
Zeitschrift: Archives des sciences physiques et naturelles

Herausgeber: Société de Physique et d'Histoire Naturelle de Genève

Band: 19 (1937)

Artikel: Sur la diffraction par un corps de révolution noir : éclairé selon son axe
par une source punctiforme

Autor: Barreca, P.

DOI: https://doi.org/10.5169/seals-741819

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 12.01.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-741819
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en


Sur la diffraction par un corps de revolution uoir,

eclaire seien son axe

par une source punctiforme

(2^ MEMOIRE) 1

PAR

P. BAKKEGA
(Ayec 3 flg.)

1. — Resume. Dans le present memoire, on etudie le cas

particulier de la diffraction par un corps de revolution noir,
place dans le vide et eclaire selon son axe par une source
lumineuse punctiforme rayonnant egalement dans toutes les

directions, en envisageant les cas particuliers de la sphere,
du disque mince et du tore. Le resultat de ce travail, qui
complete notre memoire precedent, se resume dans une for-
mule generale s'appliquant ä chaque cas particulier par l'intro-
duction des valeurs particulieres (algebriques, non numeriques)
des coordonnees du contour du corps donne et des valeurs

algebriques de certaines donnees caracteristiques du corps,
qu'on deduit de l'equation de sa surface, par des methodes

qu'on expose ici.

1 P. Barreca, Sur la diffraction par un corps de revolution
eclaire selon son axe par une source punctiforme. Arch, des Sc. Phys.
et Nat., mars-avril 1936, p. 98.
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De la fonction arbitraire H (0o,

2. — La fonction H de notre premier memoire n'est pas tout ä

fait la meme dans toutes les regions de Vespace. En effet, on peut
distinguer trois cas: dans la partie de l'espace contenant
exclusivement des ondes lumineuses spheriques, H ne saurait

dependre de la forme et de la position du corps obstacle; dans

la region par contre dans laquelle se trouvent exclusivement des

ondes ayant dejä touche l'obstacle et ne le touchant plus, la
fonction H dependra de tout le corps obstacle. Dans la suite
de ce memoire, je designerai la valeur de la fonction H dans

ces deux regions par les symboles et H3.

Dans la region intermediaire, toutes les ondes, dont nous

supposons connaitre la forme et la position, coupent toutes
la surface du corps obstacle en question. Otons la partie du

corps qui n'est pas encore entree en contact avec une onde

donnee de toutes ces ondes; nous envisageons done la partie
du corps touche par cette onde, au delä du point de contact.
Remplacons la partie de corps enlevee par un autre corps
de revolution, ou bien remplacons-]a par rien du tout. Cette
modification ne portera un elfet que sur la partie de l'espace
au dcla du point de contact car 1'effet ne saurait preceder
la cause.

Dans cette region, la fonction H, que nous appellerons H2,

varie done d'une onde ä l'onde suivante par degres infiniment
petits; en d'autres termes, dans cette region, la fonction
depend d'un parametre definissant chaque onde de cette region.
Pour un corps de forme, de grandeur et de position connues,
choisissons comme parametre l'arc l du contour meridien
du corps-obstacle interpose, compris entre la zone de contact
de l'onde encore spherique, qui arrive pour la premiere fois

au contact du corps, et l'onde en question, et posons:

k(l, 0O. parametres)
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Par integration de 0 ä Z, on a:
i

H2 fonction arbitraire + j k(l, 0O, dl
o

Mais, en supposant Z 0, on voit que la fonction arbitraire
devient H1(0O) independamment du corps obstacle et de ses

parametres, car lorsque I 0, l'onde, qui va cesser d'etre
spherique, l'est encore. En d'autres termes, on aura:

H2 + F(Z, 0O, parametres) (1)

Lorsque Z a la valeur Z max de l'onde qui va cesser defi-

nitivement d'etre en contact avec le corps, la fonction H2 se

transforrnera definitivement en H3. Nous laissons de cote 1Q.

Sur les surfaces de separation des trois regions, il y a continuity
de Hj ä H2 et de H2 ä H3.

3. — II doit exister une expression generale de H2 (dont H3
est un cas particulier, I I max^l s'appliquant ä tous les corps
de revolution ä Vaide des coordonnees xs et ys des points generateurs
de la surface S du corps obstacle :

xs a + f (l) ' 2/s
Z> + <p (Z)

l'origine coincidant avec la source, i'axe Ox etant l'axe de

revolution, a et b etant les coordonnees du point de contact
de l'onde qui va cesser d'etre spherique.

En effet, si la fonction H2 est arbitraire, cela n'est qu'une
expression de notre liberte de choisir un cas particulier du

corps, c'est-ä-dire de prendre certains et ys. Nous pouvons
faire varier nos xs et ys infiniment peu, ou meme accumuler une
infinite de fois des variations infiniment petites et continues;
dans ces conditions, automatiquement H2 doit aussi subir des

changements infiniment petits et Continus. Quant ä l'origine,
nous la ferons coincider avec la source punctiforme, ce qui
supprime l'arbitraire sur ce point.

Remarque n° 1. — /(0) 0, 9(0) 0.
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Remarque n° 2. — Nous aurons done,

dans la premiere region de l'espace: H H1 (0O), dont nous
ne nous occuperons pas;

dans la deuxieme region de l'espace:

h H^e,,) + F(e0, a + i{l) b+rfW
x ' x

mais

F(V 0
X X

dans la troisieme region de l'espace:

H HX(0O) + F(9o,
a + /^max) y^max))

si l'on designe par H la fonction arbitraire totale de notre
premier memoire.

4. — Pour chaque corps particulier, dont la forme, la grandeur
et la position sont donnees, la fonction F est unique. II est evident

que + (H1 + F) et — (H1 + F) sont des solutions identiques,
car le passage d'une expression ä 1'autre revient ä changer
l'origine des temps d'une demi-periode. En effet, si I est un
vecteur fixe, de longueur 1, parallele ä Faxe des nombres

reels, on tire de la formule finale (9) de notre premier memoire:

IVr'p 2^tA/2L

#o=t ±2«i5=?oo8..+iQ1(o.,^I-), M)
^J ()• I bes„ | 2 7t sin 60 j P2 ^60, _j-M b

+^^dQ0 (2)

Dans cette equation, nous avons remplace (H1 + F) par
P2. elQa. (Pour les notations, voir notre premier memoire).
Or, le deuxieme membre de l'equation (2) est une somme de

nombres complexes, representant une ligne polygonale de
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forces, composee d'un nombre infmi de vecteurs infiniment
petits, avant chacun pour longueur:

ß bes01 2 it ~ sin 0O | P2 ^0O,
a

et faisant, avec l'axe des nombres reels, l'angle:

" — I

~~ d
pn- ft I O (ft a + b + vil)\

Y ^ 2 K COS U0 -f- q)2 I t/0, I •

Nous admettons toujours que l'origine des x coincide avec la
source lumineuse, par consequent d — 0. Nous ne precisons pas
davantage la signification de l'angle 0O, qui est utilise ici
seulement pour le calcul numerique de ß et de y. Le vecteur
resultant (la corde fermant la ligne polygonale courbe) est le

premier membre de l'equation (2). Nous avons choisi des

valeurs fixes pour
x ^, a, b, f(l), cp(Z). Or, si l'on pou-A A

vait avoir plusieurs fonctions (H^-j- F), c'est-ä-dire plusieurs F,

pour chaque corps particulier, on aurait plusieurs lignes
polygonales avec un meme dernier cote, mais en realite, le

phenomene physique est unique.

Determination de F.

5. — Nous determinons F de la fatjon suivante: Si Vs est

la valeur (complexe) de V sur la surface du corps-obstacle,
on peut l'evaluer ä l'aide de l'equation (2) en posant x xs,

y ys \ il n'y aura, dans cette equation, que les deux inconnues

(complexes) Vs et (t^ + F), tandis que xs et ys sont donnes.

Or, si l'on peut faire disparaitre le signe d'integration, on

pourra dedoubler cette equation en deux autres (complexes)
car alors, l'un des membres doit etre independant de 0O,

tandis que l'autre ne le sera pas. On pourra alors calculer Vs et F.

Remarque. — Nous ecrivons encore:

HDÖo) F ^0O,
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lorsque nous ferons usage de coordonnees cartesiennes, qui
auront leur origine dans la source. Mais nous ecrirons:

Hi(8„) Fp(e0,^, es) (3)

en designant ainsi ces memes valeurs numeriques lorsqu'elles
sont calculees par (Tautres operations avec les coordonnees

polaires ps et 0S (pole dans la source). Nous aurons en effet
Ps

besoin de modifier les arguments —, 0S sans vouloir ni pou-

voir rien changer aux operations de calcul envisagees par la
notation (3).

6. — En application de ce qui precede, on tire de (1) et (2):

pS
± y COS es COS #0

Vs j" 6beSo{2TC^sin0ssin6l)}[H1(eo) + Fp(eo, 0s)}d0,
0O o

en appelant Os la valeur qu'aurait eue Vs au point donne de S,

si on n'a que des ondes spheriques, on aura:

Ps
±2ni—cos 0. eos0o

6
a 5

(Vs-Os) 2^a/2L j* ^ i)eS(l J 2 TT y- sin 0S sin 0O | Fp ^0O, 0s)rf0o

öo 0

(4)

7. — Rappelons que 0O est une grandeur variable qui ne

depend pas des autres variables, sans qu'on puisse l'appeler
arbitraire, car eile n'a pas des valeurs arbitraires. Elle doit
changer automatiquement pendant l'integration de 0 ä 7t et

disparaitre finalement lorsqu'on introduit les valeurs limites,
autrement la formule (4) serait inutilisable.

8. — Ecrivons la derivee totale par rapport ä l de chaque
membre de (4):

«*(v,-o«) a(vg — og)
_
dj

dl d 0S dl ps dl
ÖT

en calculant les deux derivees partielles qu'on vient d'ecrire.
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II n'y a pas d'autres variables qui seraient fonction de I, car

ici 0S et y sont des expressions generates, chacune avec les

parametres caracterisant le corps-obstacle particulier. La grandeur

est cachee dans les deux membres de cette equation.
A

9. — Posons deux variables nouvelles:

a es + 0O ß 0S — 0O

Comme les degres de liberte doivent etre les memes qu'aupa-
ravant, l'une quelconque de ces deux grandeurs variables
nouveiles doit etre arbitraire et rester constante une fois qu'elle
a ete choisie, tandis que l'autre variera automatiquement dans

l'integration, sa differentielle n'etant pas nulle le long de toute
l'integration. On aura:

11 1 1
0O a — — ß done d 0O — d a ou bien d 0O — -^d ß,

ä volonte ;

1 1
cos 0S cos 0O — cos (0S — 0O) + -cos (0S + 0„)

1 1
— cos ß + -- cos a ;

1 1
sin 0S sin 0o

2" cos (6s — 6o) —
2

cos (6s + e«)

1
a

1
- - cos ß — — cos a ;

et les limites de l'integration seront:

^ pour 0 0, soit a' 0S soit ß' 0S ;

pour 9 7t soit a" 0S + tt soit ß" 0S — n
'

^

Dans les deux cas, on a:

Ps

a»=e +- i -t y- (cos 3 -1 COS a)

Vs " °S j ObeSc-j^y (cos ß — cos a)| Fpj-^- (oc — ß), y, ^-(a + ß)jda
o.'=0s

Ps

„ ± T- (COS .S + COS a)
jl — —z A

Vs~ °s — J ßbeSojrcy (cosß —cosa)j Fpji(a-—ß) y, |-(a+ß)jdß •

?'=«s
(5 bis)
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Nous pouvons faire disparaitre le signe d'integration par
derivation par rapport ä la limite inferieure, selon la regie:

ö
X*

I f(x)dx — / (xj)

la limite superieure n'ayant pas d'influence. Nous remplacons
ensuite a' et ß' par les valeurs (5), en revenant aux anciennes

grandeurs variables. Nous aurons alors:

± Tti V—
[COS (6S — 60) + C0S6S]

±iriy[COS(Ss+ 0O) + COS6s]

Oj)== + ^i^L.gbes0j„^[Cos (6S+ 0O) - cos 0s]}fp{^, 6S

Par ces deux equations, nous voulons evaluer Fp, mais pas

avec ses arguments actuels, mais au contraire avec les argu-
p

ments 0O, ~ et 0S. Soustrayons de la seconde la premiere

equation, membre par membre, et changeons ensuite 0O en
2 0o. Nous aurons alors:

Ps
±;tty[COS(0s + 2 0o) + COS0s]

+ tu^2L J~ßbego|[cog ^ + 20o) _ cos es]Je„, —, es + e

Ps

i-iy [cos(6s-260)-i- cosos]

+ 6 beSojiT y- [cos (0S — 2 e0) — cos 0S] Jf^ j 0O, y, 6S — 6

Cette equation doit toujours etre vraie pour toutes les valeurs
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de 0O et des autres variables. Par consequent, on doit avoir
separement et simultanement:

; „ f. Ps | une non-fonction de 0O

fp| 0»' T' 8 + e°j= S
± r.i — [COS (8S + 2 0o) + COS 8S]

1 ßbes0|Try[cos (0g + 20o) — cos 0S]|
< (8)

i -p
J

o ps
q e\

I — la meme non-fonction de 0„
M6»'T' 03-0»r —Ts

I ±-iir-[COS(es-2e0) + COS6s]

ßbes0|7r~[cos (0g — 20o) — cos 0S]|.

Nous avons donne le signe moins ä ia derniere expression;
cela nous est loisible, car la fonction figurant aux numerateurs
apparait ici pour la premiere fois et sera determinee plus tard.
Appelons-la A e'B, mais remarquons qu'elle pourrait parfaite-
ment etre reelle. Si eile n'etait pas identique dans les deux

equations (8), le deuxieme membre de (7) ne serait pas egal
ä zero. Si une fonction de 0O entrait comme multiplicateur
dans (8), le premier membre de (6) ne serait pas independant
de 0O.

Remarque. — Si dans la derniere equation (8) on remplace
0O par — 0O et si 1'on appelle a la somme (0S + 0O), l'equation
ne deviendra pas tout a fait identique ä 1'autre. On en tire
seulement:

mais cela ne dit pas que nous ayons affaire ä une fonction
impaire de 0O. C'est que les deux equations donnent deux

solutions, qui peuvent etre paires. Mais comme elles ne se

distinguent que par leur signe, nous pouvons faire usage d'une
seule equation, par exemple de la premiere equation, (8), avec
AetB comme numerateur.
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10. — Pour deduire de cette equation la valeur de

Vp (6° 0S), faisons des changements independants dans

les arguments de ses deux actuels facteurs de droite :

— 5

~i-r~£COS (Ös + 2.®o) COS

ßbes0 j^y^cos (0g + 2 60) — cos0s]J •

(9)

On peut faire les deux changements d'une fagon arbitraire
(car il n'est pas necessaire d'avoir les memes valeurs nume-
riques qu'auparavant), pourvu qu'ils aboutissent au resultat
suivant, si on appelle 0[ une autre 0S:

car alors, on est contraint de reconnaitre dans leur produit la
valeur de

Or, dans le premier des facteurs (9), il suffira de remplacer
0S par 0[. Dans le deuxieme facteur, au contraire, appelons
0g la somme de (0S + 0O), c'est-ä-dire changeons (0S + 20o)

en (03 + 0O) et 0S en (0[ — 0O).

On obtient:

4» K, A '
„•PSr

±irty[cos(9,-Mo) + cos(9g-»o)]

6bes01 It Y [cos (63 + 0O) — cos (0[ - 0o)]

e

r-s '±2rcl~ COSÖ, COSÖo\ s

besn 2 n— sin 0S sin 0O
j
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Si le terme (0S + 0O) du premier membre s'etait trouve
aussi au second membre, il aurait ete remplace par 0S, comme

au premier membre. L'expression 0O toute seule (c'est-ä-dire
sans addition ni soustraction de 0S) se serait trouvee au second

membre et n'aurait pas ete modifiee, pas plus qu'au premier
p

membre; le terme — est reste tel quel comme au premier

membre. On aura done:

et on peut oter l'apex.

11. — Si, au lieu de soustraire les deux equations (6) 1'une

de l'autre, membre ä membre, nous en faisons la somme,
nous aurons:

(V, - 04) ^2~L • (11)

Cette derniere notation doit rappeler que A et B sont des

fonctions de ^ et de 01.
A 6

12. — Par le meme moyen, nous evaluerons l'autre derivee

partielle du paragraphe 8. Posons:

ps
I) arc tang —

A

arc compris entre zero et y, car les rayons vecteurs des coor-

donnees polaires sont toujours compris entre zero et l'infmi
positif. Posons maintenant 0S constante. Posons aussi:

9o+ v] c, 6» —- •») 8

c'est-ä-dire:

•1 §-(«- 8) 0» + 8) •
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Choisissons, pour une des nouvelles grandeurs variables (<r ou
8), une valeur fixe et choisissons l'autre comme variable d'inte-
gration. Nous aurons alors:

1 1
ou bien d0O — da ou bien dd0 — -^dS

et les limites d'integration seront:

pour 0„ 0 ou bien cr' yj ou bien 8' — t) ;

pour 0O tu ou bien a" 7u + tj ou bien 8" 7r — vj ;

et on obtient:

<r"=%-\-vJ
—T[ (<*—$) (fr+5)± 2t.i tang-^r— cos cos

\t n
f*fl,

„ (<r + 8), (a—S))-r-, ((a+8) (c—8) „ I Ida
Vs~°s 7 J 0besoj27t8lll6s8lll~2 tM9—y-2~ ' 92~' sl U

(7 =-
i S'=-

Ici encore, une derivation par rapport ä la limite inferieure
nous delivrera du signe d'integration et de la limite superieure,
mais fera apparaitre dans les fonctions, selon les cas, la valeur
de a' ou de 8'. Introduisons les valeurs des limites correspondant
ä notre cas particulier, reprenons les anciennes variables, en

remplacant aussi 0O par 2 0O. Soustrayons de nouveau, membre
ä membre, les deux equations obtenues, l'une de l'autre; nous

aurons alors:

,— j- ±Zititangh+eoJcosSocosBj
O

Kl
x

2L [6 bes0 {2tu sin 0S sin 0O tang (73 + 90)}Fp{9„, tang (7] + 0„), 0S} +

± 2ritang(7i-»o)cos60coses

-f 6 bes0|2Tr sin 0S sin 0O tang (•/; — 9o)}Fp{90, tang (7) — 0O), 0S}1

(7 bis)

Cette equation doit etre vraie pour des valeurs quelconques
de 0O et des autres variables; par consequent, les deux equations

suivantes doivent egalement etre vraies.
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F (0O, tang (/] + 0O) 0 une non-fonction de 0O

± 2ri tang U+«0) cos 60 cos es

6 bes0|2n:sin 0S sin 60 tang (t) + 0O)}

(8 bis)
In tviAmo n An _Tnn nti An Hn A

F (0O, tang (yj — 0O), 0
la meme non-fonction de 0O

± %r.i tang (t—®0) cos e0 cos 8S

ß bes0{2-rrsin 0S sin 0O tang (y) — 0O)}

Ici encore, l'identite de la non-fonction des deux equations,
et le signe moins d'une des deux, sont necessaires pour avoir
zero au premier membre de l'equation (7 bis), Mais l'affectation
du signe moins ä la premiere ou ä la deuxieme des equations
(8 bis) est arbitraire, du moment que la non-fonction de 0O est

encore ä determiner. Appelons cette fonction MetN; par le
raisonnement que nous avons utilise dejä, nous aurons:

et l'on pourra de nouveau oter l'apex.

Remarque I. — Lorsque 1=0, on devrait avoir Fp 0

(voir remarque II dans paragraphe 3), mais le denominateur
n'est pas infmi, ayant seulement la valeur correspondant au

point I 0. Par consequent on doit avoir, lorsque 1=0:

Me'N (lT' 0S) 0

Remarque 11. — Puisque les equations (10) et (10 bis) sans

apex doivent donner les memes valeurs de Fp, il est:

AeiB (t ' °s) M®iN (t ' 6s) due j'appeUe ZeiT
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Remarque III. — Ici encore, on aura, si Ton fait la somme

au lieu de la difference:

M IN (11 bis)
ÖTfe A Me •

dds
et pourtant, si l'on multiplie chaque membre de (11) par

dt)s
et chaque membre de (11 bis) par et que l'on additionne

les deux equations, on aura:

i<s. - o.i - " Z • z»'TZ. + iJ • <«)

C'est-ä-dire: La difference (V — 0) sur la surface de Vobstacle

a la meme derivee par rapport ä 0S que par rapport ä

ps
arc tang —.A

Remarque IV. — L'equation obtenue en vue d'evaluer la
fonction arbitraire Fp a ete dedoublee en deux equations
(complexes) (10) ou (10 bis) et (12).

Evaluation de Zel1.

13. — Si l'on fait l'integration par parties, de zero & I, de

chaque membre de (12), on obtient:

Vs- Os J (0, + vg zZ - J* (0s + ^ ±. (Ze'T) dl J

car lorsque I — zero, l'expression (0S + 7)s)ZetT est nulle
(paragraphe 12, remarque I). En meme temps, introduisons
les valeurs de (H1 + F qu'on tire de (10) ou de (10 bis) (voir
paragraphe 3) dans la formule finale de notre premiere note,
qui n'est que l'equation (2) du memoire present, mais sans le

vecteur unitaire I:
0o - X-Xs

/x2+y2 ^—cos 6o

K,, | («,
Vx2 + y2 * J [ d6o

#o= 0 beso | 2-y sin60 j
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Employant cette equation pour les points de S en faisant

x xs, y —ys, nous aurons:

Vs - Os (ZeiT) n
A

Par comparaison des deux dernieres equations qui donnent
(Vs — Os), on aura :

I
2 7t (ZeiT) (6S+ 7)s)Ze'T- J(0, + 7)s) J-(Ze^dl

0

puis, par derivation par rapport ä I:

2nw{7jT) {ZeiT)i{Q° + ^ +(e« + ^ J-<ZeiT) -
(% + -ns)^(ZP1)

C'est-ä-dire:

2 dl A (ft + \

ZeiT dl ' 8 + '0s> '

et Ton peut constater que le deuxieme membre est reel. Par

consequent, dans le premier membre les anomalies (phases) du

numerateur et du denominateur doivent etre egales, c'est-ä-dire

qu'aucune d'elles n'est fonction de l. Et si nous appelons C

un nombre complexe (qui peut aussi etre reel), fonction arbi-
traire de certains parametres ä l'exclusion de Z, on aura:

ZeiT Ce (14)

Mais cette solution n'est exacte que lorsqu'on en fait usage
dans un domaine (Z2 — Zj) suffisamment petit. C'est comme

lorsqu'on evalue une surface plane ä l'aide de la formule
x2

I ydx(y ordonnee cartesienne, x abscisse), car, si les ordonnees
Xi
n'ont pas toutes le meme signe, on pourrait meme obtenir
comme resultat zero, ce qui ne ferait pas plaisir ä un agricul-

Archives. Vol. 19. — Septembre-Octobre 1937. 17
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teur Or, si 1'on se deplace par petits pas le long du contour
meridien du corps, on a des angles 0S + y]s pas trop grands,
qui peuvent changer de signe; c'est pour cette raison qu'il ne
serait pas indique de faire usage de l'integrale indefinie (14),
sans avoir recours ä des limites speciales et utiles.

En effet, pour un disque mince (qui est encore un corps de

revolution), il est aise de reconnaitre, au moyen des equations
(13) et (14), qu'en prenant tout simplement pour limites 1=0
et 1=1, on aurait des valeurs identiques sur les faces ante-
rieure et posterieure, si ys est le meme (I n'etant pas le meme).
II faut done distinguer et chercher sur le contour meridien du

corps le point ou (0S + r\s) est maximum 1, en appelant « ante-
rieurs » les points qui precedent ce point et « posterieurs » les

autres points.

II se peut aussi qu'il existe plusieurs points de (0S + tjs)
maximum ou minimum, mais nous laisserons cette question de

cote. Pour les points anterieurs, les limites seront done 0 et 1,
et on a:

tandis que, pour les points posterieurs, il faudra prendre les
limites 1=1 du max et 1=1, en faisant aussi usage de la

1 On peut trouver ce point aisement et avec rigueur, en partant
de l'equation de la surface du corps-obstacle en coordonnees polaires:

car il suffira d'ecrire:

mais si ps est en tout point plus long que quelques milliers
d'ondes, il suffira de tracer de la source punctiforme la tangente
au contour, car alors on aura en tout point:

6s *(ps)

Ps TC

*)s arc tang — presque —
A 2
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valeur de l'integrale qu'on obtiendrait separement pour le

point de (0S -f- i)s) max. On aura alors:

es~^ys 6s+yS I #S+1 s 1 / ^ ft /a2 + b2\
.„ \ max) \ max — arc tang- +arc tang )/&lT C e -e !£

I— G je -e2^ ~a 1 >

l 1 / b Fa2 + b2\ fls+ys \
\ —— — arc tang - + arc tang max I

G | e + e
^ a 1 '

— 2e 2t~

II est facile de voir que cette deuxieme valeur est negative.
Lorsque I ~ 0, on est sur la face anterieure du disque et il
faut employer la premiere expression, qui est alors justement
nulle (paragraphe 12, remarque I).

Evaluation de la fonction C par certaines donnees
CARACTERISANT LE CORPS.

14. — Dans 1'integration que nous venons de faire par
rapport ä /, G est apparu sous forme de fonction arbitraire. Son

expression generale ne peut done etre qu'une fonction de a,
de b et des autres parametres caracterisant le corps. En effet,

pour evaluer l'influence de I, nous avons toujours suppose
(paragraphes 2 et 8) un corps-obstacle donne et invariable.

Nous pouvons trouver facilement la valeur de C en fonction
de certains rayons vecteurs de certains anneaux (reels ou ima-

ginaires) parfaitement obscurs sur la surface S du corps-
obstacle. Nous pourrions aussi exprimer ces rayons vecteurs
en fonction des parametres de l'equation ordinaire du corps-
obstacle, mais cette equation ne serait peut-etre pas resoluble;
voici pourquoi, tout en donnant ladite equation, nous n'eli-
minerons pas les rayons vecteurs des anneaux.

I. Employons l'equation (13) avec les deux valeurs de Ze,T,

que nous avons trouvees dans le paragraphe 13, separement

pour les points « anterieur » et « posterieur » de S, en posant
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aussi Vs 0 et en distinguant Cn (anterieur) de Cp (posterieur).
Dans les deux cas, nous aurons l'equation des anneaux:

1 ±2^ 2tti„ (A)°-r " + A"c;"1p5 ' i*5'

dans laqueile nous designons par p2 les rayons vecteurs et dans

laquelle A et P sont les abreviations suivantes:

1 / f2\ i / t b V'at + V>\
— *(sa)+arctangL —( arc tang- + arc tang :

A e
^ ') — e^\ o. k >

— f*(pj) + arc tang—) — (arc tang - + arc tangx a +b 1 arc tang
2,1 \ A/^+ ^ ^ a A ' 2e ^

car maintenant l'integrale vaut 7c. On en deduit:

i
C -e« _ p2

CJ \r27Z)K> '

P "X Pj

(16)

Comme chaque valeur des deux (Ca ou Cp) doit etre unique,
cette double equation est l'expression d'une loi de distribution
des anneaux sur les faces anterieure et posterieure.

Egaler l'expression complexe (15) ä 0 revient ä egaler ä 0

son module, tandis que son anomalie reste quelconque.

II. Pour les nouvelles inconnues, c'est-ä-dire les p2, il faut
maintenant avoir une autre equation. Remarquons, ä ce sujet,

que l'equation (13) n'a d'autre discontinuite que celle des deux

valeurs de ZelT exposees dans le paragraphe 13. Voilä pourquoi
les anneaux parfaitement obscurs ne peuvent separer des

regions lumineuses que sans discontinuite. Et ce serait une faute

d'exiger que, sur les anneaux, mod V ait une valeur minimum

car, du moment que mod V est un nombre reel toujours
positif d'une valeur quelconque, si on exigeait qu'il devienne

minimum, cela reviendrait ä exiger qu'il egale 0, et cette
condition a dejä ete imposee tout ä l'heure.

C'est, au contraire, le module de la derivee de V qu'il faut
annuler, ou cette derivee elle-meme, car lorsqu'un nombre



LA DIFFRACTION PAR UN CORPS DE REVOLUTION NOIR 255

complexe est nul, son module est 0 et son anomalie quelconque.

Ce ne sera done pas ~ mod V, mais au contraire mod ~1 dp dp
que nous poserons egal ä zero. En effet, si 1'on represente, selon

l'usage, les nombres complexes \ + iX, par le vecteur qui va de

l'origine des nombres au point \ + iX, sa croissance complexe
et infinitesimale dN est egalement un vecteur ayant la meme

direction de ~ et de grandeur mod ^ • dp. Lorsque

mod— 0, il n'y a done pas d'accroissement infinitesimal dV.

Introduisons maintenant dans 1'equation (13) la vaieur de C

donnee par 1'equation (16) et employons-la de nouveau pour
les points anterieurs de S. Nous aurons:

1 ±2ittT 1 ±27ti— e — —e-
— e
ps

«s+ts 1 / 6 La2 + b2\
Ps o —a— — arctang- + arc tang—

t +2rf^ « ^ _„2*\ a I
1 1 / *

& t /a2 + i>2\
(*(52)+arc tangyj — ^arctang- + arc tang J

Pour les points des anneaux, puisque ps p2, cette expression
s'annule precisement.

Derivons-la par rapport ä ps en general.

1 dYs, 1 _ / i_ 2_7tA ±2-iy_
Vn: dPs ~ ^ p2 111T"y ~

S + *lS

±2«t/
I X

X + Ps

e

p2 l
e

1 / f2\ 1/4. b t a2 + ö2 \
2- (*(?«) + arctangyj — (^arc tang- + arc tang j

Posons maintenant ps p2 et egalons ä zero, pour avoir
notre equation.

X'(P2} + ^1 2

1 2 ni x + p 1
— in 2 ___
02 X 2tP2 1 / b fWb2 M\
•a k~~ arc tg h arctg ; *(?2)-arctg^

J g \ ® A ^ /
(17)
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Faisons-en de meme pour les points posterieurs; l'equation
donnant les p2 est:

1 _ 2ni
° — + -T- +

P
2

x2 _|_ p2 & (*(?2) + arctSy

2np2 l / ?2\ i / & t/a2+&2\ 0s+is
s- ("(fs +arctg^ — arctg- + arctg ; —5— max

V * / _i_ «2* V a * / 2-— 2e

(176is)

Quadrature, Resultats.

15. — En faisant usage des valeurs de ZetT et de C, pour
avoir F et ensuite des valeurs de (Hj + F), dans la formule
finale de notre premier memoire, c'est-ä-dire l'equation (2)

du present memoire, on aura:

I. Si la valeur donnee de I (supposee connue) E conduit ä un
point « anterieur » de la surface de 1'obstacle, on aura:

V2L ±2«^±*
V. „ —; e

„ ,f2 6s+1s i 6 l/<x2+62\ 6n r X~xAD

e
''A ±Z«i-^lmh

itPa 1 / ?«\ 1 / 6 Fa2+6*\ I " bes0{ 2^-»iae„)
x,('re,8ä+a",t^-) / !L<».

^ \ VsW I
eo=0 be«o)2-—:—sin a0 c

(18)

II. Si, au contraire, la valeur donnee connue de Z, correspon-
dant au point x, y de l'espace, conduit ä un point« posterieur »,

1 Dans la troisieme region de l'espace I est toujours connue,
etant I max.



LA DIFFRACTION PAR UN CORPS DE REVOLUTION NOIR 257

on aura:

v _ V2L ±2«^±*

„ .fa #s+v;s 1/ 6 ^a2 + 62\ 8s+'.s
±2«^ —— — «ntg-+«KtJ —s—mi

_
e

2" +e2A a ' > — 2e 2,:

Ttpa 1 / fs\ 1 6 /aä+ bäX 9s+is
eä;(«(^+«i7) + e2-A",tlä+""J^^)_2e-&r

: X-Xs( 0
i d=2*i—-— cose0
6 r y

• (!8M
bes0\ 2~-f-siri0o {

A
- d(»o

r \ /
0o=O beso j 2-—r—sin 60 j

Dans ces formules, x et y sont les coordonnees cartesiennes
des points donnes de l'espace (avec l'origine ä la source et l'axe
de revolution coincidant avec l'axe des x), xs(l) et ys(l) sont les

coordonnees du point de la surface S de 1'obstacle ayant le

meme l de (x, y) c'est-ä-dire se trouvant sur une meme surface
d'ondes. Gependant, dans toute la troisieme region de l'espace,
I a la valeur invariable I max du point du corps ou les ondes

quittent ä jamais le corps. Si l'on n'utilise que les valeurs

numeriques de xs(l) et ys(l), on n'aura qu'une valeur numerique

pour Vr Mais il est preferable de faire usage des valeurs

mathematiques de xs (l) et ys (I) en fonction de I, qui introdui-
sent tout de suite dans la formule (18) et (186is) les parametres
et les fonctions caracterisant le corps-obstacle et sa position.
e est la base des logarithmes de Neper; 7t le rapport d'Archimede;
i l'unite des nombres imaginaires; L la puissance lumineuse
de la source; X la longueur d'ondes; a et b les coordonnees
du point ou l'obstacle est touche pour la premiere fois par les

ondes qui arrivent; I l'arc meridien oil ce contour coupe l'onde
qui passe au point (x, y). Si le point donne de l'espace est

pres de la surface du corps, on obtient tout de suite une
valeur approchee de I.

Les p2 sont aussi des donnees caracterisant le corps, mais on

peut les envisager comme racines des equations (17) et (llbis),
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que nous avons etablies au paragraphe 14. On voit aisement

qu'on aura, pour ohaque point des anneaux:

6S et ps sont les coordonnees polaires (colatitude et rayon
vecteur) des points de la surface S. 7)s est une abreviation

pour arc tang —• Soit l'equation de la surface S en coordonnees
X

polaires:
es X(PS) •

L'usage simultane des coordonnees cartesiennes et polaires
apporte quelques simplifications.

16. — Si l'origine des coordonnees n'est pas dans ia source
lumineuse, il faut deduire, de toutes les abscisses, l'abscisse d

de la source (cf. notre premier memoire). Aussi dans les valeurs
de 6S et de ps.

17. — On peut executer au moyen de methodes approchees

l'integration de l'integrale contenue dans les equations (18) et
(18bis). La meilleure methode 1 consiste ä evaluer l'integrale
par les methodes des surfaces planes, en divisant le domaine

(0 ä 7t) de l'integration en un nombre entier p. de parties egales.
Si A0, A2, hp sont les ordonnees de l'aire dans les points de

division, c'est-ä-dire les valeurs de la fonction ä integrer, on

a, pour la valeur rapprochee de l'integrale, 1'expression:

-—(h0 + 2 hx + 2 h2 + + 2 + h
- p. '

1 La methode du paragraphe 6 de notre premier memoire est
utilisable, mais elle est tout ä fait desavantageuse, car chaque
derivation entraine une augmentation du nombre des monömes et
des fonctions de Bessel et lorsqu'on utilise les valeurs limites
sen -K 0, sen 0 0, ils disparaissent presque tous et neanmoins
on n'a qu'une valeur tres peu approchee.
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LES CAS DE DEGENERESCENCE.

18. — Verifions quelques cas de degenerescence. Si le corps
est ä une distance fmie et si I a une valeur quelconque, laissons

le corps se rapetisser jusqu'ä ce qu'il disparaisse. Les fonctions A
et P du paragraphs 14 deviendront zero. L'equation (15) nous dit
que p2 aura un module infini et une anomalie indeterminee.
C'est-a-dire que p2 est imaginaire, ayant un module infini sur
une surface voisine et infmiment petite. Comme les numerateurs
et les denominateurs des equations (18) et (186is), formes

d'exponentielles, egalent zero, on a justement le cas des ondes

spheriques et libres.

19. — Au contraire, si, au lieu de se rapetisser, le corps
obstacle s'eloigne de nous jusqu'a I'mfini, la premiere region de

l'espace (paragraphe 2) s'etend et va occuper tout l'espace.
Nous ne pourrons alors aboutir ä aucune conclusion defmie.
Si nous avons eu recours ä ce cas dans notre premier memoire,
c'etait parce que nous procedions selon une autre methode.

20. — Une autre verification qui devient impossible est celle
des cas x — co y oo car 1'exponentielle sous le signe d'inte-
gration ne tend pas vers une limite, cette exponentielle etant
exprimee par:

gix _ cog x _j_ j gjn x _

Lorsque x crolt indefiniment, cos x et sin x ne font que passer
de + 1 ä — 1 et de — 1 ä + 1. II en est de meme de la fonction
de Bessel, car

bes0 (z) — f cos (z sen co)do — f cos (z cos c.t: j TO J
0 0

Lorsque z croit indefiniment, les lignes trigonometriques
de cette deuxieme integrale, sous le signe d'integration, n'ont
pas de limite, mais passent de cos (+ z) ä cos (— z), c'est-ä-dire
de + lä — letde — lä + 1. Par cela les formules ne disent

plus rien, elles sont illusoires.
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Exemples.

21. — Prenons quelques exemples. Pour chaque cas particu-
lier il s'agira seulement d'ecrire, sans les resoudre, les formules
finales (18) et (18bis), l'equation donnant (0S + 7]s) maximum
et l'equation donnant les p2.

22. — Cas de la sphere (voir figure 1). II est preferable de

choisir comme variable s plutöt que I. On aura:

Z Re a D — R, 6 0,
xs(l) D — R cos e y (I) — R sen e

arc tan"
R sen e

° D — R cos e
Ps — Ft2 + D2 — 2RD cos e

Origins

Sou rce I / X

2)

Fig. I.

qu'il faut introduire dans (18) ou (186 is) pour ce cas. En outre,

d9s
_ D cos £ — R

de ~ D2 + R,2 — 2RD cos e
'

arc tang flde x

2XRD sen £

(X2 + R2 + D2 — 2RD cos e) \/R2 + D2 — 2RD cos e

Pour cette raison, la valeur de e (appelons-la Sj) separant les

points anterieurs (equation 18) des points posterieurs (equation

{18 bis), est donnee par l'equation:

D cos e1 — R 2XD sen ex

VR2 + D2 — 2RD cos Ej
X2 + R2 + D2 — 2RD cos ex

0

(19)
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Mais on obtient une valeur de £2 en bonne approximation,
au cas ou l'obstacle est place ä au moins quelques milliers
de X de la source, en ecrivant:

Vd2 — R2
s, presque arc tang r>K

equation obtenue simplement au moyen de la tangente ä la

sphere menee par la source. Pour avoir aussi l'equation donnant

p2, appelons s2 la valeur (reelle ou imaginaire) de s telle

qu'on ait:
p2 \/R2 + D2 — 2RD cos s2 (20)

pour la definition des cos des arcs imaginaires, voir: Genocchi-

Peano, Calcolo differenziale, Turin, Bocca freres editeurs, 1884,

page 215, ou G. Peano, Calcolo infinitesimale. On aura alors

pour la sphere:
R sen s.

it p„ arc tang 5=—r"' 0 D — R cos e2(dx.on a aussi pour les X d s2 X

equations (17) et (17bis): * 'P2'
x8 + p8

~ P2 X8 + 0" '
2 dzi

1 Rsen<2 V/R2+D2-2RDcoSä2\ I D-R
arctg —-—- + arctg ; arctg—-—

X — e2t\ D-Rcoss2 0 1. J e2® X

1 / Rsens2 /R2+D2-2RDcos52\
r- I arctg — + arctg

p _ e2-V D-Rcoss2 X _
1 („rrf~ Rsenu .rrt„ 1/R2 +1)2-2R.Dcos.,\ 1 D-R

_ 2e2,laretgD^5571 + aretg
1 l) + _

II faut introduire ces valeurs particulieres (20) de p2 et de

x'(p2) dans l'equation (17) ou (ilbis) pour obtenir l'equation
donnant £2; nous obtiendrons ensuite p2 ä 1'aide de l'equation
(20).

23. — Cas du disque mince (voir figure 2). Le premier contact
des ondes avec l'obstacle se fait sur l'axe. En plus: a D,
b 0. En ce meme point, mais dans la face posterieure, les

ondes cessent de toucher l'obstacle sur cet axe, car, si l'on
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emploie l'equation (186is) pour evaluer V sur la face posterieure
et dans le centre de cette face, l'integrale vaut tc et Vr p 2

n'est pas nul. C'est-ä-dire qu'il y a encore de la lumiere, sauf

aux endroits des anneaux, s'il y en a de reels. Le demi-contour
meridien du disque est le double, aller et retour, de la distance

Source

Origins

Fig. 2.

du centre de la face anterieure au bord et du bord au centre
de la face posterieure. Si I est donne pour un point determine
de l'espace et si le point du disque pour lequel I a la meme
valeur se trouve sur la face anterieure, on aura:

xg(l) D ys (I) I equation (18)

tandis que si le point du disque caracterise par le meme para-
metre I est sur la face posterieure, on aura:

xg(l) D ya(l) 2R — I equation (18fcis)

Les points oü (0S + v)g) est maximum se trouvent au bord,
car 0S et v)s croissent et decroissent simultanement, c'est-ä-dire:

#s+*s 1 / R FR2 + D2\—— max — are tang + arc tang j

Pour obtenir l'equation donnant les p2, appelons y2 les ordon-
nees cartesiennes (reelles ou imaginaires) correspondantes.
Nous aurons alors:

x(p2) arc tang p2 (/y\ + D2 (21)
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On en tirera, pour en faire usage dans l'equations (17)

ou {ilbis)-.
d y.

*' (P2I
_dVt
d ps

dyi

+

1 / x y2
--(^arctg—+ arctg

A e

X* + p* «Ps x' + (yl + D

^+ D D
arctgy

P e
h (arctg!f+aretgVT°)

_ 2et
R /R2 + D2\

arctg + arc tg J
I t D

„SarctgI

Nous avons done toutes les valeurs qu'il faut introduire dans

les equations (17) et (17&is) pour avoir y2, et apres cela les p2,

ce qui nous permettra ensuite de faire usage des equations (18)

et (18&is).

24. — Cas du tore ä section circulaire (voir figure 3). Par
revolution d'un cercle autour d'un axe de son plan qui ne le

Qrigfne

Source

Fig. 3.

coupe pas, on obtient le tore ä section circulaire. Ce tore est

touche par les ondes pour la premiere fois au point M sur la
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droite passant par la source et par le centre 0 de la section
circulaire. II est moins facile de dire quel est le point oü les
ondes quitteront definitivement le tore. L'origine des I est M.
Les coordonnees de M sont:

a D R
D

Vd2
B — R

B

\/D2 + B2

Comme le point S de la parallele ä l'axe passant par O a les

coordonnees (D — R) et B, on a:

xs(l) D — R + R cos |e — arc tg,
ys (I) B + R sen — arc tang^ •

Pour obtenir le point oil il faut remplacer l'equation (18)

par l'equation (18bis), il suffira de deriver par rapport a e et

d'egaler ä zero la somme des deux expressions:

y B + R sen (z — arc tang ^
ft arc tang — arc tang —; ^' ,*)

(22)

D — R + R cos s — arc tang

arc tang
j/x

arc Ig

y/ B + R sen — arc tg D — R + R cos (s — arc tg^

(23)

Nous obtiendrons d'une maniere presque identique la valeur
inconnue s2 (reelle ou imaginaire) telle qu'on ait:

V B + R sen I e2 — arc tg + D — R + R cos I £2 — arc tg

car nous pouvons ecrire les equations (22) et (23) pour p2 et e2,
ainsi que l'equation (17) ou (ilbis), qui donnera en premier
lieu s2. De meme pour A et P.

25. — On voit que les cas particuliers des corps de revolution
sont faciles ä resoudre, sauf la resolution, pour chaque cas
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particulier, de l'equation definissant le maximum de (0S + rls)

et de celles definissant les p2 des anneaux obscurs.
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1 Plusieurs cas particuliers.
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