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Jusqu’ici on ne sait pas si tous les produits st* que 'on
obtient avec tous les nombres des classes (s) et (s*) épuisent
les nombres de la classe (C). Si les s (et les ¢*) sont des spineurs
simples (ou leurs associés), au sens de Cartan, ce n’est pas le
cas, car dans la représentation matricielle, un & simple est une
colonne, un ©* une ligne, ce qui fait 2p parametres alors qu'un G
en a p?, de sorte que si on se donne un nombre de Clifford C
on ne peut en général trouver s et t* tels que st* = C. Mais en
prenant des combinaisons linéaires dans (s) et (s*):

(0t s+ ) (6 +2+.) =51t + ..

avec un nombre suffisant de termes, on peut déterminer
successivement sy, {;, Sy, ly, ... de maniére a égaler le produit
a C. Ce procédé est utilisable dans E2 quelconque. Les pro-
priétés 10, 20, 30 40 restent valables pour ces combinaisons
linéaires.

R. Wavre. — Les quatre potentiels logarithmiques d’une
circonférence.

Les potentiels des corps continus sont des intégrales définies
dépendant de certains parametres. Ces paramétres sont les
coordonnées du point argument en lequel on calcule le potentiel.
Il est alors naturel de donner & ces paramétres ’ensemble de
leurs valeurs possibles en y comprenant les valeurs complexes.
D’ailleurs, lorsque I’on affirme qu’un potentiel est une fonction
analytique en dehors des masses attirantes on entend qu’elle
est développable en une série de Taylor des variables x;, 25, 23,
coordonnées du point argument; mais ’analyticité ne prend
sa pleine signification que lorsque I’on donne & ces variables
des valeurs complexes

5=+ W, 3, = 2y + 1y, , Z3 = X3+ Ws .

Le point-argument se déplacera donc dans l'espace des trois
variables complexes z;, z,, 3.
D’autre part, dans ’étude des potentiels nous nous sommes
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préoccupés de caractériser les singularités, lignes de ramifica-
tion, etc. des potentiels prolongés au travers des masses atti-
rantes., Cette étude nous la faisions dans I’espace réel, mais il
est clair qu’elle ne prendra elle aussi toute son extension que
dans le domaine complexe.

L’étude du cas de la circonférence montrera ’existence de
deux potentiels complexes qui coincident dans le réel avec les
potentiels connus et de deux autres potentiels qui ne peuvent
étre engendrés que dans le domaine complexe et dont les pro-
longements dans l’espace réel sont complexes.

Soient

o, = a + by, h=1,23

les coordonnées du point attirant et r la distance définie a la
maniére ordinaire des points z et ¢. Les potentiels newtoniens
complexes ont la forme générale

dD
UZf%# 2= (z;— )2+ (32— )% + (53 — ¢5)2 ;

D est un domaine auquel l'intégrale s’étend et p est une
fonction des coordonnées du point attirant. Les potentiels
newtoniens complexes offrent quelques difficultés auxquelles
s’attaque actuellement M. Beer. Le potentiel logarithmique est
plus simple & manier car un artifice permet dans certains cas
de ramener le probléme a I’étude de certains résidus d’intégrales
qui portent sur un plan complexe auxiliaire. L’artifice conmste
a écrire

r2=u-u 2Lr = Lu + Lu’
avec ' '
u =4 —GQG , Z =3+ 13, G = ¢ + 1c

u =7 — (¢, L=z —iz, C =c¢—ic.
Si I est la ligne attirante le potentiel logarithmique s’écrira

2f (B e ) -I—L( — ) 1f(s)ds 5
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s est un parameétre de représentation de /et I’on a a,(s) ... by ($)
d’ou C(s) et C'(s). Pour une circonférence réelle homogéne de
densité un et de rayon R on trouve alors

1

U:Z—ZI[L(Z—G)—I—L(Z'——C)]

A

dc
c -

Dans cette expression A est un contour de méme forme que la
circonférence mais il est décrit dans le plan complexe auxiliaire.
Il y a alors quatre possibilités suivant que les points Z et Z'
sont ou non intérieurs i cette circonférence. On trouve, en
négligeant une constante arbitraire purement imaginaire et en
désignant par m la masse totale: |

U, = %m(LZ +L2) = mL 2 + 5

1 1 Co
U, = gm(LR+ LZ') = Em[LR + Lz — iz) ]
Uy = gm(LR+17) = ;m[LR + L{s + is)]

=
l
3
2
&

U, convient au cas ot Z et Z’ sont tous deux hors de X. |

U, convient au cas ol Z est intérieur & A et Z’ est extérieur.

U, convient au cas ot Z’ est intérieur a A et Z est extérieur.

U, convient au cas ou Z et Z’ sont tous les deux intérieurs.

U, et U, redonnent dans le réel les potentiels connus. Les
deux autres U, et U, ne sont engendrés que dans le domaine
complexe et dans le domaine réel leurs prolongements sont
complexes. _ . :

Le potentiel logarithmique de double couche d’une ecir-
conférence réelle de densité un donnera les valeurs 0 dans le
premier cas, 7 dans le second, 7 dans le troisiéme, 27 dans le
quatrieme. Cette valeur 7 est celle du potentiel de double
couche dans deux espaces a quatre dimensions qui ont pour
trace la circonférence elle-méme dans le plan ordinaire.
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