pour Tt = 0. C’est 14 un point que Milne avait

1 G. Tiercy, loc. cit., p. 382.
2 G. TiercY, loc. cit., p. 383-387.
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déja signalé, en proposant d’ajouter & B (t) un terme en
7 Log 7, qui est nul pour © = 0, et dont la dérivée devient
simultanément infinie négative.

7. — Solution plus approchée. — 1l s’agit donc de voir si une
expression comme:
B(t) = a, + a,t + A~ Log (7—57> (24)

est convenable. Nous avons mis le dénominateur 15 au dernier
terme afin que le Log devienne négatif dés que — v < 15.

Remarquons d’abord que I'égalité (18) peut s’écrire comme
suit:

J(r, 0) = B(1r) —cos 6 - B'(7)

—zsech : (25\
+ ¢ 7' [—B(7) + (v + cos6) - B'(z) + J(0, 0)] ;

or, quel que soit T ou 0, I'intensité J (7, 0) ne saurait jamais

devenir infinie; I'expression (25) contient le facteur e-7sec®

A FL3 . . i .
génant pour 6 = 3 il convient de se débarrasser de cet incon-

vénient; nous. simplifierons Pexpression (25) qui, d’ailleurs,
n’est qu’approchée, en remplagant I'exponentielle par I'unité,
ce qui fait disparaitre plusieurs termes; il reste:

J(r, 0) = 7-B'(z) + J(0, 6) , (26)

ou J(0, 0) est donnée par (17). Telle est la forme approchée
dont nous nous servirons; le premier terme sera nul pour
v = 0, méme si B’ (7) contient un terme en Log (— 7).
Adoptons maintenant 'expression (24) de B(7), et suppo-
sons A = const., pour la partie périphérique du corps; on a:

B(c) = a5 + A [1 + Log (%;)] : (27)
d’ol pour I'intensité:
J(r, 0) =B(1r) + At —a,cos0 ;

et s1 A est trés petit & coté de a,:
=T

J(r, 0) = a1+ a,v+ Ax Log( 15

\

) —a,cos 0 . (28)
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On trouve le méme résultat en portant directement I'expres-
sion (24) dans (16), et en faisant ensuite les simplifications que
nous avons faites & partir de (25); mais le calcul est plus long.

Pour savoir si cette expression peut étre retenue, il faut tenir
compte du fait que, pres de la surface, on a ¢ = 0; la matiére
stellaire ne libére plus aucune énergie; elle ne fait que trans-
mettre celle-ci; de sorte que 'équation fondamentale (8) de
Uéquilibre radiatif §’éerit:

inB :fa(f, 0) -de ,

ou bien:

B(r) = J(x, 6) -sin®.do ; (29)

ro| =

0

cette égalité est visiblement satisfaite par Iexpression appro-
chée (28) de I'intensité.

I’expression (24) peut donc étre admise; et c’est elle qui
réglera Ja distribution des températures. Cette valeur de B (7)

répond bien aux conditions suivantes, qu’il était nécessaire de
vérifier:

1% Valeur de B(t) pour = = 0. On obtient:
7 -
B(O) = a; = 17 .

2% Valeur de B’(t) pour © = 0. En donnant & A, pour la
pellicule de surface, une valeur positive, d’ailleurs trés petite
devant a, et a,, on trouve:

B(0) = — w».

3% I’équation de I'équilibre radiatif strict (29) est vérifiée.

49 11 est facile d’établiv le raccord entre la pellicule de
surface, pour laquelle nous poserons — 1 = 30, et dans laquelle
Pexpression (24) est prise avec A = constante positive, et la
partie plus profonde de la masse. 1l suffit de prendre encore,
dans celle-ci, I’égalité (24), en y considérant A comme une
fonction de 7; cela revient, en somme, & imaginer que 1'étoile



142 SUR LA DISTRIBUTION DES TEMPERATURES

est divisée en un grand nombre de couches minces sphériques
concentriques, dans chacune desquelles le facteur A prend une
valeur numérique déterminée.

On sait que la pellicule extérieure, dans laquelle se produit
une chute brusque de température & ’approche de la surface,
correspond aux valeurs de (— 1) comprises entre 0 et 15,
domaine pour lequel la variable £ d’Emden varie de 6,888 a
6,886. On considérera donc A comme fonction de t en dedans
de la sphere £ = 6,886, c¢’est-a-dire pour — © > 15, ou plutot,
comme nous 1'avons dit, pour — 7 > 30. On constate de suite
que si I'on admet pour le nombre A la loi de variation suivante,
ou C est une constante:

(— = > 30) , (30)

I'expression (24) donnant B (1) devient plus simplement:
Bt) =a,+ ayt+ C = (a;, + C) + a7, (31)

expression linéaire que I'on utilisera en dessous de la pellicule
de surface. Pour — v = 30, on a:

G

A = T 35703

(32)
et c’est cette valeur constante qu’on gardera dans la formule (24)
a travers la pellicule extréme. Comme cette. valeur doit étre
positive, afin que B’(0) soit infinie négative, on voit que la
constante G est négative, d’ailleurs tres petite en valeur absolue,
aussl petite qu'on voudra.

Dans cette partie de D'étoile comprise entre £ =5 et

== 6,886, on a donc B (t) donnée par (31); I'égalité (28) donne
alors pour l'intensité:

Jir, 0) = agr + J(0, 0) + C
I, 8) = (g + C) + a,7— a,cos0 ,

valeur qui, portée dans (29), donne pour B(7):

B(tr) =a;, + ayt+ C ;
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on retrouve donc (31), ce qui signifie que I'équation de I'équi-
libre radiatif strict reste vérifiée.

8. — Distribution de la température. — Pour fixer les idées,
faisons G = — 1; on a:
7 - 27
_ :,'Jf . % -
B(r) = 16 557 7 13

d’ou la distribution des températures:

9 4 27 16 = |
™= 1T|1 -2 -2 2|, - (33)
16 e[ 1% 7 GT:]

puisque &F = %T‘;; cette expression (33), dans laquelle le

dernier terme du crochet est trés petit et pratiquement négli-
geable devant I'unité, est valable pour —— t > 30, avec ¢ == 0.

Dans la pellicule de surface, ou il faut appliquer la formule (24),

i A 1 v
avec 30 ,: W , 0N trouve:

7o 27 — Ty
B(T) — I—BJ _ﬁ‘j . T+ A30TL0g<ﬁ> ’
4 74 27,4 T Ay — T\
T =1gsTe—5gTe 7+~ 'TL°g<F>’
R - 27 16 = — ’
I’ = 16Te[1 14"? —+ 7 -E;-A,,OT LOg( 15 )] (3[&,

On trouve ainsi, entre la limite £’ = 5 du noyau polytropique
et la surface de I'étoile, la distribution numérique que voici,
pour une température centrale T, ~ 107 et T, = 5200°:

£ T
5,00 ~ 108
5,50 760.000°
6,00 480.000°
6,50 225.000°
6,80 58.000°
6,876 15.000°
6,886 9.700°
6,888 | T, = 4.230
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9. — Remarques. — Faisons encore quelques remarques sur
les solutions admises ci-dessus pour B(t) et J (7, 0):

" J(v, ) = B (r) + J(0, 6)
) = a, + a7 + At Log (— 1) —aycos8 ; (35

B(t) = a; + a7 + At Log (— 7) ;

dans la couche périphérique, on a A = Ay, = pour

1
30 Log2’
— 1 > 30, 1l vient At Log (— 1) = C = — 1.

Dans 'un et I'autre cas, I'équation (29) de I'équilibre radiatif
parfait est vérifiée.

Par contre, 'équation de transfert d’énergie ne I'est pas
toujours; elle I'est dans lintérieur, pour — ¢ > 30, puisque

B (7) prend la forme linéaire (31):
B(r) = (a; + C) + ay7 = (ay — 1) + a7 ;
‘tandis que J (=, 0) s’écrit:
I(r, 0) = (a; + C) + agt—ay,cos0 = (a;—1) + ayt—aycos 6 ;
il vient:

dJ
dr

-c0s0 = a,cos0 =B —J .

Par contre, I'équation de transfert n’est pas vérifiée pour
— 1 = 30, car nous n’avons alors gardé pour J(t, ) qu'une
forme simplifiée de la solution compleéte de I'équation. Pourtant
I'équation de I'équilibre radiatif est satisfaite, et c’est la
Pessentiel. Dans cette pellicule de surface, il semble que I'équa-
tion de transfert (14) ne puisse plus étre appliquée. L'intensité
JJ (7, 0) ne saurait devenir infinie, pas davantage que B(t); le
second membre de (14) ne peut donc pas prendre une valeur
infinie, alors que la dérivée de < par rapport & 7 doit prendre,
comme celle de B, une valeur négative tres grande pour t = 0.
Cette difficulté provient du fait que I’équation (14) a été établie
pour l'intérieur de la masse, ou les variations sont pour ainsi
dire régulitres; on y a posé que intensité varie de la quantité dJ
en traversant un élément de longueur ds:

dJ = —kpJ -ds + j- pds , ou j = kB(1) .



A L'INTERIEUR DES ETOILES 145

Cette égalité n’est plus satisfaisante a la frontiére. Mais ce
détail ne présente en somme que peu d’importance; I’essentiel
est de satisfaire a la condition de 1'équilibre radiatif parfait et
d’avoir obtenu une fonction B(t) restant finie pour v = 0,
tout en présentant une dérivée infinie négative au méme
moment.

En ce qui concerne la région — v > 30, les deux équations
y sont toujours vérifiées par la fonction (24) ou (31); comme
celle-ci est encore valable 4 la surface, on peut dire que la
solution est satisfaisante.

REsUME.

Les quatre premiers numeéros de article donnent un apercu
des premiéres recherches relatives au probleme de la distribution
des températures; ils rappellent notamment les travaux de
Homer Lane, de T.-J. See, de P. Rudzki, de R. Emden, pour
arriver au fameux mémoire de C. Bialobrzeski qui, en 1913,
introduisait la pression de radiation dans les équations de
I'équilibre stellaire. La solution donnée par Bialobrzeski, puis
en 1916 par Eddington, s’applique a ce qu’on appelle le « noyau
polytropique » de 1’étoile.

La région périphérique doit étre traitée séparément; les
derniers numéros lui sont consacrés. 1ls rappellent les équations
fondamentales de I’équilibre radiatif, et en donnent une solution
approchée qui parait satisfaisante, et qui conduit & une distri-
bution des températures dans cette partie du corps entourant
le noyau. | ‘
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