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44 SEANCE DU 18 MARS 1937

Seance du 18 mars 1937.

E.-C.-G. Stueekelberg. — La correspondance entre les potentiels
retardes de la physique classique et de la physique quantique.

Nous considerons les equations du mouvement d'un Systeme n
de n particules chargees, designes par un indice p., dont le

centre est situe en ~qM et qui presentent une masse rnMA et
une densite de charge p^(x, t) afl1) §(«—~q(iAl (t)). e(f-) est la

charge totale de la pl6me particule, et cp(fx) i/pW sa densite
de courant.

Les equations du mouvement de ces particules resultent de

n principes de variation

8 f dtk> | L0' + ^ Li" | (1, (i.)

OÜ

L°i* + f dx3 (pW, A(0)) (2)

Li" j'dx3(pW, A(,)) (3)

(p(f-), A(0)) ('p(tt), A(0)) — pü*) A^0) est le produit scalaire

du quadrivecteur piV) (pft4) ; p(p-)) et du quadrivecteur
du potentiel A*0) (A(0); A^0)). On a decompose le poten-
tiel en un potentiel exterieur A(0) provenant par exemple de

charges qui n'appartiennent pas au Systeme n et dont le mou-
n

vement. est connu, et en un potentiel A 2 A(^) produit par

les charges p(f-). Les potentiels Aiv-) sont les potentiels retardes-,

on peut les exprimer au moyen de la fonction invariante D de

Heisenberg et Pauli, qui ne depend que de la distance
invariante (|?|2 — c2i2) entre deux evenements.

D (z, t) D (— z, t) — — D (— z, — t)

— j §(l3| + Ct) — 8(|z| — Ct) j (4)
Iz\ ' >
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oü 8 est la fonction S unidimensionnelle de Dirac. On peut alors

definir un potentiel retarde ainsi qu'un potentiel avance

t

AW (x, tfa — J dtW J dy3 pW (y, D (x — y,t — tW) (5)

4- CO

La limite + oo donne le potentiel avance, la limite — oo

le potentiel retarde.
Dans chacune des equations (1, p.) il faut faire varier

seulement les qM (tM) comme fonction de : les

q(v) (tM) (v ^ p) restent constants. On considere les p(4 et
les AfM') comme des fonctions des q(^) (tM); pM a ete defini
au debut de ce memoire; AM est defini par (5) en termes
des qM (l(v-)).

Nous considerons maintenant un seul principe de variation
de la forme

+ 00

s 2 /dtM j L°" +12 L"" | =0 • (6)

!* —OD V

Si nous faisons varier q'M, l'equation (6) contient le terme

L0^ + et la moitie seulement des termes ^-2^^ •

Mais les termes LVP contiennent aussi (tiW); en faisant

usage des equations (3) et (5), on trouve

j dt{,) L':*
— CO

JefeW JdtW f fdxs fys p(") £p(A D ^ _ tM)
— CO —CO

— fj' dl'^ dt{,) J <it« J dtU
tW > tM tM

JdtM (yda* pw (x), A(")aT- te)) •
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A(v)av. est le potentiel avance dont la definition est contenue
dans (5).

On obtient les equations du mouvement physique ä partir de

(1, [x) si on prend pour (3) les potentiels retardes. Cependant la
theorie malhematique de Maxwell admet toute combinaison
A' c+A(v)rßt- + c~A(v)ax. pourvu que c+ + c~ 1. Le

principe (6) donne en particulier des solutions des equations

du mouvement avec c+ e~

Si on forme ä partir de ce potentiel mixte et qu'on
les remplace dans (6) on obtient une lagrangienne

8 f hdl 0 ; L V^L0' + ^ h'" • (7)

s r-v < i1

Si toutes les fonctions j (t) sont donnees par des series ou des

sommes de Fourier f(t) Hg(k)clht on peut ecrire formelle-
ment sous certaines conditions

ff{t)dt f f[t)dl =yig(k) fdtem
+ CD

2*wwleftl <8)

h

Kit J /W *

L'operateur etant defini par cette relation. On a alors

A(v) rot. _ AMav. et pour

-1

-L"w [(„») -
[*chfl dy3 (p(,,) (a) p(,) (y)) D (x — y, tM ~ JW)J tw t

(9)

Dans la theorie des quanta, on fait correspondre un Operateur
ä chaque grandeur physique. Par un principe de correspondance,

nous associons ä —Lf-V, qui decrit l'interaction entre les

charges, l'operateur —Lf-V.
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Cet Operateur n'a de sens que si la fonction ^ depend des

temps propres. p(M-) est alors l'operateur de densite de charge.

(Dans la theorie de Dirac, pfl1)^) eW a(^ 8(x — ~q^)> 0,1

8 est la fonction 8 tridimensionnelle de Dirac1.) Lorsqu'on forme
/ ö \-il'element de matrice L£Jn, il faut que l'operateur qui

figure dans l'expression (9) agisse sur ^ et sur <^n 1.

On peut verifier que (9) entraine la formule de M0ller pour
des particules lib res. Nous prouverons dans la prochaine
communication que meme pour des particules Hees, cet Operateur suit
rigoureusement la theorie des quanta en deuxieme approximation

2.

E.-C.-G. Stueekelberg. — Etablissement de la formule des

potentiels retardes dans la physique quanligue.

En utilisant la methode des temps multiples de Dirac, Fock
et Podolsky 3 nous nous proposons de calculer le terme d'inter-
action —Lt du memoire precedent4; ce sera un Operateur;
on verra qu'il sera identique k l'equation que nous avions

numerotee (9). II faut resoudre ici les n equations

(R(0 (10>) + Vw (««) +
h

tm
\ i dtMJ

[H<0 - Vw] <!» 0 (1-n)

avec

V« a (qM, tM)) (2)

1 \oir formules (7) et (8) de la communication suivante.
2 E. C. G. Stueckelberger, G. R. Soc. de phys. et d'hist. nat. de

Geneve, 54, p. 48, 1937.
3 Pour la litterature, cf. E.-C.-G. Stueckelberg, C. R. Soc. de

phys. et d'hist. nat. de Geneve, 52, p. 99 (1935).
4 E. C. G. Stueckelberg, C. R. Soc. de phys. et d'hist. nat. de

Geneve, 54, p. 48, 1937.
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