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1935 Vol. 17. Septembre-Octobre

EXPRESSION DES

EQUATIONS DE L'ELECTROMAGNETISME

AU MOYEN DES NOMBRES DE CLIFEORD

PAR

Andre MRItCIEK

INTRODUCTION

Dans ses travaux sur les biquaternions, Clifford a defini des

nombres hypercomplexes qui peuvent representer les

substitutions lineaires qui laissent invariantes des sommes de carres.
Ces travaux sont contenus dans trois notes principales:
Preliminary Sketch of Biquaternions 1, Further Note on Biquaternions

(posthume) et Notes on Biquaternions 2.

Lipschitz3, en etudiant la theorie des transformations
lineaires qui laissent invariantes des sommes de carres, a utilise
les memes nombres. L'expose de MM. Study et Cartan dans

1'Encyclopedic mathematique donne un apergu clair de leurs

principales proprietes 4.

La premiere application des nombres de Clifford ä la physique
mathematique est, a notre connaissance, due ä M. Proca 5 qui,

1 Proc. of the London Math. Soc., vol. IV, nos 64, 65, p. 381, 395.
2 Cf. W. K. Clifford, Math. Papers (London, 1882, p. 181, 385,

395 et 402).
3 Lipschitz, Untersuchungen über die Summen von Quadraten

(Bonn, 1886), trad, par J. Molk (Jour, de Math, pures et appl. (4),
2, 373 (1886)).

4 Voir Encyclopedie des Sciences mathematiques, t. I, vol. 1,
fascicule 3 (1908), p. 463 et ss. /

5 C. R., 190, 1377, 1930 et 191, 26, 1930, et J. de Phys., VII, t. 1,
236, 1930.
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306 EXPRESSION DES EQUATIONS

faisant usage du caractere d'invariance de ces nombres, les a

appliques ä la theorie de Dirac. M. Juvet les a appliques ä

l'electromagnetisme et ä l'equation de Dirac 1. Enfin MM. Juvet
et Schidlof sont parvenus ä donner au moyen de ces nombres

une forme tres elegante aux lois de l'electromagnetisme dans

le vide, et ils en ont indique une generalisation possible 2. Nous

suivrons en general ces deux auteurs et nous emploierons leurs
definitions et leurs notations 3. Nous avons publie deux notes,
sur l'expression du theoreme de Lorentz et celle du second

principe de la thermodynamique en notation cliffordienne4.
Dans la premiere partie de ce travail, apres avoir donne une

definition des nombres de Clifford, nous montrons quelles en

sont les principales proprietes. Dans les applications physiques,
nous ferons usage des nombres relatifs ä un espace ä quatre
dimensions; c'est pourquoi nous nous arreterons plus longue-
ment sur ce cas particulier.

Le chapitre II expose l'analyse cliffordienne, c'est-ä-dire les

proprietes des nombres de Clifford fonctions du point de l'espace
oü ils sont definis; cet expose se fonde sur les travaux de

MM. Juvet et Schidlof consacres plus particulierement aux

espaces ä trois et ä quatre dimensions. Certaines formules

d'integration partielle, portant sur des multiplicites quelconques,

y sont etablies sous une forme condensee. Dans ce meme
chapitre, nous donnons une serie d'identites auxquelles satisfont
les Operateurs differentiels de l'espace ä quatre dimensions.

On peut appliquer les nombres de Clifford ä l'etude de l'elec-

1 G. Juvet, Operateurs de Dirac et Equations de Maxwell (Comm.
Math. Help., 2, 225, 193o).

G. Juvet (Congres int. des mathematiciens, C. R., Zurich, 1932).
2 G. Juvet et A. Schidlof, Sur les nombres hypercomplexes de

Clifford et leurs applications... (Bull. Soc. neuchateloise S. nat., 57, 127,
1932).

3 Nous citerons dorenavant leur memoire par l'abreviation (J.S.).
4 A. Mercier, Application des nombres de Clifford ä l'etablisse-

ment du theoreme de relativite de Lorentz (Help. Phys. Acta, Vol.
VII, p. 649, 1934, et Actes de la Soc. help, des Sc. nat. Zurich, 1934,
p. 278).

A. Mercier, Expression du second principe de la thermodynamique

au moyen des nombres de Clifford (C. R. de la Soc. de Phys.
et d'Hist. nat. de Genepe. Seance du 6 juin 1935, p. 112. Suppl. aux
Archipes des Sc. phys. et nat., juillet-aoüt 1935).
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tromagnetisme, ainsi que l'ont fait MM. Juvet et Schidlof. Ces

auteurs out ecrit sous la forme cliffordienne (invariante par
rapport ä la transformation de Lorentz) les lois de l'electro-
magnetisme dans le vide. Dans le chapitre III, nous resumons
leurs resultats en un principe de variation et les generalisons
en appliquant leur methode ä l'etude de l'electromagnetisme
dans la matiere. On decrit ainsi, au moven des nombres de

Clifford, les lois des champs et des inductions, du mouvement
de la matiere et des charges, et de l'energie electromagnetique.

1. Definitions. — Les nombres de Clifford relatifs ä un

espace euclidien ä n dimensions En se definissent comme suit.
Ce sont des nombres hypercomplexes 1 ä 2n unites, n + 1 sont

fondamentales, et seront designees par r2,... rn, les autres
resultent de produits des unites fondamentales.

Les unites fondamentales F; satisfont par definition aux
conditions

On obtient les autres unites, qui seront appelees unites
derivees, en formant le produit de k unites fondamentales
Ih (k 2, 3, n). En vertu des conditions (1), on n'obtient
de la sorte que 2n unites lineairement independantes. Le carre
d'une unite derivee, formee ä partir de k unites fondamentales,
est egal ä 1 si k est pair, et ä — 1 si k est impair.

1 Un nombre est hypercomplexe si sa definition necessite l'intro-
duction d'unites plus nombreuses que 1 et i — 1.

Chapitre Premier.

Definitions et proprietes.

(i)
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Dans la multiplicite En, un nombre de Clifford a la forme

generale

N o + airi+ an

+ a12ri r2 + + an-l,nrn-irn
+ •

+ a23..nrsr3 rn + + ®12...(n-l) ri r2 r«-l
+ aI2...n^'i^'2

a + 2atrt + SOjj.rjTj + + ai2...nrir2 rn '

oü les a sont des variables, que l'on peut appeler composantes
du nombre de Clifford N relatif ä En.

En general le terme Seq. a

n (n — 1) (n — k + 1)
Ä1

composantes, car si l'on a forme une unite derivee au moyen
de k r„ il n'y a pas lieu d'en permuter les elements.

La somme de deux nombres de Clifford sera defmie par le

nombre dont les composantes sont la somme des composantes
correspondantes des deux nombres additionnes. Le produit
d'un nombre N de composantes a par un nombre N' de composantes

a' s'obtiendra en faisant la somme de tous les produits
possibles

n t1 r a. T1. pi...m i m 3 ..n J n '

compte tenu naturellement des conditions (1). Le quotient Ns
de deux nombres Nx et N2 sera tel que le produit de N3 par
N2 soit egal ä Nx.

En realite, Clifford (et Lipschitz) ont introduit des unites E(

dont les unes ont un carre egal ä — 1 et les autres un carre
egal ä + 1. Nous nous tiendrons au cas defini par (1), bien que

pour l'espace minkowskien il soit plus naturel de poser
rl rl= r32 -1, Tl + 1.

2. Sur le caractire des nombres de Clifford fonctions des coor-
donnees d'un point de l'espace. — Les nombres de Clifford sont
defmis dans une multiplicite En qui est euclidienne. Un point Q
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de cette multiplicity peut etre represente par un nombre de la
forme particuliere X Ere,!1; et il est indique d'appeler les x{
les coordonnees de ce point. Comme le disent MM. Juvet et
Schidlof1 toute transformation lineaire consistant ä passer
des n coordonnees xtä n autres x\, et symbolisee par un Operateur

B, transforme le nombre X en un autre X' Ea^Ih selon

X' BX

de sorte que X peut etre considere comme un vecteur. Le

point Q en est l'extremite dans l'espace euclidien En. Tout autre
nombre V En^IL (oü les ai sont fonctions des coordonnees #,(
se transforme de la meme maniere et en general, d'apres ces

auteurs, les diverses parties a, Ea^Ih, a{ .„1^ r„ du
nombre general N se comportent comme des tenseurs d'ordre

zero, un, deux n. A l'exception des deux premiers qui sont
done un invariant et un vecteur, ces tenseurs sont antisyme-
triques. En effet, une permutation entre Ti et Fj dans un
element d'une partie de N necessite un cbangement de signe.

L'invariant et le vecteur ne presentent pas ce caractere, puisque
leurs elements ne comportent aueun, ou qu'un seul T-,

Dans E4, le terme «i234riI12r3[\ est un tenseur antisyme-
trique de quatrieme ordre, qui se reduit ä un seul element
distinct. Le tenseur d'ordre n dans En se reduit egalement ä un
seul element.

M. Juvet2 demontre dans le cas particulier des nombres de

Clifford relatifs ä E4, que ceux-ci sont invariants vis-ä-vis de

la transformation de Lorentz, ce qui rend leur application
recommandable dans nombre de problemes de la relativite
restreinte, pour autant, naturellement, que les grandeurs
physiques que ces nombres doivent representer possedent le

caractere d'antisymetrie. Pour les vecteurs, il n'y a pas de

difficulte. Les grandeurs geometriques telles que surfaces,

volumes, etc. sont antisymetriques; et la plupart des grandeurs
qui interviennent dans 1'electromagnetisme minkowskien sont

1 Loc. cit., Introd., § 3, p. 128.
2 Loc. cit., § 1, p. 227 et ss.
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antisymetriques. D'oü l'application des nombres de Clifford
qu'a ingenieusement proposee M. Juvet.

Nous appellerons produit /c-vectoriel la partie du produit
cliffordien de k vecteurs qui est un tenseur antisymetrique
d'ordre k, et nous appelerons bivecteur, triveoteur, quadrivec-
teur... k-vecteur des tenseurs antisymetriques particuliers qui
peuvent se mettre respectivement sous la forme d'un produit
bivectoriel de deux vecteurs, trivectoriel de trois vecteurs, etc.

3. Nombres de Clifford relatifs ä E4. — Les nombres de

Clifford de l'E4 sont particulierement utiles dans 1'electromagne-
tisme minkowskien. Pour abreger on pose (J.S.):

en remarquant que riY — Le nombre de Clifford
complet de E4 peut se mettre alors sous la forme

oü I4 et I2 sont deux invariants, V4 et V2 deux vecteurs, et
T un tenseur antisymetrique du second ordre.

Le nombre de la forme

est appele survecteur (J.S.). Le produit, ä gauche ou ä droite,
d'un tel nombre par un tenseur antisymetrique du second

ordre, fournit ä nouveau un survecteur.
Le produit de deux vecteurs V et W est la somme d'un invariant

et d'un tenseur antisymetrique particulier que nous
appelons bivecteur. Ces deux parties du produit sont le produit
scalaire Y.W et le produit bivectoriel VxW. On notera done

r r r r — r12 3 4 L

N Ii + V, + T + r(V2 + I,)

s v, 4- rv.

VW V- W + VxW,
d'oü

V • w vw + wv
2

Y x W vw — wv
"2
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Le produit d'un vecteur V et d'un tenseur T est un survec-

teur, dans lequel apparaissent les deux vecteurs

2ri2v3- T-v
i j

et

+ {kivi + hivh) T x v
I

Les produits cliffordiens TV ou VT sont d'une part

TV T-V + rT X V
et d'autre part

VT — T-V + TTxV
On en deduit

TV — VTT.V= -2_
et

TV + VTTxV r~ ^

Remarque. — Dans la multiplicity E4 la mise en evidence
de l'unite derivee T nous a permis de representer le tenseur
d'ordre 3 n— 1) par un vecteur. Pour n quelconque, on

peut, en mettant en evidence l'unite derivee Tn T,
representer tout tenseur d'ordre n — 1 de En par un vecteur
ä n dimensions. L'unite T sera commode pour l'ecriture de

certaines formules d'integration partielle.

Chapitre II.

Analyse Clifiordienne.

1. Les Operateurs V-* et <-V.— Soit un nombre de Clifford C

dont les coefficients sont fonctions des coordonnees x{ et que
nous appellerons champ cliffordien. Les symboles V-* C et C <-V

remplaceront les operations de derivation suivantes:

•Vt nC
V-C (2)

1

c-v"2i,r'- 131

l
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2. Cas oü n 4. — Dans E4 on introduit (J.S.) une serie

d'operateurs partiels, qui sont les suivants:

grad I 2 r öl
1 ÜX;

div V > ~

,v -
i, k

B>VT-2r<2^
i j J

^ij (divergence
dx- vectorielle)

max T I\ ^ + M-32 + --2^ +\ öx2 öa;4 bx3 /
(maxwellien).

Les vt sont les composantes du veeteur V, les Celles du

tenseur antisymetrique T. On obtient les quatre termes du

veeteur max T par permutation circulaire. Des lors les operations

V- C et C «-V effectuees sur un champ cliflordien
C I1 + V1 + T + r (V2 + I2), fonction des points de E4,

s'ecrivent

V"» G div V1 + grad I4 + DIV T + rot Vx +

+ r (max T — rot V2 — grad I2 —• div V2),

C <-V div Vj + grad I4 — DIV T — rot Vx + T (max T —

— rot V2 + grad I2 + div V,)

Indiquons la regle de derivation suivante, C et C' etant deux

champs cliffordiens:

V- (CC) V- (CC) + (GC)
t t

oil seule est consideree comme variable dans chaque parenthese
du second membre la quantite designee par la fleche.
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3. Seconde definition des Operateurs et formules d'integration
partielle. — Pour que les operations symbolisees par le V"" au
§ 1 aient un sens, il faut admettre que les fonctions (champs
cliffordiens) sur lesquelles on opere sont continues et admettent
des derivees continues. Pour la definition du V-> que nous allons
donner dans ce paragraphe, il n'est pas essentiel de soumettre
les champs ä ces restrictions, il faut que la limite qui definit
l'operation existe, et nous donnons plus loin les conditions qui
doivent etre remplies pour cela. Toutefois, dans tout ce travail,
ä moins de specifier le contraire, nous supposerons satisfaites
ä la fois les restrictions correspondant ä la premiere et ä la
seconde definition de l'operateur, pour pouvoir en particulier
justifier l'identite des deux definitions du V-*- que nous donnons.
Dans les applications que nous ferons des nombres de Clifford
ä la physique mathematique, nous aurons toujours affaire ä des

fonctions soumises ä de pareilles restrictions.
Dans E3, soit un volume t (d'element c/t dxidx2dxsT1r2r3)

limite par une surface a (d'element da dx2dx.iY,2Y.i +
dx3dx^L2Y1 + dXydx^T^V2). On ecrit par definition (J.S.):

Le signe | [ indique que l'on envisage le nombre quimesure
le volume t. L'equivalence des deux definitions (2) et (4) sera

donnee dans le cas general oü n est quelconque.
Soit alors t un volume dans lequel C est defini et continu

ainsi que sur la surface qui le limite, et soit d'autre part S'

une surface ouverte sur laquelle C est defini, frontiere comprise
(d'element dl). MM. Juvet et Schidlof integrent l'equation (4):

y*V- Cdx (jirfciC (6)
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d'oü ils deduisent les quatre formules d'integration partielle
dont voici 1'ecriture vectorielle:

J V V \da\ (j) da V (Ostrogradzky)

j*V x V |dt| x V

dl V J'da (V x V) (Stokes)

s'

dl x V j' (d a x V) x V

s'

Remarquons qu'en faisant C I dans (6), on a le theoreme
du gradient

J* V I ]dx| (j) I da

La definition intrinseque de V-» et «-V dans E4 est analogue.
On considere un champ cliffordien dans E4. On entoure un

point, dans le voisinage duquel C est defini, d'une hypersurface t
limitant un hypervolume p. Posons

da dx^ dx2 d.r3 I\ P211;, +

que nous appelerons l'element d'hypersurface Oriente. MM. Juvet
et Schidlof ecrivent pour definir V-* C et G «-V

* da C

V- C — F lim - (7)
|p|

C da
C -V lim J- - T (8)

s-o |p|

Si on pose alors dp — T | dp | et qu'on integre (7) dans un

hypervolume p de dimensions finies, il vient

dp V- C — (j) da C (9)
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On peut obtenir une serie de formules d'integration partielle
ä partir de (9).

Si C I (un invariant), et qu'on pose dz — Filz 1, il vient

|dp| grad I — (j) dE, I

Si C V (un vecteur), il vient

rj jtfp| (divV + rot Y) — r<j)dZV

d'oü, par identification, en vertu des definitions du § 3, chap. I,

J jdp| div V — (j) dE, V

et

j jdpl rot V (j)d5 x V

Si C est un tenseur antisymetrique T, il vient

r / |rfp| (DIV T + r max T) — F(j)d£ T

1 II faut prendre garde aux signes qui interviennent lors de la
formation de d£. En effet, l'hypersurface elementaire est deflnie par

dz Fj r2 F3 dx1 dx2 dx3 + T2 rs r4 dx3 dx3 cfe4 +
r1r2r3d$; + r2r3r4d^ + •
r1r,rId5;r; + r.r.r.di-V +

r(d$;r4-d5;r1 + diT3-d^T3)
On peut poser

d^ -d^, d^ d^, dl3 -d^3, d^ d^

et il vient
dz VLdliTi Td?,



316 EXPRESSION DES EQUATIONS

d'oü l'on deduit de la meme maniere

J |dp| DIVT — j>dZ T

et

max T — d) d £ x Tj1 ]dp| max T — (j) <

Passons ä la definition intrinseque des Operateurs dans En,
ce qui nous permettra d'ecrire la formule generale d'integration
partielle (formule (10)). Nous etions partis d'une premiere
definition

V- =-- r,-^ + r — + + r -5-
ö«! ö£2 dxn

Selon la seconde definition, ce sera la limite d'un rapport:
soit un domaine Rn de En, dRn un element de ce domaine.

Rn est limite par une frontiere Rn_j dont 1'element s'ecrit sous
la forme d'un tenseur d'ordre n — 1:

dRn_j I\r2 rn-1 dx1dxi dxn_{ + dx2dx%. dxn rar3 Tn +

+ + Tn I\ Pn_2 dxn dxL dxn_v

Posons r En. On peut alors representer dR^
par un vecteur ä n dimensions:

dRn_j r dll
oü dll vaut

d II d IIi rn dx1 dxn+ I\ dx2 dxn +
+ • + rn_! dxn dxn_2

si n est impair, et

dT\ dnp I'n dx1 dxn_l — l1 dx2 dxn +
+ - — rn_t dxn dxn_2

si n est pair.
Soit alors un nombre de Clifford C, fonction des points de En.
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Soit un point Q ä l'interieur du sous-espace Rn_t et Q' un
point de l'element dRni. Formons le rapport

(j) dR„_i C (Q')

R„

Puis faisons tendre Rn vers Q, de maniere qu'il s'evanouisse
dans toutes ses dimensions. Si le rapport tend vers une limite,
celle-ci definit V-* C. On ecrira

(D dR C

V- C - riim J-.p-j—
rm * o j Rn |

et une relation analogue pour l'operateur <-y\ 1

On montre l'equivalence des deux definitions du comme
suit: donnons ä Rn la forme d'un domaine parallelepipedique
rectangle dont toutes les dimensions sont infiniment petites
(pour n 4 on dirait parallelostere). On forme le produit
dRn_t C dont on calcule la derivee exterieure qui est egale2 ä

dR^C
~R„

1 II est entendu qu'on ne peut donner cette definition que lorsque
certaines conditions sont remplies. L'integrale au numerateur est
riemannienne. II faut tout d'abord que le nombre de Clifford C soit
integrable sur le domaine Rn-i; c'est-a-dire que toutes ses compo-
santes le soient. II faut de plus que la limite du rapport existe.
Cela est possible lorsque C n'est pas trop irregulier dans le
domaine Rn.

Bien que cette seconde definition soit plus commode que la
definition (2) pour la demonstration des identites entre integrales, et qu'il
ne soit pas necessaire de postuler l'existence des derivees pour la
formuler, elle n'est valable que si 1'on prend les precautions necessaires

pour assurer l'existence de la limite. Nous n'insisterons pas sur la
pathologie des fonctions sur lesquelles on opere, et nous admettrons
dorenavant, ainsi que nous l'avons dejä dit, et en particulier dans
l'application de l'analyse cliffordienne aux equations de l'electro-
magnetisme, que les operations effectuees gardent toujours un sens
analytique.

2 Voir E. Cartan, Legons sur les invariants integraux, Paris,
Hermann, 1922, VII.
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en tenant compte des changements qui resultent des permutations

des indices i, on obtient la somme des derivees telle que
la donne la definition (2). Reciproquement, si l'on part de la
definition (2) et qu'on integre dRn V-+ C, on obtient, par integration

partielle, la formule generale suivante, qui est äquivalente
ä la definition integrale du V -»:

(- l)"-1 f dRn V- G (j) dRn_jG (10)

4. Iteration de V Operateur. Theoreme de Green et theoreme

connexe. — L'iteration de V-* ou de <-V fournit, quelle que
soit la valeur de n, le laplacien, que nous noterons

n

V2 2^ •

ii xi

Dans E4, lorsqu'on pose ict, le laplacien devient le

dalembertien

D=^ + _^ +1—^
- 2 x 2 2 pi >
ö Xj ö a;2 (*i3

Etablissons maintenant le theoreme de Green relatif ä En,
ce qui par la meme occasion, fournira un autre theoreme

analogue1. Envisageons pour cela deux fonctions scalaires

(deux invariants de En), 9 et tjj. Formons 4> V->• <p et 9 V-» 4h Puis

integrons V-*<p) et V->(9 V-* 4')- vei>tu de (10),

(- l)"-1 I f dRn (V- 4) (V- 9) + /dRn + V2 9 I

(j) dRn_i 4» V- 9 •

1 II est interessant de remarquer que la methode d'identiflcation
que nous avons dejä employee et dont nous faisons usage frequem-
ment fournit toujours deux ou plusieurs identites, dont la parente
est etroite puisqu'elles se deduisent de la meme egalite lorsqu'on les
etablit par la methode cliflordienne.
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Intervertissons cp et y, et soustrayons; il vient

(-1)"-1 rf \dRn\ j (v- +) (V- 9) - (V- 9) (V- <M j +

+ (_i)""lrf ]rfR„| (4>V29 — 9V2+)

r (j) <211 (4> V-» 9 — 9 V-* <W •

Remarquons que

(- I)""1 ferad 9) ^
— oü le point signifie que l'on prend l'invariant du produit
de deux vecteurs, — est la derivee normale dcp/iv, v etant la
normale exterieure au sous-espace R^. On obtient alors par
identification les deux formules

2 j" (V- 41) X (V- 9) I dRn | — j) (i> V-*- 9 — 9 v-" <1<) X <211

dont la premiere est la generalisation, dans En, du theoreme
de Green, et la seconde une formule anonyme. Dans cette
seconde relation, la croix designe le bivecteur du produit de deux

vecteurs.
Toutes les operations representees par le V-* au cours de

l'etablissement de ces theoremes peuvent etre considerees comme
definies uniquement par (10). Si l'on convient de definir le

laplacien V2 par l'application deux fois repetee de l'operation
de limite, le theoreme de Green et le theoreme connexe
conservent leur sens meme lorsque les fonctions cp et ^ ne sont

pas soumises ä la condition d'existence des derivees partielles
de premier et second ordre au moins, pourvu que les limites qui
definissent V-*<p, V2<p et V2^ existent. *
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5. Quelques identites entre des integrales relatives ä E3 et ä

E4. — Dans E3, on a

/ (V- G) \di\ (t)daC

Si G V- I (I invariant), on obtient par identification
des formules bien connues dont l'ecriture vectorielle est

JV2 I |dr| (j) da V I

| des X I 0

Si C V- V (V vecteur), on obtient par identification
(symboles vectoriels):

J V2 V | dv | j) da V V — (j) (V x v) x da

et

1 des (v x v) 0

On peut etablir une formule due ä Lord Kelvin. Soit
C <p» V- 41) °ü u et ^ sont des fonetions scalaires. On a

(j) des 9 u V- ^ V- (<p u V- ty)dT

j" (V"" 9) "(V"* 9 V- (mV- •

Developpant le produit en un produit scalaire et un produit
bivectoriel, on obtient par identification la formule cherchee

qui s'ecrit en symboles vectoriels

J m V 9 • V 'l' I df | (j) 911V 9 • da— ^>9V-(MV4,)|dv[

et une formule connexe

— J* it V*9 x V I (j)9MV(J>xda4- J'9 V X (u V <Jt) |dv[



de l'electromagnetisme 321

Dans E4, on a

Jdp V-* C —^drC

Si on pose C V-» I (I invariant), on trouve par
identification

J* | dp | V2 I — (j)<2£ I

et

id^xv+I 0 •

Si on pose C V-* V (V vecteur), on trouve

J" [ d p [ V2 V — (j) dS, div V — (j) d 5 • rot V

et

dS, x rot V 0

Sil'onposeenfin C V-" T (T tenseur antisymetrique du
second ordre), on obtient par identification les trois identites

J |dp|V2T=rj)d5x max T —j)dS,x DIVT

)dl DIYT 0

et

d 5 • max T 0

6. Quelques identites differentielles relatives ä E4. — Donnons
maintenant quelques relations entre les Operateurs de E4. 1

Soit, dans E4, un invariant I. On a

V-" I grad I

L'iteration de l'operateur fournit

V21 div grad I + rot grad I

1 Ces relations sont tout-ä-fait analogues ä Celles du paragraphs
precedent.

Archives. Vol. 17. — Septembre-Octobre 1935. 23
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On en deduit par identification

V21 div grad I

rotgrad 0

Soit, d'autre part, un vecteur V de E4. On a

V- V div V + rot V

Iterant l'operateur S/->, on obtient

V2 V grad div V + DIV rot V + T max rot V

Par identification, on voit que

Soit enfin un tenseur antisymetrique T. On a

T DIV T + r max T

Iterant,

V2 T div DIV T + rot DIV T — T (div max T + rot max T)

On en deduit

7. L'operateur median. — MM. Juvet et Schidlof ont intro-
duit, comme Silberstein, un nouvel Operateur operant sur un
produit de deux nombres de Clifford M et N. Dans E3, ils defi-

nissent cet Operateur par la relation

max rot 0

DIV rot V V2V — grad div V

V2 T rot DIV T — T rot max T

div DIV 0

div max 0
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Dans E4, ils le definissent en ecrivant

M N lim
M dx N

?-*0 lp|

oü w vr — rv.
Nous allons generaliser cet Operateur median operant sur

un produit. Pour une valeur quelconque de n, on forme le

rapport

M dRn„! N

IRJ

Considerons un point de Rn oü M et N prennent les valeurs

M0 et N0. Lorsque le domaine s'evanouit, on a, sur la frontiere
de Rn,

M M0 + dM N N0 + dN

Par consequent

MdRn_jN M0dRn_jN + MdRn_jN0 +

+ dM dRn_j dN — M0 dRn_j N0

On remarque que l'integrale du dernier terme du second

membre est nulle, car la frontiere de Rn est fermee. D'autre
part, le troisieme terme est d'ordre infinitesimal superieur ä

celui des deux premiers. Done (si les limites existent)

CD M dRn_j N M0 <T) dRn_4 N I (T) M dRn_j J N0
lim J. lim i + lim Ii ,—'

R»-0 |Rn| 1 Rn 1 R»-° I Rn j

Si n est pair, il vient

M dRnl N
lim J. —— — M T V-" N + M«-VTN

R„^0 | Rn j

M N
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D'oü la formule d'integration partielle

J* M^f+N [dRn| (jiMdR^N (re pair)

Si n est impair, on aura, en remarquant que F commute
alors avec ri;

(T) M dRn_4 N
lim ±—— M V- N T + rM <-V N

Rn-o |Rn|
TM <-v- N

D'oü la formule d'integration partielle

J M «-V-» N dRn (^MdRn_jN (re impair)

Chapitre III.

Les Equations de I'ülectromagnetisme.

1. Lois de Velectromagnetisme dans le vide. — Le but de ce

chapitre est d'exposer les lois de l'electromagnetisme en
notation cliffordienne. Elles prennent alors une forme tres
condensee.

Nous avons vu que l'on peut considerer les nombres de

Clifford comme des groupements de tenseurs antisymetriques
d'ordre zero, un, deux Or les grandeurs physiques qui inter-
viennent dans l'electromagnetisme de Minkowski sont gene-
ralement des tenseurs antisymetriques. Aussi est-il naturel
d'appliquer les nombres de Clifford ä l'etude de ces lois.

Nous nous placerons dans un univers ä quatre coordonnees

xii x2t x3t xai avec xi w'C auxquelles correspondent les quatre
unites ri5 T2, rs, T4.1

1 Nous remarquions au chap. I que certains des pourraient etre
definis comme ayant un carre egal ä — 1. On aurait pu poser ici
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Dans le vide, le champ electromagnetique est un tenseur

antisymetrique F forme au moyen du champ magnetique H

et du champ electrique E:

e /z3 r2 r3 + /3if3+ /14rjF2 + /24r2r4 + /34r3r4

—1- 1,1 * X
H E

Le courant tridimensionnel et la densite electrique p sont

groupes en un vecteur de courant

S ~ + S2r2 + S3E3 + 84E4 (p ~ js4|)

On pose (J.S.) les equations de Maxwell sous la forme sui-

vante
V- F — S

Comme V-» F est un survecteur:

V-*- F DIV F + r max F

et que S est un vecteur, il faut que

maxF 0

ce qui permet de faire deriver F d'un potentiel en vertu du § 6,

chap. II
F V-* ©

oü le potentiel <D est un vecteur dont la divergence doit etre
nulle

div © 0

Montrons qu'on peut obtenir les lois de l'electromagnetisme
dans le vide sous leur forme cliffordienne par un principe de

Fi r2 rj — 1, et vi 1, pour ne pas introduire le Symbole
i V'—1 dans la quatrieme dimensions de l'espace-temps. Nous
choisissons cependant tous les carres positifs pour appliquer facile-
ment les regies d'algebre et d'analyse donnees dans les chapitres
precedents.
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variation. On definira le champ electromagnetique F par la

relation
F V-* ®

oü O est un vecteur appele le vecteur potentiel.
Se plaijant dans l'espace des potentiels, on definira alors une

variation SL ä partir d'une variation SO du potentiel, et du

courant S:
SL (SF)TF + (8®)rS

qu'on peut ecrire

8L V- (SO) FF + (8®)TS

— (8®) -^F + (8®)FS

Or

(8®) F 8® V7^ F + (8®) <-V F

On peut done ecrire

8L — (8®) <-V"> F + 8®(V^ F + TS)

— (8®) F + 8®T (v-> F + S)

Posons

8A j^SL\dp [

R

dp etant ici 1'element geometrique quadridimensionnel. On

obtient les equations de l'electromagnetisme en imposant la
condition SA 0, soit

- f (8®) F | dp | + J(8®) F | dp | + 8® dp (V- F + S) =0

les integrales etant etendues ä une region d'univers R. Le
terme

— J (8®) «-V- F |dp i

R
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se ramene ä une integrale triple

«OrfiFT

prise sur les limites de la region R, en vertu du para-
graphe 7 du chapitre II. Conformement aux conventions
du calcul des variations, la variation SO doit s'annuler sur la
frontiere de R. Done cette derniere integrale est nulle. D'autre

part, comme SO est arbitraire, il faut que

S — V- F

A propos des lois de l'electromagnetisme dans le vide,
MM. Juvet et Schidlof ont cherche ä quelles consequences
conduit l'hypothese

max F ^ 0

Elle apporte aux lois observables les modifications suivantes:
le champ F reste un tenseur antisymetrique, mais il est quel-

conque, puisque son maxwellien n'est pas nul. Alors, au lieu du

vecteur courant, il faut introduire un survecteur:

C S + TM

pour que l'on puisse toujours poser v-> F — G, et on inter-
prete M comme un courant magnetique. C'est appele le courant
total. D'autre part, au lieu du vecteur potentiel O, il faut
prendre un survecteur potentiel U O + r^F, pour que l'on
ait encore

V- U F

ce qui implique
div® divT 0

et

v2u — c

Ce qu'il y a de remarquable dans l'introduction d'un
survecteur potentiel et d'un survecteur courant, c'est qu'elle ne

detruit pas le caractere vectoriel de la force de Lorentz, qui
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garde la meme forme dans la theorie de Maxwell et dans la
theorie modifiee oü max F 0. Elle vaut (voir J.S.):

-If-v-F
et il en resulte que les expressions de l'energie et de la quantite
de mouvement sont exactement les memes que Celles de la
theorie ordinaire.

Les equations suivantes, que sur la proposition de M. Juvet,
nous appellerons equations de Schidlof:

F V- U

C — V- F

peuvent etre deduites du meme principe de variation. En effet,
rien n'est change dans les calculs relatifs ä cette variation si
l'on prend pour le potentiel, ä la place du vecteur O, un sur-
vecteur U. On ecrit alors que le courant est un survecteur C,

on definit SL par
8L (8F) TF + (8U)rC

oü F est quelconque (son maxwellien n'est pas nul), et C satis-

fait ä la relation
V-* F — C

en vertu du principe de variation

JsL [rfp | =0
R

On a ainsi ramene les equations de l'electromagnetisme (de
Schidlof ou ordinaires) pour le vide ä un principe de variation.

2. Cas des corps en mouvement. — A. Definitions. — La
matiere, dans son mouvement, est caracterisee par des lignes
d'univers, d'arc x, dont la tangente a pour coefficients directeurs
les quatre grandeurs suivantes:

dx1 dx2 dxs dx4
Vx dx ' dx ' Va dx ' Vi dx
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Le vecteur V 2(^1^ est le vecteur d'univers de la matiere.
Par rapport ä un certain Systeme de reference galileen tri-
dimensionnel, la matiere a une vitesse v telle que

Ci e3) /
^

„
•

yl — e2

De plus,

VT^ '

Nous avons pose egale ä l'unite la vitesse de la lumiere.
Pour representer les champs et les inductions, il faut introduce

deux tenseurs antisymetriques; Fun, F, compose de

l'induction magnetique B et du champ electrique E, l'autre ,H,

compose du champ magnetique H et du deplacement elec-

trique D:

f /23r2r3 + f31T3Tl + /12 rtr2 + /14 r4 r4 + /24r2r4 + /34r3r4

B E

h A23r2r3 + /i31r3r4 + A12rjr2 + hu r, r4 + k2l r2 r4 + a34 r3 r4

H D

Le courant electrique quadridimensionnel S est forme comme
dans le cas du vide.

B. Relations invariantes entre les champs et les inductions, et

theoreme de Lore-ntz. — Dans un milieu homogene et isotrope,
ces equations s'ecrivent sous la forme cliffordienne (invariante)
que voici

H • V £ F • V /

(11)
F x V [i H x V

oü s et p sont la constante dielectrique et la permeabilite
magnetique de la matiere, et V sa direction d'univers.

Ces equations contiennent implicitement le theoreme de

relativite de Lorentz. En effet, designons par des asterisques
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les valeurs des champs et des inductions que fournissent des

appareils de mesure en repos par rapport ä la matiere:

(/*4, fl, fl)

jD* (hi, h*2i, hi)

B* (fl, fl, fl)

H* (hi, hi, hi)

II suffit de faire | c4 | 1, v1 v2 v3 0 (c'est-ä-dire
v 0) dans les equations (11) pour obtenir les relations

D* sE*
B* [iH*

D'autre part, une decomposition en espace et en temps
consisterait ä separer les termes des equations (11) en ceux qui
contiennent Tj, F2, r3, d'une part, et ceux qui contiennent T4,

d'autre part, ces derniers correspondant ä l'axe du temps.
Identifiant alors les termes en i\, r2, r3, on voit qu'il faut

poser

E + v x B B*
et (12)

D + v x H D*^ ]

pour retrouver la relation D* sE*, et

B — Z x E

H — e x D

pour retrouver la relation B* p.H*.
Les expressions (12) et (13) sont la base du theoreme de

relativite de Lorentz. Elles sont implicitement contenues
dans (11).

C. Courant de conduction et courant de convection. — Le

courant electrique S quadridimensionnel se compose, d'une

part du courant tridimensionnel du au mouvement des charges

B*

H*
(13)
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dans la matiere, d'autre part de eelui du ä l'entralnement des

charges au repos, par suite du mouvement de celle-ci1. Cette
seconde partie due ä l'entrainement des charges, et qui est

mesuree par le vecteur — V (V.S) (le signe — provenant du

caractere imaginaire de la quatrieme dimension), n'intervient
pas dans la relation qui lie le courant au champ. Soit a la
conductibilite electrique de la matiere. Soustrayant — Y (V.S)
de S, la relation en question s'ecrit

S + V(V • S) OF • V

Si, dans cette relation, on pose vx e2 e3 0, il vient

(jB* (14)

oil s* est le courant tridimensionnel.
Une decomposition en espace et en temps suivie d'une

identification des termes telle qu'on l'a faite au sujet du theoreme
de relativite, entraine, afin de respecter (14), la relation suivante

+ + p — v s E*
s — o J- a - -1—c2 \/l —

(15)

oil l'on a pose

done

si — ip

\f\ —

V.S, — Vi
Dans la relation (15), la quantite

est le courant de convection, et sie courant total. On remarquera

1 Par le terme « courant» nous entendons reellement la densite
de courant.
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que la relation (14), soit la loi de conductibilite, n'est valable

que pour v 0.

D. Equations du champ. Conservation de Venergie et de la
quantite de mouvement. — En presence de la matiere, la forme
cliffordienne des equations du champ est la suivante: le champ F
derive d'un potentiel 0:

F v* ®

ce qui necessite que

div © 0

puisque F est un tenseur de second ordre. Et comme

max rot 0, on a necessairement

max F 0 (16)

D'autre part, le courant est relie au tenseur H par la relation

S + DIV H 0 (17)

et comme div DIV 0, il s'en suit que

div S 0

ce qui exprime la conservation de l'electricite.
Des relations suivantes, valables pour le vide: F V- <F,

et — S V-* F, on deduit l'equation (J.S.):

V2 © — S

qu'on peut appeler l'equation de Poisson. Dans la matiere, on

ne peut pas ecrire cette equation. On a DIV H — S, mais

d'autre part, le maxwellien de H n'est pas nul, aussi ne peut-on
pas faire deriver H d'un potentiel. F derive bien d'un potentiel,
puisque son maxwellien est nul, mais sa divergence vectorielle
n'est pas egale au courant. On ne peut done pas ecrire l'equation

de Poisson.

Considerons maintenant plus specialement les equations (16)
et (17). En les combinant on obtient

F • DIV H + H x max F + F • S 0 (18)
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Or F • S est la force de Lorentz 2 (18) exprime
i h

la conservation de l'energie et de la quantite de mouvement.
On est ramene au vide en posant e p. 1, ce qui fournit
bien la relation

F • S + i F «-V-» F 0

donnee par MM. Juvet et Schidlof.
Dans le vide, la force de Lorentz est rattachee ä la mecanique

par la relation (J.S.)

rfV 1

+ ¥F^F °

oü m0 est la densite de la repartition materielle, et V sa direction
d'univers. Gomme V.dV =0, on doit avoir

(F S) • V 0

c'est-ä-dire que la force de Lorentz est toujours orthogonale
ä la direction d'univers de la matiere.

Reprenons la relation (18) en,examinant sa signification du

point de vue tridimensionnel. On peut la soumettre a une

decomposition en espace et en temps. Les termes correspondant
ä la quatrieme composante du vecteur que represente le premier
membre de (18) se traduisent en langage vectoriel par

E-D + H- B + V- ExH + E- s 0.

— E s est le travail de Joule par unite de temps et de

volume, qui entraine une diminution de la densite d'energie
electromagnetique tandis que la divergence du vecteur de

Poynting exprime l'afllux d'energie rayonnante.
II est plus interessant d'examiner les termes d'espace prove-

nant de la decomposition de (18). En effet, ils representent la
variation de la quantite de mouvement, et se traduisent par la
relation

Bx(VXH) + Dx(VxE) — Ev-D — HV-B

+ ^-(DxB) + pE + B xs=0. (19)



334 EXPRESSION DES EQUATIONS
— —

Le terme pE correspond ä la force de Coulomb, et B X s a

Faction dynamique de l'induction sur le courant (Loi de Biot
et Savart). Dans le vide, (19) se reduit ä

H x (V x H) + E x (V x E) — E V E — H V • H

+ ^(ExH) + pE + Hx7 0

qui est une relation connue E On deduirait de (19) la force

resultante K a l'interieur d'un volume t contenant de la matiere
dont la permeabilite et la constante dielectrique sont des

tenseurs symetriques, ce volume etant traverse par de l'energie
electromagnetique:

K — ^ — (sp. — 1) ^ J'sdz + J"(DE + BH) ,~da

— JW da,
(T

Ö /*
ou il s'ajoute ä la force — — j "Sdt bien connue (S vecteur

de Poynting) des termes dependant du vecteur de Poynting,
- - - -

des tenseurs DE et BH (tensions de Maxwell) et de la densite

d'energie. Par suite du passage de l'energie rayonnante dans un
milieu different du vide, il se produit une action mecanique
proportionnelle ä la variation dans le temps de cette energie, et

qui est d'autant plus faible que le produit sp. se rapproche de

l'unite.

3. Indetermination du vecteur potentiel. — Nous allons

montrer que le potentiel electromagnetique O, solution de

l'equation F v-> O, n'est pas completement determine.

II est certain que le champ F est univoque; par consequent,
si nous avons trouve deux solutions <£>' et O" de l'equation
F V-* •£, leur difference ij; ®" — <!>' doit satisfaire ä la
relation

V-" <i> o

1 Voir par exemple L. Page, Introduction to theoretical Physics
(N. Y., 1930, 3d. ed., p. 442).
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Cette conclusion s'applique au cas du vide. Comme

div <!>' div O" 0, div ^ est nulle. Cela montre que tj; est

le gradient d'une fonction scalaire 9:

9 ®" — V-" 9 •

Cette fonction 9 n'est pas arbitraire, car, soit <D <D' -)- v-> 9
la solution choisie de l'equation de Poisson, on doit avoir

F v-" ® V- O' + V2 9 •

Comme F est un tenseur et V2 9 une grandeur scalaire, il
faut que

V2 9 0 •

4. Ondes electromagnetiques. — II est en general impossible
de donner une forme invariante ä l'equation de propagation
d'ondes electromagnetiques dans la matiere. On y parvient
dans le cas particulier du vide, et dans celui d'un milieu oü

les deux tenseurs F et H sont egaux. On a alors rigoureusement
propagation d'ondes dans une region oü le courant est nul.

En effet, par hypothese, F H; alors S + V-* F 0, et s

S 0, on a
V2 F 0

ce qu'on peut ecrire, au moyen du dalembertien Q),

F 0

Comme F H, on peut tout aussi bien ecrire

H 0

II se propage une onde F et une onde H, soit une onde B, E,

et une autre H, D.
On a aussi V20 + S 0; done, si S 0,

$ 0

qui exprime la propagation d'une onde de potentiel.
Dans la matiere, si S 0, DIV H =0, ou

V"> H — r max H 0
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et comme div max 0,

V2 H + T rot max H 0

Le rotationnel d'un maxwellien n'est en general pas nul,
cette equation ne represente done pas une propagation d'ondes.
Meme si e et p. sont des constantes, on ne peut pas dire que
max H 0, bien que max F 0, car H n'est pas proportionnel
ä F.

Dans un milieu polarisable, la relation

V2 H + r5 rot max H 0

se reduit ä H 0 si rot max H 0; e'est le cas si l'on a

max H grad h

ft etant une fonction scalaire. Nous savons que div max 0

et que div grad V2, done A satisfait ä l'equation des ondes

V2ft h 0

Pour le tenseur F, on trouve quelque chose d'analogue. On a

V2F rot DIV F

puisque div DIV 0 et que max F 0. On pourrait ecrire
V2F F 0 si l'on avait rot DIV F 0; ce serait le

cas si
DIV F grad /

et la fonction scalaire / satisferait, comme A, ä la relation

/ 0

On ne trouve pas non plus d'onde de potentiel, puisqu'il est

impossible de donner ä F une forme particuliere dont la divergence

vectorielle s'annulle identiquement.
Si F varie lentement, DIV F est approximativement nulle,

et <!> no 0; on a alors une onde de potentiel sans dispersion
appreciable dans une region d'univers suffisamment petite.
Dans ce cas, il y a aussi une equation d'onde en F, mais pas
necessairement en H.
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5. Forme integrale des lois de Velectromagnetisme. — Les

resultats obtenus aux paragraphes 3 et 5 du chapitre II nous

permettent de transformer sans difficulte les lois differentielles

en relations entre integrales.
Dans le vide, on obtient tout d'abord

dp[ S (hdZ- F

relation que l'on pourrait appeler le theoreme de Gauss. Appe-
lons flux electromagnetique elementaire 8 cl£ 1'expression

dZ P

Le flux ä travers une hypersurface ouverte T sera

j* S dC

T

Done, ä travers une hypersurface fermee, le flux vaut

3Ct =,j"|dp|S

et l'integrale f\dp \ S, que nous appellerons electricite totale ä

l'interieur de l'hypervolume p, joue le role de source du flux.
On a, d'autre part,

|^xF=0.
Si on deflnit une autre espece de flux comme etant le produit

X de par F, ce flux &' est toujours nul ä travers n'importe
quelle hypersurface fermee.

La conservation de l'electricite s'ecrit

dl S 0

et dans la theorie modiflee de Schidlof, on aurait egalement
conservation des poles magnetiques

dl M 0

Archives. Vol. 17. — Septembre-Octobre 1935. 24
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Oil obtient l'equation de propagation d'ondes dans le vide
ä partir de la relation

Cette relation doit etre vraie pour un hypervolume quel-

conque; or max F =0; par suite, si le courant S — DIV F
est nul, V 2 F =0.

On a enfin une relation integrale entre le champ F et le

potentiel:

Dans la matiere, ces relations sont modifiees de la maniere
suivante:

Entre le courant et le tenseur H existe la relation

et si on definit le flux 9C ä travers une hypersurface T en posant

flux, c'est-ä-dire que le flux total 3C0 ä travers une hypersurface
fermee est egal a l'electricite totale (theoreme de Gauss):

T

on peut toujours dire que J" | dp | S joue le röle de source du

On peut encore definir un second flux tr, en posant

T

Le flux ?('„ ä trayers une hypersurface fermee est toujours nul.
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La conservation de l'electricite s'ecrit comme pour le cas

du vide

j>di S 0

et l'on a encore la relation

J' |dp|F (j)d^x®

entre le champ F et le potentiel. Rappelons que si l'on appelle 9
une fonction scalaire quelconque,

d\ x grad 9 0,

ce qui montre de nouveau que <E> est determine ä un gradient
pres.
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