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1935 Vol. 17. Septembre-Octobre

EXPRESSION DES

EQUATIONS DE L'ELECTROMAGNETISME
AU MOYEN DES NOMBRES DE CLIFFORD

PAR

Andre MERCIER

INTRODUCTION

Dans ses travaux sur les biquaternions, Clifford a défini des
nombres hypercomplexes qui peuvent représenter les substi-
tutions linéaires qui laissent invariantes des sommes de carrés.
Ces travaux sont contenus dans trois notes principales: Preli-
minary Sketch of Biquaternions !, Further Note on Biquater-
nions (posthume) et Notes on Biquaternions 2.

Lipschitz 3, en étudiant la théorie des transformations
linéaires qui laissent invariantes des sommes de carrés, a utilisé
les mémes nombres. L’exposé de MM. Study et Cartan dans
I’Encyclopédie mathématique donne un apercu clair de leurs
- principales propriétés 4.

La premiere application des nombres de Clifford & la physique
mathématique est, & notre connaissance, due & M. Proca 3 qui,

v Proc. of the London Math. Soec., vol. IV, n°s 64, 65, p. 381, 395.

* Cf. W. K. CLIFFORD, Math Pa,pers (London, 1882 p. 181, 385,
395 et 4£02).

8 LipscHiTz, Untersuchungen iiber die Summen von Quadraten
(Bonn, 1886), trad par J. Mork (Jour. de Math. pures et appl. (%),
2, 373 (1886)).

* Voir Encyclopédie des Sciences mathématiques, t. I, vol. 1, fas-
cicule 3 (1908), p. 463 et ss. :

5 C. R, 190, 1377, 1930 et 191, 26, 1930, et J. de Phys., VII, t. 1
236, 1930
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306 EXPRESSION DES KQUATIONS

faisant usage du caractére d’invariance de ces nombres, les a
appliqués a la théorie de Dirac. M. Juvet les a appliqués a
I’électromagnétisme et & I’équation de Dirac . Enfin MM. Juvet
et Schidlof sont parvenus & donner au moyen de ces nombres
une forme trés élégante aux lois de I’électromagnétisme dans
le vide, et ils en ont indiqué une généralisation possible 2. Nous
suivrons en général ces deux auteurs et nous emploierons leurs
définitions et leurs notations 3. Nous avons publié deux notes,
sur D'expression du théoréme de Lorentz et celle du second
principe de la thermodynamique en notation cliffordienne®.

Dans la premiere partie de ce travail, apres avoir donné une
définition des nombres de Clifford, nous montrons quelles en
sont les principales propriétés. Dans les applications physiques,
nous ferons usage des nombres relatifs & un espace a quatre
dimensions; c¢’est pourquoi nous nous arréterons plus longue-
ment sur ce cas particulier.

Le chapitre II expose I’analyse cliffordienne, ¢’est-a-dire les
propriétés des nombres de Clifford fonctions du point de I’espace
ou ils sont définis; cet exposé se fonde sur les travaux de
MM. Juvet et Schidlof consacrés plus particulitrement aux
espaces & trois et & quatre dimensions. Certaines formules
d’intégration partielle, portant sur des multiplicités quelconques,
y sont établies sous une forme condensée. Dans ce méme cha-
pitre, nous donnons une série d’identités auxquelles satisfont
les opérateurs différentiels de I’espace & quatre dimensions.

On peut appliquer les nombres de Clifford & I’étude de 1’élec-

1 G. Juver, Opératcurs de Dirac et Equations de Maxwell (Comm.
Math. Help., 2, 225, 1930).

G. Juver (Congrés int. des mathématiciens, C. R., Zurich, 1932).

2 G. Juver et A. Scuipror, Sur les nombres hypercomplexes de
Clifford et leurs applications... {Bull. Soc. neuchdteloise S. nat., 57, 127,
1932).

3 Nous citerons dorénavant leur mémoire par 1’abréviation (J.S.).

4 A. Mercier, Application des nombres de Clifford & I’établisse-
ment du théoréme de relativité de Lorentz (Help. Phys. Acta, Vol.
VII, p. 649, 1934, et Actes de la Soc. help. des Sc. nat. Zurich, 1934,
p. 278).

A. Mercier, Expression du second principe de la thermodyna-
mique au moyen des nombres de Clifford (C. R. de la Soc. de Phys.
et d’Hist, nat. de Genépe. Séance du 6 juin 1935, p. 112. Suppl. aux
Archives des Sc. phys. et nat., juillet-aout 1935).
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tromagnétisme, ainsi que I’ont fait MM. Juvet et Schidlof. Ces
auteurs ont écrit sous la forme cliffordienne (invariante par
rapport & la transformation de Lorentz) les lois de I'électro-
magnétisme dans le vide. Dans le chapitre 111, nous résumons
leurs résultats en un principe de variation et les généralisons
en appliquant leur méthode & 1’étude de 1’électromagnétisme
dans la matiére. On décrit ainsi, au moyen des nombres de
Clifford, les lois des champs et des induections, du mouvement
de la matiére et des charges, et de I’énergie électromagnétique.

CHAPITRE PREMIER.

Définitions et propriétés.

1. Définitions. — Les nombres de Clifford relatifs a un
espace euclidien & »n dimensions E, se définissent comme suit.
Ce sont des nombres hypercomplexes 1 & 2" unités, n 4 1 sont
fondamentales, et seront désignées par 1, I';, I'y, ... I", les autres
résultent de produits des unités fondamentales.

Les unités fondamentales I'; satisfont par définition aux
conditions

Tl =1 (1)

1

On obtient les autres unités, qui seront appelées unités
dérivées, en formant le produit de % unités fondamentales
I' (k=2, 3,...n). En vertu des conditions (1), on n’obtient
de la sorte que 2" unités linéairement indépendantes. Le carré
d’une unité dérivée, formée & partir de & unités fondamentales,
est égal & 1 si k est pair, et & — 1 si k£ est impair.

! Un nombre est hypercomplexe si sa définition nécessite 'intro-
duction d’unités plus nombreuses que 1 et i = 4/—1.
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Dans la multiplicité E,, un nombre de Clifford a la forme
générale

N=a+ali+ .4+l

n-n
toapDily + oty Iy Ty
+ ..
+ agy o Tals . Iy + o +agg py1ale - Ty
+ a9 0T, . T

n

= a + EaiI‘i + Zaij-l’i]f‘j + ...+ a12__,nF1Fz .. T

n 7

ou les @ sont des variables, que 'on peut appeler composantes
du nombre de Clifford N relatif & E,.
En général le terme Xa, I .. T, a

nin—1) ... (n—k + 1)
k!

composantes, car si I'on a formé une unité dérivée au moyen
de £ I',, il n’y a pas lieu d’en permuter les éléments.

La somme de deux nombres de Clifford sera définie par le
nombre dont les composantes sont la somme des composantes
correspondantes des deux nombres additionnés. Le produit
d’un nombre N de composantes ¢ par un nombre N’ de compo-
santes a’ s’obtiendra en faisant la somme de tous les produits
possibles

a. P .. a:'- T T 3

t..m i m”j.mgj " T n

compte tenu naturellement des conditions (1). Le quotient Nj
de deux nombres N; et N, sera tel que le produit de N; par
N, soit égal a Nj.

En réalité, Clifford (et Lipschitz) ont introduit des unités I';
dont les unes ont un carré égal & — 1 et les autres un carré
égal & + 1. Nous nous tiendrons au cas défini par (1), bien que
pour l'espace minkowskien il soit plus naturel de poser

[ =T =T 4 TV oA

2. Sur le caractére des nombres de Clifford fonctions des coor-
données d’un point de l'espace. — Les nombres de Clifford sont
définis dans une multiplicité E,_ qui est euclidienne. Un point Q
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de cette multiplicité peut étre représenté par un nombre de la
forme particuliere X = Zz.I"; et il est indiqué d’appeler les z,
les coordonnées de ce point. Comme le disent MM. Juvet et
Schidlof 1 toute transformation linéaire consistant a passer
des n coordonnées x; & n autres z;, et symbolisée par un opéra-
teur B, transforme le nombre X en un autre X’ = Zz.I"; selon

X = BX

de sorte. que X peut étre considéré comme un vecteur. Le
point Q) en est I'extrémité dans I’espace euclidien E,. Tout autre
nombre V = Xa,I'; (ou les @, sont fonctions des coordonnées z;(
se transforme de la méme maniére et en général, d’apres ces
auteurs, les diverses parties a, 2a]l;, a oI ... I'y du
nombre général N se comportent comme des tenseurs d’ordre
zéro, un, deux ... n. A I'exception des deux premiers qui sont
donc un invariant et un vecteur, ces tenseurs sont antisymé-
triques. En effet, une permutation entre I'; et I'; dans un
élément d’une partie de N nécessite un changement de signe.
L’invariant et le vecteur ne présentent pas ce caractere, puisque
leurs éléments ne comportent aucun, ou qu'un seul I';.

Dans E,, le terme a;y,I'\I,I';I', est un tenseur antisymé-
trique de quatriéme ordre, qui se réduit & un seul élément
distinct. Le tenseur d’ordre n dans E,, se réduit également & un
seul élément.

M. Juvet 2 démontre dans le cas particulier des nombres de
Clifford relatifs & E,, que ceux-ci sont invariants vis-a-vis de
la transformation de Lorentz, ce qui rend leur application
recommandable dans nombre de problémes de la relativité
restreinte, pour autant, naturellement, que les grandeurs
physiques que ces nombres doivent représenter possédent le
caractére d’antisymétrie. Pour les vecteurs, il n’y a pas de
difficulté. Les grandeurs géométriques telles que surfaces,
volumes, etc. sont antisymétriques; et la plupart des grandeurs
qui interviennent dans I’électromagnétisme minkowskien sont

1 Loc. cit., Introd., § 3, p. 128.
2 Loc. cit., §1, p. 227 et ss.
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antisymétriques. D’ou l'application des nombres de Clifford
qu’a ingénieusement proposée M. Juvet.

Nous appellerons produit k-vectoriel la partie du produit
cliffordien de % vecteurs qui est un tenseur antisymétrique
d’ordre %, et nous appelerons bivecteur, trivecteur, quadrivec-
teur... k-vecteur des tenseurs antisymétriques particuliers qui
peuvent se mettre respectivement sous la forme d’un produit
bivectoriel de deux vecteurs, trivectoriel de trois vecteurs, ete.

3. Nombres de Clifford relatifs ¢ E,. — Les nombres de
Clifford de I'E, sont particuliérement utiles dans I’électromagné-
tisme minkowskien. Pour abréger on pose (J.S.):

I,r,r,Tr, =T

en remarquant que I'l', = —I'I". Le nombre de Clifford
complet de E; peut se mettre alors sous la forme

N=L+V,+T+T(V,+1),

ou I; et I, sont deux invariants, V; et V, deux vecteurs, et
T un tenseur antisymétrique du second ordre.
Le nombre de la forme

S=1V,+TV,

est appelé survecteur (J.S.). Le produit, & gauche ou a droite,
d’un tel nombre par un tenseur antisymétrique du second
ordre, fournit & nouveau un survecteur.

Le produit de deux vecteurs V et W est la somme d’un inva-
riant et d’un tenseur antisymétrique particulier que nous
appelons bivecteur. Ces deux parties du produit sont le produit
scalaire V. W et le produit bivectoriel VX W. On notera donc

VW =V . W+ V x W,
d’ou

VW + WV
2 ?

VW — WV

—

V.W —

VxW



DE L’ELECTROMAGNETISME 311

Le produit d’un vecteur V et d’un tenseur T est un survec-
teur, dans lequel apparaissent les deux vecteurs

Zriz%oj =T.V
i j
et
Eri(tjhvt + Ly 95 -+ tlj"k) =T x V.

1

Les produits cliffordiens TV ou VT sont d’une part

TV=TV4+TTxV
et d’autre part

VI = —T.-V+TI'TxV.
On en déduit
T.V — TV — VT
2
et
7 7
TaV = Pttt Y1
2
Remarque. — Dans la multiplicité E; la mise en évidence

de l'unité dérivée I' nous a permis de représenter le tenseur
d’ordre 3 (= n — 1) par un vecteur. Pour n quelconque, on
peut, en mettant en évidence I'unité dérivée I\, ... T, =T,
représenter tout tenseur d’ordre n — 1 de E, par un vecteur
4 n dimensions. L’unité I' sera commode pour l'écriture de
certaines formules d’intégration partielle.

CuariTtre II.

Analyse Cliffordienne.

1. Les opérateurs \J~ et +\/.— Soit un nombre de Clifford C
dont les coefficients sont fonctions des coordonnées z; et que
nous appellerons champ cliffordien. Les symboles 7+ C et C «V/
remplaceront les opérations de dérivation suivantes:

n

oG
U+ =T, ", (2)
1 1
n
oC
C «\/ = Fony Pi . (3)
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2. Cas ou n = 4, — Dans E, on introduit (J.S.) une série
d’opérateurs partiels, qui sont les suivants:

- ol

grad I = r; 65@
divv = N
s O

00y, 0P,
rot V = 2(0_%—@) r.r,
ik
_ N ;i (divergence
ML = 2 e 2 ox; vectorielle)
i j

max T — P1 (btﬁ + %2. + ‘:_‘.t.z'i_) + e

0xy 0Z, 0xg
(maxwellien).

Les ¢; sont les composantes du vecteur V, les ¢;; celles du
tenseur antisymétrique T. On obtient les quatre termes du
vecteur max T par permutation circulaire. Dés lors les opéra-
tions V-+ C et C «V effectuées sur un champ cliffordien
C=I1,+V,+T+TI(V,+ I,), fonction des points de E,,
s’écrivent

V= C=divV, +grad I, + DIVT + rot V, +

+ I'(max T — rot V, — grad I, — div V,),
C«/ =divV, +grad, —DIVT —rot V; + I' (max T —

—rot V, 4+ grad I, + divV,) .

Indiquons la regle de dérivation suivante, C et C' étant deux
champs cliffordiens:

V= (C) = V= (GO + /= (CC) ,
t 1

ou seule est considérée comme variable dans chaque parenthese
du second membre la quantité désignée par la fleche.
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3. Seconde définition des opérateurs et formules d’intégration
partielle. — Pour que les opérations symbolisées par le \y» au
§ 1 alent un sens, il faut admettre que les fonctions (champs
cliffordiens) sur lesquelles on opére sont continues et admettent
des dérivées continues. Pour la définition du ¥V + quenous allons
donner dans ce paragraphe, il n’est pas essentiel de soumettre
les champs & ces restrictions, il faut que la limite qui définit
Popération existe, et nous donnons plus loin les conditions qui
doivent étre remplies pour cela. Toutefois, dans tout ce travail,
a moins de spécifier le contraire, nous supposerons satisfaites
a la fois les restrictions correspondant & la premiére et a la
seconde définition de I'opérateur, pour pouvoir en particulier
justifier 'identité des deux définitions du V+ que nous donnons.
Dans les- applications que nous ferons des nombres de Clifford
a la physique mathématique, nous aurons toujours affaire a des
fonctions soumises a de pareilles vestrictions.

Dans Eg, soit un volume = (d’élément dr = dx,dz,dz, ", I,I';)
limité par une surface o (d’élément do = dz,dz,I',I'; +
dxgdr, sy, + drydz,I ;). On écrit par définition (J.S.):

Eﬁdoc
Va G =—DPlim 2 .., (4)
=0 |7
#Cdc
Ce/=—Tlm < . (5)
=0 |7

Le signe ’ l indique que 'on envisage le nombre qui mesure
le volume 1. L’équivalence des deux définitions (2) et (4) sera
donnée dans le cas général ou n est quelconque.

Soit alors T un volume dans lequel C est défini et continu
ainsi que sur la surface qui le limite, et soit d’autre part S’
une surface ouverte sur laquelle C est défini, frontiére comprise
(d’élément dl). MM. Juvet et Schidlof intégrent I’équation (4):

fv+ Gdr=€ﬁdcc (6)



314 EXPRESSION DES EQUATIONS

d’ou ils déduisent les quatre formules d’intégration partielle
dont voici I’écriture vectorielle:

IS
fﬁxv|dﬂ=563;xv

4;&’; V= |ds-(V xV (Stokes)

dt| = (ﬁE; \Y% (Ostrogradzky)

Remarquons qu’en faisant C = I dans (6), on a le théoréme
du gradient
f%l]dﬂ :45123.

La définition intrinseque de V- et «V dans E, est analogue.
On considére un champ cliffordien dans E;. On entoure un
point, dans le voisinage duquel C est défini, d’'une hypersurface ©
limitant un hypervolume p. Posons

dr = dogydede, ;T Ty + s

que nous appelerons I’élément d’hypersurface orienté. MM. Juvet
et Schidlof écrivent pour définir v+ C et C «v

#drc
v+ (= —Tlim Y (7)
¢ 0 lel
?ﬁ(}dr
Cey =1lm <L  T. (8)
¢=>0 le]

Si on pose alors dp = I' ‘ de ‘ et qu'on integre (7) dans un
hypervolume p de dimensions finies, il vient

fdpv-*(]:—-ﬁdrc (9)
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On peut obtenir une série de formules d’intégration partielle
a partir de (9).

SiC = I (un invariant), et qu’on pose dtv = I'd£ 1, il vient

f|dp| grad 1 :—§dil.

Si G =V (un vecteur), il vient
FJ lde| (divV + rotV) :argﬂdav ,

d’ou, par identification, en vertu des définitions du § 3, chap. I,

/ ldo| disz—#di-V
/\dp] rot V :(ﬁdixv.

Si C est un tenseur antisymétrique T, il vient

et

I‘f|a!p] (DIVT + T'maxT) = — I‘CﬁdET ,

L 11 faut prendre garde aux signes qui interviennent lors de la
formation de d&. En effet, ’hypersurface élémentaire est définie par

dv = I T, Iyda, daydaey + T, 1y Ty daydagday + -
= T, T, dE + T T dE + ..
= I, T, T,dE T + T TEET, + .
= I'(d T, —dE;I‘l + dE T, —dETy) .

On peut poser

dg, = —d&, d& =dE, df, = —df, dE = df

et il vient
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d’ou 'on déduit de la méme maniére

f}dpiDIVT :—Eﬁdi-T
tf]dp] max T :—i;dixT.

Passons a la définition intrinséque des opérateurs dans E,,
ce qui nous permettra d’écrire la formule générale d’intégration
partielle (formule (10)). Nous étions partis d’une premiére
définition

et

I I

4 .
o Moz,

V- =T

1
0,

Selon la seconde définition, ce sera la limite d’un rapport:
soit un domaine R, de E,, dR, un élément de ce domaine.
R,, est limité par une frontiére R, , dont I’élément s’écrit sous
la forme d’un tenseur d’ordre n — 1:

dR‘ﬁ.—i — P1F2 e Tn_1 dﬁ?ldwz p— dxn_i + dxzdx3 vae dxn P2I13 Fn +

+ ..+ L1, .1, dr,dz, ...dz, 5 .

Posons I' =I'I', ... I',. On peut alors représenter dR,_,
par un vecteur 4 n dimensions:

dR, , = I'dll ,
ou dII vaut

dIl = dIl, = T, dx, .. dz,_, + Tyde, .. dz, +
+ ... + Pn—l dﬂ’;n ves d.:t:n_Q

si n est impair, et

adll = dll, = T de, ... dz, | — I'dz, ... dz,, +
+ ..— I _4dz, ..dx, o
si n est pair.
Soit alors un nombre de Clifford C, fonction des points de E,,.
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Soit un point Q a lintérieur du sous-espace R, , et Q" un
point de 1’élément dR,,_,. Formons le rapport

#; dR,_; CG(Q')
R

n

Puis faisons tendre R,, vers Q, de maniere qu’il s’évanouisse
dans toutes ses dimensions. Si le rapport tend vers une limite,
celle-ci définit /- C. On écrira

et une relation analogue pour I'opérateur «%/.1

On montre I’équivalence des deux définitions du -+ comme
suit: donnons a R, la forme d’un domaine parallélépipédique
rectangle dont toutes les dimensions sont infiniment petites
(pour n =4 on dirait parallélostére). On forme le produit
dR,_,C dont on calcule la dérivée extérieure qui est égale? a

43 dR,_,C

R 2

n

1 11 est entendu qu’on ne peut donner cette définition que lorsque
certaines conditions sont remplies. L’intégrale au numérateur est
riemannienne. Il faut tout d’abord que le nombre de Clifford C soit
intégrable sur le domaine Ry,—1; c’est-a-dire que toutes ses compo-
santes le soient. Il faut de plus que la limite du rapport existe.
Cela est possible lorsque C n’est pas trop irrégulier dans le do-
maine Ry,. '

Bien que cette seconde définition soit plus commode que la défi-
nition (2) pour la démonstration des identités entre intégrales, et qu’il
ne soit pas nécessaire de postuler I’existence des dérivées pour la
formuler, elle n’est valable que si I’on prend les précautions nécessaires
pour assurer I’existence de la limite. Nous n’insisterons pas sur la
pathologie des fonctions sur lesquelles on opeére, et nous admettrons
dorénavant, ainsi que nous ’avons déja dit, et en particulier dans
Iapplication de I’analyse cliffordienne aux équations de I’électro-
magnétisme, que les opérations effectuées gardent toujours un sens
analytique.

2 Voir E. CARTAN, Lecons sur les invariants intégrauzx, Paris,
Hermann, 1922, VII.
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en tenant compte des changements qui résultent des permuta-
tions des indices 7, on obtient la somme des dérivées telle que
la donne la définition (2). Réciproquement, si 'on part de la
définition (2) et qu’on intégre dR, V- C, on obtient, par intégra-
tion partielle, la formule générale suivante, qui est équivalente
a la définition intégrale du V- :

(— 1)1 [an V- C = fﬁan—ic ; (10)

&, Itération de Uopérateur. Théoréme de Green et théoréme
connexe. — L’itération de V- ou de «\/ fournit, quelle que
soit la valeur de n, le laplacien, que nous noterons

n j"

a2
V=

03:2

1 i

Dans E,, lorsqu'on pose z, = ict, le laplacien devient le
dalembertien
7 0? »® 1 9

L] == F

2 2 2 = % Sz
dox; dxy dx, ¢ Of

Etablissons maintenant le théoréeme de Green relatif a E,,
ce qui par la méme occasion, fournira un autre théoréme
analogue !. Envisageons pour cela deux fonctions scalaires
(deux invariants de E,), ¢ et {. Formons { V~ ¢ et ¢ V> ¢, puis
intégrons V- (Y V- o) et V- (¢ V- 4). En vertu de (10),

1t [aR, (V- 9T o) + [aR, 4 Ve | =

= ian_ikpv» P .

1 11 est intéressant de remarquer que la méthode d’identification
que nous avons déja employée et dont nous faisons usage fréquem-
ment fournit toujours deux ou plusieurs identités, dont la parenté
est étroite puisqu’elles se déduisent de la méme égalité lorsqu’on les
etablit par la méthode cliffordienne.
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Intervertissons ¢ et {, et soustrayons; il vient

(= ™T [ |aR,| | (V= §) (V= o) — (V= @) (Vo 0) | +

+ (=0T [ 4R, | ($ Ve — e V2 )
- 1~3€ ATV ¢ — 9= U) -

Remarquons que

__qyn—1 dll

— ou le point signifie que on prend Pinvariant du produit
de deux vecteurs, — est la dérivée normale de[dv, v étant la
normale extérieure au sous-espace R, ;. On obtient alors par
identification les deux formules

[ e — oo jar,] = § (52— o5 1am

2 [(7»9) % (V» o) |aR,| =-35(w»<p—w»¢> Il ,

dont la premiére est la généralisation, dans E,, du théoréme
de Green, et la seconde une formule anonyme. Dans cette
seconde relation, la croix désigne le bivecteur du produit de deux
vecteurs.

Toutes les opérations représentées par le V-+ au cours de
I’établissement de ces théorémes peuvent étre considérées comme
définies uniquement par (10). Si I'on convient de définir le
laplacien V2 par I'application deux fois répétée de ’opération
de limite, le théoréeme de Green et le théoréme connexe
conservent leur sens méme lorsque les fonctions ¢ et { ne sont
pas soumises a la condition d’existence des dérivées partielles
de premier et second ordre au moins, pourvu que les limites qui
définissent V-, V-4, V2 et V2 existent. )
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5. Quelques identités entre des intégrales relatives o Eg et a
E,. — Dans E;, on a |

f(V-»C)[d‘r[ :%ﬁdcc.

Si C = V- I (I = invariant), on obtient par identification
des formules bien connues dont ’écriture vectorielle est

fﬁmdr]_—_Sﬁfo-@I
gﬁdt,xmzm

Si G = V-V (V = vecteur), on obtient par identification
(symboles vectoriels):

S7Vas) = ds T T — (T V) x ds
et
Ppds- (T x¥) =0

On peut établir une formule due & Lord Kelvin. Soit
C=ouw=~1{, ou ¢, u et { sont des fonctions scalaires. On a

9€dwuv4¢ _ fv» (ou~ U)dr

- f(v» g 7 ¢)dr+fw+<uv» Ydx .

Développant le produit en un produit scalaire et un produit
bivectoriel, on obtient par identification la formule cherchée
qui s’écrit en symboles vectoriels

[ute Fulas =§ﬁ<pu6q»-d?s— f<pv”-<u%¢)1drl

et une formule connexe

——fuﬁ-cpxﬁwﬂ=95¢u\?¢xc?c+fcp\?x(u$¢)|dfl-
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fdpv-*(]:——fdr(].

Si on pose C = ¥V~ I (I = invariant), on trouve par identi-

fication
f|dp]v21 =—56d£-v-»1

Dans E,, on a

et
fﬁd&xv-*lzo.

Si on pose £ = V-V (V = vecteur), on trouve

f[dplvﬂf s —Hfﬁdﬁ divV—idi-rotV

ﬂgdixrotVEO .

et

Sil’on pose enfin C = V- T (T = tenseur antisymétrique du
second ordre), on obtient par identification les trois identités

f|d9|V2T = r#ﬁdg x max T —ggda x DIVT ,

?ﬁdi -DIVT =0
et
#;di -maxT =0 .
6. Quelgques identités différentielles relatives @ E,. — Donnons

maintenant quelques relations entre les opérateurs de E,. 1
Soit, dans E,, un invariant I. On a

vV+1 = gradl .
L’itération de ’opérateur fournit

V2l = divgrad T + rot grad I .

1 Ces relations sont tout-a-fait analogues a celles du paragraphe
précédent.

ArcHIVES, Vol. 17. — Septembre-Octobre 1935. 23
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On en déduit par identification

V?I = divgrad I ,
rotgrad = 0 .

Soit, d’autre part, un vecteur V de E,. On a
V+V =divV + rotV .

Itérant I'opérateur V-, on obtient

V2V = graddivV 4+ DIVrotV 4+ I'maxrot V .
Par identification, on voit que

maxrot = 0

DIVrotV = V2V — grad divV .

Soit enfin un tenseur antisymétrique T. On a

T =DIVT 4+ I'maxT .
Itérant,

ViT = divDIVT + rot DIVT — I'(divmax T + rotmaxT) .

On en déduit

VET = rot DIVT — I'rot max T
div DIV = 0

divmax = 0 ,

7. L’opérateur médian. — MM. Juvet et Schidlof ont intro-
duit, comme Silberstein, un nouvel opérateur opérant sur un
produit de deux nombres de Clifford M et N. Dans Eg, ils défi-
nissent cet opérateur par la relation

é;Mch
0, M«ey+N=1lm~+
1-’0, ITI
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Dans E,, ils le définissent en écrivant

%MdTN
M «@-+ N = lim

o0 lel

ou vV =VI'=—-Tv.

Nous allons généraliser cet opérateur médian opérant sur
un produit. Pour une valeur quelconque de n, on forme le
rapport

#Man_{N
R

|

Considérons un point de R, ot M et N prennent les valeurs
M, et N,. Lorsque le domaine s’évanouit, on a, sur la frontiere
de R,

M=M,+dM, N =N,+ dN .

Par conséquent

MdR, ;N = M,dR, N + MdR, N, +

+ dMdR,,_;dN — M,dR, N, .

On remarque que l’intégrale du dernier terme du second
membre est nulle, car la frontiére de R, est fermée. D’autre
part, le troisieme terme est d’ordre infinitésimal supérieur a
celul des deux premiers. Donc (si les limites existent)

45 MdR, ;N M, # dR, ;N (ﬁ; M an_i) N,
m = o002 T e oo .o L Him ‘

R,»0 | Ry| R, 0 IR, | R, -0 | Ry, |

Si n est pair, il vient

%ﬁ MdR, ;N
lim

= — MI'Vy+- N+ M«vI'N
Ravo Ry

:M#@-}N'
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D’out la formule d’intégration partielle
fM «¥-+ N Ian| = 9€Man_1N (n pair) .

Si n est impair, on aura, en remarquant que I’ commute
alors avec I';,

§ MdR, _, N
im <« _— M V+NI' 4+ T'M «v N

=I'M+«y->N .

D’ou la formule d’intégration partielle

: J M «v» NdR, = #Man_iN (n impair) .

CHAPITRE III.

Les équations de I’électromagnétisme.

1. Lous de Uélectromagnétisme dans le vide. — Le but de ce
chapitre est d’exposer les lois de I'électromagnétisme en
notation cliffordienne. Elles prennent alors une forme tres
condensée.

Nous avons vu que lon peut considérer les nombres de
Clifford comme des groupements de tenseurs antisymétriques
d’ordre zéro, un, deux ... Or les grandeurs physiques qui inter-
viennent dans l’électromagnétisme de Minkowski sont géné-
ralement des tenseurs antisymétriques. Aussi est-il naturel
d’appliquer les nombres de Clifford & ’étude de ces lois.

Nous nous placerons dans un univers & quatre coordonnées

Xy, Xy, Xy, Ty, avec x, = ict, auxquelles correspondent les quatre
o 1
unités I'y, I', Ty, T

! Nous remarquions au chap. I que certains des I'; pourraient étre
définis comme ayant un carré égal & — 1. On aurait pu poser ici
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Dans le vide, le champ électromagnétique est un tenseur
antisymétrique F formé au moyen du champ magnétique H
et du champ électrique E:

F=f3laTs + fuIsly + fiaIhTs + fuThTs + faalo Ty + fou DTy
- e —— T e, ——

— T
- -

H E

Le courant tridimensionnel et la densité électrique p sont
groupés en un vecteur de courant

S = 1"y + 5,1y + 5, + 5,1, , (o = |s.]) -

On pose (J.S.) les équations de Maxwell sous la forme sui-

vante
v+-F = —8.

Comme V- F est un survecteur:

V- F = DIVF + I"'maxF ,

et que S est un vecteur, il faut que

maxF = 0 ,

ce qui permet de faire dériver F d’un potentiel, en vertu du § 6,

chap. 11
F=v->®,

ot le potentiel @ est un vecteur dont la divergence doit étre

nulle
divd = 0 .

Montrons qu’on peut obtenir les lois de 1’électromagnétisme
dans le vide sous leur forme cliffordienne par un'principe de

I =T;=TI;=—1,et T} = 1, pour ne pas introduire le symbole

i = 4/—1 dans la quatriéme dimensions de l’espace-temps. Nous
choisissons cependant tous les carrés positifs pour appliquer facile-
ment les régles d’algébre et d’analyse données dans les chapitres
précédents. ‘
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variation, On définira le champ électromagnétique I’ par la

relation
F =+

ou @ est un vecteur appelé le vecteur potentiel.
Se placant dans ’espace des potentiels, on définira alors une
variation L. & partir d’une variation 3® du potentiel, et du

courant S:
8L — (3F)TF + (3®)TS

qu’on peut écrire
SL — v~ (5O)T'F + (30)T'8
— — (30) «TF + (3Q)TS .

Or
(30) « T~ F — 30 T~ F + (30) «TF .

On peut donec écrire

8L = — (3®) «+¥~ F + 30 (¥~ F + I'S)
= — (8®) «¥> F + 30 (v~» F + 8) .

Posons

SA = faL]dp[,
(R

de étant ici 1’élément géométrique quadridimensionnel. On
obtient les équations de I’électromagnétisme en imposant la
condition dA = 0, soit

-——f(B(I))*@-’FldM+I8(I)dp(v->F+S):0,
R

R

les intégrales étant étendues & une région d’univers R. Le
terme

—J (3®) « T~ F |dg|
R
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se rameéne a une intégrale triple
4; d30d-F T

prise sur les limites de la région R, en vertu du para-
graphe 7 du chapitre II. Conformément aux conventions
du calcul des variations, la variation 8@ doit s’annuler sur la
frontiere de R. Donc cette derniére intégrale est nulle. D’autre
part, comme 8® est arbitraire, il faut que

S=—vV-F.

A propos des lois de I’électromagnétisme dans le vide,
MM. Juvet et Schidlof ont cherché & quelles conséquences

conduit ’hypothése
max F == 0 .

Elle apporte aux lois observables les modifications suivantes:
le champ F reste un tenseur antisymétrique, mais il est quel-
conque, puisque son maxwellien n’est pas nul. Alors, au lieu du
vecteur courant, il faut introduire un survecteur:

C=84+TM.

pour que Pon puisse toujours poser v+ F = —C, et on inter-

préte M comme un courant magnétique. C’est appelé le courant

total. D’autre part, au lieu du vecteur potentiel @, il faut

prendre un survecteur potentiel U =® ++ I'Y") pour que I'on

ait encore '
v-U=F,

ce qui implique
divd = div¥ = 0
et
ViU = —C.

Ce qu’il y a de remarquable dans l'introduction d’un sur-
vecteur potentiel et d’un survecteur courant, c’est qu’elle ne
détruit pas le caractére vectoriel de la force de Lorentz, qui
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garde la méme forme dans la théorie de Maxwell et dans la
théorie modifiée ot max F == 0. Elle vaut (voir J.S.):

1
"—EF*’V"F 5

et il en résulte que les expressions de I’énergie et de la quantité
de mouvement sont exactement les mémes que celles de la
théorie ordinaire.

Les équations suivantes, que sur la proposition de M. Juvet,
nous appellerons équations de Schidlof:

F=wv-U
C:—-V-PF

peuvent étre déduites du méme principe de variation. En effet,
rien n’est changé dans les calculs relatifs & cette variation si
I'on prend pour le potentiel, 4 la place du vecteur @, un sur-
vecteur U. On écrit alors que le courant est un survecteur C,
on définit 3L par

8L = (3F)TF + (3U)T'C

ou F est quelconque (son maxwellien n’est pas nul), et C satis-
fait a la relation
V= F=—0(C

en vertu du principe de variation

fBL|dp| — 0.
R

On a ainsi ramené les équations de 1’électromagnétisme (de
Schidlof ou ordinaires) pour le vide & un principe de variation.

2. Cas des corps en mouvement. — A. Définitions. — La
matiére, dans son mouvement, est caractérisée par des lignes
d’univers, d’arc z, dont la tangente a pour coefficients directeurs
les quatre grandeurs suivantes:

s 50 _ 9 Y ey 0%,

W Y2 = p s = T
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Le vecteur V = X¢.I'; est le vecteur d’univers de la matiére.
Par rapport a un certain systéme de référence galiléen tri-
dimensionnel, la matiére a une vitesse ¢ telle que

-
1%

(017 Vs 5 93) = :

V1 — o2

De plus,
r
e —

V1 —o?

Nous avons posé égale a 'unité la vitesse de la lumiére,
Pour représenter les champs et les inductions, il faut intro-
duire deux tenseurs antisymétriques; I'un, F, composé de
-

Pinduction magnétique B et du champ électrique E,’autre ,H,

composé du champ magnétique H et du déplacement élec-

trique D:
F :f231-‘21-‘3+f31r31—‘1+f121_‘11_‘2 + f14F1P4+f24I12P4+f34I‘3I‘4
B ) o
H= h23 PZFS T hSII‘SPI =+ h12 PIFZ + h14 I-‘1 I‘Al + h24 FZ ].-‘4 + h34 FS 1—‘4
. g T
H D

Le courant électrique quadridimensionnel S est formé comme
dans le cas du vide.

B. Relations invariantes entre les champs et les inductions, et
théoréme de Lorentz. — Dans un milieu homogeéne et isotrope,
ces équations s’écrivent sous la forme cliffordienne (invariante)
que voicl

H-V=¢F-V,

(11)
FxV =pHxV,

ou ¢ et p sont la constante diélectrique et la perméabilité
magnétique de la matiére, et V sa direction d’univers.

Ces équations contiennent implicitement le théoréme de
relativité de Lorentz. En effet, désignons par des astérisques
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les valeurs des champs et des inductions que fournissent des
appareils de mesure en repos par rapport & la matiére:

B = (fl, fae f;)

*Y

w]

<~.i)a wlié

hss)

hlé ’ 24

*

b
T
H* = (hyy, 317 12)-

—
B* = ( 23 f31: f12)

Il suflit de faire | 04| =1, ¢, =0, =03 =0 (c’est-a-dire
¢ = 0) dans les équations (11) pour obtenir les relations

D* — ¢ B* ,
B¥ = yH* .

D’autre part, une décomposition en espace et en temps
consisterait a séparer les termes des équations (11) en ceux qui
contiennent I';, I'y, I';, d’une part, et ceux qui contiennent Iy,
d’autre part, ces derniers correspondant a l’axe du temps.

Identifiant alors les termes en I';, I'y, I';, on voit qu’il faut
poser

B+ oxB= E*

et (12)
- -+ - g
D 4+ ¢ xH= D*¥

pour retrouver la relation D”‘ = cE*, et

*Y

=slt
<y
sl
I

|

X
(13)

asf]
<
)
3

X

-

pour retrouver la relation B* — wIH*,
Les expressions (12) et (13) sont la base du théoréme de

relativité de Lorentz. Elles sont implicitement contenues
dans (11).

C. Courant de conduction et courant de convection. — Le
courant électrique S quadridimensionnel se compose, d’une
part du courant tridimensionnel dit au mouvement des charges
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dans la matiére, d’autre part de celui dii a Pentrainement des
charges au repos, par suite du mouvement de celle-ci . Cette
seconde partie due & D’entrainement des charges, et qui est
mesurée par le vecteur — V (V.S) (le signe — provenant du
caractére 1maginaire de la quatriéme dimension), n’intervient
pas dans la relation qui lie le courant au champ. Soit ¢ la
conductibilité électrique de la matiére. Soustrayant — V (V.S)
de S, la relation en question s’écrit |

S+ V(V:-8) =6F-V._

Si, dans cette relation, on pose ¢; = ¢, = ¢3 = 0, il vient

s*¥ = g E* | (14)

ou s* est le courant tridimensionnel.

Une décomposition en espace et en temps suivie d’une iden-
tification des termes telle qu’on I’a faite au sujet du théoréme
de relativité, entraine, afin de respecter (14), la relation suivante

- e d p — ¢ - 8 !
A il ... 15
Tt T i )
out 'on a posé
N

. l

Vy == \/1—_4)—2 ’
done

P

0,8, = — ————— .

NV —

Dans la relation (15), la quantité

- =
-> —_— ¢ - S
s p—w-8
1—v

est le courant de convection, et s le courant total. On remarquera

! Par le terme «courant» nous entendons réellement la densité
de courant.
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que la relation (14), soit la loi de conductibilité, n’est valable
que pour ¢ = 0,

D. Equations du champ. Conservation de lénergie et de la
quantité de mouvement. — En présence de la matiere, la forme
cliffordienne des équations du champ est la suivante: le champ F
dérive d’un potentiel @:

F=v+0
ce qui nécessite que
divd = 0,

puisque I est un tenseur de second ordre. Et comme
max rot = 0, on a nécessairement

max F = 0. (16)
D’autre part, le courant est relié au tenseur H par la relation

S+ DIVH = 0 (17)

et comme div DIV = 0, il s’en suit que

div S =

ce qul exprime la conservation de 1’électricité.
Des relations suivantes, valables pour le vide: F = v~ @,
et —S = V- F, on déduit ’équation (J.S.):

VIO = — 8§

qu’on peut appeler I’équation de Poisson. Dans la matiére, on
ne peut pas écrire cette équation. On a DIVH = — 5, mais
d’autre part, le maxwellien de H n’est pas nul, aussi ne peut-on
pas faire dériver H d’un potentiel. I dérive bien d’un potentiel,
puisque son maxwellien est nul, mais sa divergence vectorielle
n’est pas égale au courant. On ne peut donc pas écrire I’équa-
tion de Poisson.

Considérons maintenant plus spécialement les equatlons (16)
et (17). En les combinant on obtient

F.-DIVH + HxmaxF + F.8 = 0 (18)
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Or F - Sest la force de Lorentz 2_‘ Z, finse I (18) expnme

la conservation de I’énergie et de Ia quantlte de mouvement.
On est ramené au vide en posant ¢ = p. =1, ce qui fournit
bien la relation

F-S—i—%F*—V*F:O

donnée par MM. Juvet et Schidlof.
Dans le vide, la force de Lorentz est rattachée a la mécanique
par la relation (J.S.)
av 1
mo—&E—F?F*‘V*F:O
ou my est la densité de la répartition matérielle, et V sa direction
d’univers. Comme V.dV = 0, on doit avoir

(F-8)-V =0

c’est-a-dire que la force de Lorentz est toujours orthogonale
a la direction d’univers de la matiere. ,
Reprenons la relation (18) en, examinant sa signification du
point de vue tridimensionnel. On peut la soumettre & une
décomposition en espace et en temps. Les termes correspondant
a la quatriéme composante du vecteur que représente le premier
membre de (18) se traduisent en langage vectoriel par

E-D+H-B+v - BExH+B-5=0.

—E .5 est le travail de Joule par unité de temps et de
volume, qui entraine une diminution de la densité d’énergie
électromagnétique tandis que la divergence du vecteur de
Poynting exprime I’afflux d’énergie rayonnante.

I1 est plus intéressant d’examiner les termes d’espace prove-
nant de la décomposition de (18). En effet, ils représentent la
variation de la quantité de mouvement, et se traduisent par la
relation

Bx(VxH +Dx(UxB —BvV . D—HY
)
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5

Le terme oE correspond & la force de Coulomb, et B X s &
Paction dynamique de I'induction sur le courant (Loi de Biot
et Savart). Dans le vide, (19) se réduit a

ant}

T i

il

=3

=

I_:Ix(%xﬁ)Jr‘Ex(%xﬁ)—

| &

-
S

pELFﬁX

T
+

+ 2 (B x H) =0

(=4
~

qui est une relation connue!. On déduirait de (19) la force

-

résultante K a I'intérieur d’un volume t contenant de la matiére
dont la perméabilité et la constante diélectrique sont des
tenseurs symétriques, ce volume étant traversé par de I’énergie
électromagnétique:

.- . . T . o
ou il s’ajoute a la force — P f & dr bien connue (& = vecteur

de Poynting) des termes dépéndant du vecteur de Poynting,

-+ = - =

des tenseurs DE et BH (tensions de Maxwell) et de la densité
d’énergie. Par suite du passage de I’énergie rayonnante dans un
milieu différent du vide, il se produit une action mécanique
proportionnelle & la variation dans le temps de cette énergie, et
qui est d’autant plus faible que le produit £y se rapproche de
I'unité.

3. Indétermination du vecteur potentiel. — Nous allons
montrer que le potentiel électromagnétique @, solution de
Iéquation F = v~ @, n’est pas complétement déterminé.

Il est certain que le champ F est univoque; par conséquent,
si nous avons trouvé deux solutions @' et ®” de I’équation
F = v~ ®, leur différence ¢ = ®”" — @’ doit satisfaire & la
relation

v>d=0.

1 Voir par exemple L. Pace, Iniroduction to theoretical Physics
(N. Y., 1930, 3d. ed., p. 442).
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Cette conclusion s’applique au cas du vide. Comme
div®’ = div®” =0, div { est nulle. Cela montre que ¢ est
le gradient d’une fonction scalaire ¢:

=" — =V~ 0.

Cette fonction ¢ n’est pas arbitraire, car, soit @ = @' 4 v~ ¢
la solution choisie de ’équation de Poisson, on doit avoir

FZV*(I):V"‘I)'—FVch-

Comme I est un tenseur et V2 ¢ une grandeur scalaire, il

faut que
Vo =0 .

4. Ondes électromagnétigues. — 11 est en général impossible
de donner une forme invariante & I’équation de propagation
d’ondes électromagnétiques dans la matiére. On y parvient
dans le cas particulier du vide, et dans celui d’un milieu ou
les deux tenseurs F et H sont égaux. On a alors rigoureusement
propagation d’ondes dans une région ou le courant est nul.

En effet, par hypothése, F = H; alors S + v» F = 0, et s
S=20,o0na

' VIF =0

ce qu’on peut écrire, au moyen du dalembertien [ ],
OF=0.
Comme F = H, on peut tout aussi bien écrire

LOH =0.

- =

11 se propage une onde F et une onde H, soit une onde B, E,

et une autre H, f)
On a aussi V2@ + S = 0; done, si S =0,

(1® =0,

qui exprime la propagation d’une onde de potentiel.
Dans la matiére, si S =0, DIVH =0, ou

V- H—IT'max H = 0,
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et comme div max = 0,
V:H + Trotmax H = 0.

Le rotationnel d’un maxwellien n’est en général pas nul,
cette équation ne représente donc pas une propagation d’ondes.
Méme si € et p. sont des constantes, on ne peut pas dire que
max H = 0, bien que max F = 0, car H n’est pas proportionnel
aF.

Dans un milieu polarisable, la relation

V*H + I'yrot max H = 0

se réduit & [J H =0 si rot max H = 0; c’est le cas si 'on a
max H = grad h,

h étant une fonction scalaire. Nous savons que div max = 0
et que div grad = v 2, donc h satisfait a I’équation des ondes

Vih =[]h=0.
Pour le tenseur F, on trouve quelque chose d’analogue. On a
V:F = rot DIVF

puisque div DIV = 0 et que max F = 0. On pourrait écrire
V2F =[] F =0 si Pon avait rot DIVF = 0; ce serait le
cas si

DIV F — grad §

et la fonction scalaire f satisferait, comme £, & la relation
Of=0.

On ne trouve pas non plus d’onde de potentiel, puisqu’il est
impossible de donner & F une forme particuliére dont la diver-
gence vectorielle s’annulle identiquement.

S1 F varie lentement, DIV F est approximativement nulle,
et []® ~ 0; on a alors une onde de potentiel sans dispersion
appréciable dans une région d’univers suffisamment petite.
Dans ce cas, il y a aussi une équation d’onde en F, mais pas
nécessairement en H.
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5. Forme intégrale des lois de Uélectromagnétisme. — Les
résultats obtenus aux paragraphes 3 et 5 du chapitre II nous
permettent de transformer sans difficulté les lois différentielles
en relations entre intégrales.

Dans le vide, on obtient tout d’abord

[1aets = paz- ¥,

relation que I’on pourrait appeler le théoréme de Gauss. Appe-
lons flux électromagnétique élémentaire 3 J€ I'expression

3I =dE-¥F .
Le flux & travers une hypersurface ouverte T sera
ae = [sac.
T

Done, & travers une hypersurface fermée, le flux vaut

a0, =‘f|dp|s

et 'intégrale f ‘ dpl S, que nous appellerons électricité totale a

Pintérieur de I’hypervolume p, joue le rdle de source du flux.
On a, d’autre part,
édi xF=0.

Si on définit une autre espéce de flux comme étant le produit
X de d% par F, ce flux & est toujours nul a travers n’importe
quelle hypersurface fermée.

La conservation de I’électricité s’écrit

SEdE-S:O,

et dans la théorie modifiée de Schidlof, on aurait également
conservation des poles magnétiques

ggda.M=o.
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On obtient I’équation de propagation d’ondes dans le vide
a partir de la relation

f|dp|v2F = rggdgxmaxF—ggdaxDWF.

Cette relation doit étre vrale pour un hypervolume quel-
conque; or max I = 0; par suite, si le courant S = — DIV F
est nul, V2F = 0.

On a enfin une relation intégrale entre le champ F et le

f]dij:SBd,gxq).

Dans la matiére, ces relations sont modifiées de la maniére

potentiel:

suivante:
Entre le courant et le tenseur H existe la relation

fldplS=fﬁdi-H,

et si on définit le flux JC & travers une hypersurface T en posant

Je:fda.ﬂ

T

on peut toujours dire que f l dp | S joue le role de source du

flux, c’est-a-dire que le flux total JC, & travers une hypersurface
fermée est égal & 1'électricité totale (théoréeme de Gauss):

5€0=J ]S -

On peut encore définir un second flux &, en posant

é‘TzIdExF.
T

Le flux & & travers une hypersurface fermée est toujours nul.
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La conservation de l’électricité s’écrit comme pour le cas

du vide
9gdﬁ-8=0,

et Pon a encore la relation

f|dp|F=§ﬁdgxcp

entre le champ F et le potentiel. Rappelons que sil’on appelle o
une fonction scalaire quelconque,

gf)dixgradcpEO,

ce qui montre de nouveau que @ est déterminé & un gradient
pres.
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