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Relations focales entre des coniques osculatrices

a nne coorbe et applications a la catcptrique

1. — Soit un point regulier 0 d'une courbe analytique.
La tangente et la normale y sont bien determinees. Considerons
l'ensemble des coniques jouissant des proprietes suivantes:
elles passent par 0; elles y sont tangentes a la courbe donnee;
leur axe est parallele a la normale ä la courbe en 0; 0 est

un sommet de la conique. Ces proprietes imposent chacune une
condition ä la conique. II existe done une simple infinite de

coniques appartenant ä cet ensemble. Nous defmirons une des

courbes de cette variete en fournissant une donnee de plus.
Nous choisirons la position de l'un des foyers de la conique, en

ne traitant que le cas ou les foyers reels sont sur la normale
consideree. Soit p1 la distance de ce foyer au sommet 0 de

la conique et p2 Celle du deuxieme foyer. Nous allons montrer
que ces deux quantites sont liees par la relation

qui n'est autre que celle des foyers conjugues de l'optique
geometrique.

Prenons le point 0 comme centre d'un Systeme de eoordonnees

rectangulaires, dont l'axe des x est confondu avec la normale
ä la courbe. Nous porterons les x positifs dans la concavite de la
courbe. L'axe des y coincide avec la tangente. Pour des points
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148 CONIQUES OSCULATRICES

de la courbe infiniment voisins de 0, l'absoisse est infiniment
petite par rapport ä l'ordonnee.

L'equation de la courbe peut alors etre developpee sous la
forme

0 a: + ax3 + bxy + cy2 + (ys)

oil le symbole (y3) represente la somme de termes de degres

superieurs au deuxieme. Nous supposons que la courbe n'a
pas de contaot superieur avec sa tangente. Les coefficients a, b

et c ne sont done pas tous nuls.
Donnons-nous une valeur de y, petite. 11 lui correspond une

valeur petite, positive pour x. On a, ä des termes superieurs

pres,
— «/2

X
1 + by

c est done negatif, non nul, sans quoi le contact serait d'ordre
superieur.

2. — Considerons maintenant une conique quelconque,
satisfaisant aux quatre conditions imposees ci-dessus. Son

equation peut etre mise sous la forme

aa;2 + ß)/2 — x 0

Des deux coefficients a et ß, l'un au moins est positif. lis le

sont tous deux si l'on a affaire ä une ellipse.
Les deux intersections de la conique avec Oa: ont pour

abscisses x 0 et x ^. a est positif pour une ellipse, negatif

pour une hyperbole, ß est toujours positif. L'abscisse du centre
\est done ^. L'ordonnee au centre, qui n'est autre que le

\demi petit-axe, est —. L'excentricite lineaire est
2 V aß

/ 1 1 Vßtß— «)

V 4 a2 4 aß 2 aß

On tire de lä les abscisses des foyers

Pi __
Vß(ß — «f

_
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1 1
Considerons la fonction 1 Elle est svmetrique et

pi Pi "

rationnelle. Elle s'exprime done au moyen d'une fonction
rationnelle des coefficients d'une equation dont px et p2 sont
les deux racines. Dans le cas particulier, la fonction symetrique
est de degre — 1; le theoreme des fonetions symetriques
declare que la somme des inverses des racines est egale au

coefficient, change de signe, du terme connu, dans le quotient
polynöme derive, divise par le polynöme lui-meme, ce quotient
etant ordonne suivant les puissantes croissantes de la variable.

Dans le cas d'une fonction de deux variables, le polynöme
est du deuxieme degre,

/ (x) q + px + x*

Sa derivee est p + 2x. Le terme connu du quotient est

Dans notre cas particulier, les fonetions symetriques
fondamentales sont

1
Pi + Pn -

P1P2 7-2-
ß (ß — cd _

1

4 a2 4 a2 ß2 4 aß

px et p2 sont positifs dans le cas de l'ellipse, et de signes

opposes dans celui de l'hyperbole.
L'equation dont px et p2 sont les racines est

x-- + -r-ä 0 •
a 4ap

Calculons enfin la somme des inverses des racines. II vient

1 1- : 4ß
a 4 a ß

H

Cette somme est independante de a.
On pourrait evidemment verifier directement cette propriete

par le calcul.
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3. — Revenons maintenant k notre probleme geometrique.
La courbe donnee satisfait ä l'equation

0 x + ax2 + bxy + «/2 + (ys)

La conique est donnee par

0 x — ocx2 — ß?/2

Pour que la conique passe par un point M de la courbe, il
faut que les deux equations soient simultanement satisfaites

pour les coordonnees X et Y de ce point. Faisons la difference
de ces deux equations. 11 vient

(c + ß) Y2 + bXY + (a + a)X2 + (Y3) 0

Supposons que M tende vers 0 X est infiniment petit par
rapport ä Y. L'equation ci-dessus est satisfaite au troisieme
ordre pres des que

ß - c

La condition de signe de ß est satisfaite, puisque c est negatif.
L'equation d'une conique definie par les conditions imposees

est done
0 x — ocx2 + cy2

a est arbitraire. Pour le determiner, donnons nous l'abscisse

de Fun des foyers

1 -\/c(a + c)
2~oc ± 2^xc '

Cette equation est irrationnelle en a. A part une solution

impropre a 0, qui conduit k considerer px comme la difference
de deux infinis, eile donne

1 + 4/qc
CC -

9
4 Plc

La donnee d'un foyer impose une conique unique. L'ensemble
de coniques considere est un faisceau.
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Formons l'expression des foyers conjugues

1 1
1 4 ß — 4 c

Pi P2

Elle est constante, independante de a done de pv Notre theo-
reme est demontre. II peut etre precise sous la forme suivante.

II existe un faisceau de coniques ayant un contact du
deuxieme ordre avec une courbe en un point regulier de celle-ci:
et telles que ce point soit un sommet des coniques. Les foyers
de ces coniques sont lies par la relation des foyers conjugues
de l'opt'que geometrique

1 1
• b •— — constante
Pl Pi

oü p1 et p2 sont les distances de ces foyers au sommet commun
des coniques.

4. — Cas particuliers.
Les calculs du N° 2 sont en defaut dans le cas de la parabole,

oü a 0. Mais les resultats obtenus par la confrontation des

deux equations subsistent. Cherchons l'abscisse / du foyer de

la parabole, appele dans la suite foyer principal. L'equation de

celle-ci peut etre mise sous la forme

2 x
y ß'

I
-p

est le double du parametre qui, lui, n'est autre que

l'ordonnee au foyer. On a, en faisant x /, dans l'equation
de la parabole,

JL ±_=/=_/ et / - i •

4ß2 4 c2 ß c ' 4c

On tombe bien sur le cas oü p2 est infini, et la constante

du theoreme general est -j.
Dans le cas du cercle, p1 p2 2/. On retrouve une

propriety connue.

Archives. YoI. 18. — Mai-Juin 1936. 11
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5. — Applications a la theorie des miroirs de revolution.
Par un point 0, traijons un axe Ox et un arc de courbe

limite au point 0 et perpendiculaire ä Ox en 0. Faisons tourner
Fare de courbe autour de Ox. On engendre ainsi une surface

revolution de sommet 0. Au voisinage de ce point, la surface

peut etre consideree, au troisieme ordre pres, indifferemment
comme une sphere, un paraboloide de' revolution, un ellipsoide
de revolution allonge, une nappe d'hyperboloide de revolution
ä deux nappes.

Soit pj la distance au sommet d'un point de l'axe, reellement
ou virtuellement lumineux. Supposons reflechissante la surface
consideree. Le miroir donne de ce point une image quas1'-

stigmatique, placee sur l'axe ä une distance p2 telle que

J_ + JL — A
Pi Pi /

oü / est une constante, la distance focale principale du miroir.
Appliquons cela au cas particulier des telescopes. Considerons

un miroir de revolution M de faible ouverture relative. Au
foyer conjugue A' d'un point lumineux A, place sur l'axe,
se produit une image quasi-stigmatique que l'on peut examiner
ä la loupe (telescope d'Herschell) ou recueillir sur une plaque
sensible (photographie au premier foyer des telescopes

modernes).
Placons un deuxieme miroir de revolution m d'axe confondu

avec celui de M et tel que l'un de ses foyers conjugues se

trouve en un point A" situe derriere M et que l'autre soit
confondu avec A', conjugue de A par rapport ä M. Le miroir m
donne de A' une image quasi-stigmatique en A". La position
du miroir m definit les deux distances p3 et p2, done son rayon
de courbure 2/.

Si ces deux distances sont de meme signe, m est concave
et place au dela de A' par rapport k M. C'est la solution de

Gregory. Dans le telescope de Cassegrain, au contraire, p1 et p2
sont de signes contraires, m est place entre M et A'.

Theoriquement, il existe deux solutions speciales, Celles de

l'egalite, en valeur absolue de p1 et p2- Dans un telescope de

Gregory, ils seraient tous deux infinis et m serait rejete ä
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l'infini. Dans la solution Cassegrain, si py p2, le petit
miroir est plan. Cette solution plane separe deux groupes de

solutions, Celles oü le sommet de m est plus voisin de A' que
de A", auquel cas m est convexe, et celle oü la difference est

opposee; m est alors concave. Seules les solutions Gregory ou
Cassegrain dans lesquelles le diametre de rn est petit par
rapport ä celui de M presentent de l'interet; m alors est voisin
de A0. Done le miroir de Cassegrain est toujours convexe. II
est d'autant plus courbe qu'il est plus rapproche de A'.

Supposons que dans un appareil donne, on modifie la
position de m par rapport ä celle du reglage normal. A" se

deplace. En particulier, rapproohons m de M; A" s'eloigne.
Quant A' est confondu avec le foyer principal de m, A" est

rejete ä l'infini. On utilise ce dispositif dans les telescopes qui
alimentent un spectrographe sans fente. Continuons ä rappro-
cher m et M. A" est alors virtuel et se trouve derriere m.

Ce n'est que dans un telescope Gregory que A' peut etre
confondu avec A" sans se trouver sur m. On utilise ce dispositif
sur certains projecteurs pour renvoyer sur M une partie du
faisceau divergent issu de la source, et ne frappant pas M.

m est alors spherique et la source en occupe le centre. C'est lä

peut etre le seul cas oü 1'on fait usage, dans la construction
des instruments, du fait que le miroir spherique est stigmatique
pour son centre.
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