Zeitschrift: Archives des sciences physiques et naturelles

Herausgeber: Société de Physique et d'Histoire Naturelle de Genève

Band: 19 (1937)

Artikel: I. Micro-séparations du zinc au moyen de l'o-oxyguinoléine en milieu

acétique. II. Microdosage volumétrique du zinc en milieu alcalin

Autor: Cimerman, Ch. / Wenger, P.

DOI: https://doi.org/10.5169/seals-741853

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 20.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Essais Nº	cc de solution titrée de cobalt	Quantité de cobalt théorique en mgr	Excès de réactif à 2 %	Poids du précipité obtenu en mgr	Quantité de cobalt trouvé en mgr	Différence en mgr
1	2	4,044	136%	22,740	4,049	+0,005
3	2 1	4,044 $2,022$	115% 115%	22,700 11,355	4,042 2,022	
4 5	$0,5 \\ 0,06$	$1,011 \\ 0,121$	$\frac{335\%}{616\%}$	5,685 $0,680$	$1,012 \\ 0,121$	+ 0,001

TABLEAU.

Comme le montre ce tableau, les résultats sont précis.

Remarques:

- 1º Nettoyage des filtres-becher. On dissout le précipité dans l'acide chlorhydrique dilué et chaud, on lave plusieurs fois à l'eau chaude puis à l'alcool; on sèche comme pour l'analyse.
- 2º Les dosages pour l'établissement de cette méthode ont été faits avec une solution de Co (NO₃)₂.6H₂O, puriss. de Merck dont le titre est établi par électrolyse ¹.

Titre de la solution: 2,022 mgr/cc Co⁺⁺.

- 3º Nous poursuivons l'étude de ce dosage au moyen de la technique de Pregl (Filterröhrchen) et celle d'Emich (Filterstäbchen) ainsi que par la méthode volumétrique bromométrique.

 Laboratoire d'Analyse microchimique de l'Université de Genève.
- Ch. Cimerman et P. Wenger. I. Micro-séparations du zinc au moyen de l'o-oxyquinoléine en milieu acétique. II. Micro-dosage volumétrique du zinc en milieu alcalin².
- Ia. Micro-séparation du zinc d'avec $\mathrm{NH_4}^+$, K^+ , Na^+ , Li^+ .

Le cation zinc peut être séparé quantitativement d'avec les ions cités en introduisant les modifications suivantes dans la méthode indiquée pour le zinc seul ¹ (loc. cit.):

¹ F. P. TREADWELL, Manuel de Chimie analytique, II. Analyse quantitative, p. 132, 4e édit. française, 1934.

² Suite à la note du 2 juillet 1936. Ch. CIMERMAN et P. WENGER. *Micro-dosage volumétrique du Zinc*. C. R. des séances de la Société de Physique et d'Histoire naturelle de Genève, volume 53, p. 116 (1936).

1º Le volume de la solution doit être augmenté en fonction de la quantité des sels étrangers présents. Le volume total sera de

> 5 à 20 cc pour 1 à 100 mgr de sels étrangers 10 à 20 cc pour 100 à 400 mgr » » » 20 cc pour > 400 mgr » » »

2º Si la quantité des sels étrangers dépasse 400 mgr, les quantités d'acide acétique et d'acétate de sodium doivent être modifiées comme suit:

- a) CH₃COOH: 1 cc à 10% au lieu de deux gouttes
 b) CH₃COONa: 0,7 gr dans peu d'eau au lieu de quelques gouttes d'une solution à 40%
- Ib. Micro-séparation du zinc d'avec Mg++.
- 1. Le volume de la solution doit être de 20 cc / pour une solution neutre et pour toute quantité de Mg++

Dans ces conditions, la séparation du zinc est parfaite et son dosage donne des résultats aussi précis que dans le cas où il se trouve seul en solution (même en présence de quantités relativement grandes de sels étrangers. Voici, à titre de renseignements, quelques résultats tirés de nombreuses analyses faites dans les conditions indiquées:

TABLEAU.

Essais Nº	Quantité de zinc théo- rique en mgr	Quantité de sel étranger en mgr	Quantité d'ion cor- respondant en mgr	Quantité de zinc trouvé en mgr	Différ. en mgr	Conditions du dosage
1	2,010	400 NH ₄ Cl	134,9 NH ₄ +	2,009	0,001	$Vol. = 20 cc$ $CH_3COOH = 2 gr à 10\%.$
2 3))))	200 NaCl 400 KCl	78,7 Na+ 209,6 K+	2,013 2,011	$+\ 0.003 \\ +\ 0.001$	$CH_3COONa = 6 \text{ gr à } 40\%$ $Idem$ $Idem$
4))	$1000 \mathrm{KNO_3}$	386,7 K+	2,005	— 0,005	$Vol. = 20 cc$ $CH_3COOH = 1 cc à 10\%$ $Ch_3COONa = 1$
5 6 7	» »	400 LiCl 1000 MgCl ₂ .6H ₂ O 1500 MgSO ₄ .7H ₂ O	65,4 Li+ 119,6 Mg++ 148 Mg++	2,012 2,009 2,011	$egin{array}{c} + \ 0.002 \ - \ 0.001 \ + \ 0.001 \end{array}$	0,7 gr Idem Idem Idem

Remarques:

- 1º Les anions Cl $^-$, SO $_4^{--}$, NO $_3^-$ ne gênent pas.
- 2^o Le titrage peut être effectué soit avec une solution $KBrO_3 KBr\,\frac{N}{10}\,soit\,\frac{N}{20}.\ La\ solution\ de\ Na_2S_2O_3\ doit \\ être équivalente.\ On finit le titrage avec une solution de <math display="block">Na_2S_2O_3\,\frac{N}{100}.$
- 3º L'excès optimum de KBrO₃ KBr est de 10%-20%.
- 4º Pour les analyses il faut employer une eau bidistillée (très pure).
- 5º Il faut introduire dans les calculs une correction d'indicateur (action du brome sur le rouge de méthyle).

 La correction dans notre cas est de -0.0033 cc de $KBrO_3\frac{N}{10}$ pour 1 goutte de solution alcoolique de rouge de méthyle à 0.2%.
- 6º La manière de titrer les solutions de KBrO₃ KBr et de Na₂S₂O₃ sera indiquée dans une publication définitive.

II. Micro-dosage volumétrique du zinc en milieu alcalin.

La solution neutre ou légèrement acide (1-5 cc) contenant 2-3 mgr de cation zinc, est introduite dans un erlenmeyer de 50 cc de capacité. On ajoute 1 cc d'acide tartrique à 30%, 1 goutte d'une solution alcoolique de rouge de méthyle à 0,2% et une solution de soude caustique à 8% jusqu'à virage de l'indicateur du rose au jaune. A partir de la neutralisation, on introduit encore 1,3 cc-1,4 cc de soude caustique à 8% et on complète à 10 cc le volume de la solution avec de l'eau bidistillée.

On précipite à froid le zinc au moyen d'une solution alcoolique d'o-oxyquinoléine à 1%, fraîchement préparée, en léger excès. (0,62 cc-0,75 cc d'o-oxyquinoléine pour chaque mgr de zinc, correspondant à 40-70% d'excès).

On laisse déposer 15 minutes à froid en agitant de temps en temps, puis on chauffe pendant 2 minutes sur un bloc de cuivre 1)

¹ F. Pregl, Die quantitative organische Mikroanalyse, S. 74, 3. Auflage. Verlag J. Springer, Berlin, 1930.

maintenu à 200°; on agite après la première minute pour éviter les soubresauts. On laisse de nouveau déposer 45 minutes, en couvrant l'erlenmeyer avec un verre de montre. On filtre au moyen d'une baguette microfiltrante en verre d'Iéna (surface filtrante G4; longueur de la baguette 11 cc ¹) en aspirant doucement avec la trompe.

Le lavage, la dissolution et le titrage se poursuivent comme indiqué dans notre méthode en milieu acétique ¹ (loc. cit.), tenant compte cependant des remarques 2, 3, 4 et 5 indiquées à propos des micro-séparations du zinc.

Cette méthode donne des résultats presque aussi précis que la méthode acétique, tout en étant plus délicate.

N. B. — Nous poursuivons l'étude des séparations du zinc encore avec d'autres éléments soit en milieu acétique soit en milieu alcalin.

Laboratoire d'Analyse microchimique de l'Université de Genève.

E. Briner et E. Perrottet. — Résultats complémentaires sur l'action catalytique de l'ozone dans l'oxydation des aldéhydes; influence du peracide.

Comme il l'a été exposé dans les précédentes communications², l'autoxydation des aldéhydes est accélérée par l'addition à l'air ou à l'oxygène de très faibles proportions d'ozone. Cette action augmentant avec la dilution de l'ozone a pu être mise à profit pour déceler ce gaz et mesurer les minimes concentrations auxquelles il se trouve dans l'air. La méthode expérimentale consiste à faire barboter, à une vitesse de 10 litres à l'heure, le gaz renfermant l'ozone dans une solution d'aldéhyde butyrique (dissolvants; hexane ou pétrole) contenue dans un récipient noirci (pour éviter l'action de la lumière) immergé dans de la glace fondante (pour maintenir la température constante). On

¹ Cette baguette est décrite sous modèle B dans notre travail: Contribution à l'étude microanalytique du potassium, Mikrochemie, 20, 26 (1936).

² E. Briner et E. Perrottet, C. R. Soc. Phys. et Hist. nat. Genève, séance du 4 février 1937, p. 14; séance du 18 mars 1937, p. 57 et 60; Helv., 20, 293, 451 et 458 (1937).