Zeitschrift: Archives des sciences physiques et naturelles

Herausgeber: Société de Physique et d'Histoire Naturelle de Genève

Band: 17 (1935)

Artikel: Variation de la largeur relative des raies de l'hydrogène stellaire avec le

type spectral

Autor: Rossier, P.

DOI: https://doi.org/10.5169/seals-741571

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 24.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

213%. L'augmentation porte sur la couche corticale dont les spongiocytes deviennent très pauvres en inclusions adipeuses.

Or, la plupart des extraits d'hypophyse antérieure entraînent des modifications similaires des glandes thyroïdes (action thyréotrope) et des surrénales (action corticotrope).

Ajoutons enfin que ces femelles stériles présentent presque toutes une tendance marquée à la production de *néoplasmes*: kystes du *rete ovarii* souvent considérables et à paroi végétante; myo-fibromes du ligament large; dans un cas, conjointement avec la dégénérescence kystique totale des ovaires, développement d'un énorme fibrome utérin.

Si l'on songe que les hormones hypophysaires peuvent provoquer l'atrésie des ovaires avec « lutéinisation », qu'elles stimulent les glandes thyroïdes, provoquent l'hypertrophie des surrénales, masculinisent les femelles de Cobayes en donnant au clitoris une structure analogue à celle du pénis et qu'enfin on soupçonne le rôle de l'hypophyse dans la genèse des tumeurs, il est difficile de ne pas attribuer l'ensemble des phénomènes observés, et liés entre eux, à un trouble primitif du fonctionnement de l'hypophyse, expression lui-même du déséquilibre d'origine génétique.

Nous n'avons pu étudier que dans quelques cas la structure de l'hypophyse de ces femelles stériles et masculinisées. La glande montre une répartition anormale des cellules des diverses catégories. Nous nous proposons de revenir sur ce point.

P. Rossier. — Variation de la largeur relative des raies de l'hydrogène stellaire avec le type spectral.

Appelons largeur relative d'une raie spectrale le rapport de sa largeur au total des largeurs des trois raies H_{γ} , H_{δ} et $H_{\epsilon}+H$. Pour un type spectral donné, nous avons montré ¹ que cette largeur relative est constante, indépendante de l'énergie reçue par la plaque photographique.

¹ P. Rossier, Recherches expérimentales sur la largeur des raies de l'hydrogène stellaire. Archives (5), 14, p. 5; Publ. Obs. Genève, fasc. 17 (1932).

Mais la largeur d'une raie dépend de la densité de puissance du fond continu du spectre au voisinage de la raie; une diminution de cette puissance entraîne un élargissement de la raie. Lorsqu'on passe d'une étoile chaude à une autre de type spectral plus avancé, mais qui ne dépasse pas le type solaire (puisque nous nous occupons uniquement de l'hydrogène), la densité de puissance relative diminue dans l'ultra-violet et augmente dans le spectre visible.

La raie H_{β} , qui occupe le vert, H_{γ} qui est à la limite du spectre visible, H_{δ} , H_{ϵ} et H_{ζ} qui appartiennent à l'ultra-violet, sont les seules sur lesquelles nous disposons de renseignements expérimentaux suffisants.

Les mesures que nous avons effectuées sur 710 spectrogrammes de la collection de clichés obtenus au prisme-objectif Schaer-Boulenger de l'Observatoire de Genève sont résumées dans le tableau ci-dessous. Les largeurs sont exprimées en %, dans deux échelles; dans la première, 100 exprime la largeur totale des trois raies H_{γ} , H_{δ} et H_{ε} , tandis que dans la deuxième seules interviennent les deux raies, H_{γ} et H_{δ} .

Dans la première échelle, on constate que la raie H_{β} présente une largeur décroissante dans la classe B, puis constante et enfin décroissante pour la classe F. L'effet cité plus haut est donc peut-être sensible sur H_{β} , du moins dans la classe B.

Dans cette même échelle, H_{γ} et H_{δ} ont une largeur à peu près constante, sauf à partir de la classe F, où elle décroît. Au contraire H_{ϵ} , pratiquement constante jusqu'au type A_{5} , augmente dans la classe F.

Ce dernier effet est dû au fait que, sur nos spectrogrammes, la dispersion est trop faible pour séparer la raie H_{ε} due à l'hydrogène, de sa voisine H, produite par le calcium ionisé. L'élargissement apparent de H_{ε} n'est que la conséquence de l'apparition du calcium, dont le rôle est important dans la classe F.

Le caractère capricieux de H_{ζ} provient du manque de précision des mesures dans cette région, très peu nette sur les spectrogrammes.

La présence de H_ε + H dans les trois raies fondamentales, dont la somme des largeurs définit l'unité, entraîne une erreur systématique, puisque sa constitution est complexe. On peut l'éliminer en rapportant les largeurs à H_{γ} et H_{δ} seulement, mais cela entraı̂ne une augmentation des erreurs accidentelles. C'est ce qui est fait dans la deuxième colonne relative à chaque raie. La constance des largeurs de H_{γ} et de H_{δ} , l'augmentation de celle de $H_{\epsilon}+H$ y sont très nettes.

La comparaison de H_{γ} et H_{δ} montre que cette dernière est plus large que H_{γ} , en moyenne dans le rapport de 1,12 à 1. Le rapport des pentes de la courbe de dispersion du prisme en H_{γ} et H_{δ} est 1,24. H_{δ} est donc moins large que ne le ferait supposer la variation de la courbe de dispersion. Dans un spectre normal, H_{γ} serait plus large que H_{δ} . Ce rapport de largeurs dépend de l'espèce de plaques utilisées ici, des Cappelli-blu.

Type spectral Har- vard	Nombre de spectro- grammes	$\mathbf{H}_{oldsymbol{eta}}$		Н		нδ		$H_{\epsilon} + H$		Нζ
$\mathbf{B_2}$	2	61	107	31	54	26	46	43	75	41
$\mathbf{B_3}$	6	47	85	25	46	30	54	46	84	60
$\mathbf{B_5}$	4			28	45	34	55	48	77	62
$\mathbf{B_8}$	17	52	85	28	46	33	54	40	66	54
\mathbf{B}_{9}	44	32	54	27	46	32	54	41	69	55
$\mathbf{A_0}$	410	37	64	28	48	31	52	41	62	57
$\mathbf{A_2}$	53	31	54	27	47	31	53	41	71	54
$\mathbf{A_3}$	23	33	57	26	45	32	55	42	73	58
A_5	12	36	60	30	50	30	50	40	67	48
$\mathbf{F_o}$	120	35	66	26	49	27	51	48	91	58
$\mathbf{F_2}$	11	30	58	22	42	30	58	48	93	59
$\mathbf{F}_{\mathfrak{s}}$	8	24	55	22	50	22	50	56	128	44

Observatoire de Genève.

P. Rossier. — Variation, en fonction du type spectral, de la largeur relative des raies du calcium et de l'hydrogène stellaires.

Nous entendons par largeur relative d'une raie spectrale, le rapport de sa largeur à la largeur totale de trois ou de deux raies prise comme étalon ¹. Examinons le cas du calcium. Il est

¹ P. Rossier, Recherches expérimentales sur la largeur des raies de l'hydrogène stellaire. Archives (5), 14, p. 5; Publ. Obs. Genève, fasc. Variation de la largeur relative des raies de l'hydrogène stellaire en fonction du type spectral. C. R. Soc. de Physique, I, 1935; Publ. Obs. Genève, fasc. 27-28.