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Relations focales entre des coniques osculatpices
4 une coarbe et applications 4 la catoptrique

PAR

. ROSSIER

1. — Soit un point régulier O d’une courbe analytique.
La tangente et la normale y sont bien déterminées. Considérons
I’ensemble des coniques jouissant des propriétés suivantes:
elles passent par O; elles y sont tangentes & la courbe donnée;
leur axe est paralléle 4 la normale & la courbe en O; O est
un sommet de la conique. Ces propriétés imposent chacune une
condition & la conique. Il existe donc une simple infinité de
coniques appartenant & cet ensemble. Nous définirons une des
courbes de cette variété en fournissant une donnée de plus.
Nous choisirons la position de I'un des foyers de la conique, en
ne traitant que le cas ou les foyers réels sont sur la normale
considérée. Soit p, la distance de ce foyer au sommet O de
la conique et p, celle du deuxiéme foyer. Nous allons montrer
que ces deux quantités sont liées par la relation

— 4+ — = constante ,

qui n’est autre que celle des foyers conjugués de l'optique
géométrique.

Prenons le point O comme centre d’un systéme de coordonnées
rectangulaires, dont ’axe des z est confondu avec la normale
a la courbe. Nous porterons les x positifs dans la concavité de la
courbe. L’axe des y coincide avec la tangente. Pour des points
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de la courbe infiniment voisins de O, I’abscisse est infiniment
petite par rapport & I'ordonnée.
L’équation de la courbe peut alors étre développée sous la

forme
0 =2a + ax® + bxy + ey® + (¥°) ,

ou le symbole (y3) représente la somme de termes de degrés
supérieurs au deuxiéme. Nous supposons que la courbe n’a
pas de contact supérieur avec sa tangente. Les coefficients a, &
et ¢ ne sont donc pas tous nuls.

Donnons-nous une valeur de y, petite. 11 lui correspond une
valeur petite, positive pour x. On a, & des termes supérieurs
pres,

¢ est donc négatif, non nul, sans quoi le contact serait d’ordre
supérieur.

2. — Considérons maintenant une conique quelconque,
satisfaisant aux quatre conditions imposées ci-dessus. Son
équation peut étre mise sous la forme

ax? + By2—ax = 0.
Des deux coefficients o et 3, I'un au moins est positif. Ils le

sont tous deux si 'on a affaire & une ellipse.

Les deux intersections de la conique avec Ox ont pour
abscisses x = 0 et z = 2.1“{' o est positif pour une ellipse, négatif
pour une hyperbole, B est toujours positif. L’abscisse du centre
est donc '.‘;E L’ordonnée au centre, qui n’est autre que le

. ; 1
demi petit-axe, est o

\/Lﬁ 1 _ VB(E—o
ho?  haf 2ap

On tire de la les abscisses des foyers

pp_ 1 \/m

Py 2« 2af

L’excentricité linéaire est
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Considérons la fonetion %—Q— ‘% Elle est svmétrique et
1 2

rationnelle. Elle s’exprime donc au moyen d'une fonction
rationnelle des coefficients d’une équation dout p; et p, sont
les deux racines. Dans le cas particulier, la fonction symétrique
est de degré — 1; le théoréme des fonctions symétriques
déclare que la somme des inverses des racines est égale au
coefficient, changé de signe, du terme connu, dans le quotient
polynéme dérivé, divisé par le polyndme lui-méme, ce quotient
étant ordonné suivant les puissantes croissantes de la variable.

Dans le cas d’une fonction de deux variables, le polynéme
est du deuxiéme degré,

fle) = g+ pz + a* .

Sa dérivée est p 4+ 2z. Le terme connu du quotient est —5—

Dans notre cas particulier, les fonctions symétriques
fondamentales sont

1
P1+P2:&“

1 BB—a 1

PiPe ™= L2 ™ ho2p2 T LkoaP

P et p, sont positifs dans le cas de lellipse, et de signes
opposés dans celui de I’hyperbole.
L’équation dont p; et p, sont les racines est

S S S
o

Calculons enfin la somme des inverses des racines. Il vient

1 1
;'!taB_&B'

Cette somme est indépendante de a.
On pourrait évidemment vérifier directement cette propriété
par le calcul.
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3. — Revenons maintenant & notre probléme géométrique.

La courbe donnée satisfait a I’équation
0 =z + az® + bxy + cy?® + (y3) .
La conique est donnée par
0 = o — ax®— PBy?.

Pour que la conique passe par un point M de la courbe, il
faut que les deux équations soient simultanément satisfaites
pour les coordonnées X et Y de ce point. Faisons la ditférence
de ces deux équations. 1l vient

(¢ + B)Y?2 + bXY + (@ + o) X2 + (Y3) = 0 .

Supposons que M tende vers O . X est infiniment petit par
rapport & Y. L’équation ci-dessus est satisfaite au troisiéme
ordre prés dés que

La condition de signe de [ est satisfaite, puisque ¢ est négatif.
L’équation d’une conique définie par les conditions imposées
est donc
0 =ao— ax? 4+ cy? .

« est arbitraire. Pour le déterminer, donnons nous ’abscisse
p1 de I'un des foyers

PlzL:’:\/C(a+C)-

2 2uac

Cette équation est irrationnelle en «. A part une solution
impropre « = 0, qui conduit a considérer p, comme la différence
de deux infinis, elle donne

La donnée d’un foyer impose une conique unique. L’ensemble
de coniques considéré est un faisceau.
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Formons I’expression des foyers conjugués

&S + 1 =403 = —4ec .
4] Do

Elle est constante, indépendante de « donc de p,. Notre théo-
réme est démontré. 11 peut étre précisé sous la forme suivante.

Il existe un faisceau de coniques ayant un contact du
deuxiéme ordre avec une courbe en un point régulier de celle-ci:
et telles que ce point soit un sommet des coniques. Les foyers
de ces coniques sont liés par la relation des foyers conjugués
de 'opt'que géométrique

— + = = constante ,

ou p, et p, sont les distances de ces foyers au sommet commun
des coniques.

4. — Cas particuliers.

Les calculs du Ne 2 sont en défaut dans le cas de la parabole,
ou « = (. Mais les résultats obtenus par la confrontation des
deux équations subsistent. Cherchons I'abscisse f du foyer de
la parabole, appelé dans la suite foyer principal. L’équation de
celle-ci peut étre mise sous la forme

x
2 = —
Y= 8

% est le double du paramétre qui, lui, n’est autre que

Iordonnée au foyer. On a, en faisant x = f, dans 1’équation
de la parabole,

1 f 1
apt o he

= 7= et f=_—

7
B c be

e

On tombe bien sur le cas ol p, est infini, et la constante
1
7

Dans le cas du cercle, p; = p, = 2f. On retrouve une pro-
priété connue.

du théoréme général est

ARCHIVES. Vol. 18, — Mai-Juin 1936, 11
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5. — Applications & la théorie des miroirs de révolution.

Par un point O, tracons un axe Oz et un arc de courbe
limité au point O et perpendiculaire a Oz en O. Faisons tourner
I’arc de courbe autour de Oz. On engendre ainsi une surface
révolution de sommet O. Au voisinage de ce point, la surface
peut étre considérée, au troisiéeme ordre prés, indifféremment
comme une spheére, un paraboloide de révolution, un ellipsoide
de révolution allongé, une nappe d’hyperboloide de révolution
a4 deux nappes.

Soit p; la distance au sommet d’un point de I’axe, réellement
ou virtuellement lumineux. Supposons réfléchissante la surface
considérée. Le miroir donne de ce point une image quasi-
stigmatique, placée sur l'axe & une distance p, telle que

1 1 1
n 1
ou f est une constante, la distance focale principale du miroir.

Appliquons cela au cas particulier des télescopes. Considérons
un miroir de révolution M de faible ouverture relative. Au
foyer conjugué A’ d'un point lumineux A, placé sur Iaxe,
se produit une image quasi-stigmatique que I’on peut examiner
a la loupe (télescope d’Herschell) ou recueillir sur une plaque
sensible (photographie au premier foyer des télescopes
modernes).

Placons un deuxiéme miroir de révolution m d’axe confondu
avec celui de M et tel que I'un de ses foyers conjugués se
trouve en un point A” situé derriéere M et que 'autre soit
confondu avec A’, conjugué de A par rapport a M. Le miroir m
donne de A’ une image quasi-stigmatique en A”. La position
du miroir m définit les deux distances p, et p,, done son rayon
de courbure 2f.

Si ces deux distances sont de méme signe, m est concave
et placé au dela de A’ par rapport & M. C’est la solution de
Grégory. Dans le télescope de Cassegrain, au contraire, p; et po
sont de signes contraires, m est placé entre M et A’.

Théoriquement, il existe deux solutions spéciales, celles de
I'égalité, en valeur absolue de p; et p,. Dans un télescope de
Grégory, ils seraient tous deux infinis et m serait rejeté &
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Iinfini. Dans la solution Cassegrain, si p; = p,, le petit
miroir est plan. Cette solution plane sépare deux groupes de
solutions, celles ot le sommet de m est plus voisin de A’ que
de A", auquel cas m est convexe, et celle ou la différence est
opposée; m est alors concave. Seules les solutions Grégory ou
Cassegrain dans lesquelles le diamétre de m est petit par
rapport & celui de M présentent de ’intérét; m alors est voisin
de A;. Donc le miroir de Cassegrain est toujours convexe. Il
est d’autant plus courbe qu’il est plus rapproché de A’.

Supposons que dans un appareil donné, on modifie la
position de m par rapport & celle du réglage normal. A" se
déplace. En particulier, rapprochons m de M; A” s’éloigne.
Quant A" est confondu avec le foyer principal de m, A" est
rejeté & l'infini. On utilise ce dispositif dans les télescopes qui
alimentent un spectrographe sans fente. Continuons a rappro-
cher m et M. A” est alors virtuel et se trouve derriere m.

Ce n’est que dans un télescope Grégory que A’ peut étre
confondu avec A” sans se trouver sur m. On utilise ce dispositif
sur certains projecteurs pour renvoyer sur M une partie du
faisceau divergent issu de la source, et ne frappant pas M.
m est alors sphérique et la source en occupe le centre. C'est 1a
peut étre le seul cas ou 'on fait usage, dans la construction
des instruments, du fait que le miroir sphérique est stigmatique
pour son centre.
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