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(ONSIDERATIONS SUR LE CARAGTERE POLYTROPIQUE

DE

L'EQUILIBRE THERMODYNAMIQUE STELLAIRE

PAR

Georges TIERCY

1. — GENERALITES.

L’histoire des problémes touchant a I’équilibre des masses
stellaires n’est pas trés ancienne; elle ne remonte guére qu’a
1870, année qui vit la publication du mémoire célebre de
J. Homer Lane sur la température théorique du Soleil 1; le
premier, Lane cherchait & déterminer la répartition des densités
et des températures en fonction des-distances au centre du
Soleil.

A la fin du XIXe siécle et au début du XXe, plusieurs
auteurs s’occupeérent a leur tour de ce probléme théorique
essentiel; 'un d’eux, R. Emden, a fourni en 1907, sous la forme
d'une équation différentielle du second ordre, une contribution
sur laquelle s’appuyent encore les théories les plus récentes.
Cependant, tous les travaux d’astrophysique théorique publiés
jusqu’en 1913 sur cette question de I’équilibre thermodynamique
stellaire faisaient abstraction d'un élément fondamental du
probléme, la pression de radiation, et de ce fait aboutissaient
4 des solutions insuffisantes. C’est & M. C. Bialobrzeski? que

1 Amer. Journal of Se. and Arts, 1870.
2 Bull. Acad. des Sc. de Cracopvie, A, 1913, p. 264. Sur P’équilibre
thermodynamique d’une sphére gazeuse libre,
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revient le mérite d’avoir introduit la considération de la pression
de radiation dans les équations du probléeme; et ’on sait bien,
aujourd’hui, quel est le role essentiel de celle-ci. C’est de la
date de la publication de ce mémoire qu’il faut faire partir,
nous semble-t-il, la période actuelle de ’histoire des problémes
relatifs & I’équilibre thermodynamique des étoiles.

Il est vrai, comme nous ’avons déja fait remarquer !, que
M. Bialobrzeski a basé sa théorie sur une hypothése complé-
mentaire purement algébrique, consistant & admettre que
I’équilibre thermodynamique de I’étoile avait un caractére
polytropique du type d’Emden, et que l’on pouvait poser
notamment, comme dans la théorie d’Emden 2:

T = @ .1
. (1)
P:C.pJ\/’

avec C = const. et & = const.; la répartition de la densité p,
de la pression totale P et de la température absolue T dans la
masse stellaire conduisait alors & une équation différentielle
du type d’Emden, & condition de choisir encore la valeur
n = 3 pour la classe polytropique.

On verra plus loin que I’hypothése de Bialobrzeski ® = const.,
hypothése essentielle dans la théorie de cet auteur, entraine
nécessairement a faire n =3, conclusion qui semble avoir
échappé a M. Bialobrzeski et que nous avons signalée dans
I'une des notes citées plus avant. La chose importe d’ailleurs
peu, en ce qui concerne la suite des recherches du professeur
polonais, puisqu’il a, par raison d’opportunité, choisi justement
la valeur n = 3.

Dés 1916, M. A.-S. Eddington précisait le caractére physique
de 1’équilibre radiatif stellaire; il arriva qu’avec la théorie
d’Eddington, & base plus physique, -on retomba sur les condi-
tions de Bialobrzeski. La théorie d’Eddington est plus compleéte
et plus riche en possibilités que celle de son collegue de Varsovie;

1 G. Tiercy, C. R. des séances de la Soc. de Phys. de Genéve, 1935, 11
(Archives 1935 supplément); les mémes remarques dans Publ. Obs.
Geneéve, fasc. 30.

* R. EmMpEN, Gaskugeln, 1907.
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mais il n’empéche que plusieurs des conclusions fondamentales
de I’astronome anglais résultaient déja des recherches du pro-
fesseur polonais. Il en est ainsi, par exemple, de la fameuse
équation du quatrieme degré qui fournit la valeur du coefficient
® (ou celle du facteur  dont il est question ci-apres) en fonction
de ]la masse de I’étoile.

2. — CAS COSMOGONIQUE [3 = CONST.

Comme on sait, le coefficient (3 permet d’exprimer la pression
matérielle p et la pression de radiation p’ en fonction de la
pression totale P par les égalités:

o (2

p'= ({1 —pP;
pour des raisons physiques, ce facteur (3 est une constante dans
la théorie d’Eddington, ce qui entraine la valeur n = 3 pour
la classe polytropique. Comme Bialobrzeski choisissait la
valeur n = 3 pour commencer, son facteur 3 était aussi une
constante. Je voudrais tout d’abord préciser que I’hypothése
® = const. de Bialobrzeski entraine nécessairement que la
classe polytropique a considérer est n = 3. Partons des relations
générales bien connues:

P =

T,

R
-
P p’ _ aT4
\ 1-@ 31 — B} °

™|

ot R =(8,26).107 et @ = (7,66) . 10715 on en tire I’expression
suivante, qui donne T en fonction de p et 3, et qui est valable
quelle que soit I’hypothése admise sur f3:

Lo
= [
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la comparaison de (3) avec T =0 . pJ{‘i conduit & poser:

1

= [P 3

_et I'on voit que sil’on suppose ® = const., on a du méme coup
8 = const., et vice-versa; simultanément, on doit poser:
. 1 4
AL 1 — qe .
J 1 3 K 3
et si I’on rappelle que la classe polytropique »n est liée & JC par
la relation: '

on en déduit la valeur n = 3.

Il nous reste & nous assurer que ¢’est bien 14 la seule solution
possible correspondant 4 ® = const.; pour cela, demandons-
nous si, dans (3), on ne pourrait pas envisager entre p et 3 une
relation comme celle-ci:

1

SHet

qui représente, en somme, une loi de variation de {3 en fonction
du rayon.
On peut alors écrire comme suit la valeur de T:

1

— 1

3R13 4 — 24—
T = |27 . 3 @ . 3
[a“] P G

avec @, = const.; dans ces conditions, la pression totale P
prend la forme que voici:

R a R +2 g .1
PZEPT+§T4:E®Z'923+§®:‘PZ3;

or, on sait que les cas d’équilibres polytropiques sont carac-
térisés par I’égalité tres simple:

P=C-pg{:
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ou C est une constante, ainsi que J{; il faudrait donc néces-
sairement avoir:

4
24+ — 42-{-?
P =P )

quelle que soit la densité p. C’est dire qu’il n’est pas possible
de prendre pour z une autre valeur que z = 0.

L’importance de cette conclusion saute aux yeux; celle-ci
peut en effet se traduire par I’énoncé suivant: si I'on veut
conserver a la pression totale P la forme polytropique ij{:,
avec I’hypothése ® = const. de Bialobrzeski, on doit néces-
sairement prendre la combinaison représentée par les égalités (3)

et (4), ¢’est-a-dire faire K :% et n =3.

Il s’ensuit que, si ’on admet que ® soit une constante, il n’y
a pas lieu d’écrire une équation différentielle générale pour n
quelconque, pour choisir ensuite la valeur » = 3 sous prétexte
qu’alors I'équation différentielle se simplifie et se réduit a trois
termes de total nul; la classe n = 3 est la seule qui puisse
correspondre & I’hypothése de Bialobrzeski ® = const., et
I’équation différentielle du probléeme prend en conséquence la
forme d’Emden.

On peut aussi raisonner comme il suit, en utilisant 'a va-
riable w d’Emden, définie par I’égalité

g == u" avec n = —

on a:

_ , R @ s
P—~P+P—MPT+3T,

pZE@¢£+%@wmw)
4]

k]

P:E@.un+i+_a’_®4.u4.
@ 3 ’

et ’on voit qu’avec ® = const., il faut prendre » = 3 si I’on
veut que la pression P soit de la forme

P:G.un+i’

¢’est-a-dire
P=c¢C.plX.
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L’hypothése ® = const. est ainsi inséparable de la classe
polytropique n = 3.

Cette conclusion essentielle nous améne & revoir le calcul qui
conduit & I’équation différentielle du second ordre entre p et le
rayon r; ce sera fait au n® 4. Mais auparavant, nous nous
arréterons un instant & I’hypothese de Milne 1 pour £ variable
et équilibre polytropique.

1'G. Tiercy, L’équilibre radiatif dans les étoiles. Gauthier-Villars,
Paris, 1935, p. 219.

3. — DE L’HYPOTHESE DE MILNE POUR [3 VARIABLE.

Nous avons examiné, plus avant, le cas de ® = const. avec
la forme polytropique P = G . pK pour la pression totale; ce
cas correspond & n = 3; ® est alors lié & B par I’égalité (4).

Demandons-nous ce qu’il advient de la température T lors-
qu’on envisage une- variation de 3 en fonction du rayon, en
conservant & P la forme polytropique ? Il est bien évident qu’on
ne peut pas prendre pour B une fonction quelconque; il faut
choisir convenablement celle-ci, de facon a garder la forme
P = C. pX; Phypothése de Milne consiste & poser:

1—ﬁ.i=const.-—_~K, (6)
B&—S TS
ou:
1=P8 _ g.qs.pds, (6)
B
comme on a par (3):
T8 — E{_ 1—8 ,
U B
il vient & cause de (6):
3—s 3RK 3-s
T iy B"" - e,
ou:
i 1
__[8RK]3-s T
T=5R] e )
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Si maintenant on porte dans (7) la valeur de T tirée de
I’égalité

P = —g&-p-T 3
¢’est-a-dire:
_ Bp P
T=F o>

on obtient I’expression suivante donnant la pression totale P:

L b—sg
p— B [RKPS G
& ap .
¢’est-a-dire:
4-s
P=UO-p"", (8)
en posant:
1
3=
C = R [3RK] ¥ s const. ;
Lilap

I’expression (8) est bien de la forme polytropique, avee

. b —
I’ = s ou n=3—s;
3 —s

portant cette valeur de J< dans (7), on trouve que la température
est donnée par:

T = (const) - B - pJ{:—i ;

et comme (3 est maintenant variable, la distribution de la
température T n’est plus réglée par la solution d’Emden ou de
Bialobrzeski, T = 0 . pK™! avec ® — const.; de sorte qu’en
ce qui concerne T, le cas n’est plus exactement comparable a
celui de la classe polytropique n = 3.

Il en sera de méme avec la formule de variation de  que
nous verrons au n° b,
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4, — I’EQUATION DIFFERENTIELLE DE SECOND ORDRE
DU PROBLEME.

Nous avons déja eu I'occasion de parler de I’équation diffé-
rentielle générale de second ordre qui caractérise I’équilibre
thermodynamique des spheres gazeuses 1. Rappelons que cette
équation est issue de celle de I’équilibre mécanique:

; T

1 dP hnG o

E._r.:— = 'fpr2dr;
0

et ’on sait qu’on a d’autre part:

R a
L T4
P = pT+3T.

Ecrivons encore:
o
T fosigar @ . PJ\/ i 5

comme dans la théorie d’Emden (ou p’ = 0) ou dans celle de
Bialobrzeski (ZK = %), dans lesquelles on fait & = const.;

mais maintenant, nous considérons ®@ comme variable avec r.

Cela nous conduira & une équation différentielle tout a fait

générale; aprés quoi nous verrons bien ce que devient cette

équation sil’on exige que P conserve la forme polytropique Cp'j{.
Avec la forme adoptée pour T, on a pour P:

P— 0. o 4 Lor HO) (9)

ou bien, si ’on utilise la variable d’Emden

N 1
HK—1
R n+1 a
P=0.utt i Lo us. (10)

1 G. Tiercy, C. R. Soc. de Phys., 1935, 11; le méme dans Publ.
0bs. Genéve, fasc. 30.
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I’équation de I’équilibre mécanique devient:

ba gnldu  dO[R ba »
R, .04 n{zz 2. . 8. L
[®(n+1)+3®u}dr+dr[p. u+8®u]
el X
b
458 [ m
0

En dérivant cette égalité (11) par rapport 4 r, et en tenant
compte de 1’équation (11) elle-méme, on obtiendra I’équation
différentielle de second ordre qui lie la fonction u 4 la variable r;
et comme ® est variable avec r dans le cas qui nous occupe,
on voit bien que 1’équation résultante sera compliquée.

Rappelons en passant que si I’'on pose ® = const. comme
I’a fait Bialobrzeski, il faut prendre en méme temps n = 3;
et I’équation différentielle est alors du type d’Emden.

Avec @ variable, Péquation finale contiendra de mombreux
termes; nous ’avons écrite dans D’article rappelé plus avant 1.
Cette équation compléte ne nous est ici d’aucune utilité,
puisque nous recherchons uniquement des cas d’équilibre poly-
tropique, pour lesquels P doit pouvoir prendre la forme réduite
C . pIC; pour étre dans ces conditions particulieres, il suffit que,
dans (9), on ait:

§®+§®4-p35£*4=c : (12)

ou G est une constante; cette égalité donne la loi de variation
de ® en fonction de p, donc en fonction de r; elle montre que,
lorsqu’on va de la périphérie au centre de I’étoile, ® diminue
puisque p augmente.

L’équation différentielle se réduit alors immédiatement a la
suivante:

d"*_u, 2 du hn G

I R T A

1 C. R. Soc. de Phys., 1935, 11; le méme dans Publ. Obs. Genéve,
fasc. 30.
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quel que soit JK, c’est-a-dire quelle que soit la classe n. Nous
reprendrons cette question au n° 5.

Pour l'instant, insistons sur le fait que, dans les conditions
polytropiques, I'équation différentielle du second ordre n’est
jamais d’un type compliqué; elle est toujours du type (13)
d’Emden. ' '

Cette remarque est importante; elle parait avoir échappé a
M. Bialobrzeski. |

Relevons enfin qu’on peut écrire: |

_Bw B _ LBw . gea
'=TR % Py

on peut donc poser:

__ GBu
0 = -5, (14)

relation qui montre bien que ® sera constant si (8 'est, cas qui
se présente pour » = 3 comme on a vu.

5. — CONSERVATION DU CARACTERE POLYTROPIQUE
AVEC [3 VARIABLE.

La question qui nous occupe ici est de savoir quelle variation
il faut adopter pour P le long du rayon pour que ’équation
différentielle de second ordre correspondante soit une équation
d’Emden du type (13). :

Nous pourrions évidemment nous contenter de la condition
(12), qui donne la variation convenable de ® en fonction de p;
mais il semble préférable de trouver B en fonction p ou de T.

La condition & traduire est que I’expression de la pression

totale:

_R n+1 ¢ ot 4w5 amy

conserve la forme polytropique P = C.. 95{
Rappelons I’égalité (3) qui donnne T en fonction de § et de ¢:

2
3

?

¥
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égalité vraie quelle que soit I’hypothese faite sur la variation
de ; on a d’ailleurs vu par (14) que ® est proportionnel a 8
dans les cas d’équilibres polytropiques.
Portant cette valeur générale de T dans (15), on obtient
pour P:
L Aoy
R[3R(1 — B)]3 5 a[BRU — B)]3 3
P = —[—-——; . S | B 4 . 16
i Tt g ape PY 3 186
cette expression montre bien que, pour B = const., on aura la

forme
4

P = const. - 93 ;

cas de M. Bialobrzeski et de M. Eddington.

Si maintenant nous voulons qu’avec (3 variable P conserve
la forme C . ¢, I’expression (16) montre qu’on doit avoir:
4
R[ﬁiﬂ;ﬂ)r 4 [3R(1 — B)]
@ afup 3 afp

k3
3

:C'an (17)

ou z est un nombre quelconque. Cette condition en f3 et p
remplace la condition (12); au lieu d’exprimer la variation
de ©, elle donne la loi de variation de B.

S1 cette lol est satisfaite, Ia pression P est proportionnelle a

4
p§+x:
- +x
P = Cp?

¢’est-a-dire qu’on a:

’ 4 i 3

M~ —_ 3 — — - 1

K=g+z; n 1 1+ 38z (18)

comme on ne retient que les valeurs positives de n, seules
intéressantes du point de vue physique, on est amené a ne
considérer que les valeurs de z telles que

.’E>—§;
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. & 1 .
pour z =0, on alecas n =3 ou K = 7 ; pour x =—§,1l
vient n» = oo, ce qui est le cas de 'isothermie, comme on le
verra plus loin.
La condition (17) s’écrit plus simplement, aprés quelques
réductions. faciles:

1
SR —B) |3 _ . .
[ a @Byt ] =Gt
ou bien:
3R*(1 — B)
aftpt T LAt _ a9

Mais, & cause de (3), on a toujours, quelle que soit I’hypothese
sur 3 variable:

_ aBu g
P=3RA @

de sorte que (19) peut s’exprimer par:

R3 [3R(1 - B)] _ Cs.-[JB“ ]3x. e

Bt | apu SR(1 — B)
ou bien:
R? [3R{1 — B) 3x+1.i = (3 ; (20)
B3ud alBu T 9%
on apercoit bien ici que la valeur z = —% (n = o) correspond

au cas de I’équilibre isothermique.
On trouvera la valeur de la constante C en portant dans le
premier membre de (20) les valeurs centrales 3, et T,; on obtient

ainsi:
R 3x+4 ’
3 = (E) (1 _ BC)gx—l_i . (21)
o 3x+1." 3x+4 " m9x 7 !
(2) " ¢ Te™

3

et I’on peut exprimer la loi de variation de $ dans le corps de
I’étoile par 1’égalité:
(1 — p)3*+t 4 (1 — p)¥+t

— = —— — (22)
3x+4 9 3x+4 9
B x+ T X CDC+ Tcx
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il vient alors pour P:

ou C est déterminée par l’expression (21).
La valeur n de la classe polytropique correspondant & une
valeur donnée z est:

3 9Qx
R= Y 8s T S TTF 8z (23)

(=21

si 'on veut que n reste supérieure & 2, il faut prendre z << = ;

de sorte que les valeurs possibles de z sont dans ce cas:

LI
g =R

Maintenant, en posant x = ol s est une fraction

9 —3s’ ,
positive arbitraire, on retrouve le cas de 'hypothése de Milne
examinée au n° 3:

n=3—s;

1 1
par exemple, pour r = 5ronas=.

En dehors des cas réglés par I'égalité (22), la condition (17)
n'est pas satisfaite, et P n’a pas la forme réduite désirée.

6. — DE LA consTANTE G ET DE B,

La constante C qui figure dans P = CoKX = Cu™*! entre
dans la composition du coefficient constant du terme en u"
dans ’équation d’Emden correspondante:

du | 2 du

=, 22 2. .
alre—l_r'dir_lumM 0
on a en effet 1:
b G
2 — J/
o n+ 1)C (24)

1 G. Tiercy, L’équilibre radwatif dans les étotles. Paris, Gauthier-
Villars, 1935, p. 223.
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C ayant la valeur exprimée par la quantité (21). Dans I'appli-
cation au probléme stellaire usuel, cette égalité (24) servira
justement & déterminer la valeur numérique de C, celle de la
constante w? pouvant étre tirée des données initiales, le rayon r,
et la masse M de Pétoile 1, comme il est rappelé ci-apres.

On pose:

ol u, est la valeur centrale de la fonction u; de telle sorte que
I’équation différentielle devient:

dz{
dE?

2 dy n
— = 0 H

tg ogE T

et I’on sait qu’Emden a calculé des tables numériques donnant
la solution de cette équation pour plusieurs valeurs de la classe n
(n =0, 1, 2, 215, 3, 4, b); ces tables indiquent, pour toute

valeur du rayon, ¢’est-a-dire pour toute valeur de la variable &,

. d
les valeurs respectives correspondantes de ¢, ", $" 1, (~— d_\é)’

: dd 3 dy .
e 2. %Y. :
( 2 7 E) et ( 3 dg) ; ces valeurs sont reépectlvement
proportionnelles & celles de T,., ¢,, P,, g,, M, et p,.

Dans le probléme usuel, ou r, et M sont connus, on obtient

d’abord les valeurs des constantes u, et w? par les expressions 2:

3 1
= (B (Mo T _ 3
S M = P
3-n n—1

e (E_:)"ﬁ" (47:3;;0,x)7 ’

ou &, est la valeur de £ ala surface (r =r,), et ou I, . désigne
la valeur de surface:

1 Idem, p. 225.
2 G. TiERCY, loc. cit.

ARcHIVES. Vol. 17. — Septembre-Octobre 1935. 25
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I'indice z indique qu’on se trouve dans le cas polytropique du

n® précédent, olt n = . Connaissant w?, 'égalité (24)

1+ 3z
fournit C, valeur a porter dans le second membre de (20); on

obtient ainsi la loi de variation de B:

3 _ 3x+1
133[31%(1 B)] e, (25)
e afu T
ou C est connu.
D’autre part, ’expression (14) donne:
G
s SO M. py s (26)

— R YT R

en portant cette derniére valeur de T dans (25), on obtient une
relation entre {8 et ¢, relation qui permet de déterminer la
valeur de [ correspondant a toute valeur de {, c’est-a-dire a
une valeur quelconque du rayon r. On trouve:

R® [3R(1— B)>*+! / R \™ 1 &
B“w”[ afy ] '(Cuuc) ot 0 =@

que ’on transforme sans difficulté en:

! Lo B)3x+1 L oL I e et o T e : (27)
B12x+4 lng e 3 R )

le second membre de cette égalité est une constante connue,
puisque u, et C ont été déterminées précédemment en fonction
des données immédiates (r, et M) du probléme usuel, et en
utilisant les tables d’Emden ou des tables analogues faciles &
construire. Nous désignerons le second membre de (27) par la
notation N***!; de sorte qu’il vient maintenant:

?

comme les conditions centrales sont données par la condition
¢, = 1, on obtient 8, par I’équation:

b}

¢’est-a-dire:
" _
1—p, = Np; . (28
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Ainsi, B, est toujours fourni par une équation du quatrieme
degré, pourvu qu’on adopte la loi générale (25) pour la variation
de 8 le long du rayon. Il est facile de vérifier que pour xz = 0,
c’est-a-dire si n = 3, ’équation (28) redonne I’équation du cas
cosmogonique de M. Bialobrzeski et de M. Eddington; en effet,
la valeur du second membre de (27) est alors la suivante:

= NOHL — 0 sl @) eGPt
I =N =40 . ¢ 3(R>_3 Sk

et I’égalité (24) donne la valeur de C:

b G _ 4nG G

G = (n+1)e?  Le? o’

ol w? représente 1’expression

L L
i Ep)" ‘i_’i‘?_'ﬁx_x)”
o "o M ’
qui devient ici
2
b I, 3
g — (2“0 .
¢ ( M ) ’

nous désignons par J1{, la valeur que prend I, , pour n =3.
11 vient done:

cs — G2 nmGIM?2

T Y (4
d’ou:
am G3
I = M s s e g
48 R4 I,

c’est la constante de M. Eddington; elle vaut, comme on sait,
(7,83) . 10779 unités CGS.
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7. — Carcur pE P, ET T,.

A cause de la relation (26), on a:

L
T

C

%w, (29)

puisque §, = 1; de sorte que la loi générale (22) de conservation
du caractére polytropique devient:

{d — B)3x+1 _ (1 — Bc)gvx+i (T )9x -

[;3&44 — 3x+4 T
(4
(1— gt (41—t
’ Bizxﬂ - 12x+4 b
C
9x
_ 1 — T
1 - B - 4{30 . (‘I)3x+i , (30)
B B,

condition qui remplace (22) ou (27).
Comme on a par (23):

9z
S P

on retrouve la notation de Milne en posant:

L 9
T3z 4+ 17

comme on a vu au n° 5; la condition de « polytropisme » s’écrit
alors:

1—p_1—F (31)
T T Y

La valeur centrale 3, étant numériquement connue par (28),
Pégalité (31) donne tous les (3, c’est-a-dire la valeur du coefh-
cient 3 pour un rayon r quelconque; on a donc la distribution
des (.
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La distribution des températures T est réglée par la rela-
tion (26):

Cp - u,
T = R B"p’

puisque les constantes C et z, ont été déterminées en fonction
des données immédiates du probléme usuel, comme on a vu
au n° 6. On a donc pour la température centrale:

_ Cuu,

.Tc == R * Bc . (32)

Quant & la pression centrale, elle vaut:

9x 3x+4

[.t-“—
— n+l1 __ 3x+1 . 3x+1
Pc-—(]uc = Cu, = G - u, s

(33)

tandis que la distribution des pressions totales est réglée par:

*

3x+4
— 3x+1
P=P, ¢ :

8. — ExprEssions pE P, Er T, EN FONCTION DES DONNEES
INITIALES 7, ET M.

Pour la pression centrale, il suffit de remplacer, dans I’expres-
sion (33), C et u, par leurs valeurs respectives; on a, comme on
a vuaun6:

hn G

C=mFte

n
. (gg)? (!sﬂﬂ]lo’x)_n_
o= To ’ M ’
3 - 1
" :<§9)n_(ﬂ_@) T s %
& ro M c

3 b + 3z
n=grx1c "Hl=arrao

et comme
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il vient:
C___énG-(3w-+il
- (& + 3x) s w2
-3
S (é} 3x éngltﬂ’x )T
T\ ' M ’

3x+1
Y (g_ﬂ)&‘x-f-l . (!iﬂ:_o‘lloax_)_ 3 .
c Ty M ]

d’ou finalement:

3 -2
o 4nG- (32 +1) (g_o)“% (4ﬂ=3no,x) 3
T (&8 + 32) \rp ' M ’

3x+4
3x+4

u3x+1 _ é) 3x+4 énmtojx 3
[ ro : M )

et:

On a aussi:

_ B

T, R - Cu, ,

Ty

(35)

__F"Bc G‘(3x+1)(£0) M
c R 4+ 3z

Tg= M, .

&

On remarquera que les exposants de (}—0) et ( o,
indépendants de z dans P; et T,; la valeur de z (donc de la
classe polytropique n) n’intervient que dans les coefficients
ainsi que dans la lecture du nombre I, .

Rappelons que z est quelconque entre les limites suivantes:

) sont

! <z < f
3 6’

et que s1 'on fait z = 1 on trouve § = }—et n :21- les
q 15° ) R

tables d’Emden comprennent le cas de la classe 2%.
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9. — LoOI DE VARIATION DE B CORRESPONDANT A UNE VALEUR
DONNEE DE JU OU DE n.

Reprenons sous la forme (19) la condition qui conserve le
caractére polytropique avec (3 variable:

SR:(;; B _ 2. 3% (36)
en rappelant que:
’ b C.P%er’
JCx—g-l-m, n:}}é—{:,
a:“:-J{:——g, x=3;_nn

Suivant qu’on suppose J< ou n donné, la condition (36) prend

I’une ou ’autre des formes suivantes:

3R4(1 — B) 3 ML—4 ;

SRL B — o 008 (3 doms) (30
R4( ) 3-n ‘

3 1—8) & n ;

T‘lpfl—_ = C o] ’ (n donﬂe) § (38)

Si I’on remplace p par sa valeur tirée de

_3R(1—B)

TS o '
aBu

H

les formules (37) et (38) deviennent:

_ R® [3R(1—pPKE 1 :
“=pw | ate R 7
3

R® [3R(1— B)]n .
C8 — e AT - (38)
- - T (T)



360 L'EQUILIBRE THERMODYNAMIQUE STELLAIRE

La valeur de la constante C étant obtenue en considérant les
conditions centrales (3, et T,), la loi de variation de § sera:,

u_mw%a 1 __M~ﬁf*ﬁ. 1 -
GO PO T TR 2B (

dans le cas ou ¢’est exposant JC qui est donné; si c’est la
classe n qu’on connait d’avance, la loi de 3 est:

M—e3 1 @—BP 1 (
3+3 " m3(3— - 3+3 " m3(3- !
B+n T3 (3-n) BC-E-H Tc( n)

dans les deux cas, le caractére polytropique de I’équilibre est
CONServe. '
Comme on a toujours, dans T =0 . p Rt =0 . u:

la variation de ® est connue avec celle de 3. Quant aux cons-
tantes C et 3,, on en a vu le calcul au n° 6, & partir des données r
et M du probléme ordinaire.
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