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44 SEANCE DU 18 mars 1937

Séance du 18 mars 1937.

E.-C.-G. Stueckelberg. — La correspondance entre les potentiels
retardés de la physique classique et de la physique quantique.

Nous considérons les équations du mouvement d’un systéme n
de n particules chargées, désignés par un indice p, dont le
centre est situé en (& ) et qui présentent une masse m( ) et
une densité de charge p W@, 1) = elt) §(& — (1) (2)). el) est la

1éme

charge totale de la p
de courant.

Les équations du mouvement de ces particules résultent de
n principes de variation

particule, et cpg W = gpl ) sa densité

(i‘-)s 0; l ) \ Y v
ngdt (L‘L+2L‘*7—>_JL ‘ 1. )
Wi
ou
L% — )nk‘l/ez + ;(i&ﬂ + /1d;3 (p(P'), A(O)) (2\
L:“‘-“ e /d$3 (r"), A(V)) (3)

), AW = (glw, AO) — pé@) Al est le produit scalaire
du quadrivecteur p(i) = (g(¥; pé&i)) et du quadrivecteur
du potentiel Aéo) = (A, A((]O)). On a décomposé le poten-
tiel en un potentiel extérieur AY provenant par exemple de
charges qui n’appartiennent pas au systéme n et dont le mou-

n
vement est connu, et en un potentiel A = > A() produit par

u.-—-l

les charges p(¥). Les potentiels A(®) sont les potentiels retardés;
on peut les exprimer au moyen de la fonction invariante D de
Heisenberg et Pauli, qui ne dépend que de la distance inva-
riante ([?|2 — ¢21?) entre deux événements.

D(_E, t) = D(—z,1) = gD(_:g, ]
:é’ ,::’J“Cﬂmé?(gzl—_ct) (&)
|l
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ou & est la fonetion 3 unidimensionnelle de Dirac. On peut alors
définir un potentiel retardé ainsi qu’un potentiel avancé

Al (?; tret — fdt(“)fdya (;) (y. t(r")) D (z _5’ t — t(“)) . (5)

La limite + o donne le potentiel avancé, la limite — 0
le potentiel retardé.

Dans chacune des équations (1, p) il faut faire varier
seulement les ¢(®) (#(1t)) comme fonction de () : les
gV @)y (v £ i) restent constants. On considére les p(P«) et
‘les Al) comme des fonctions des g (#) (¢()); p(#) a été défini
au début de ce mémoire; A1) est défini par (5) en termes
des ¢ (12) (2(w)),

Nous considérons maintenant un seul principe de variation
de la forme

SZfdt(“)%Lo“ %ZL“§—O. (6)

Si nous faisons varier Z;(P- I’équation (6) contient le terme

LO“—}- Ly'v, et la moitié seulement des termes —ZLW
vE R
Mais les termes LV# contiennent aussi ¢ () (#(4)); en faisant

usage des équations (3) et (5), on trouve

-+ o
f di®) L —
+ o )

fdt(.“) fdt(l‘-) . r [dxs dy3 () ) p(l*)(y "-)} D(ﬁ’,‘ i y’ () t(i‘-))

= f f ™ | = f i) f i)

$0) ~ ¢(w) e,

+
_ fao ([, a0 )
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Ab)av. est le potentiel avancé dont la définition est contenue
dans (5).

On obtient les équations du mouvement physique a partir de
(1, @) s1 on prend pour (3) les potentiels retardés. Cependant la
théorie mathématique de Maxwell admet toute combinaison
A" = ¢t A ret. 1 ¢~ AD)av. pourva que ¢© + ¢ = 1. Le
principe (6) donne en particulier des solutions des équations

du mouvement avec ¢ = ¢ = —.

51 on forme LM & partir de ce potentiel mixte et qu’on
les remplace dans (6) on obtient une lagrangienne

SIL di =0 5 I== E(LO” 4 % L“) + E L . ()
“ v

Si toutes les fonctions f(¢) sont données par des séries ou des
sommes de Fourier f(1) = X g(k)c* on peut écrire formelle-
ment sous certaines conditions

t
f fleyde = J floyde =3 g(k f di &Rt

h +o

|

N g (k) (i)~ ekt (8)
k

— (%)*11‘ 0 .

1
L’opérateur (m) étant défini par cette relation. On a alors
AW

A( )ret )1

et pour — L™ (u £ v):

e =[]

‘ [’d;;a i GO @ . T D — T, O ))] () 0 —
(9)

Dans la théorie des quanta, on fait correspondre un opérateur

a chaque grandeur physique. Par un principe de correspondance,

nous associons a — LM qui décrit T'interaction entre les
charges, I'opérateur — L.
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Cet opérateur n’a de sens que si la fonction ¢ dépend des
temps propres. plt) est alors 'opérateur de densité de charge.
(Dans la théorie de Dirac, plw)(z) = elt) alw) §(z — 7 (W), ou
5 est la fonction § tridimensionnelle de Dirac!.) Lorsqu’on forme

g i . o
I'élément de matrice L .

. . A\t
il faut que l'opérateur (;()) qui

figure dans Pexpression (9) agisse sur ¢, et sur ¢, L.

On peut vérifier que (9) entraine la formule de Mgller pour
des particules libres. Nous prouverons dans la prochaine commu-
nication que méme pour des particules liées, cet opérateur suit
rigoureusement la théorie des quanta en deuxiéme approxima-
tion 2.

E.-C.-G. Stueckelberg. — FEiablissement de la formule des
potentiels retardés dans la physique quantique.

En utilisant la méthode des temps multiples de Dirac, Fock
et Podolsky ® nous nous proposons de calculer le terme d’inter-
action — L¥ du mémoire précédent?; ce sera un opérateur;
on verra qu’il sera identique a I’équation que nous avions
numeérotée (9). Il faut résoudre ici les n équations

R (t(”)) + v (t(?*)) I b B G (e tm )
d i at({") ’

— [H® _y@]y =0, (1.p)

avec
H® = W e2g®) 4 o) 7l

Vi) — o) (oc(:*), A@*(:*), t(:x))) ()

1 Voir formules (7) et (8} de la communication suivante.

2 H. C. G. STUECKELBERGER, C. R. Soc. de phys. et d’hist. nat. de
Genéve, 54, p. 48, 1937,

8 Pour la littérature, cf. E.-C.-G. StueckeLBeERG, C. R. Soc. de
phys. et d’hist. nat. de Genéve, 52, p. 99 (1935).

4 E. C. G. StrueckeLBERG, C. R. Soc. de phys. et d’hist. nat. de
Geneve, 54, p. 48, 1937.
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