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ETUDE SUR

(UELQUES FORMULES RELATIVES AU RAYONNEMENT

ET

LEURS APPLICATIONS ASTRONOMIQUES

PAR

P. ROSSIER

REsuMmE.

Les déterminations de magnitudes bolométriques reposent,
dans I'état actuel de la technique des mesures, sur le calcul
de la différence « magnitude apparente — magnitude bolo-
métrique = index absolu» Ce calcul peut étre effectué en
supposant connue la courbe de sensibilité de I’ceil. On obtient
une valeur approximative en supposant cette sensibilité
concentrée sur une longueur d’onde unique. C’est 14 I'hypothese
fondamentale de M. Russel. Au contraire, M. Armellini suppose
constante la longueur d’onde effective. Ces deux hypotheéses
sont identiques dans le fond et constituent un cas particulier
d’une théorie plus générale élaborée par ’auteur.

On peut enfin supposer valable dans un domaine de tempé-
rature d’autant moins étendu qu’elles sont plus précises,
diverses formules empiriques donnant la brillance visuelle du
corps noir en fonction de la température. Ces formules per-
mettent la détermination de la température d’étoiles de diametre
apparent connu, le calcul d’indices absolus visuels et parfois
de la température du Soleil.
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Malgré les caractéres tres dissemblables de ces formules, la
cohérence des résultats est satisfaisante, la théorie générale
citée ci-dessus est ainsi confirmée,

I. INTRODUCTION.

1. — Les recherches sur le rayonnement des corps lumineux
et leurs applications & la science ou & la technique de I’éclairage
peuvent étre orientées de deux facons tres distinctes. Le
premier probléme qui se pose est de déterminer la puissance
rayonnée par le corps incandescent étudié. Dans le cas du corps
noir, la loi de Stéfan donne la solution du probléeme. On peut
ensuite se proposer d’analyser ce rayonnement et de déterminer
sa répartition dans le spectre en fonction de la longueur d’onde.
Ici, dans le cas du radiateur intégral, I'équation spectrale de
Planck donne satisfaction. Ces deux lois reposent sur une base
théorique tres stre fournie par la physique mathématique.

Mais, dans les applications, la plupart des récepteurs sont
sélectifs; I'étude de la sensibilité est le point de départ indis-
pensable & toute recherche, & moins qu’on ne réussisse a 1’éli-
miner par un artifice de raisonnement approprié. Il a été possible,
dans quelques cas, de procéder & cette élimination.

On a pu aussi indiquer des formules empiriques, donnant
la brillance visuelle d’un corps incandescent; ces formules ont
été vérifiées dans un domaine de température assez limité;
elles ne reposent sur aucune base théorique, puisque une théorie
physique de I'ceil est impossible par principe.

Dans toutes les applications & I'astronomie, on est conduit &
extrapoler sur la température. Si cette extrapolation a une
signification précise lorsqu’il s’agit de lois ayant une base
théorique solide, elle est trés hasardeuse dans le cas des formules
empiriques. Mais si plusieurs formules d’origines différentes
donnent des résultats cohérents, dont quelques-uns peut-étre
vérifiables par d’autres méthodes, les conséquences de ces
extrapolations peuvent avoir un sens assez net.

Nous nous proposons de montrer, dans un cas particulier,
comment, dans une recherche relative a I'index absolu visuel,
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M. Armellini a réussi a éliminer la sensibilité de I'ceil. Nous
appliquerons ensuite quelques formules empiriques au domaine
astronomique et nous confronterons tous ces résultats avec nos
propres recherches, basées sur I'étude préalable de la sensibilité
spectrale des récepteurs et de I'ceil en particulier.

2. — Afin d’éviter des répétitions, indiquons ici quelques
définitions et rappelons quelques formules.

Appelons p la magnitude de 'unité de surface d’une étoile.
u est une fonction de la température sur laquelle nous ferons
successivement diverses hypotheéses.

La magnitude absolue M d’une étoile de rayon r est

M=A—5logr+ u. (1)

A est une constante dépendant des unités choisies.
La magnitude absolue est liée & la magnitude apparente m
et la parallaxe = par la formule

M=5+m-++5logn.
Eliminons M. On obtient la relation
logm = 02A —1—02m — logr — 02 . (2)
Cette équation contient le produit
Tr = pg ,

ou d est le demi-diameétre apparent de 1’étoile et p le demi-grand
axe de l'orbite terrestre. Remplacons dans la formule 2. Il
vient

logd = 02A —1—1logp—02m — 02 . (3)

Dans la suite, nous prendrons le rayon du Soleil comme
unité. Nous admettrons sa magnitude absolue visuelle égale &
4,83 et sa température effective a 6200°.

La constante A est ainsi déterminée et log p = 2,33244.

II serait facile de citer de nombreuses possibilités de vérifi-
cation des formules précédentes. I.’étude de variables a éclipses,
celle des étoiles nouvelles, des céphéides, les considérations
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modernes sur la constitution des étoiles, les mesures interféro-
métriques fournissent de nombreuses valeurs numériques
permettant ces controles.

Les deux formules donnant la magnitude absolue et la
parallaxe font intervenir la magnitude apparente, la tempé-
rature et le rayon. Au contraire, dans celle relative au diamétre
apparent, n’apparait qu'une seule grandeur qui n’est pas un
résultat d’observation, la température. Nous nous contenterons
donc de la vérification la plus siire, consistant en I'application,
aux étoiles observées a l'interféromeétre du Mont-Wilson, de
la formule relative au diameétre apparent. I.’inconvénient est
de limiter la vérification a des géantes froides. Nous aurons
d’ailleurs d’autres vérifications plus étendues, fournies par la
théorie de I'index absolu visuel.

Le calcul de la température d’étoiles de diametre apparent
connu conduit a la résolution de 1'équation

o(T) = 0,2A — 3,3324% — 0,2p = log 8 + 0,2m .

La fonction ¢ (T) dépend évidemment de I'hypothése faite
sur .

Indiquons ic1 une fois pour toutes les données que nous
admettrons pour cette vérification.

Etoile S&%ffa] m 5 log <(T)
« Bouvier . . Ko 0,24 | 07,012 2,079 | — 1,873
e Pégase . . . Ko | 2,54 | 07,0062 | 3,624 | — 1,868
v Aigle . . . . K2 | 2,80 | 07,0042 | 3,624 | — 1,816
o Taureau . . K5 1,06 | 07,010 2,000 | — 1,788
« Orion . . . Ma | 0,92 | 07,0235 | 2,371 | — 1,445
« Scorpion . . Ma | 1,22 | 0,020 2,301 | — 1,455
B Pégase . . . Ma | 2,61 | 07,0105 | 2,021 | — 1,457
« Hercule . . Mb 3,48 | 07,015 | 2,176 | — 1,128
o Baleine . . . Md | 2,0 07,028 | 2,447 | — 1,153

Les valeurs relatives a o Baleine sont trés incertaines, eu
égard a sa variabilité.
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3. — Nous appelons «index absolu» visuel la différence
« magnitude visuelle — magnitude bolométrique » . Dans deux
mémoires antérieurs, nous avons donné une théorie de I'index
absolu et de plusieurs probléemes d’astrophysique 2. L’hypothése
essentielle de cette théorie est de poser, pour la sensibilité o
de Deeil "

Il nous a été possible de préciser le role des deux constantes A,
longueur d’onde du maximum de sensibilité et a, acuité de ce
maximum. Nous avons calculé des tables d’indices absolus
auxquelles nous comparerons les résultats fournis par les
diverses hypotheéses que nous ferons sur la fonction .

On démontre facilement les propriétés suivantes 3. L’index
‘absolu visuel est minimum pour une étoile dont la température
est les 5/, de celle d’un radiateur intégral dont le maximum
d’émission a lieu pour la méme longueur d’onde que le maximum
de sensibilité de I'ceil. Cette température est indépendante de

I'acuité du maximum de sensibilité. Elle est donnée par la
formule '

.
Tn = 75

ou b = 1,432 cm X degré.

1 Cette méme quantité est appelée «index de chaleur» par
M. MiNeEur (Photographie astronomique, Paris, 1934), en accord
avec quelques auteurs américains (PerriT et NicHoLson, Stellar
radiation measurements. Astrophysical Journal, 68, 1928). Le terme
d’index absolu a été utilisé par M. Brill dées 1922 (Spektrophoto-
metrische Untersuchungen, Astronomische Nachrichten, 217, 218).

2 P. Rossier, Sensibilité spectrale des récepteurs d’énergie
rayonnante. Archives (5), 16, 17; Publications de I'Observatoire de
Genéve, fasc. 27-29, 1935.

Sensibilité des recepteurs d’énergie rayonnante 11, Archwes (5),
18; Publications de I'Observatoire de Genéve, fasc. 32- 33 1936.

Nous citerons ces deux mémoires par les rappels I ou II.

Voir aussi G. Tiercy, L'éguilibre radiatif dans les étotles, ch. XV,
Paris, 1935. : ;

3 1, §19, 41, 46, 47, 48.

A, )
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La variation de I'index absolu en fonction de la température
présente une inflexion pour une température un peu supérieure
au double de la température correspondant au minimum. Le
rapport de la température de l'inflexion a celle du minimum

est
1+\/1+[‘~
a

L’index absolu visuel du Soleil est minimum.

La méme hypotheése permet d’établir une théorie satisfaisante
de la longueur d’onde effective 1. Dans le cas du spectre normal,
elle est donnée par la formule

1 b
= rs(on 1)

On peut parfois, dans certaines applications, admettre
Pinfinité de I'acuité a, ce qui simplifie certaines formules. Cela
est impossible dans la théorie de la longueur d’onde effective
sans étre conduit & la conclusion inadmissible que la longueur
d’onde effective est indépendante de la température.

Pour I'index absolu, ’hypothése de I'infinité de 'acuité est
admissible, si on se borne a ne considérer que des températures
suffisamment voisines de celle du minimum de 'index.

Nous avons appelé longueur d’onde colorimétrique la lon-
gueur d’onde correspondant au centre de gravité de 'aire
limitée par I'axe des longueurs d’onde et la courbe de répartition
de I'énergie dans le spectre. Nos hypothéses permettent de
poser 2

a+ 5
C_a—f—?)la'

Indiquons enfin que la magnitude absolue est donnée par la
- formule 3

b
M=A—5logr + 1,086 (a + 4) Log(i +a)\ T) .

v

11, § 28, 34, 43, 44.

* 1,829

8 I, § 11. Log et log signifient respectivement logarithme naturel
et logarithme décimal.
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II. THEtORIE DE L'INDEX ABSOLU DE M. ARMELLINI.

4, — M. Armellini propose, pour I'index absolu, une expres-
sion de la forme?!
b

La constante A’ est une certaine longueur, liée a la longueur
d’onde effective et de 'ordre de grandeur de celle-ci.

Le raisonnement de M. Armellini est ingénieux. Indiquons-en
Pessentiel, en utilisant nos notations et nos définitions, qui
different quelque peu de celles de I'auteur.

Rappelons que I'on a, pour l'index absolu I, relatif au
récepteur r

I =m.—my,

ou m, et m; sont les magnitudes relatives au récepteur r et a
un appareil bolométrique.

dl
d-—t’
puis, par une intégration, nous trouverons la formule 1. Pour

cela, dérivons I’équation de définition et examinons successive-
ment les deux termes du second membre.

Nous allons établir une équation donnant la dérivée

dl dm dmb

r
dT ~ dT  dT
5. — Considérons d’abord le terme relatif & la magnitude
bolométrique. La loi de Pogson peut s’écrire
my = A — 1,086 LogE, ,
ou E, est la puissance rayonnée.

Supposons que la répartition de I'énergie dans le spectre de
I'étoile est donnée par la loi de Wien; la puissance rayonnée est

o b
B, =C [P “dx.
0

1 ArMELLINI, Trattato di astronomia siderale, 1, p. 175.
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Pour faciliter I'intégration, introduisons le nombre d’ondes
z = A1 il vient

=) bx
dlﬂﬁi—:‘:_ et Eb=Cl[.x3e Tdz .
0

Dérivons par rapport a la température T; on peut le faire
sous le signe d’intégration, puisque les limites d’intégration
sont indépendantes de la température. On a donc

dEb b i b

_ b0 _ Y D
AT Cszfx e Tdzx .

Intégrons par parties, en posant

bx T bx

t = u ; e Tdx = dvo et p = ——e T .

11 vient

co

i b o b
fa:4e Tdr = [— x‘le—'_f] -+ E_’I_‘ [’x“e T dx .
b 0 by

o

L’expression entre crochets est nulle aux limites. On a donc

dE . ~ dm dE I
s Y~ P PPN N L
ar — T, daT = "E, dT T

6. — Examinons maintenant le terme relatif 4 la magnitude

visuelle. On a comme ci-dessus

dm 1,086 4E
s e 3 __v — — ———’ . —v .
m,= A—1,08LogE, et 7T E a7

Appelons o () la sensibilité de I'ceil en fonction du nombre
d’ondes z. L'éclat E, est

o bx
E, = cfa(x)xse*de .
0
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Comme pour la magnitude bolométrique, dérivons par
rapport & T. o (x) est indépendant de T. On a done

d C[I z)zte de.

Appelons X le nombre d’ondes colorimétrique, c’est-a-dire
le nombre d’ondes correspondant au centre de gravité de I'aire
limitée par I'axe des x et la courbe de répartition de I'énergie

apparente dans le spectre, en fonction du nombre d’ondes z
On a

C[I x) xte de.

Remplagons I'intégrale par son expression en fonction de la
dérivée de E,; il vient '

X est évidemment fonction de la température de I'étoile
considérée et de la courbe de sensibilité du récepteur. L’expé-
rience montre que X varie relativement peu, car I'ceil est tres
sélectif. Admettons sa constance.

7. — La dérivée de 'index est

dl & b
I s (-5 x).

L’hypothése de l'indépendance de X de la température T
permet I'intégration immédiate. Il vient

I = 1,086(4L0gT -l-in;Iq) + B,

ou XA’ = 1. Pour les calculs numériques, les logarithmes déci-
maux sont plus commodes. On a alors

I = 10 log
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8. — Le probléeme est maintenant de déterminer X. Dans
le cas de I'ceil, M. Armellini pose XA, =1, ou A, est la longueur
d’onde du maximum de sensibilité de I’ceil.

Reprenons la chose d’un peu plus haut. Appelons E(A) = E(x)
la fonction donnant la répartition de I'énergie apparente dans
le spectre de I’étoile en fonction de la longueur d’onde A ou du
nombre d’ondes z. Pour abréger I'écriture, posons

Iz, n) =fx“E(x)dx et I (n, n) =fl“”E(1)d1 .
0 0

Le changement de variables zA = 1 donne
Jy(A,n) =J(x,n—2) .
Pour le nombre d’ondes colorimétrique X, on a
XJ(z,0) =J(z, 1),
et pour la longueur d’onde colorimétrique A,

A di(2, 0) = T, 1),

ou, en opérant le changement de variables A = 1,

A (@, —2) = Tz, —1) .

A, et X ne sont donc généralement pas inverses I'un de
I'autre. Il faudrait pour cela que la répartition de I’énergie
apparente dans le spectre fit représentée par une fonction E
telle que

J(z, 00 x J(z, —2) = J(z, 1) x Tz, —1) . (1)

Les équations spectrales de Wien et de Planck ne satisfont
pas & cette équation. Examinons d’abord la fonction de Wien.
I1 vient

% bx

J(z, n) = [.m“"'?’e_Tdaz = J'(z, n+3),
0

e b
Juh, m) =[x e mdn = J(n, n+5) .
0
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Le méme raisonnement que ci-dessus donne

2 Xz, 8) =3z, &Iz, 2) .

c

Or!?

Co

* —ax
/x“e' d:L‘ =
0

o !
Chaly

L’équation 1 devient

4
A X(@Bl)E=41.2] ou 1X=§-

C

L’équation spectrale de Wien ne satisfait donc pas a la
relation 1. Celle de Planck peut étre considérée comme la
somme d’une série dont le premier terme est la loi de Wien.
Elle ne satisfait done pas 4 la relation 1.

Le nombre d’ondes colorimétrique X n’est donc généralement
pas l'inverse de la longueur d’onde colorimétrique.

Calculons ces deux grandeurs,' dans le cas bolométrique.
11 vient, en appliquant les formules précédentes

_ b 5 ko
Y =35 =3 X T gha

La longueur d’onde colorimétrique obéit & une loi analogue a
celle du déplacement de Wien. Elle est inversement propor-
tionnelle au nombre d’ondes colorimétrique, mais ces deux
quantités ne sont pas inverses.

Exprimons I'équation spectrale de Wien en nombre d’ondes.
bx

La densité d’énergie dans le spectre est z%¢ T . Le maximum
a lieu pour

Dans un spectre dispersé proportionnellement au nombre
d’ondes, le maximum d’énergie a lieu pour le nombre d’ondes
inverse de la longueur d’onde colorimétrique.

1 Voir, par exemple, I, § 10.
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9. — Supposons valable I’hypothése rappelée plus haut 1,
consistant a poser, pour la sensibilité de I'ceil

A 1_.2 a
o(A) = (;oe 7‘) = ()\Uxel—)‘vx)a .

Si I’équation spectrale de Wien est applicable, la longueur
d’onde colorimétrique est X, ou

& bx

co
b
X - f(lvxei_lvx)axae Tde = [‘(lvxeihﬂ“vx)am“e T dx .
0 0
Les intégrales indiquées précédemment ? peuvent étre
calculées et on trouve pour le nombre d’ondes colorimétrique

4
X a + 4 . 1+E
= b . b
a)\v—}—? )\v-r-ar—l‘-
On a done
e+ 4 1 _ath
ch—a+3_1+a+3 et X)‘a_‘a+5

La constance de X entraine celle des longueurs d’onde
effective et colorimétrique. Cela ne peut avoir lieu que pour
une acuité infinie. Dans ce cas, la longueur d’onde et le nombre
d’onde colorimétriques sont inverses I'un de I'autre. Ce sont
la les hypothéses implicitement faites par M. Armellini.

Pratiquement, les acuités sont de l'ordre de 50 dans les
applications astronomiques. On a alors X X A, = 1,02. On ne
peut plus alors admettre la constance de la longueur d’onde
effective.

10. — Reprenons maintenant le raisonnement de M. Armellini.
Remarquons que la premiére partie de lJa démonstration 3 peut

1 §3.
2 Voir § 8oul §10.
3 Voir plus haut, § 5.
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étre effectuée beaucoup plus simplement en se basant sur la loi
de Stéfan. On a

B, = aT¢, dot 2 = o -

Cette derniére formule suppose seulement la validité de la
loi1 de Stéfan, mais aucunement celle de I'équation spectrale
de Wien.

D’autre part, le deuxiéme terme de M. Armellini ! peut étre
obtenu par un procédé tout différent, di, semble-t-il, &
M. Russel 2. '

Supposons le récepteur sensible & 'unique longueur d’onde A,
Admettant la validité de la loi de Wien, la magnitude d’une
étoile de température T est

‘ 4 s , 1,560
m, = A — 1,086 Log ()\v e "vT) = A + 12,5log %, + T :

L’hypothése de la sensibilité concentrée sur une longueur
d’onde unique conduit donc 4 une expression de méme forme
que celle de M. Armellini.

M. Tiercy a montré que le raisonnement de M. Russel donne
nécessairement une formule plus compliquée, si I'on remplace
I'équation spectrale de Wien par celle de Planck, mais que les
termes correctifs ont peu d’importance 3.

Nous avons montré I'équivalence de I'hypothése de
M. Armellini, constance du nombre d’ondes colorimétrique,
et de celle de la sensibilité concentrée sur une longueur d’onde
unique de M. Russel. On peut faire a celle-ci le reproche de
confondre une magnitude qui s’étend nécessairement a4 un
domaine fini de longueurs d’onde avec I’expression, dans une

1 Celui discuté au § 6.

2 RusserL, Ducan, Stewart, Astronomy, 11, p. 733.

G. Tiercy, Une formule fondamentale de I’astrophysique. Le
calcul de I’index de couleur. Archives (5), 10; Publications de I'Obser-
vatoire de Geneéve, fasc. 6, 1928, ‘

3 G. Tiercy, Le calcul de I'index de couleur, loc. cit.

L’équilitbre radiatif dans les étoiles, ch. XIII, p. 294, Paris, 1935.
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échelle logarithmique, d'une densité de puissance dans un
spectre. L’avantage de I'artifice de M. Armellini est d’éliminer
cette difficulté. I1 suffit de considérer comme un fait d’expérience
la presque invariabilité de X avec la température.
Remarquons enfin que l'application aux céphéides de la
théorie de I'index de couleur, basée sur I'hypothése de la sensi-
bilité concentrée, conduit a des difficultés qu’a signalées

M. Tiercy 1. Il en est donc certainement de méme pour celle
de M. Armellini.

11. — On peut obtenir une formule analogue a celle de
M. Armellini, mais en évitant I'hypothése de la sensibilité

concentrée. Nous avons rappelé 2 qu'on peut exprimer I'index
absolu par la formule

I = 1,086 (éLogT + [a + 4] Log[l + axb ’I‘]) Fa-
v

Remplagant le logarithme du bindme par le premier terme
de son développement, il vient

. a+ 4 b
I = 1,086 (4LogT + o "'F) + A,

v
expression dont le terme algébrique est linéaire en T~!, comme
dans la formule de M. Armellini. Ce développement en série
n’est justifié que si le produit aT est suffisamment grand, donc
pour des acuités élevées et des étoiles chaudes.

Sauf dans le cas de I'acuité infinie, le facteur de 5T! est
supérieur au nombre d’onde colorimétrique, car

X — a+ &
a).v—i——TT

1 G. Tiercy, L’étoile variable S Sagittae. Archives (5), 10; Publi-
cations de U'Observatoire de Genéve, fasc. 5 (1928).

Le calcul de I’index de couleur, loc. cit.

L’équilibre radiatif dans les étoiles, loc. cit.

2 §3
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Cependant, I'erreur faite est compensée en partie dans la
formule de M. Armellini, au moins qualitativement, par le fait
que le premier terme négligé du développement tend a dimi-
nuer I dans la formule développée ci-dessus.

Les formules considérées ici sont linéaires en 4T'. Elles ne
peuvent donner des résultats satisfaisants que pour de faibles
variations de température autour de celle du minimum de
I'index absolu; cela sera par exemple le cas pour 'index absolu
visuel et le Soleil, mais 'application en est hasardeuse si on
I'étend & des observations visuelles d’étoiles trés chaudes ou

trés froides ou & des observations photographiques d’étoiles
solaires.

I1I. FormMUuLE pDE M. HERTZSPRUNG.

12. — En 1906, M. Hertzsprung a proposé une formule
donnant la puissance apparente rayonnée par un corps noir en
fonction de la température!. Pour obtenir cette fonction,
M. Hertzsprung détermine une courbe moyenne de la sensi-
bilité de I'ceil en fonction de la longueur d’onde; il utilise pour
cela diverses valeurs connues & l’époque. Par une intégration
graphique, il détermine la brillance du corps noir en fonction

!

du quotient 7}[),—; b" est la constante figurant au numérateur

de 'exposant de 1'équation spectrale de Wien. M.Hertzsprung
pose b’ = 14580 microns X degrés.

Une remarque subtile a permis & M. Hertzsprung de trouver
une forme de la fonction représentant la brillance B en fonction
de &' T, 1l effectue I'intégration pour des valeurs de log b’ T™*
variant en progression arithmétique: il calcule les différences
du premier ordre et remarque que ces différences croissent
pratiquement en progression géométrique. Voici d’ailleurs, en
unités arbitraires, les chiffres indiqués par I'auteur.

1 E. Herrzsprung, Ueber die optische Stiarke der Strahlung des
schwarzen Korpers. Zeitschrift fiir wissenschaftliche Photographie, IV,
1906.

ARcHIVES. Vol. 19. — Mars-Avril 1937. 6
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% log B Différences Rapport
1
20 2,641
7,088
10 9,729 1,9049
3,721
5 13,450 1,9053
1,953
2,5 15,403 1,9052
1,025
1,25 16,428

Admettant 'exactitude de ce fait, il est facile de trouver la
fonction brillance B. Les différences du tableau sont propor-
tionnelles aux valeurs de la dérivée du logarithme de B prise
par rapport au logarithme de b’T~!. Cette dérivée est une
fonction exponentielle de Log &' T :

’

b
d LogB _ ea+pLogT .

bl
d Log?
Une intégration donne
e* [ b\
La constante 3 est

__ log1,9052

=== = >~ () .
B o2 0,9297 v 0,93

Finalement, M. Hertzsprung admet la formule suivante que,

pour abréger, nous appellerons formule H,
: b.r 0,93
logB = 17,56 — 0,92 (—,1-,—) .

Compte tenu de la loi de Pogson, la magnitude visuelle u.
de I'unité de surface d’un corps noir de température T est

b —0,93

A est une constante d’étalonnage.
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13. — Considérons un réseau d’isothermes de Planck. Chaque
courbe entoure, sans les couper, toutes celles correspondant a
des températures inférieures. Supposons constante la courbe de
sensibilité de I'ceil. Tragons un nouveau réseau d’isothermes
représentant la puissance apparente visuelle en fonction de la
longueur d’onde. Ce nouveau réseau se compose de courbes
dont chacune entoure, sans en couper aucune, toutes celles
correspondant & des températures inférieures. C'est dire que
la brillance visuelle croit toujours avec la température. Cela
reste vrai, tant qu’on reste éloigné des conditions d’éblouisse-
ment. Autrement dit, la quantité p doit étre une fonction
décroissante de la température. C’est bien le cas avec la for-
mule H; d’apres elle, p. décroit d’autant plus lentement que la
température est plus élevée.

14. — Appliquons maintenant cette formule aux problémes
esquissés dans notre introduction.
La magnitude absolue d’une étoile est

M= C—5logr + 17120 T %% .
C est une constante d’étalonnage. D_éterminons-la au moyen
du Soleil. Il vient C = — 0,25.

Calculons la parallaxe et le diamétre apparent

logm = 0,2C — 1 — logr — 0,2m + 3428T %%
= —1.050 — logr — 0,2m + 3428T"% .

log 8 = 0,2C — 3,332 — 0,2m + 3428 T *%
= — 3387 — 0.2m -} 2T .

15. — La formule en log 3 donne
@ (T) = 3428 T *® — 3,382 = log 8 + 0,2m .

Une table de ¢ (T) est commode pour la résolution de cette
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équation. Nous la limitons & la partie utile pour les géantes
froides.

T | em T +(T) T | em
2000 | — 0,464 | 3000 | — 1,381 | 4000 | — 1,850
2200 | — 0,711 | 3200 | — 1,497 | 4200 | — 1,918
2400 | — 0,919 | 3400 | — 1,601 | 4400 | — 1,980
2600 | — 1,096 | 3600 | — 1,693 | 4600 | — 2,037
2800 | — 1,248 | 3800 | — 1,776 | 4800 | — 2,089
3000 | — 1,381 | 4000 | — 1,850 | 5000 | — 2,137

Les températures des étoiles que nous avons retenues sont
les suivantes:

Etoile s;?é%%fal IT):;%% Eiaile s&%%real Eéﬁ'
« Bouvier . K0 | 4070 | ¢ Pégase . . K0 | 4050
v Aigle . . . K2 | 3910 o« Taureau . . K5 | 3830
o Orion . . Ma | 3110 o Scorpion . Ma | 3130
B Pégase . . Ma | 3130 o Hercule . . Mb | 2640
o Baleine . . Md | 2670

Ces valeurs sont tout a fait normales. Cela montre la validité
de la formule H pour les géantes froides. Comme, d’autre
part, la formule a été étalonnée sur I'étoile naine qu’est le
Soleil, elle doit étre applicable & toutes les étoiles froides.

16. — Considérons I'index absolu visuel. Il est donné par la
formule

I=M-M, = +10logT = D + 17140T""* 4 4,343 Log T .

D est une constante que l'on choisit souvent de fagon a
annuler I'index absolu minimum.
Dérivons:
al
aT
d2—I
dT?

= T (4,343 — 15940 - T~ %)

= T7%(1,93 - 15940 T~ "** — 4,343) .
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L’'index passe par un minimum pour T, = 6810°. Sa
variation en fonction de la température est linéaire pour
T; = 13810°. Le rapport de ces deux températures est 2,023,
donc légérement supérieur a 2, comme lindique la théorie
générale 1.

Rapprochons ces deux températures de leur expression dans
cette théorie:

b T; , 4
Tm =%, T——”\/HE‘

m

On en tire

Ay = 5,26 -10°cm et a = 70,7 .

M. Eddington a calculé une table d’indices basée sur la
formule H. Nous P'avons discutée en détail ailleurs 2. La
confrontation de ’ensemble de la table avec notre théorie nous
a fourni les valeurs suivantes

A, = 5,31 x 107° cm et a — 50,1 .

Ces valeurs sont probablement plus sires que celles indiquées
plus haut, qui ne sont données que par deux singularités dont
I'une, I'inflexion, est de par sa nature, mal définie physiquement.
L’ordre de grandeur est le méme, car 'index absolu est peu
sensible & la variation de lacuité 3; cela résulte d’ailleurs
immeédiatement de la possibilité d’obtenir une approximation
raisonnable en posant ¢ = .

La valeur 5,26 X 10~° c¢m est un peu faible pour la longueur
d’onde du maximum de sensibilité de I'ceil. Cest cette valeur
trop faible qui conduit & une température un peu trop,élevée
pour le Soleil, si 'on admet que I'index absolu de cet astre est
nul. Il semble donec que la formule H doive subir une modifi-
cation. La premiére qui se présente est de remplacer la valeur

TR I

§ 3.
I, § 48.
I, §19, 21.

-
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peu exacte de &' = 1,458 cm X degré par une autre plus
moderne, 1,432 cm X degré. Il vient ainsi

I =D+ 16856 T~%" + 4,343 Log T ,

% = T1(4,343 — 15676 T~%%)
2
%T,Ié = T7%(1,93 - 15676 T~"* — 4,343) .

Le minimum et l'inflexion ont lieu respectivement pour
T,, = 6690° et T; = 13560°. La premiére valeur est proba-
blement encore un peu élevée. La deuxiéme est satisfaisante.

Concluons en remarquant l'accord frappant de la théorie
basée sur la formule H et notre théorie générale. Ce contrdle
réciproque renforce la valeur de I'une et de 'autre.

IV. — FormuLE DE M. FaABry.

17. — Pour la brillance du corps noir, M. Fabry indique la
formule empirique suivante !:

4 4 4\ 2
logB = 7,1842 — 1,1444 (1,10,—) + 0,00736 (%) ,
ou
4 4\ 2
Log B = 16,5422 — 2,63508% + 0,01695 (%) ,

Pour abréger, nous I'appellerons la formule F. L’unité
choisie est la bougie X ecm™, |

Une telle formule résulte évidemment d’une représentation
par un développement en série de valeurs expérimentales. Elle
n’a aucune base théorique. Vérifiée dans un domaine de tempé-
rature nécessairement assez limité, elle pourra donner des
résultats absurdes par une extrapolation trop poussée.

Elle n’est d’ailleurs applicable qu’a partir d’une température

suffisamment élevée, puisqu’elle donnerait B = + o« pour
T = 0.

1 Ch. FaBry, Cours de physique de I’Ecole polytechnigue, tome 11,
p. 591, Paris, 1933.
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Pour abréger, posons
LogB = a — B'r"i +~YT_2

avec B = 2,63501, y = 1695 x 107%, v = T x 1074
Dérivons:

dB -
g7 = Bt (Bt —27) .

Cette dérivée s’annule pour T = 130°. La formule F donne
donc & B une valeur croissante dans tout le domaine de tem-
pérature qui nous intéresse. Mais B tend vers une valeur finie
lorsque T croit indéfiniment. La question se pose de savoir
jusqu’ou la croissance de B est suffisamment rapide. Pour
cela, calculons la deuxiéme dérivée

da’B

S = BT {— 27 4 (6y — B + 4BYT— 4T}

Elle est nulle pour
52718 — 6,8412 + 0,1787t — 11,5 - 10~ = 0 .

7 est de 'ordre de 'unité, le dernier terme est négligeable, ce
qui conduit & T = 12700°.

Au dela de 13000°, la croissance de B se ralentit, la formule
doit perdre de sa valeur. Le domaine de validité, s’'il n’est
limité que par ces considérations, et nous verrons que cela
semble étre le cas, est remarquablement étendu.

18. — La formule F est exprimée en bougies X cm™. On
admet pour la brillance du Soleil, observé hors de 'atmosphére
terrestre, une valeur de Pordre de 190000 bougies x ecm™.
Calculons la température correspondante. Il vient T = 5920°..
Il s’agit bien 1a d’une température voisine de celle du Soleil;
la brillance du Soleil est connue avec si peu de précision qu’il

semble difficile de demander mieux.

19. — Calculons la magnitude absolue et tirons de son
expression celles du diameétre et de la parallaxe. On a

104 104
M=E—510gr+2,86'1 "—rI'—'"'—"J].Béc"“T'g_‘
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E est une constante. On pourrait essayer de la déterminer
en appliquant les considérations développées ci-dessus. On ne
tiendrait ainsi aucun compte de I'absorption atmosphérique
terrestre. Il est préférable d’admettre la valeur que nous avons
adoptée de la magnitude absolue du Soleil. Il vient ainsi

= 0,26 et

104 104

M = 026 —5logr + 2,861 - o — 184 - o -

La parallaxe est

5722 368000

logn = 02E —1 —0,2m — logr +

T T2
= — 0,948 — 0,2m — logr + 571?2 . 36?1‘0200 .

On a enfin, pour le diamétre apparent

5722 368000
T T2

5722 368000
T T2

logd = 0,2E — 3,332 — 0,2m +

= — 3,280 —0,2m +

Le dernier terme de ces formules est négligeable pour des
températures suffisamment élevées. Lie calcul montre que si
I'on tient & une précision du centieme de magnitude, le terme
en T ne peut étre négligé que pour des températures supé-
rieures & 13600°, valeur pour laquelle la validité de la formule
est incertaine. Si on se contente du dixiéme de magnitude, cette
limite tombe & 4300°.

20. — Pour le calcul de la magnitude absolue, nous avons
indiqué 1 la formule

b
M — A—5logr + 1,086 (a + &) Log (1 + T) -

()

Développant en série, il vient

. a+4 b a+ & b2
M = A——5logr—|—1,086 n 'TI'—_1’086—2;?—'ﬁ .
v a A,

183,
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L’identification des coefficients donne
Ay = 5,50 X 10°cm et @ = 405 .

La valeur de la longueur d’onde du maximum de sensibilité
est excellente. Quant & I'acuité, elle est beaucoup plus élevée
que toutes celles que nous avons eu I'occasion de déterminer
dans le domaine astronomique. Elle dépasse méme celles
trouvées au laboratoire, qui sont de lordre de 180 1. Cette
détermination ne doit d’ailleurs étre acceptée que sous toutes
réserves, eu égard au peu de convergence du développement
du logarithme.

21. — Pour la vérification numérique relative aux étoiles de
diamétre apparent connu, on trouve la formule

8000
@(T) = — 3,280 + §7$—2-- 36T2 = 0,2m -+ log 3 .

Quoique I'équation en T soit élémentaire, une table reste
d’un usage commode.

T e T 2 (T) T ¢ (T)
2000 | — 0511 | 3000 | — 1414 | 4000 | — 1,873
2200 | — 0,755 | 3200 | —1,528 | 4200 | — 1,939
2600 | — 0,960 | 3400 | — 1,629 | 4400 | — 1,999
2600 | — 1,134 | 3600 | —1,719 | 4600 | — 2,053
2800 | — 1,283 | 3800 | — 1,800 | 4800 | — 2,104
3000 | — 1414 | 4000 | — 1,873 | 5000 | — 2,150

Les étoiles considérées ont, d’aprés la formule F, les tem-
pératures suivantes: '

Etoile s&{%]rzl %ﬁ' Etoile slt)l;aségt)real gt%%
o Bouvier . KO | 4000 | ¢ Pégase . . Ko | 3990
v Aigle . . . K2 | 3840 o Taureau . . K5 | 3770
o Orion . . Ma | 3050 | o« Scorpion . Ma | 3070
B Pégase . . Ma | 3080 o Hercule . . Mb | 2590
o Baleine . . Md | 2630

11, §36.
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Ces valeurs sont tout & fait admissibles. Rappelons que
I'étalonnage a été fourni par le Soleil. La formule F est donc
valable pour les étoiles froides, jusqu’au type G en tous cas.

22. — Examinons maintenant l'index absolu. Il est donné
par la formule

28610 184 - 104

I=F+ = gz +10logT .
Dérivons:

71 - 28610 368 - 10%

=T (4,343—-‘ g )

azl 2 28610 542 . 104

I

Le minimum a lieu pour T,, = 6580°, température peu
supérieure i celle du Soleil. L’inflexion se présente a 12990°,

Remarquons la différence entre la valeur de la température
du Soleil déduite de la brillance, soit 5920°, et celle donnée par
les minimum de l'index absolu. Elle atteint 10 %,. Le peu de
certitude de la valeur de cette brillance rend difficile une
conclusion ferme.

D’autre part, Pinflexion de I'index absolu se produit & une
température quelque peu inférieure au double de celle corres-
pondant au minimum. La différence est faible. Il semble donec
possible d’admettre la validité de la formule F jusque vers
cette inflexion, soit en tous cas jusqu'a la classe spectrale A.
Pour nous en assurer, construisons une table permettant la
comparaison immeédiate de diverses valeurs de I'index absolu.
Prenons pour cela les valeurs suivantes 1, basées sur la for-
mule F, I, calculées par M. Eddington d’aprés la formule H,
I,, I, et I, établies d’aprés notre théorie générale et correspon-
dant aux valeurs suivantes des constantes de sensibilité:

A = 5,5 X 10 ¢cm a, = 50 .
A = 5,309 X 10°cm , a, = 50,1 .

% = 5,44 x 109cm | a; = 75 .
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Température Ir In I, I, I3
2000 4,37 - 3,93 4,21 4,24
2500 2.65 2,71 2,43 2,65 2,61
3000 1,62 1,67 1,51 1,67 1,56
4000 0,57 0,62 0,55 0,64 0,60
5000 0,15 0,18 0,15 0,20 0,17
6000 0,01 0,02 0,01 0,03 0,02
8000 0,09 0,06 0,08 0,05 0,07

10000 0,36 0,29 0,33 0,28 0,32
12000 0,68 0,58 0,64 0,57 0,59
15000 1,17 1,04 1,12 1,03 1,11
20000 1,95 1,77 1,87 1,77 1,86
25000 2,63 — 2,54 2,42 2,54
30000 3,24 s 3,13 3,01 3,07

Jusqu’a la température du Soleil, la formule F donne des
valeurs de I'index absolu appartenant au domaine de varia-
tion des valeurs connues. Au dela, elle donne des valeurs systé-
matiquement trop grandes. La différence est de I'ordre de
0,1 mag vers 12000°; elle ne dépasse 0,2 mag qu'au dela de
20000°. _

Remarquons que nos valeurs de I'index absolu ont été
calculées dans I’hypothése de la validité de I’équation spectrale
de Wien. L’application de la loi de Planck conduit & des correc-
tions qui diminuent l'index absolu de quantités voisines de
0,1 mag vers 10000° et atteignant 0,5 mag a 30000°1. Cela
tend & diminuer le domaine de validité de la formule F du coté
des températures élevées.

A la valeur du minimum de l'index correspond un maximum
de sensibilité de I'ceil placé & 5,44 x 107° cm, ce qui est bon.
Le désaccord de cette valeur d’avec celle trouvée en comparant
les coefficients des deux formules linéaires en &/T montre
avec quelle prudence il faut opérer sur le développement en
série,

Admettons donc la valeur 2, = 5,44 x 107° cm. Choisissons
une valeur de I suffisamment éloignée du minimum, soit

111, §10.
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I = 1,62, correspondant a T = 3000° et calculons la wvaleur
correspondante de l'acuité a. On est conduit a 'équation !

, o 1432108
1,62 3000 5,44 - 3000
25 = lo8gggy T e+ &) lg—— g -

Le calcul montre qu’il n’est pas possible de satisfaire rigou-
reusement a cette équation. A la valeur a = 75 correspond
sensiblement un minimum du second membre. La valeur de
ce minimum differe trés peu du premier membre. Nous admet-
trons donc les valeurs suivantes des constantes de sensibilité:

A, = 5,44 x 10%cm ; a =75 .

Cette acuité est un peu supérieure a celles généralement
trouvées dans les applications astronomiques. Il n'y a rien la
d’étonnant, car la formule F n’a pas été établie a leur intention
et les applications usuelles conduisent généralement a des
valeurs relativement élevées de I'acuité. En méme temps qu'un
déplacement de la sensibilité vers le violet, la diminution de
Iintensité de la source entraine une diminution de ’acuité.

L’'incertitude du calcul basé sur 'approximation que constitue
le développement en série peut étre éliminée en comparant
Iensemble des valeurs sires données par la formule F a celles
que donne I'application des méthodes basées sur les courbes de
sensibilité. Calculons donc les valeurs de I'index absolu corres-
pondant aux constantes de sensibilité indiquées ci-dessus. Ces
valeurs figurent dans le tableau, colonne I;. Elles different peu
de celles obtenues par d’autres méthodes ou basées sur des
constantes de sensibilité de I'ceil quelque peu différentes.

Nous avons déja signalé le fait que la formule F donne un
développement de la magnitude absolue comportant des
termes en T~! et T*. Il en est de méme pour I'index absolu.

Au contraire, I'hypothése de la sensibilité concentrée conduit
4 des formules linéaires en T~!. Pour des étoiles chaudes, ces
deux groupes de formules sont équivalentes, puisque le terme

1], § 2.
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en T est alors négligeable. Nous retrouvons ici le fait sur
lequel nous avons déja insisté que les formules linéaires ne
doivent étre appliquées qu’avec circonspection et en limitant
de facon appropriée le domaine de température ou on les
utilise.

V. — FormMuLE DE MM. WensEL, ROESER, BARBROW
ET CALDWELL.

23. — Ces auteurs ont proposé la formule suivante pour la
brillance du corps noir !
461,4
—
T VT ) 9
B = 2495 (2—95—> bougies-cm™* .

Nous I'appellerons la formule W.

L’accord avec I'expérience est remarquablement bon. De
la température de fusion du platine & celle de I'iridium, les
écarts n’atteignent pas 19/,,. La formule a été vérifiée de 1500°
a 2800°. Elle est donc certainement valable pour les étoiles
froides.

Etudions-la tout d’abord pour elle-méme. Prenons les
logarithmes et dérivons:

LE_ MG, LT,
BdT ~ /7% 2 %2955

Cette dérivée s’annule pour T = 22000°. B est donc une
fonction croissante de la température jusqu’a 22000°. Au dela,
la formule W est inapplicable.

Examinons la deuxiéme dérivée; il vient

;

@B _ 46168\ 4614 (AL T\
a1z & 1 \' T 3% 5055 '
T2 T2

3 1 T 1
—5(1—'2‘1103%)“5

1 WenNsEL, RoEseEr, BarBrow and CarLpweri, Derivation of
photometric Standards for tungsten-filaments lamps. Journal of
Research of the National Bureau of Standards, 13, 2, Washington,
1934.

.
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Elle s’annule pour T = 8150°. L’extrapolation au deld de
cette valeur est peu sire. La formule W a donc I'avantage
d’une bonne précision pour les températures correspondant
aux étoiles trés froides, mais I'inconvénient d’'un domaine de
validité assez limité.

24. — Appliquons-la au Soleil, en égalant, comme plus haut,
a 190000 bougies cm™ sa brillance. II lui correspond une tempé-
rature de 6170°, valeur dont on remarquera la concordance
avec celle généralement admise.

25. — Donnons maintenant I'expression de la magnitude
absolue et des grandeurs qui lui sont liées, en déterminant,

comme plus haut, la constante d’étalonnage au moyen du
Soleil :

M = A-—~510g;r-—-—“53_’5 log T + -[i@_é—
VT VT
— 9,55 — 5logr — 11935 1o p 4003

~R T

La parallaxe et le diamétre apparent sont

logm = 0,24 —1 — logr — 0,2m-—g§0—_’_? log T + @O:’(_i
VT AT
= L GO0 — Togr — UZm — 220 yop 5 06
VT /T
log 8 = 0,2A — 3,332 — 0,2m — 2507 Jogp 4 5006
VT VT
— — 1,412 — 0,2m — 2307 g p 4 8006

AT /T
La température d’une étoile de diameétre apparent connu
est donnée par I'équation

800,6  230,7

VT AT

¢(T) =

logT — 1,412 = logd + 0,2m .
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La table suivante en permet la solution facile, dans le cas
qui nous intéresse ici, des géantes considérées plus haut.

T 7 (T) T 2 (T)
2000 — 0,548 3000 — 1,450
2200 — 0,792 3200 — 1,564
2500 - — 0,998 3400 — 1,664
2600 — 1,172 3600 — 1,752
2800 — 1,322 3800 — 1,832
3000 — 1,450 4000 [ — 1,902

On obtient ainsi les températures suivantes pour les étoiles
de notre liste

Etoile s&%%fa] %i%’ ’ Etoile s;?;’éfr%] gt%{:%'
o Bouvier . KO | 3920 | ¢ Pégase . . Ko | 3900
v Aigle . . . K2 | 3760 o« Taureau . . '| K5 | 3690
o Orion . . Ma | 2990 o Scorpion . Ma | 3010
B Pégase . . Ma | 3010 o« Hercule . . Mb | 2550
o Baleine . . Md | 2580

Ces valeurs sont bonnes. Les derniéres, appartenant au
domaine ou la formule W a été vérifiée expérimentalement,
peuvent étre considérées comme des déterminations indépen-
dantes, compte tenu de la condition d’étalonnage fournie par
le Soleil.

26. — Déterminons enfin I'index absolu donné par la for-
mule W. On trouve

1153,5 4003
/T g A/T

1153.5 T

F et G sont des constantes d’étalonnage liées par la condition

G =T 4+ 3471 .
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Calculons la dérivée. Il vient

dl _3 —
=T 2 (4,343 /T + 576,7 log T — 2502] .

Elle s’annule pour T = 5800°, valeur un peu inférieure a
la température du Soleil.

Comme il est certain que le domaine de validité de la for-
mule W n’atteint pas l'inflexion de l'index, il est inutile de
pousser la discussion plus loin.

Comparons quelques valeurs de I'index calculé au moyen de
la formule W aux tables précédemment citées 1.

T | Iw In ‘ T i I
2000 4,18 oo 3,93 4,21
2500 2,46 2,71 2,32 2,65
3000 1,43 1,67 1,51 1,67
4000 0,42 0,62 0,55 0,64
5000 0,06 0,18 0,15 0,20
6000 0.00 0,02 0,01 0,00
7000 0,09 0,005 0,01 0,00
8000 0,25 0,06 0,08 0,05

Pour les températures basses, il y a pratiquement coincidence
entre les valeurs de I et celles données par les autres théories.
Elles se vérifient donc toutes entre elles. Au dela de 3000° la
formule W donne des valeurs systématiquement trop petites
de quantités de l'ordre de 0,1 mag, jusqu’au minimum de
I'index. Au dela de ce minimum, les valeurs de I sont trop
grandes. Nous savons d’ailleurs que le domaine de validité de
la formule W ne s’étend pas au dela de 8000°.

On pourrait se proposer de confronter ces valeurs avec
celles que donnerait la méthode des courbes de sensibilité avec
des constantes appropriées. Cela est sans grand intérét, car
a la valeur T, = 5800° de la température du minimum de
I'index, correspond un maximum de sensibilité de I'ceil placé a
6,2 .107° cm, valeur manifestement trop élevée. Ce n’est done

1§92,
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qu’apres un ajustement portant sur cette longueur d’onde qu’il
serait possible de déterminer I'acuité. Autant dire que celle-ci
reste inconnue, car elle est trés sensible & une variation de la
longueur d’onde du maximum de sensibilité.

VI. COMPARAISON DES FORMULES EMPIRIQUES
PRECEDENTES.

27. — Rapprochons les températures des géantes froides et
du Soleil, telles qu’elles sont données par les diverses formules
examinées.

’ Température
Etoile Si%ffal
Hertzsprung Fabry Wensel

o« Bouvier. . . . KO0 4070 4000 3920
e Pégase . . . . K0 4050 3990 3900
v Aigle . . . . . K2 3910 3840 3760
o Taureau . . . K5 3830 3770 3690
o« Orion . . . . Ma 3110 3050 2990
« Scorpion . . . Ma 3130 3070 3010
B Pégase . . . . Ma 3130 3080 3010
o« Hercule . . . . Mb 2640 2590 2550
o Baleine . . . . Md 2670 2630 2580
Soleil (brillance) . . . . — 5920 6170

» (index minimum) . 6810 6580 5800

Il v a évidemment des différences systématiques de formule
a formule. Pour les étoiles froides, elles sont de I'ordre de 4 %,
et ne dépassent pas 150°. C’est bien l'ordre de grandeur des
erreurs auxquelles on peut s’attendre dans des déterminations
de températures stellaires. Remarquons, notamment en ce qui
concerne o Hercule, que la valeur obtenue appartient au
domaine ot les formules ont pu étre vérifiées au laboratoire.

28. — La concordance des valeurs obtenues pour le Soleil
est moins bonne, mais I'incertitude dépasse & peine celle des

ArcHIVES. Vol. 19. — Mars-Avril 1937. 7
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diverses valeurs admises actuellement. Par exemple, M. Bosler !
retient les valeurs suivantes:

5860° donnée par la loi de Stéfan, valeur a rapprocher de
celles correspondant a la brillance, soit 5920° et 6170°;

6250° ou 6050°, valeurs basées sur le maximum d’émission;

6000° a 7000°, correspondant a I'assimilation du Soleil & un
radiateur obéissant & la loi de Planck; on rapprochera ces
derniers chiffres de ceux correspondant au minimum de I'index
absolu visuel, soit 6810°, 6580° et 5800°.

29. — Concluons en répétant ici la remarque déja faite dans
notre introduction: nous avons discuté diverses théories
basées sur des hypothéses différentes et des raisonnements
mathématiques sans lien les uns avec les autres; les lois obtenues
ont des formes analytiques sans analogie. Elles conduisent, dans
le domaine de température ou leur validité ne peut pas étre
infirmée a priort, 4 des résultats remarquablement cohérents.
Or Tapplication des théories thermiques a Pastrophysique
repose toujours sur une extrapolation audacieuse. Quand les
diverses méthodes conduisent & des résultats numériques
comparables, la valeur de ces résultats en est considérablement
augmentée. En particulier, 'accord des théories partielles
rapportées ici avec notre théorie générale de I'indice absolu
constitue une vérification des unes et des autres, qui rend assez

stirs les résultats acquis.
Observatoire de Genéve.

1 Astrophysique, p. 227, Paris, 1928.
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