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Sur [a diffraction par un corps de pévolution noir,
eclairé selon son axe
par une source punctiforme

(2me MEMOIRE) !

PAR

P. BARRECA
(Avec 3 fig.)

1. — Résumé. Dans le présent mémoire, on étudie le cas
particulier de la diffraction par un corps de révolution noir,
placé dans le vide et éclairé selon son axe par une source
lumineuse punctiforme rayonnant également dans toutes les
directions, en envisageant les cas particuliers de la sphére,
du disque mince et du tore. Le résultat de ce travail, qui
compléete notre mémoire précédent, se résume dans une for-
mule générale s’appliquant & chaque cas particulier par I'intro-
duction des valeurs particuliéres (algébriques, non numériques)
des coordonnées du contour du corps donné et des valeurs
algébriques de certaines données caractéristiques du corps,
qu’'on déduit de I’équation de sa surface, par des méthodes
qu’on expose 1cl.

1 P. Barreca, Sur la diffraction par un corps de révolution
~éclairé selon son axe par une source punctiforme. Arch. des Se. Phys.
et Nat., mars-avril 1936, p. 98.
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DE LA FoNcrioN ARBITRAIRE H (6, ...).

2. — La fonction H de notre premrer mémoire n’est pas tout a
fait la méme dans toutes les régions de Uespace. En effet, on peut
distinguer trois cas: dans la partie de l’espace contenant
exclusivement des ondes lumineuses sphériques, H ne saurait
dépendre de la forme et de la position du corps obstacle; dans
la région par contre dans laquelle se trouvent exclusivement des
ondes ayant déja touché I’obstacle et ne le touchant plus, la
fonction H dépendra de tout le corps obstacle. Dans la suite
de ce mémoire, je désignerai la valeur de la fonction H dans
ces deux régions par les symboles H; et H,.

Dans la région intermédiaire, toutes les ondes, dont nous
supposons connaitre la forme et la position, coupent toutes
la surface du corps obstacle en question. Otons la partie du
corps qui n’est pas encore entrée en contact avec une onde
donnée de toutes ces ondes; nous envisageons donc la partie
du corps touché par cette onde, au dela du point de contact.
Remplacons la partie de corps enlevée par un autre corps
de révolution, ou bien remplacons-la par rien du tout. Cette
modification ne portera un effet que sur la partie de I'espace
au dela du point de contact car l'effet ne saurait précéder
la cause.

Dans cette région, la fonction H, que nous appellerons H,,
varie donc d’'une onde & 1’onde suivante par degrés infiniment
petits; en d’autres termes, dans cette région, la fonction
dépend d’un parametre définissant chaque onde de cette région.
Pour un corps de forme, de grandeur et de position connues,
choisissons comme parametre 1’arc [ du contour méridien
du corps-obstacle interposé, compris entre la zone de contact
de I'onde encore sphérique, qui arrive pour la premiére fois
au contact du corps, et 'onde en question, et posons:

= k(l, 0,, parametres) .
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Par intégration de 0 4/, on a:
4
H, = fonction arbitraire -+ J k(l, 0, ...)dl .
0

Mais, en supposant [ = 0, on voit que la fonction arbitraire
devient H,(8,) indépendamment du corps obstacle et de ses
parametres, car lorsque [ = 0, 'onde, qui va cesser d’étre
sphérique, I'est encore. En d’autres termes, on aura:

H, = H, + F(l, 6,, paramétres) . (1)

Lorsque | a la valeur [ max de ’onde qui va cesser défi-
nitivement d’étre en contact avec le corps, la fonction H, se
transformera définitivement en H;. Nous laissons de coté H,.
Sur les surfaces de séparation des trois régions, il y a continuité
de H, a H, et de H, & H,,

3. — Il doit exister une expression générale de H, (dont H,
est un cas particulier, | = 1 max) s'appliquant @ tous les corps
de révolution & 'aide des coordonnées x4 et y, des points générateurs
de la surface S du corps obstacle :

g =a+fl), y=0b+09(),

Porigine coincidant avec la source, 1'axe O, étant I'axe de
révolution, a et b étant les coordonnées du point de contact
de I'onde qui va cesser d’étre sphérique.

En effet, si la fonction H, est arbitraire, cela n’est qu’une
expression de notre liberté de choisir un cas particulier du
corps, ¢’est-a-dire de prendre certains z, et y,. Nous pouvons
faire varier nos x, et y, infiniment peu, ou méme accumuler une
infinité de fois des variations infiniment petites et continues;
dans ces conditions, automatiquement H, doit aussi subir des
changements infiniment petits et continus. Quant a 1’origine,
nous la ferons coincider avec la source punctiforme, ce qui
supprime [’arbitraire sur ce point.

Remarque no 1. — f(0O) =0, ¢(0) = 0.
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Remarque n° 2. — Nous aurons done,

dans la premiére région de ’espace: H = H, (6,), dont nous
ne NOus occuperons pas;

dans la deuxiéme région de I’espace:

Ly o F(Bo, e+ fl) b+ @(z)),

A ? A
mais

dans la troisieme région de I’espace:

H — VHI(GO) + F(Bﬂ, a+ f(lmax) &+ o@(l max)) ,

A ’ A

si 'on désigne par H la fonction arbitraire totale de notre
premier memoire.

4. — Pour chaque corps particulier, dont la forme, la grandeur
et la position sont données, la fonction F est unique. 11 est évident
que - (H; + F) et — (H, + F) sont des solutions identiques,
car le passage d’une expression & l’autre revient & changer
Porigine des temps d’une demi-période. En effet, si I est un
vecteur fixe, de longueur 1, parallele a 1’axe des nombres
réels, on tire de la formule finale (9) de notre premier mémoire:

v, A

£ Qni’\/ﬁ

.x—d ;
. = 2i—cos 90+1Q2(00,
fg=m= A

= f e I bes,

=0

a+1(0) b-l-?(l))
7\ ’

QTC%Sin eog Pz(eoa a7+lf (l) » b +1(P(l)

)dBo. 2)

Dans cette équation, nous avons remplacé (H; + F) par
P,.e % (Pour les notations, voir notre premier mémoire).
Or, le deuxiéme membre de ’équation (2) est une somme de
nombres complexes, représentant une ligne polygonale de
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forces, composée d’un nombre infini de vecteurs infiniment
petits, ayant chacun pour longueur:

at fl) b+ o)
A ’ A ,)dﬁo

B = bes, 27:-%{— sin 6,

Pz(eo,

et faisant, avec I'axe des nombres réels, 'angle:

o oos 0+ @0, 250, 22l

x
Yy = 4+ 2n

A

Nous admettons toujours que Porigine des x coincide avec la
source lumineuse, par conséquent d = 0. Nous ne précisons pas
davantage la signification de T'angle 0, qui est utilisé ici
seulement pour le calcul numérique de B et de y. Le vecteur
résultant (la corde fermant la ligne polygonale courbe) est le
premier membre de l'équation (2). Nous avons choisi des

—d .
valeurs fixes pour = T ,%, a, b, f(l), o(l). Or, si 'on pou-
vait avoir plusieurs fonctions (H, 4 F), c’est-a-dire plusieurs F,
pour chaque corps particulier, on aurait plusieurs lignes
polygonales avec un méme dernier cdté, mais en réalité, le

phénomene physique est unique.

DETERMINATION DE F.

5. — Nous déterminons F de la facon suivante: Si V, est
la valeur (complexe) de V sur la surface du corps-obstacle,
on peut I’évaluer a I'aide de 1’équation (2) en posant x = =z,
y = y,; 1l n’y aura, dans cette équation, que les deux inconnues
(complexes) V, et (H; + F), tandis que z, et y, sont donnés.
Or, si 'on peut faire disparaitre le signe d’intégration, on
pourra dédoubler cette équation en deux autres (complexes)
car alors, I'un des membres doit étre indépendant de 0,
tandis que I’autre ne le sera pas. On pourra alors calculer Vet I.

Remarque. — Nous écrivons encore:

Ty Y
Hl(eo)a F(BOs _)%s {“) H
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lorsque nous ferons usage de coordonnées cartésiennes, qui
auront leur origine dans la source. Mais nous écrirons:

Hl (60) ) FP(OO) p_;'v es) ? (3)

en désignant ainsi ces mémes valeurs numériques lorsqu’elles
sont calculées par d’autres opérations avec les coordonnées
polaires p, et O, (pdle dans la source). Nous aurons en effet

. . P : .
besoin de modifier les arguments —, 0, sans vouloir ni pou-
volr rien changer aux opérations de calcul envisagées par la
notation (3).

6. — En application de ce qui précede, on tire de (1) et (2):

Ps
+ 2117 €oS b5 coS b

—— bp== )
A/ 2 g Ps . ; ’ P
¥, = 3n1;/ L [ ehesn{%n:%sm 6, sin 00}'{1‘11\00) + F, (eo, —;‘— OS)}dG,

ﬂu:O

en appelant O, la valeur qu’aurait eue V; au point donné de S,
si on n’a que des ondes sphériques, on aura:

.ps
o= 2715 €08 5 €08 lg

i S— ﬂﬂf: y
(V.—0,) = ?-T”l\/“: | ebeso{zn%ssin 0, sin eo}Fp(eo, %f— es)deo .
1o=0
(4)
7. — Rappelons que 6, est une grandeur variable qui ne

dépend pas des autres variables, sans qu’on puisse I’appeler
arbitraire, car elle n’a pas des valeurs arbitraires. Elle doit
changer automatiquement pendant l'intégration de 0 & 7 et
disparaitre finalement lorsqu’on introduit les valeurs limites,
autrement la formule (4) serait inutilisable.

8. — Ecrivons la dérivée totale par rapport & [ de chaque
membre de (4):
Ps
d(V,—0) d(V,—0,) do, d(V,—0) %3
dl = o8, a T A

Ps
05

en calculant les deux dérivées partielles qu'on vient d’écrire.
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Il n’y a pas d’autres variables qui seraient fonction de [, car

v 2 Ps : o
ici Oy et ~ sont des expressions générales, chacune avec les

parametres caractérisant le corps-obstacle particulier. La gran-

L ; .
deur est cachée dans les deux membres de cette équation.

2
A
9. — Posons deux variables nouvelles:

«=80,4+6, B=6—08

Comme les degrés de liberté doivent étre les mémes qu’aupa-
ravant, I'une quelconque de ces deux grandeurs variables
nouveiles doit étre arbitraire et rester constante une fois qu’elle
a été choisie, tandis que ’autre variera automatiquement dans
Pintégration, sa différentielle n’étant pas nulle le long de toute
Pintégration. On aura:

1 1 1 . L
6, = izx—ﬂiﬂ , donc d6, = fd“ ou bien d6, = — §d B,
a volonté ;
cos B, cos 6, = %cos(@s — 0, + %COS(GS + 0, =
1

= ~cos B -+ —»—cos o
s ’ 1 1
sin O sin 6, = 5 cos (6, — 6,) — o Cos (8, + 0,) =

——10056 1cos :
— 2 g “OS %

et les limites de l'intégration seront:

|

S pour 6 = 0, soit o = 6 soit B’
{5
?pour 0 ==, soit «" =6,+n soit B'=6, —mw . ° )

Dans les deux cas, on a:

Cs
+ =i—(cos @ -+ coS o)
+ s

Q -
V,— 0, = m\/QL f ebeso{r:~ (cosB—cosoc)}Fp{-;—(cx-B) %'-g- ;(OH-S)}OI“
a’=0g
i-:i—(cosa+cos:;)
P -
V,—0,=— 1:1\/2LJ ebeso{n%(cosﬁ—cosa {% (¢ —B), -;— —2—(m+ﬁ)}dﬂ
8¥=g
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Nous pouvons faire disparaitre le signe d’intégration par
dérivation par rapport a la limite inférieure, selon la réegle:

la limite supérieure n’ayant pas d’influence. Nous remplagons
ensuite o’ et 3’ par les valeurs (5), en revenant aux anciennes
grandeurs variables. Nous aurons alors:

m—

. Ps
+ mL_A—[cos (b5—0o) + cOS 5]

d miv/2L 8 Ps | |8, Ps B |
30, (V,—0,) = — =t beso{nT[(zos (8, — 6,) — cos Bs].l' L ]?“, 5 68——2" |
@s
j:zi‘_f[cos(us + 0o) + €08 fig]
2 miv/2L Ps | 6, © 0, |
‘\ B—Q(VS_Os) = 4 T'ebes"{"TsLC(’S (0, + 8y) — cos 93]}Fp{?°, = 0, + Eo J
'
(6)
Par ces deux équations, nous voulons évaluer F,, mais pas
avec ses arguments actuels, mais au contraire avec les argu-
ments 6, %i et 0,. Soustrayons de la seconde la premiere
équation, membre par membre, et changeons ensuite 6, en
20,. Nous aurons alors:
Ps
ig:iT[cos (bg + 2 0p) + cos0g]
i/ 2L B [_es lo g s |
0=+ - [ beso-l\nT[cos (6, + 26,) — cos BS]JFp-l 0, , % 0, + BUJ +
b
- .—.17[605 (bg—Rbg)+ cos O]
P ‘ ‘ e '
+ ebesu{rc%[cos (6, — 26,) — cos es]}- p{eo, TS 6, — en}

(7)

Cette équation doit toujours étre vraie pour toutes les valeurs
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de 6, et des autres variables. Par conséquent, on doit avoir
séparément et simultanément:

f Fp'{ 6, PTs, 0, + ee}': ) : une non-fonction de 6,
‘ ;!:-.:i%[cos (8 -+ 2 60) +C0S ]
Bbeso{n%s[eos (65 + 26,) — cos 6] }
| (8)
Ps | — la méme non-fonction de 6
Fpl6077; es e 0,]': o

. Ps
+ni— —24 (]
+ =i > {cos(es 0)+Cos s]

: eheSn '{ﬂ%‘%[ms (6, — 26,) — cos GS]}.

Nous avons donné le signe moins a la derniére expression;
cela nous est loisible, car la fonction figurant aux numérateurs
apparait ici pour la premiére fois et sera déterminée plus tard.
Appelons-la A ¢™® mais remarquons qu’elle pourrait parfaite-
ment étre réelle. Si elle n’était pas identique dans les deux
équations (8), le deuxiéme membre de (7) ne serait pas égal
a zéro. Si une fonction de 0, entrait comme multiplicateur

dans (8), le premier membre de (6) ne serait pas indépendant
de 0.

Remarque. — Si dans la derniére équation (8) on remplace
B, par — 6, et si 'on appelle o la somme (0, + 6;), I’équation
ne deviendra pas tout a fait identique a I’autre. On en tire
seulement :

e e
—Fp(_ 60: 'TS: Ot) = Fp(607 'TS: d) 3

mais cela ne dit pas que nous ayons affaire a une fonction
impaire de 0, C’est que les deux équations donnent deuz
solutions, qui peuvent étre paires. Mais comme elles ne se
distinguent que par leur signe, nous pouvons faire usage d’une
seule équation, par exemple de la premiére équation, (8), avec
Ae'® comme numérateur.



246 LA DIFFRACTION PAR UN CORPS DE REVOLUTION NOIR

10. — Pour déduire de cette équation la valeur de

P ; :
F, (90, TS, 93>, faisons des changements indépendants dans

les arguments de ses deux actuels facteurs de droite :

- {p P 1
s (% 0), 40, %, 0+ 0) = ————
j::i'T[cos (b5 + R09) + cos 5]

ebeso-{np—;[cos (6, + 26,) — cos BS]} :
| )

On peut faire les deux changements d’une facon arbitraire
(car 11 n’est pas nécessaire d’avoir les mémes valeurs numé-
riques qu’auparavant), pourvu qu'ils aboutissent au résultat
suivant, si on appelle 6, une autre 0,:

B[P ’ e ’
B(s s
Ae (Ts es) H 4"(807 T: es) ’

car alors, on est contraint de reconnaitre dans leur produit la
valeur de
ps ’
Fp(eo, = es> :

Or, dans le premier des facteurs (9), il suffira de remplacer
6, par 0,. Dans le deuxiéme facteur, au contraire, appelons
0, la somme de (0, + 0,), c’est-a-dire changeons (0, + 26,)
en (0, + 6y) et 6, en (6, — 6,).

On obtient:

3 ’ 1
4)(90, TS’ 98) =, — e, B

-+ zi—p;[cos (a;+ o) + Co8 (e;—eo)]

besol ﬂ:-pi cos (0. + 6, — cos (6’ — 0,)
1™ s s '

1

_Fs ’
2w T Ccos Us cos fg

[9.2P% cin 6" sin . |
ebes0 | 2ﬁT sin O sin 6"J
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Si le terme (6, 4+ 6,) du premier membre s’était trouvé
aussi au second membre, il aurait été remplacé par 8, comme
au premier membre. L’expression 6, toute seule (c’est-a-dire
sans addition ni soustraction de 0,) se serait trouvée au second
membre et n’aurait pas été modifiée, pas plus qu’au premier

P ; ;
membre; le terme TS est resté tel quel comme au premier

membre. On aura donc:

: e ’

B[S

os ) Ae ()\ , BS)

FJ0 0, , 5 68 = _
im%

cos b, cos fg (10)
e bes, { 2 %TS sin 0; sin 90}

et on peut oter ’apex.

11. — Si, au lieu de soustraire les deux équations (6) ['une
de P’autre, membre & membre, nous en faisons la somme,
nous aurons:

d _ miN2L g (Ps

o7 (Vo= 0)) = T2 Ae (7’ es) : (11)
S

Cette derniére notation doit rappeler que A et B sont des

fonctions de %S et de 6.

12. — Par le méme moyen, nous évaluerons 'autre dérivée
partielle du paragraphe 8. Posons:

= arc tan Ps
'r]_ g“i_a

. . K
arc compris entre zéro et -, car les rayons vecteurs des coor-

données polaires sont toujours compris entre zéro et l'infini
positif. Posons maintenant 0, = constante. Posons aussi:

B+ =0, Bp—m = 8,
¢’ est-a-dire:

1 1
n=gl—3, O =g(+3.
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Choisissons, pour une des nouvelles grandeurs variables (¢ ou
3), une valeur fixe et choisissons I’autre comme variable d’inté-
gration. Nous aurons alors:

do ou bien d6, = —é—d‘a

10| =

ou bien d6, =

et les limites d’intégration seront:

pour 6, = 0, ou bien ¢ = 7 ou bien & = — 7 ;

pour 6, = w, oubien ¢"=m + 7 oubien 8" =nrn—n7;

et on obtient:

o, 5 S
Fr=rm ;{:Qnitang(d:')) cos (G;b) cos fg
_ mi/2L B (6 +8), (6—8))y, ((6+8)  (6—3) , )(do
V.— 0, = Y besy {2 sin 0 sin 3 fang 5 in; 3 , tang- 3 , 0 e
s

Ici encore, une dérivation par rapport & la limite inférieure
nous délivrera du signe d’intégration et de la limite supérieure,
mais fera apparaitre dans les fonctions, selon les cas, la valeur
de ¢’ ou de §'. Introduisons les valeurs des limites correspondant
a notre cas particulier, reprenons les anciennes variables, en
remplacant aussi O, par 20,. Soustrayons de nouveau, membre
a membre, les deux équations obtenues, 'une de I’autre; nous
aurons alors:

\/ﬁ: & 2zitang (++0g) €OS by COS by
L ; s
o= [e bes, {21-: sin 6 sin 6, tang (1 + 60)}Fp{60, tang (n - 6,), 63} +

- 2=itang (n—bg) COS 0o COS O
+ 0 bes,{27 sin 0 sin 6, tang (n— 8,) }F, {8,, tang (n—8,), 63}] .
(7bis)

Cette équation doit étre vraie pour des valeurs quelconques
de 0, et des autres variables; par conséquent, les deux équa-
tions suivantes doivent également étre vraies.
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. une non-fonction de 6,
T 2ritang (n-+bp) COS b COS b

bes,{ 27 sin B sin 6, tang (4 + 8,)}
(8bus)

Fp (eo ? tang ('fl + 00) ! BS}

— la méme non-fonction de 6,
Fp (90 ’ tang ('q—ﬂo) ’ ﬂs) - 4 2=itang (n—0g) COS 6o COS b

beso{Zn sin 0 sin 6, tang (n — 60)}

Ici encore, I'identité de la non-fonction des deux équations,
et le signe moins d’une des deux, sont nécessaires pour avoir
zéro au premier membre de I’équation (7 bis), Mais ’affectation
du signe moins & la premiére ou 4 la deuxiéme des équations
(8 bis) est arbitraire, du moment que la non-fonction de 6, est
encore & déterminer. Appelons cette fonction Me'N; par le
raisonnement que nous avons utilisé déja, nous aurons:

Fp(eo, ®e) = (10 bis)

V8
+ 2ni 5 €08 85 C0Sbo

e bes‘,{ 2 rc%% sin 6, sin 00}

et 'on pourra de nouveau oter I’apex.

Remarque I. — Lorsque [ =0, on devrait avoir F, =0
(voir remarque II dans paragraphe 3), mais le dénominateur
n’est pas infini, ayant seulement la valeur correspondant au
point | = (0. Par conséquent on doit avoir, lorsque [ = O:

Me"'N(%?, Bs) = f

Remarque 11. — Puisque les équations (10) et (10 bis) sans
apex doivent donner les mémes valeurs de F,, il est:

ApiB (P{_’ ﬂs) M (P_s es) que j’appelle Ze'T .
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Remarque IlI. — Ici encore, on aura, si ’on fait la somme
au lieu de la différence:

0 (VS - OS) — WLVQTJM iN (11 bLS)

a6

S8

et pourtant, si I’on multiplie chaque membre de (11) par =

n .
—= et que 1'on additionne

et chaque membre de (11 bis) par ¥

- les deux équations, on aura:

d oL, d
TV, —0,) = ’”‘7\/ cZeor (B + mg) . (12)

C’est-a-dire: La différence (V — O) sur la surface de Uobstacle
a la méme dérivée par rapport & 6, que par rapport a

Ps
arc tang -~

Remarque 1V. — L’équation obtenue en vue d’évaluer la
fonction arbitraire F,, a été dédoublée en deux équations (com-
plexes) (10) ou (10 bis) et (12).

EVALUATION DE Ze'T,

13. — Si I'on fait 'intégration par parties, de zéro a I, de
chaque membre de (12), on obtient:

/2L o d |
V,— O, = T”\{ L%(ﬁs 4 ) Tt = J (0, + 'ns)dl \Ze'T) dl

0

car lorsque [ = zéro, D'expression (0 -+ ne) Ze'T est nulle
(paragraphe 12, remarque I). En méme temps, introduisons
les valeurs de (H; + F,) qu’on tire de (10) ou de (10 bis) (voir
paragraphe 3) dans la formule finale de notre premiere note,
qui n’est que ’équation (2) du mémoire présent, mais sans le
vecteur unitaire I:

o=
‘/x+ _—_l:2ﬂ
V2L :tz- v 2m'\/2L 1Tf9

‘\/732+J beso‘(wasmo }

CGC‘) bo

dig

fo=10 beso 2—~sm fo

(13)
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Employant cette équation pour les points de S en faisant
X =Ty, Yy =Y., NOUS aUrons: '

2mi \/ 2L, iT
Vgema by =28 (Ze'T) =
Par comparaison des deux derniéres équations qui donnent

(V,—0O,), on aura:
!

" ; i d ;
27 (Ze'T) = (0, + =) Ze'T — ’ (0, + ns)a(zelT) dl
0
puis, par dérivation par rapport a I:
d d d
2oy (Le™) = (Ze™) r (6 + mg) + (8 + n5) o7 (Ze'™) —
d
— (6, + 1) o7 (Ze™) .
(Clest-a-dire:
d iT
ol Ze7) ;
L a( A

et 'on peut constater que le deuxiéme membre est réel. Par
conséquent, dans le premier membre les anomalies (phases) du
numérateur et du dénominateur doivent étre égales, c’est-a-dire
qu’aucune d’elles n’est fonction de /. Et si nous appelons G
un nombre complexe (qui peut aussi étre réel), fonction arbi-
traire de certains parametres & 1’exclusion de [, on aura:

g+ g
Zel'T = Ge ** . (14)

Mais cette solution n’est exacte que lorsqu’on en fait usage
dans un domaine (I, —1;) suffisamment petit. C’est comme

lorsqu’on évalue une surface plane a I’aide de la formule
X2

/ ydz (y ordonnée cartésienne, x abscisse), car, si les ordonnées
X1

n'ont pas toutes le méme signe, on pourrait méme obtenir
comme résultat zéro, ce qui ne ferait pas plaisir & un agricul-

ARrcHIVES. Vol. 19. — Septembre-Octobre 1937, 17
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teur | Or, si 'on se déplace par petits pas le long du contour
meéridien du corps, on a des angles 6, 4 7, pas trop grands,
qui peuvent changer de signe; c’est pour cette raison qu’il ne
serait pas indiqué de faire usage de I’intégrale indéfinie (14),
sans avoir recours a des limites spéciales et utiles.

En effet, pour un disque mince (qui est encore un corps de
révolution), il est aisé de reconnaitre, au moyen des équations
(13) et (14), qu’en prenant tout simplement pour limites | = 0
et [ =1, on aurait des valeurs identiques sur les faces anté-
rieure et postérieure, si y, est le méme (Il n’étant pas le méme).
Il faut donc distinguer et chercher sur le contour méridien du
corps le point ou (6, + 7,) est maximum !, en appelant « anté-
rieurs » les points qui précédent ce point et « postérieurs » les
autres points.

Il1 se peut aussi qu'il existe plusieurs points de (6, 4 ;)
maximum ou minimum, mais nous laisserons cette question de
coté. Pour les points antérieurs, les limites seront donc O et 1,
et on a:

b+ 7g 1 b Va2t b2
iT . o arc tanga -+ arctang —
Ze == C e T 3 ,

tandis que, pour les points postérieurs, il faudra prendre les
limites / =1 du max et [ =1, en faisant aussi usage de la

1 On peut trouver ce point aisément et avec rigueur, en partant
de I’équation de la surface du corps-obstacle en coordonnées polaires:

B, = »(eg) ,
car il suffira d’écrire:
, A
P4 (PS) + "}\——2 + pg = O

mais si ps est en tout point plus long que quelques milliers
d’ondes, il suffira de tracer de la source punctiforme la tangente
au contour, car alors on aura en tout point:

Ps T
Ng = arc tangT = presque 3
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valeur de I'intégrale qu’on obtiendrait séparément pour le
point de (6, + 7,) max. On aura alors: :

bgtng bgtnS bgtng 1 b ; Va2t b2
T " max o max = arc tang - + arc tang—————
e T e = o C e ™ — e (o a IS p—
i+, 1 1% h2 0o+
92, 5 P (arc tang b -+ arc tang M)—+b) 52 S max
= (Gle " L&' e ' 2e T

Il est facile de voir que cette deuxiéme valeur est négative.
Lorsque [ =0, on est sur la face antérieure du disque et il
faut employer la premiere expression, qui est alors justement
nulle (paragraphe 12, remarque I).

EvALUATION DE LA FONCTION ( PAR CERTAINES DONNEES
CARACTERISANT LE CORPS.

14. — Dans l'intégration que nous venons de faire par rap-
port a I, C est apparu sous forme de fonction arbitraire. Son
expression générale ne peut donc étre qu'une fonction de a,
de b et des autres parameétres caractérisant le corps. En effet,
pour évaluer l'influence de I, nous avons toujours supposé
(paragraphes 2 et 8) un corps-obstacle donné et invariable.

Nous pouvons trouver facilement la valeur de C en fonction
de certains rayons vecteurs de certains anneaux (réels ou ima-
ginaires) parfaitement obscurs sur la surface S du corps-
obstacle. Nous pourrions aussi exprimer ces rayons vecteurs
en fonction des parametres de I’équation ordinaire du corps-
obstacle, mais cette équation ne serait peut-étre pas résoluble;
voici pourquoi, tout en donnant ladite équation, nous n’éli-
minerons pas les rayons vecteurs des anneaux.

I. Employons I'équation (13) avec les deux valeurs de Ze'T,
que nous avons trouvées dans le paragraphe 13, séparément
pour les points « antérieur » et « postérieur » de S, en posant
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aussi Vg = O et en distinguant C, (antérieur) de C,, (postérieur).
Dans les deux cas, nous aurons ’équation des anneaux:

1 42 9wy (A
0= — vy 20 > -
o T G (15

dans laquelle nous désignons par p, les rayons vecteurs et dans
laquelle A et P sont les abréviations suivantes:
2 a2+ b2
4. (z(?2)+ arc tang 3‘) 3 (arc tangg + arc tangv—o—i?—‘)
A — 62: A . 62z a I

¥

A

/al L b2
arctang3+ arc tang! -l )

:1 4
= (x(?z) +arc tang 072) i(z(g) + arc tang_;a—) max

P g 4 eé‘( 907 ,

car maintenant 'intégrale vaut w. On en déduit:

1 i?n"laj
C il
a P
S - 1
Cy 2reqdl) 1o
) 3135

Comme chaque valeur des deux (C, ou C,) doit étre unique,
cette double équation est ’expression d’une loi de distribution
des anneaux sur les faces antérieure et postérieure.

Egaler I’expression complexe (15) & 0 revient & égaler a 0
son module, tandis que son anomalie reste quelconque.

II. Pour les nouvelles inconnues, c¢’est-a-dire les p,, il faut
maintenant avoir une autre équation. Remarquons, & ce sujet,
que ’équation (13) n’a d’autre discontinuité que celle des deux
valeurs de Ze'" exposées dans le paragraphe 13. Voila pourquoi
les anneaux parfaitement obscurs ne peuvent séparer des
régions lumineuses que sans discontinuité. Et ce serait une faute
d’exiger que, sur les anneaux, mod V ait une valeur minimum
car, du moment que mod V est un nombre réel toujours
positif d’'une valeur quelconque, si on exigeait qu’il devienne
minimum, cela reviendrait a exiger qu’il égale 0, et cette
condition a déja été imposée tout a ’heure.

C’est, au contraire, le module de la dérivée de V qu’il faut
annuler, ou cette dérivée elle-méme, car lorsqu’un nombre
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complexe est nul, son module est 0 et son anomalie quelconque.

d d
Ce ne sera donc pas a5 mod V, mais au contraire mod —\—;

que nous poserons égal & zéro. En effet, si I’on représente, selon
I'usage, les nombres complexes £ -+ ¢ g par le vecteur qui va de
l'origine des nombres au point £ + iC, sa croissance complexe
et infinitésimale dV est également un vecteur ayant la méme

direction de g et de grandeur mod— dp. Lorsque

d . . .
modd—é =0, il n’y a done pas d’accrmssement infinitésimal dV.

Introduisons maintenant dans I’équation (13) la vateur de G
donnée par I’équation (16) et employons-la de nouveau pour
les points antérieurs de S. Nous aurons:

bs s 1 b Vaza 21 p2
\ Lo B8 .2 0 == arctang + arc tang ————
8, 1 1 eI 2ri 3 1 ej': 2xi }— e Im &2 |
e e 2 2
VAL % & gl_ (1(92)+arc tang ff_) 21 (arctang LI ViR Vaz+ )+ b2 )

e — e
Pour les points des anneaux, puisque p, = p,, cette expression
s’annule précisément.
Dérivons-la par rapport & p, en général.

o]
1 Ve <_i N ?ﬂ)eim‘f_

21, d 2
2L ps pS
g+ g
il A s
€ wpg) + a5 )¢
1 A+ e
2mp, 1 ¢a 1 b Va2 162
— (x(?z)-{—arctang‘—;) (arctang + arctang- )
82.-. A _62 IS
Posons maintenant p, = p, et égalons & zéro, pour avoir

notre équation.

, A
' x (P2)+;2—;|_—2
%Igﬂ_:i_F €y 1
P

0=

A 2T p,

Va2+ b2
n

(arc tg — + arctg —x(pg)—arctg o%)

N
2]

1—3
(17)
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Faisons-en de méme pour les points postérieurs; 1’équation
donnant les p, est:

1 27
A
P2
A
1 ‘
® (pg) + 1—2-_|_—‘2 ez_t ('x(gg) + arctg%)
] —_— 0ot
27 py ‘giﬁ (x(g2)+arctgg_—2) 1 (arctgg—i— arctgw) 52_% max
P A o e?r a I3 — 9 %%
(17 bis)
QUADRATURE, RESULTATS.
15. — En faisant usage des valeurs de Ze¢'T et de C, pour

avoir F et ensuite des valeurs de (H; + F), dans la formule
finale de notre premier mémoire, c’est-a-dire 1’équation (2)
du présent mémoire, on aura:

I. Sila valeur donnée de [ (supposée connue) !, conduit & un
point « antérieur » de la surface de ’obstacle, on aura:

— Vaz g2
v _ VAL gt
et T et -
bt 1 b Va2t b2 - (1
2 s - U o= x—xg (D)
’\/A ei i . . on _e%(nrctp,a—}—nreta T ) o 4 Qi 008 Bg
— A/ 21, . -
14 1 1 b Va2+ b2 Sy
P2 g_(x(?g)+mlg%5) §—_(ﬂfﬂﬂa+ﬁmﬁ a_’+ ) beso{Q T smeo} e
o2 ) o2m s
ys (D)
: bg=0 heso}‘,lz - smeng
(18)

II. Si, au contraire, la valeur donnée connue de [/, correspon-
dant au point z, y de 'espace, conduit a un point « postérieur »,

1 Dans la troisiéme région de I’espace I est toujours connue,
étant / max.
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on aura:

o, 2 T
b A2 - y?
b+
:I:%:iii 32 4 %(nretg9+uetg
VaILi e ** pet\ @
b \/a2+b2) bstag
i

1 g9 1
eﬁ(maﬁrmtg?) i ﬂ(uetga+nnig o

e

v 4L izﬁi‘-/x—g_h@

Vaz+ b2) bstng
max
2

I _821:

max

00= 1 . x_xs( l)
» _ +-2i cos fp

; (18bi
- e beso{Q-.: %sin o } { is)

dfig

[ ¢

ye(D)
Bu=0 heso 32.— s

A

sinfg %

Dans ces formules, x et y sont les coordonnées cartésiennes
des points donnés de ’espace (avec ’origine & la source et ’axe
de révolution coincidant avec I'axe des z), z4(l) et y,(I) sont les
coordonnées du point de la surface S de I’obstacle ayant le
méme [ de (z, y) ¢’est-a-dire se trouvant sur une méme surface
d’ondes. Cependant, dans toute la troisidme région de I'espace,
{ a la valeur invariable ! max du point du corps ou les ondes
quittent & jamais le corps. Si 'on n’utilise que les valeurs
numériques de z,(l) et ¥,(l), on n’aura qu'une valeur numérique
pour V, . Mais il est préférable de faire usage des valeurs
mathématiques de z,(l) et y,(l) en fonction de I, qui introdui-
sent tout de suite dans la formule (18) et (18bis) les parameétres
et les fonctions caractérisant le corps-obstacle et sa position.
e est 1a base des logarithmes de Neper; 7w lerapport d’Archimeéde;
¢ I'unité des nombres imaginaires; 1. la puissance lumineuse
de la source; A la longueur d’ondes; a et b les coordonnées
du point ou I'obstacle est touché pour la premiere fois par les
ondes qui arrivent; [ I’arc méridien ou ce contour coupe 'onde
qui passe au point (x, y). Si le point donné de ’espace est
prés de la surface du corps, on obtient tout de suite une
valeur approchée de .

Les p, sont aussi des données caractérisant le corps, mais on

peut les envisager comme racines des équations (17) et (17bis),
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que nous avons établies au paragraphe 14. On voit aisément
qu’on aura, pour chaque point des anneaux:

V =YV

rp2 = 0 -

r,p, 1

0, et p, sont les coordonnées polaires (colatitude et rayon
vecteur) des points de la surface S. v, est une abréviation

pour arc tang PTS. Soit I’équation de la surface S en coordonnées

polaires:
Bs — x(ps) -

L’usage simultané des coordonnées cartésiennes et polaires
apporte quelques simplifications.

16. — Si 'origine des coordonnées n’est pas dans ia source
lumineuse, il faut déduire, de toutes les abscisses, I’abscisse d
de la source (cf. notre premier mémoire). Aussi dans les valeurs
de 0, et de g,.

17. — On peut exécuter au moyen de méthodes approchées
Iintégration de l'intégrale contenue dans les équations (18) et
(18bis). La meilleure méthode ! consiste & évaluer l'intégrale
par les méthodes des surfaces planes, en divisant le domaine
(0 a ) de I'intégration en un nombre entier w de parties égales.
Si Iy, hyy Ry, ... hy sont les ordonnées de 1’aire dans les points de
division, c’est-a-dire les valeurs de la fonction a intégrer, on
a, pour la valeur rapprochée de l’intégralé, I’expression:

E

(ho + 2hy + 2hy + ... + 2, + 1) .

I

3]

W

1 La méthode du paragraphe 6 de notre premier meémoire est
utilisable, mais elle est tout & fait désavantageuse, car chaque
dérivation entraine une augmentation du nombre des mondmes et
des fonctions de Bessel et lorsqu’on utilise les valeurs limites
sen m = 0, sen 0 = 0, ils disparaissent presque tous et néanmoins
on n’a qu’une valeur trés peu approchée.
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LES cAS DE DEGENERESCENCE.

18. — Vérifions quelques cas de dégénérescence. Si le corps
est & une distance finie et si [ a une valeur quelconque, laissons
le corps se rapetisser jusqu’a ce qu’il disparaisse. Les fonctions A
et P du paragraphe 14 deviendront zéro. L’équation (15) nous dit
que p, aura un module infini et une anomalie indéterminée.
(est-a-dire que p, est imaginaire, ayant un module infini sur
une surface voisine et infiniment petite. Comme les numérateurs
et les dénominateurs des équations (18) et (18bis), formés
d’exponentielles, égalent zéro, on a justement le cas des ondes
sphériques et libres.

19. — Au contraire, si, au lieu de se rapetisser, le corps
obstacle s’éloigne de nous jusqu’a l'infini, la premiére région de
Iespace (paragraphe 2) s’étend et va occuper tout 1’espace.
Nous ne pourrons alors aboutir & aucune conclusion définie.
S1 nous avons eu recours a ce cas dans notre premier mémoire,
c’était parce que nous procédions selon une autre méthode.

20. — Une autre vérification qui devient impossible est celle
des cas z = o,y = o, car I’exponentielle sous le signe d’inté-
gration ne tend pas vers une limite, cette exponentielle étant
exprimée par: |

e = cos 2 + isinx .

Lorsque x croit indéfiniment, cos x et sin z ne font que passer
de +1a4 —1etde—14a -+ 1.1l en est de méme de la fonction
de Bessel, car

1 ™ i )
bes, (z) = — | cos (z sen w)dw = - cos (z cos w)dow
T’.‘b TCb

Lorsque z croit indéfiniment, les lignes trigonométriques
de cette deuxiéme intégrale, sous le signe d’intégration, n’ont
pas de limite, mais passent de cos (+ z) & cos (— z), ¢’est-a-dire
de + 14 —1etde—14a4 1. Par cela les formules ne disent
plus rien, elles sont illusoires.
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ExEMPLES.

21. — Prenons quelques exemples. Pour chaque cas particu-
lier il s’agira seulement d’écrire, sans les résoudre, les formules
finales (18) et (18bis), I’équation donnant (6, + »,) maximum
et I’équation donnant les p,.

22, — Cas de la sphére (voir figure 1). Il est préférable de
choisir comme variable & plutdt que I. On aura:

l—=Re, a=D—R, b=20,

zs(l) = D-—Recose, y,(l) =Rsene,

R sen e
- - ., = 2 2 __
0, = arc tang D—R cose s =4/ R+ D 2RD cos e,

Fig. 1.

qu’il faut introduire dans (18) ou (18bis) pour ce cas. En outre,

d(js _ R Dcose —R )
de = D + RE—2RD cose’
arc tang Ps _
de e
2ARD sen ¢

(3 4+ R? + D2 — 2RD cos €)A/R? + D% — 2RD cos ¢

Pour cette raison, la valeur de ¢ (appelons-la ¢;) séparant les
points antérieurs (équation 18) des points postérieurs (équa-
tion (18 bis), est donnée par I'équation:

B D cose, — R 4. 22D sen g,
'\/R2"+— D2__2RD cos 81 7\2+ R2+ D2_2RD cos Sl

(19)
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Mais on obtient une valeur de €, en bonne approximation,
au cas ou l'obstacle est placé & au moins quelques milliers
de A de la source, en écrivant:

VDR

g, = presque arc tang TR

équation obtenue simplement au moyen de la tangente & la
sphére menée par la source. Pour avoir aussi I’équation donnant
P2, appelons e, la valeur (réelle ou imaginaire) de ¢ telle
qu’on ait:

¢, = V/R? 4+ D2 —2RD cose, (20)

pour la définition des cos des arcs imaginaires, voir: Genocchi-
Peano, Calcolo differenziale, Turin, Bocca fréres éditeurs, 1884,
page 215, ou G. Peano, Calcolo infinitesimale. On aura alors
pour la spheére: '

% (pa) arc tang R sen <,
pa) = Y . S—
D — R cos g,
dx
on a aussi pour les ¥ (o) A de L2
équations (17) et (17bis): 2 2 2 dop, 2 z ]
2+ p, Pe A+ p,
de,
24-D2 - : 1 D-R
;(arctg Rseneg +arcthR +D ﬁ?RDcos 2) A
A = & D-Rcoseg A . 821: b ,
1 Rseney ¥R2+D2—2RD 00352)
P e e?r(arCth—RCOSsg-’_arCtg * .
1 (arctg RSN | otgVRE+D2—2RD C0S 1 1 aretg 2R
2x D-Rcose 2 2w *
— 2e 4+ e

I1 faut introduire ces valeurs particuliéres (20) de p, et de
»'(py) dans 1’équation (17) ou (17bis) pour obtenir I'équation
donnant &,; nous obtiendrons ensuite p, & ’aide de 1’équation
(20).

23. — Cas du disque mince (voir figure 2). Le premier contact
des ondes avec l’obstacle se fait sur l’axe. En plus: a = D,
b = 0. En ce méme point, mais dans la face postérieure, les
ondes cessent de toucher ’obstacle sur cet axe, car, si 1'on
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emploie ’équation (18bis) pour évaluer V sur la face postérieure
et dans le centre de cette face, I'intégrale vaut = et V, , o
n’est pas nul. C’est-a-dire qu’il y a encore de la lumieére, sauf
aux endroits des anneaux, s’il y en a de réels. Le demi-contour
méridien du disque est le double, aller et retour, de la distance

¢ R
Sou‘r.cg______ﬁ-&—-"l#s .
Origing D X

Fig. 2.

du centre de la face antérieure au bord et du bord au centre
de la face postérieure. Si [/ est donné pour un point déterminé
de I’espace et si le point du disque pour lequel ! a la méme
valeur se trouve sur la face antérieure, on aura:

z () =D, y, () =1, équation (18),

tandis que si le point du disque caractérisé par le méme para-
metre [ est sur la face postérieure, on aura:

z(l) = D, y, () = 2R —1, équation (18bis) .

Les points ou (0, 4 7,) est maximum se trouvent au bord,
car 0 et v, croissent et décroissent simultanément, c’est-a-dire:

b+, 1 VR2 + D2
F max = (arctang B sromnpl e = 1P )
e LT —_ e?,ﬂ D A

Pour obtenir I’équation donnant les p,, appelons y, les ordon-
nées cartésiennes (réelles ou imaginaires) correspondantes.
Nous aurons alors:

(e = arctang 2, o =y £+ D . (2
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On en tirera, pour en faire usage dans l'équations (17)
ou (17bis):

dx
A dy, A
w (92) + 2, 8 'Jy"'z'“ 2 2 2
Y+, %P X4+ (y,+ D)
dy,
2 2
1 Yp+ D
Q—_(arctg%Jr arctg—z.-—) qiwarctgl)j-
A = e 7] A . e..,.. 3
1 Y V24 D? 1 R VR2+ D2 1 D
3- arctgﬁ-{—arctg_—) Q:(arctg—D+arctg - ) 2—__arctg—)—
P= e * — 2e°7 ‘ + e** ‘

Nous avons donc toutes les valeurs qu’il faut introduire dans
les équations (17) et (17bis) pour avoir y,, et apreés cela les g,,
ce qui nous permettra ensuite de faire usage des équations (18)
et (18bis).

24, — Cas du tore a section circulaire (voir figure 3). Par
révolution d’un cercle autour d’un axe de son plan qui ne le

Origine
Source

coupe pas, on obtient le tore a section circulaire. Ce tore est
touché par les ondes pour la premiére fois au point M sur la
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droite passant par la source et par le centre O de la section
circulaire. I1 est moins facile de dire quel est le point ou les
ondes quitteront définitivement le tore. L’origine des [ est M.
Les coordonnées de M sont:

L b= BB,

/D2 B2’ 4/D? + B?

Comme le point S de la paralléle & I’axe passant par O a les
coordonnées (D — R) et B, on a:

zg(l) = D—R + Rcos(s—arctg%),

Y,(!) = B + Rsen (s — arc tangAD) 3

Pour obtenir le point ou il faut remplacer I’équation (18)
par I’équation (18bis), il suffira de dériver par rapport a e et
d’égaler & zéro la somme des deux expressions:

B + R sen (:—: — arc tang E)

98 = arc tang% = arc tang D Bw
§ D—R—I—Rcos(s—arc tangﬁ)
| (22)
2 2
] I/ws 55 Ys
7, = arc tang 3 =
/ BV B\ |°
[B + R sen (e—m arctgf)-) l ~+ [D —R+ R cos(s —arctgﬁ):l
=arclg L =
(23)

Nous obtiendrons d’une maniére presque identique la valeur
inconnue g, (réelle ou imaginaire) telle qu’on ait:

B1E I B\ |2
0y = \/[B + R sen (sz-——arctgﬁ)] —I-" [D—R . Rcus(ez—arctgﬁ)] ;

car nous pouvons écrire les équations (22) et (23) pour p, et ¢,
ainsi que ’équation (17) ou (17bis), qui donnera en premier
lieu €,. De méme pour A et P.

25. — On voit que les cas particuliers des corps de révolution
sont faciles a résoudre, sauf la résolution, pour chaque cas
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particulier, de I'équation définissant le maximum de (8, + %)
et de celles définissant les p, des anneaux obscurs.

APERGU BIBLIOGRAPHIQUE,

J. Strutt (Lord Rayleigh) a donné déja une solution appro-
chée du cas particulier de la sphére rigide et du son, & ondes dont
la longueur dépasse de beaucoup le rayon de la sphére (cf. sa
Theory of sound, 1896, paragraphe 334). Pour le cas de la sphére
rigide et du son, a ondes planes beaucoup plus courtes que le
rayon de la sphére, J. W. Nicholson, a donné une solution
approchée dans son mémoire On the Diffraction of short Waves by
a rigid Sphere, (Philosophical Magazine, February 1906, p. 193).

La bibliographie est plus riche pour le cas du disque mince.
Voir notamment E. Lommel, Die Beugungserscheinungen einer
kreisrunden Offnung und eines kreisrunden Schirmchens,
theoretisch und experimentell bearbeitet, Abhandl. der bayerischen
Akad. der Wissenschaften, 1884-1886, p. 229. On trouvera
d’autres vérifications expérimentales, des équations données
dans ce mémoire, dans Mason E. Hufford et Arnold T. Davis,
La diffraction de la lumiére au moyen d’une ouverture circulaire
et la théorie des ondes de Lommel (Physical Review, avril 1929,
page 589).

Voir aussi, pour le disque mince et les ondes planes,
W. lIgnatowsky, Zur Theorie der Beugung an schwarzen
Schirmen ' und Erwiderung an F. Koettler (Ann. der Physik,
1925, p. 589).

Pour les ellipsoides (non de révolution, mais qui pourront
I’étre dans des cas particuliers), cf. F. Moeglich, Beugungs-
erscheinungen an Kérpern von ellipsoidischer Gestalt (Ann. der
Physik, 1927, Bd. 83, p. 609). Le cas d’un corps de révolution
quelconque n’a pas encore été traité dans toute sa généralité,
pour autant que j’ai pu le voir, sauf dans le travail que voiei.

Reggio en Calabre (Italie), ce 29 mai 1937.

M. le prof. E. CHERBULIEZ, directeur des Archives, a eu I'extréme
obligeance de revoir mon texte francais, ce dont je le remercie
vivement.

! Plusieurs cas particuliers.
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