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1935 Vol. 17. Juillet-Aotut

Le probléme du “décalage " des phases
dans les variations périodiques des cépheéides

PAR

Georges TIER(CY
(suite et fin)

III. — PULSATION HOMOLOGUE.

9. — Généralités. — L’hypothése d'une pulsation dite homo-
logue offre la seule possibilité d’envisager un décalage, tel que
celul qu’on observe entre les phases des extrema de pulsation

et les phases correspondantes des extrema lumineux, ou celles
des extrema de P. On a:

1 .
s T = — = fonction de ¢ ;
Ty

) -/.:;:l: fonction de £ et de ¢ ;
Q

cela revient a dire qu’'un rayon r quelconque est une fonction
du temps différente de la fonction ry(z); r(z) différe de ry(t) d’une
part en raison de ’amplitude A de la variation (laquelle ampli-
tude dépend de r;), et d’autre part, en raison de la phase. On
aura d’ailleurs toujours, a la surface:

% =1 ;
autrement dit, si ’on pose:

%= z@',(l +?'1) H
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256 PROBLEME DU « DECALAGE » DES PHASES

on aura toujours:

#,0 =0 et #g = %9 =1.

En écrivant comme précédemment:
r = ]"1(1 + rl) ]

on pourrait écrire, dans le cas le plus simple, ¢’est-a-dire celui
ou la pulsation est harmonique:

ry = A; cos (Nt + N)

les quantités A, et N; dépendant de r; ou de £. A la surface
limite méme, on aurait:

A'[):An et Ni,OZO’

ry o = Ay cos Nt (limite de la couche renversante) .

Il y aurait ainsi un décalage progressif, du centre a la péri-
phérie.

Disons tout de suite, et nous préciserons le fait au n° 21, que,
dans une couche dont les £ comprennent la valeur £, de frontiére
photosphérique, la quantité N, prendrait une valeur N, non
nulle, pour tomber ensuite a zéro, par exemple a la limite de la
couche renversante; la valeur de N; dépendrait du retard
observé dans la variation de P,.

Rappelons qu’on a toujours:

To

2V dw .
P:fp[b—r—d—t-]dr, (32)

r

o 2 — X' dans cette intégrale de P, il s'agit naturelle-

ment de passer de r a r, @ temps constant, donc¢ & © constant,
puisque: '

T = ’—1— = fonction de ¢ seul .
0

On a d’autre part:

r d
= —= z(t, r) ou Pr=—1-"
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4 temps constant, il vient:

dr:ﬁ;
p

c’est-a-dire que dx» est proportionnelle & dr & ce moment-la.

On trouve ensuite:
oV M

2l = grL. g
or #e

&8 f;)__i dv . L 8=,
W—dt_dt'rw 2 di T di
dw 2dﬂ:2_’1d21: __Z_El"_rjd_z_t__;_i d? =
a " f|E\@w) T e de © At dt T de

et comme on a encore, & temps constant:

1 DMT

Grr: or

DMT 1

dx  hmw? ?

p = ou e o

Pexpression (32) devient:

" .
oM, 4 SGM 2/dn\? 1 diz
_ 3, r "2 ey il TR )
r —._[AT 0% hma? ( . x[‘ﬁ(dt) 2 dt2] T

a

\

2 dv dx 1 dﬁ’xgﬁ

+ . (33)

At 7 AR\«

Si les vitesses de transformation sont négligeables, on retrouve
le type d’égalité:

et la distribution de P est donnée par ¢ (x); c’est le cas du
théoréme du eiriel, ou la durée du phénoméne est extrémement
longue. II faut préciser qu’ici, cette fonction ¢ (x) varie d’une
époque a l'autre, les deux époques considérées étant
extrémement lointaines 'une de ’autre.

Mais, dans le cas des Céphéides, on doit conserver ’expression
dt d2tv dz d?x

PR R TREF TN Et
dt? de’ dt’ d
la pression ne varie plus comme l'inverse de r%. Répétons,

(33) compléte, en gardant les termes en
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pour bien fixer les idées, que I'intégrale (33) est prise & temps
arréte.

Si les vitesses de transformation étaient négligeables, la
pression P serait donnée par la distribution polytropique
de classe 3; et I’on sait qu’alors:

¢(x) = ryP ¢t

comme on I’a vu au n° 3 (égalité 10); de méme on aurait pour
la température:

T =r1-9¢.%), Py () :roch’-
Quant & la densité p (distribution & temps arrété):

3DM 1

T
= T : -
e 0% hmx?

H

elle est proportionnelle & 13; mais, si le temps s’écoule, le
facteur de 72 ne reste pas constant pour une couche donnée,
puisqu’alors » varie avec ¢.
Les égalités:
S P
T

(

™o(x) ,
=T CPI(Z) ’

ne sont valables que si la modification est infiniment lente:
on a alors les conditions de stabilité d’une étoile invariable,
pour une valeur donnée de {. (C’est encore la solution de
M. Bialobrzeski ou de M. Eddington.

10. — Cas des Céphéides. — Les modifications sont alors
rapides, et les égalités précédentes ne sont plus acceptables;
il faut étudier ’expression:

/ OM, GM, | oM,
n 1 2 /d~ d*~
- 4 5 - ol (i
F =y f ox  hrxt & ox  hmwz [T(dt) d#]da -

%

1 1
dr poM, 1 dx oM, 1 d?x
T de 0z 2max? '(dt)dx o Tf ox  hmat '(dtz)dz ’

% %

(33)
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d2 %
di?
sortis des signes intégraux, parce que le rapport « est fonction,
non seulement de ¢, mais aussi de E.

Posons maintenant:

remarquons que les facteurs (‘; ) et ( ) ne peuvent pas étre

S
—

oM, 1 dx
L) :f ox 2ma '(dt)d

1
DI"{[r 1 d?»
Z(ﬂ):f 0% -4nzz'(dt2)d/"

ce qui permet d’écrire plus rapidement:

P=cot) + [Ga— (%) ] 00 + G Tl —x-z0 .
(36)

Pour une couche donnée, les fonctions ¢ (z), ®(z), I'(»)
et Z(#) ne sont pas constantes; elles varient avec le temps;
de sorte que la pression P dépend a la fois de = et des vitesses
dr , d»

EZ et E;‘, .

Si 'on considére la valeur moyenne ry ; de r,, on aura pour

les conditions statiques, autour desquelles oscillent les conditions

réelles:
1
N
} P, = @ (%;
L olr) =1y P, ;¥
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On voit par (36) que la variation 3P de la pression se compose
des variations respectives de quatre termes. Par exemple, le
premier terme de (36) donne la contribution suivante a 3P:

4

To(r) — Ty ;
et, a la différence de ce qui se passait pour une pulsation
uniforme, ¢ (x) n’est plus constamment égale & ¢ (%),
puisque z varie avec le temps. On fera une remarque identique
pour les fonctions @, I' et Z.

On a, de plus:

t=1{l+17) et x=z(l+2), (37)
d’ou:
I dr dt, dx dz,
_— = T.— == L.— )
S L g dt vt
f d?v Rope d*x d? 7,
— T : = %o
de? todir dt* voggt

et, comme nous ’avons déja relevé, on a toujours 7, =2; o =1
a la surface, c’est-a-dire x; o = 0. La quantité »; varie avec
le temps pour une couche donnée; i temps constant, elle
dépend encore de £.

11. — La fonction ¢ (x). — La fonction ¢(x) oscille autour
de la valeur ¢ (%;). La premiére formule (35) donne:

g
re
o) = oz + n) :J Obl\fr-ff;-dz ;
7‘i+7‘izl
ou l'on a:
'/.i'Al = 4 — ‘Ai

Si I'on développe ¢ (%) suivant les puissances croissantes
de %;, on obtient:

Y. 2 2
A-/.l /.il.l

o) = oly) + == 0'(5) + 75 - @"(4) + ... (38)
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Or, on peut calculer les valeurs respectives des dérivées
successives ¢’(z;), ©''(*;), ..., en utilisant les tables d’Emden
pour la solution polytropique de stabilité, On a tout d’abord:

e ey my et — o3 g
re v o i £, °
d
By = & ro, i = % ¥ _dri——é-,
wu, WU, ou,

et la valeur de dz; (temps arrété, solution de stabilité) est:

. dr. ‘
dity = — = TR (39)
To,i  Tio®u, &

D’autre part, on sait que:

¢(r) = ’%,ipc it
d’out 'on déduit:

dr s P d 4 P,
o () :E;[POPCLI)L - go.d_g[ro)ipc,m] :
o) = Eord 1P, i - 39 5 (40)

or, On a encore:
4
4 : . a() .
Mgt = a1
(O] uC

et I’on a déja rappelé aux n°s 3 et 5 que la théorie des sphéres
gazeuses en équilibre polytropique donne !:

s eI, " & ([171:9]‘(,0\)—% ]

©G. 4
c © M e T 7 UM

P . = u

¢, i P

. B, =69 ; I, = 2,018 ;
de sorte que le coeflicient de la dérivée de ¢* dans (40) vaut:

EnG  EGM?
* _’lﬁﬁjr(.ﬁ

4 4
gUrO,iPc,i = == gn"o‘Pc >

t G. Tiercy. I’équilibre radiatif dans les étoiles, loc. ctt.
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’ ‘2 fir Pl Ve
et I’on a pour la premiére dérivée ¢'(z;):

la table d’Emden en fournira la valeur numérique pour toute

valeur de &; le résultat est négatif, car Z—qé <0,

On a ensuite:

" d ’ ., d !
9" (%) = o' (2)]; = iud—a[@ )7 s

L. P Y (3]

- 41':3]1?;

et I’équation (9) permet de se débarrasser de la seconde dérivée
de ¢:
dg & dE ’

d’ou 'expression:

oo BGMP T sggNe 29 dy

calculable au moyen de la table d’Emden pour n = 3. Il est
facile de trouver pour les dérivées suivantes de ¢(%;), des

expressions ne contenant que &, { et g—qé ; il suffit de faire appel,
aprés chaque nouvelle dérivation, & I’équation (9); mais il est

inutile de faire ce calcul, comme on le verra bien par la suite.

12. — La fonction @ (»).
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Semblablement & ce qu’on a vu au n° 5, on peut écrire:

Ty s
0.1

D (%;) ="0,if9’"d”=%f ¢ EdE
puis:
®(r) = [ kb 02|

grace a I’équation (9); ou encore:

Ly oM dy
Ol = potgr (855 + ¢ + 0.278) (43)
La premiére dérivée est:
() = 5: [000]; = Bogp| 2(85% + ¥ + 0.28) | 5

-5 | S o F A T
V) = 4nmzo[£d? T 2?52] ’

or, & cause de (9):

&y dy 3 .
gd Eg = 2 &_i e E * ('IJ"; I
de sorte qu’il vient:
D' () = — S - ¢* ; (44)
L 1T ’

on trouve d’ailleurs directement cette valeur en partant de la
définition de @ (%); on en tire:

oM 1 pd 2
M = Cw.r' hrz ——:r?p — wrﬁpz = T Tefr?
& E M
:——m;\l)g'g———-_' - E “pe
0 N,
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Maintenant, il vient:
" d r !
D" (7;) = E[@ ()]; = % 7z @]

£ M
®ﬂ 7. me _ u
) P

(v +ss v ] @

Il est inutile de chercher les dérivées suivantes. Ainsi, 'es
expressions (43), (44) et (4D) permettent de calculer numéri-
quement @, @’ et ®” par les tables d’Emden. On a finalement:

2 2
‘/.-'/.1 , ‘/.-'/.1 P
‘ch (2;) + 11_2‘1)'(‘%) i oo s

(46)

®(2) = D(z; + 72;%) = D(z;) +

13. — La fonction I'(z).

1

oM 1 d»
I r i T .
i) _.,[‘ d% '27t7.2'(dt> e

b

i 5 % 5 ; . dx ;
ici interviennent les vitesses de transformation e du moins

leurs valeurs a l'instant ¢, puisque l’intégrale I' est prise &
temps arrété.
On a:

d» dx
Z:”i(1+”1), Ei—t—zzi_d—f;

d’autre part, on sait que:

My L _2re ou bien i S S
ox 2wz T3 0% 2m=z? %

de sorte qu’il vient:
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g 5
et comme p = u, {’, ru, = = et o, = £
250 /. 2&0
3, _ 3
d/1
x, 3 - . g ;
d 27:3]1 / d 271:31‘(, A/‘Lp 3

(47)

le calcul ne pourra étre terminé que lorsqu’on connaitra la
fonetion »,(&).
Ensuite, on trouve:

o = ()= <8 - - zii“i, (&)
i = ()= o - - o Al (8]
) =~ [ (8)

esn () () e (g e

Connaissant la fonction #,(£), on aura le développement de
"I (n):
- 2 4

T =Tl + 2200 + AT ) + e, (50)

2
‘1
1.2

dont les formules (47) & (49) permettent de calculer les coeffi-
cients grace aux tables d’Emden.
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14. — La fonction Z(»).

On a:
1 1
d?x A%

Z(z) f,?z(d—tz)dz = fr?, p(dtz)d’ .

Z £ = ’

i 47:911 f‘b dﬁ
24 9. g .

ou encore, puisque r &y & diny

der — Tideg T g def

Z(r) =

3 M
zm.m fq’ df’ 4 1)

expression dont on terminera le calcul dés qu’on connaltra la
fonction %, (£).

On trouve ensuite:

ey = ()= ot~ oo e ()] o

et:

2" (z) = L M . d 3 d?z |,
i _<dv—)i“g°da—_4nmﬁ 7H M

EﬁM d?»
77 () = — 3, 1
_ ) A I, ‘ v ( dt* )

vagpf(Ta) b gt l . (53)

On aura done:
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formule dont le détail numérique sera dés lors fourni par les
tables d’Emden pour n = 3.

Tels sont les développements & porter dans la formule (36)
fixant la distribution de P & un certain instant. On a d’ailleurs,

Te Lﬂ)2 ' Ll) )
; /) i~

xGut . £ 14
PiZT‘;‘P(-"i) =Pc,i"l)4: 2C'¢4ZWG(A)

o "o,i
(59)
15. — Relation entre %,, 7, el r;. — on a posé:
or=r1 + 1)
1
ro:ro)i('l*l“f'ilg) r T:r_;
0
. 1
=71+ 1) ; Ti:ﬁ;
K
r
£ =+ 1) ; r=

remarquons tout d’abord que la lettre © ne fait jamais allusion

qua la surface de I'étoile; et comme 7,7, ; = 1, il vient:
1 2 3
1+T]_:‘m:ll’—“riuo—l‘ri,o—rl’o+.-. )
2 3 ]
Ty=—Tygtrgg—T ot s (56)

d’ou les dérivées:

drt df'i,o 2 3

miii} - _cl}_(_i + 2r,0—3ry o+ Ary o — )
dit, d&’rig 2 8

dt-’l = T de (=1 +2r) g—38ry o+ &ryo— )

dry, o\’ 2 3
+ dt . (2'—6]'1,0“1—127'1)0‘“‘_20"1)0"{‘ ...) B

Il faut constater ici que la variation de r, est connue par
I’'observation de la courbe des vitesses radiales; on connait
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donc la variation de r; , avec le temps; dans le cas le plus
simple (celui d’une variation symétrique), on a:

r oo = Ay cos Nz,

o A et N sont des constantes connues.
Mettons maintenant en jeu un rayon quelconque, ¢’est-a-dire
le rapport », qui, répétons-le, est fonction de ¢t et de £. On a:

r
== — !

’
Ty

ri(i + 1) - Ti(l + 1) = Zi(i + %) ;‘
M+rnl+z)=1+n%n; (57)

dans ce cas, et a la différence de ce qui se présentait pour
une pulsation uniforme, la petite quantité r; n’est pas la méme
pour tous les rayons; elle différe notamment de 7, o et dépend
de £. On a dit déja que »; , = 0.

Le facteur (1 4 7;) de (57) est connu par (56), puisque r; , est
donné par observation; de sorte qu’il suffira des lors de
connaitre la fonction 7, (t) pour en déduire %, (), ou vice-versa.

Par exemple, toujours dans le cas le plus simple, on posera:

r, = A; cos (N2 + N, ,

ol A; et N, sont des fonctions de la variable statique r; ou &.
Le maximum du rayon r se produira donc lorsqu’on aura
Ntz 4+ N; = 0, et le minimum pour Nz + N; = 7; les dates
de ces extrema, par rapport a celles des extrema de r,, dépendent
de la fonction N, (£). On a aussi:

dr ;

d_tl:_NAi sin (Nt + N;) ;

s WG Y N Nep,
7 = ! A; cos (Nt + N;) = — N?p,

on introduit ainsi dans le calcul deux fonctions de &,
indéterminées pour linstant, les fonctions A; et N;; on sait
pourtant que: ;

Ai,(]:“k() et NOZO,
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puisque, a la limite considérée, on a:
o = A, cos N¢ .

' . dr d*
Nous aurons d’autre part besoin des valeurs de _&?1 et _dfz_l :

I’égalité (57) donne:

dry
di

dr,
di

drt
= (1 + ) +(1+r1)_cﬁl;
ce qui devient, & cause de I’égalité (56) et de sa dérivée par

rapport a i:

% = %(1 —ry0 + 0= 0 + 10 — )
dry, g | 2 3
+ L+ 2y g — 85+ A g — (L) 5 (58)
puis:
‘I‘ d;;l == %(1 —ryg + 0= 1,0 +
2% DO s g +
; 9
PR (4 pany b A )
+ (dgt'“)g. (2 —6ry o + 127 o — 207] o) (1 + 1) .
16. — Cas le plus simple. — C’est celui d’une variation r,

harmonique; les fonctions & considérer sont du type indiqué
plus avant:

ry o = Ay cos Nt ;
’ 60
r, = A;cos (N2 + N;) . 169)
On a
dr
1,0 . . dr ;
S = = — A,N .sin Nz ; El':—AiNsm(Nt'*‘Ni) :
d*r 2
2 1,0 :—AONgcosNt:-«N’riO M:—-Nzrl x

di? ) dt
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comme la constante d’amplitude de surface A, est au plus

1 .1 ;
de ’ordre de 1o & 75 hous ne conserverons, dans les développe-

ments, que les termes contenant A, ou A; au premier degré; les
termes en A;, ou A] ou AjA; seront négligés. On écrira donc:

,\' 1“‘“""1’0"*""2’0—-"":;’0—{-...:1—AQCOSN5 ;
{ —1+2r g—3r g+ .. =—1+2A,c08N¢;
L 2 —6ry o+ 127 g — ... =2 —6A,cos Nt ;

portant ces expressions dans (58) et (59), et ne gardant, des
produits, que les termes de l'ordre indiqué, on obtient:

d» g i
d;l = — A;Nsin (Nt + N;) 4+ AN sin Nt ; (61}
dc;tzl = — A;N? cos (N2 + N;) + A N? cos N¢ ; (62)

ce qui correspond.bien a:
%, = A, cos (Nt + N;) — A, cos Nz, (63)

comme il fallait s’y attendre & cause de (57); cette derniere
égalité donne en effet:

=r 4T+ T,

dont on laisse tomber le dernier terme; et comme v, =—r, ,

on trouve (63). A la frontiere, avec A; ; = A; et N; 5 = 0,
on obtient bien », , = 0.

17. — Approximation suffisante pour les fonctions o, @, I' et Z.
— Reprenant les développements exposés dans les numéros
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11 & 14, on y abandonnera les termes contenant x; en facteur;
ils sont au plus de 'ordre de grandeur de A,. Il reste:

/ 3 *i#%y

£, GM? \
ot ¥ (68)

S

4
(x) = ’”o,v:Pcz,z"l’4 et

‘\ ¢ (‘{i) & Dng

f L ROM ¢3(d¢)

O() = D) + 77, - CD’(r.i) ;

T(x) = T'(x) 4+ 2% I"(z) ;
T(x) = fg ' dal dE : o
T'(r) = ~2i°;fl 29 (48)

Z(A) — Z(x) + 7_.7_1 Z’(Zi) :

d %
Z %) = 3 1 d .
) amm fﬁ v dt‘ : (67)

ARrcHIVES. Vol. 17. — Juillet-Aolt 1935. . 19
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Telles sont les approximations qu’on portera dans I’expression
(36) de P, que nous reproduisons ici en (68):

d’< 2 (d'c

P:T4'CP(Z)+[EE§_ E)g]-fD(Z)ﬁL%-P(x)—T'Z(K)-

(68)

T

Rappelons que, pour calculer la variation de cette
expression P, il faut tenir compte du fait que, non seulement <
varie avec le temps, mais qu’il en est de méme des fonctions

o, O, I' et Z.

18. — Calcul détaillé de P. — On a:

1 © - u,
k To,i E0 ’
ry o = Ay cos Nt ; 1417 =1—r o=1—A,cosNt ;
m-uc
T = 7;(1 — A, cos Nt) = z (1 — A, cos Nit) ;
0
ou, AN

%}: ;Ao N - 8in Nt = ——CE’G—O— - sin Nt
dir wuyAN?
— = ————— c08s N¢ ;
di’ &
2 d.r' 2_—- QmuCAsNz Sin2Nt .
T dt)m £, "1 — A, cosN¢

2mucA§N2 .

= sin® N¢ - (1 4+ Agcos Nt + ...) 3
0

4 4

'r“z-r%(’l—}—'r)‘*"*———lic—(’l—}—!rr + 615 + J =
1 1 - E4 1 1 -
0
4 4
o U,
= — (1 — 4A, cos Ni) .
0

En portant toutes ces expressions dans celle de P, on se trouve

en présence de nouveaux termes négligeables de I’ordre de A;;

3 e 2 /dT\?
c’est le cas, par exemple, de la quantité :(Et—> .
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Il faut rappeler ici les égalités (61), (62) et (63), dont nous
reproduisons ci-aprés la derniére:

%, = A; cos (Nz + Ni)'—- A, cos Nt .

I1 vient:
4 4 4 2 '
o' U, £ GM EE G dy ]
= ——(1—4%4&A, cos Nt VRS 8 . +
2 ’ )[16n3n§¢ 41‘:317.2 ‘I’ ag ™
wu,AyN? EM d £EM
———cos Nz | = ( 0,2 8) B el AR
T t[&n&ﬁ, dE TV O B |
1 (69
ou AN d, £, M d =
N 3 i ! =0 2 3 ( 1) . _
T, ﬁ.m / o B 2w, - Y :
k muc 1
PR L m’m fg (%) zmm Y (dt~)
Le dernier terme de chacun des trois derniers crochets de (69)
ne donnant que des apports de ordre de A; ou de Af , il reste:
’ o' u P EGMT N
= os Nt) » ———— «
E_;‘ ( o c0s N1 16nm§ ¢
4 4 2
U £, GM dd
1—4A Nt) ————&-¢% — . | A, (Nt + N;) — A, N
+ E: (‘ o ¢os Ni) 47:3'['6?,2 dE [ cos (Nt + N, coS t] +
ou,A,N° £, M dy
PRI il —i 0,2
& £y cos e 471:9]7, (gd‘i te+0 78) + (70)
ou, AN
+-~_E—-smNt OTL fE q;3 — A, Nsin (Nt + N;) -+ A, Nsm'Nt]dE_,
0 3 TE

[O/7

&o

“(1 — A, cosN) Zé'l%% fi- ¢3 [— A; N2 cos (Nt + N;) + A,N? cos Nt] d5.
Te
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On voit ici que la détermination des fonctions A; et N, de £
constitue un probléme d’équation intégrale.

Nous simplifierons le calcul en admettant une approximation
qui me parait amplement suffisante pour notre probléme: nous

donnerons & A; et N, dans les intégrales, leurs valeurs moyennes

A+ A, N,
5 et 7
et nous sortirons ces facteurs moyens des signes intégraux.
Toute la participation de la premiére intégrale de (70) est de
I'ordre de grandeur de A; ou de AyA;; elle tombe donc compléte-
ment; en ce qui concerne la derniére intégrale, le facteur
(1 — A, cos Nit) doit étre réduit & P'unité, le second terme
fournissant une participation négligeable. 11 en est de méme du
facteur (1 — 4A, cos Nt) du second terme de I'expression totale

de P. Il vient donec:

respectives dans le domaine d’intégration, soit

miuzGM2
= e ¢t (1 —4&A, cos Ny) +
0
4 4 2
o u, GM o
41:3]“"[5_ B R &%[Ai cos (N 4 N;) — A, cos Nt| +
0
©u, AN M d¢
. cos Nt ( o 1 0,278) —
4 I, ) Edg B

Eo
o u, MN? Ao + 44 ( Nz)] f
—— .| A, - cos Nt — «cos [Nt 4+ —) | E-3-dE.
lme [ ° 2 2 : v

Tous les coefficients fonctions de & et | seront calculés au
moyen des tables d’Emden, y compris Pintégrale du dernier
terme, pour laquelle on pourra préparer une table auxiliaire.
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On peut grouper ce développement comme suit:

o u, GM®
16 0 v
o' u, GM* A o' u; GM° A d
1 " P 0 g, edY
+ cos Nt PTTE ) TS g ¢d£+
j )
(ouANgM ' NgA (72)
0,278 ) — rge | +
|+ Tamdl, (58 + v+ 0a18) = P f“’ i
+m4uiGM E. ¢ ¢A Nz + N,)
0
T - cos (N2 4+ N;) +
S . [g i
\ + 0T, [ z cos | Nt + — ] 5

le premier terme de (72) est indépendant du temps ¢; il n’est
autre chose que P, ; J4; les deux lignes suivantes ne dépendent
de t que par cos Ni; les derniers termes contiennent les fone-
tions A; et N; de &, |

Ainsi, en posant:

—

- TP . i
et 167:917,(2,
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la pression P s’exprime par la forme:
P = a{* +

+ A, cos Nt [——lm(qﬁ +E- q,a.z_‘ié) e

) +b(zgi§+¢+ 0,278)—1»5/?5-4;3-(1&] L.

3

+ A, cos Nz + N, - [mawj_‘g] ¥

A, + A, N 4
\ +— cos(Nt—l—?)-be,-quE
3

19. — Calcul de P;. — On a:

P, = Pc,i¢4 = 04’4 3

1

P—-Pi
P1= P. 5
Il vient donec:
P, = A, cos N; _4<1 +E‘¢¢£>+
| )
/] . ?d
| b Bt b 0278 b.f‘E‘PE{
< a' 4)4 a. qfi (74)
g .4
+ Ay COS(Nt‘i‘Ni).[ Eq) ‘I’H:I n
%0
A, + A £-¢*dE
0

b i N; £ ;
—|-—d-. 3 COS(Nt+—2—)'—_q,T_—’

et il ne faut pas oublier que, dans cette expression, les quantités
A; et N, sont des fonctions de £,
Si 'on donne & £ une valeur quelconque inférieure a &; ou
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au plus égale a &, les coefficients de (74), fonctions de & et ¢,
prennent des valeurs finies; on sait, en effet, qu’a la limite de la
photosphére, ¢ n’est pas nulle; par exemple, dans le cas de
Y Sagittarii, on a P, = P, ;4 = 8 baryes environ pour la
couche renversante. On a donc une expression P; de la forme:

N

P, = G;- Ay cos Nz + D, A; cos (Nt + N) +

Ao + Ai Ni)
+ E; - 3 cos(Nt—{——z— 5

ol Cg, D¢ et Eg sont des fonctions de &.

Nous utiliserons ci-aprés le cas de Y Sagittarii, pour lequel
les résultats numériques suivants ont été établis précédem-
ment1:

a = Pei = (3,8).108 C.G.8.;
N = (1,25961) .10-5;
M = (1,71).10%;

Il

) ro,i (1,576) . 102
. ue = 0,3892;

en outre, on a:

g, = 6,888 ;
M, = 2,018 ;
il o 4751\.?(,0 :

G = (6,66) - 107° ;
on en déduit:

2
e B 0,01287 .
a

3

n:ch

20. — Valeur de P; pour & = 5. — Cette valeur de & est
intéressante, puisqu’elle marque la limite du domaine d’appli-

1 G. TiErcy. L’équilibre radiatif dans les étoiles, loc. cit.
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cation de la solution polytropique dans une étoile invariable.
D’aprés les tables d’Emden, on a pour £ = b:

¢ = 0,41110 ;  ¢* = 0,0013713 ; ¢ = 0,00015235 ;
' ’ F-:"‘pé .
Y =—0,08003; £y =— 040015 ; == —3,602 ;

on trouve alors:

Coefficient de A, cos Nt:

+ 10,408 — 0,933 — 0,546 = -+ 8,929 ;

Coefficient de A; cos (N2 + N;):

’

& - 4
J

= — 14,408 ;

; A, + A, N.
Coefficient de 0—2——1 cos (Nt + §3> :

.3 d
% JE- 9 €—>—0,546.

T
On a donc, en résumé, pour ce point ou & = 5:

P, = 8,929A, cos Nt — 14,408 A; cos (Nt + N;) +

A, + A N,
+ 0,546 —g— €08 Nt + 5 (75)

Remarquons que les grandeurs caractéristiques de 1’étoile
n’interviennent pas dans les coefficients principaux (10,408 et

— 14,408); elles n’interviennent dans les autres que par le
2

facteurg- = ﬁaa, qui est petit. On peut donc considérer
TUu

C
Pégalité (75) comme valable a trés peu pres pour toute Céphéide
lorsqu’on y fait & = 5.
 On sait que A, est del’ordre de grandeur de Tiﬁ a % au plus.
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Par exemple, voici les valeurs de A, trouvées pour quelques
étoiles:

. 1 ; - 1
S Sagittae i W Sagittarii 10
Aquilae - X Sagittarii 3,
7 Aq 10 agittarii 13
SU Cygni 1 Y Sagittarii 1
yg 5 agittarii o
U Aquilae 1
1 12
Nous prendrons A, = 11'2" comme valeur moyenne & mettre

dans la formule (75).
Quant & A;, c’est une fonction de £ inconnue, de méme que
N;; ces deux fonctions doivent étre telles que, pour & = 5, la

valeur absolue maxima de P, soit de 'ordre de % On peut, en

effet, admettre que ’amplitude de la pulsation ne subit plus
de modification considérable entre £ = 5 et £,. D’autre part,
le décalage cherché ne doit pas étre trés différent pour £ = 5
de ce qu’il est pour la couche renversante. On sait, en outre,

que, pour cette derniére, la valeur absolue de P; ne dépasse
; .1
jamais -

Cherchons les phases des extrema de P;; pour cela, nous

négligerons le dernier terme de (75); le coeflicient de ce terme
ne vaut que :-2% environ de chacun des coefficients des deux
premiers termes; ceux-ci donnent donc ’allure de la fonction P,.
On a: .

S P, = a, cos Nt — b, cos (Nt + N;} ,

a, = 8,9294, , ' (75)
( b, = 14,408 A, .
On peut écrire:

P, = (@, — b, cos N;) - cos Nt 4 b, sin N; - sin Nz , (76)

expression qul peut se mettre sous la forme:

P, =.a cos (Nt — B) . (77)
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Que pouvons-nous dire de o« et § dans (77) ?
Lorsque r; = A, cos Nt atteint son maximum A, (pour
= 0), 1l faut que P, approche de son minimum; ¢’est du moins
ce que montre I’étude de la couche renversante, et nous avons
admis qu’il n’y avait pas grande différence entre les phases
relatives a celle-ci et les phases de la couche £ = 5. Il s’ensuit
que le coefficient « est négatif. Quant a la quantité 3 de (77),
elle est positive, car le minimum de P, est atteint pour:
Nt —B =0, I = % ;
Or, cette valeur de ¢ doit étre positive.
De (76) et (77), on tire:
acosfB = a;, — b cos N,

78
| asin B = b sinN; ; 78]

puisque a << 0, il faut bien que N, soit négatif; et comme
acos 3 <0, on a aussi:

a, — b, cosN, <0, cosNi>%;
1
. . 1 ; a,
cela fournit le renseignement cos N, > 3 car le quotient f
1

. 1 .
vaut environ 73 ou bien

T
[Ni| < 3

N;|=Fag.

On peut, d’ailleurs, apercevoir tout de suite la grandeur

approchée de B; on sait, en effet, que le retard du minimum

’ : . .0 2 =
de P sur le maximum de pulsation vaut & peu prés =8N 3N’

nous verrons en effet, plus loin, que

on doit donc avoir pour la phase de ce minimum:

T T ;
= ou B = 5 environ :

nous vérifierons plus loin ’exactitude de cette valeur,Précisons
qu’en réalité, le retard en question est plus faible en ce qui
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concerne la phase du maximum de P; qu’en ce qui regarde le
minimum de P;; du moins en général; mais comme, pour
simplifier, nous avons pris le cas ou r; est simplement harmo-
nique, le décalage est alors partout le méme.

Des égalités (78), on tire maintenant:

2 2
o = a; — 2a,b, cos N, + by ;

1 : .
or ‘oc l est de Pordre de g U mazximum, comme on sait, pour la

1
couche renversante; admettons cette valeur loc| =5 ; on a:
2 2 1
a, — 2a,b, cosNi-l—bl:-[;—, (79)
équation contenant les inconnues N; et A;. Ensuite:
b, sin N, . )
tgp = T cosuN_i = tgg (environ) ;
b, sinN; = 4/3 (a; — b, cosN,) , (80)

seconde équation en A; et N,.
Avec Aj = 112, et en écrivant a; = 9A, et b; = 15A; pour

simplifier le calcul, les équations (79) et (80) deviennent:

81 45 2 1
(81)

En éliminant les termes constants, on trouve, avec ces
approximations et en tenant compte de ce que 4/3 vaut

presque % ¢

E@_A. cos N.

4 1 7 ERL

75A,;sinN; + 4725 A] =
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et comme A, 2 0:

15 sinN; 4+ 945 A; = g? cos N,
273 ' 60
i = 3780 %08 Ni — g5gp S0 N
91 1, (82)
A; = 1950 ¢ N; — gz sinN;

. A; = 0,07222 cos N; — 0,01587 sin N; .

En portant cette valeur de A; dans la seconde équation (81),
on obtient:

2 5 oo, 21 91
gsmN cos N, ——ﬂsm N; =i Th 48cos N3

ce qui §’exprime comme suit en fonction de (2N,):

224sin2N; 4 717 cos 2N, — 325 = 0 . (83)

La résolution de (83) donne:

564265 sin? (2N;) — 145600 sin (2N,) — 408464 —

équation présentant deux racines réelles et de signes contraires;
or, c’est la solution négative qu’il faut retenir, puisque N; < 0;
d’ou:

72800 — 485573, 6

sin2N,; = v — 0,731524 ;
N; = — 23°30"25" ou — 0,4103 radian ;
soit environ:
N;, = - ou s
i T 100 8

Ayant la valeur approchée de N;, I'expression (82) donne A;:

A, = 0,0724 ,  soit & peu prés A; = 1"
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On obtient ainsi pour P,:

2
B, = 8,929 cos Nt — 14 408 (Nt 13 -.rc)

12 100
13w
P, = 0,744 cos Nt — 1,029 cos (Nt — 100 (84)

Vérification du minimum de P;: Annulons la dérivée de P,
par rapport au temps ¢; il vient:

0,744 sin Nt = 1,029 sin (Nt 13(7;
équation dont la solution est:
| tg Nt = 2,055 ,
(Nt)extr. = 64° ou %n ]

Tt 1
¢’est un peu plus de 3 c¢’est la valeur de (3, que nous avons dés

le début posée comme étant a g a peu pres. Quant a la valeur

correspondante de P, elle est:

(P pin. = 0,33 — 0,68 = — 0,35 ,
g 1 ;
soit (Pi)min. = — g environ .
: " 1 ,
Nous avons fait le calcul en posant |oc| = — au début,

2
‘est-a-di d 1 i b de d
¢’est-a-dire en donnant & |« | sa valeur maxima observée dans

la couche renversante. ,
En refaisant tout le calcul précédent en admettant au départ

1 . e .
al =3, c’est-a-dire en donnant au second membre de la
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premiére équation (81) la valeur %, on trouve (toujours pour
£ == h)z

A; = (0,06111) cos N; — (0,02222) sin N; = =,

15’
Ni = — 0,45 =, soit & peu prés — 175 :
157
P, = 0,744 cos Nt — (0,960) cos (Nt — 5 ) ;

Phase du min. de P, : (Nt)extr. = 75° ou %n —R

(un peu plus de g, comme précédemment) ;

(PY)min. = 0,19 — 0,64 = — 0,45,

1 1
valeur plus proche de — 3 que de — 3

En prenant comme valeur de départ ‘oc I une valeur comprise

1 . 1 5 3 '
entre ; et 5, par exemple 13> On retrouve a lafin (Py) yp = — 13-

Ce serait la la valeur de 'amplitude pour & = 5.
Rappelons ici les valeurs trouvées pour le (Pj)eg, de la
couche renversante de quelques Céphéides:

. 5 ; - 4
S Sagittae 13 W Sagittarii Sy
; 1 . . &
7 Aquilae 5 X Sagittarii 5
g 1 — 5

SU Cygni = Y Sagittarii 5

On voit qu’elles sont toutes comprises dans le domaine allant.
d 1.5
e -37 a -é- .
Les résultats de notre analyse pour la couche £ = 5 paraissent

donc parfaitement admissibles.

1 1 ;
On remarquera que A; = 7z Ou 77 est un peu plus petit que

Ay = -1%; ce qui est en complet accord avec les résultats de la

méthode de M. Eddington pour le calcul des amplitudes.
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Il ne parait pas possible d’appliquer la solution précédente,
basée sur les formules de la solution polytropique de stabi-
lité, a des couches dont le £ est compris entre £ =5 et ;.
On sait, en effet, que la solution polytropique est valable
excellemment jusqu’a £ = 5; mais que, de £ = 5 & &, il faut
considérer une distribution modifiée, en raison du voisinage
immédiat de la frontiére, d’ott I’énergie rayonne vers I’exté-
rieur 1, |

11 faut d’ailleurs remarquer que, pour la couche renversante
moyenne observée, on ne peut pas poser N; o = 0; cette valeur
n’est applicable qu’a la limite, ot I'on a ry , = A, cos N.

21. — Couche périphérique. — On sait que la distribution de
la température n’y est pas la distribution pure et simple de la

solution polytropique 2; & partir de £’ =5 ou r' = Zro envi-

ron, la distribution convenable donne des températures supé-
rieures a celles de la distribution polytropique, et cela jusqu’a
£ = 6,886; puis, brusquement, il y a chute de température T,
et la température de frontiére (£, = 6,888 donnant la limite
pratique de la photosphére) coincide avec la température T,
de la solution polytropique pour &, = 6,888.

Autrement dit, le gradient de température, aprés s’étre
‘maintenu & peu preés constant de £ = 5a £ = 6,886 (500° & 550°
par 0,001 d’unité de &), passe brusquement & une valeur de
2500° par 0,001 d’unité de £ entre 6,886 et 6,888; comme
2500° est une moyenne, cela indique que le gradient prend une
valeur beaucoup plus grande encore dans la derniere pellicule
infiniment mince.

Cela revient & constater que, & travers cette derniére pellicule,
la fonction B(t)® de la théorie de I’équilibre radiatif ne saurait

1 G. Tiercy, Sur la distribution des températures a I'intérieur des
étoiles, C. R. Soc. de Phys., 11, 1934 (Supplément aux Archives); le
méme dans Publ. Obs. Genéve, fasc. 26.

2 G. Tiercy, C. R. 1934, 11, loc. cit.

? La lettre t avait alors une autre signification que dans le présent
calcul ou v = rl

0
* G. Tiercy. L’équilibre radiatif dans les étoiles, loc. cit.
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avoir une forme linéaire en 1, puisque B'(t) augmente énormé-
ment pour T = 0; la fonction B(r) semble présenter une singu-
larité pour v = 0.

Il va sans dire que cette distribution périphérique et cette
chute brusque de température vers la frontiére du corps ne
vont pas sans entrainer un comportement spécial de la pression
dans cette région périphérique.

Les températures distribuées entre £" = 5 et &) sont données

par la formule 2:
T =f-T,¢

ce sont les températures (T, ) de la distribution polytropique,
multipliées par un facteur f(£); ce facteur part de la valeur 1
pour % = 5, passe progressivement a 1,9 environ pour
¢ = 6,886, pour retomber brusquement a ['unité, pour
£, = 6,888 a la frontiére de la photosphere. Cela revient a
dire que, en ce qui concerne la distribution des températures
dans la couche périphérique, il faut utiliser des valeurs (f . {)
au lieu des ¢ polytropiques.

Faisons de méme pour le calcul des pressions. En transpor-
tant ces valeurs (f . ¢) a la place de { dans les formules relatives
a la variation de P;, on remarque tout d’abord que cela revient
a doubler presque les valeurs anciennes de { vers la couche |
£ = 6,886; il en résulte une diminution considérable de la

BE-
valeur absolue de }g—g ; de sorte que le coefficient [ - Jp‘] de

la relation (74) conserve une valeur de ’ordre de grandeur de
14 & 15 unités. Et 'on a, presque comme pour & = 5:

P, = 9A, cos Nt — 14A; cos (Nt + N;) +

0,5 Ao+ A ( Ni)
+ g —eos (Net )L (85)
1 1
Avec AO==1—2— et A; =gz, ona:

N.
P, = 0,75 cos N¢ — cos (Nt + N;) + 37% oS (Nt g -2—1) : (86)

a4 la limite de la photosphere, f = 1.

2 G. Tiercy, C. R., 1934, 11, loc. cit.
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Si l'on peut admettre que A, , soit égal & Ay, que dire de la
fonction N; ?

On ne peut pas poser que N, tend vers zéro lorsque & tend
vers &,; car alors on obtiendrait pour la couche périphérique
extréme:

Pi,O = == 0,2 COSNt »

fonction dont les extrema se produisent en méme temps que
ceux de ry ; or, nous savons que cela ne concorde pas avec
’observation.

Mais il faut tenir compte du fait que la sphére stellaire
proprement dite se prolonge par une atmospheére, dont la partie
basse est justement la couche renversante observée; on peut
d’ailleurs comprendre dans celle-ci la pellicule extréme de la
photosphére, de £ = 6,886 a £, ou se produit la chute brusque
de température, comme on a vu.

On est alors amené & poser, pour une couche moyenne a
cheval sur la limite photosphérique & et comprenant la partie
inférieure de la couche renversante: '

J v
(N), = N, , parexemple N, =—-,

N, résultant du calcul de la pression moyenne P, dans la couche
renversante 1.

Quant & r, ,, cette fonction concerne essentiellement la couche
renversante, et on peut la rapporter a la limite de celle-ci;
on trouve en effet la courbe de pulsation par I’étude des vitesses
radiales; et ’on sait que les raies spectrales sont dues a I’action
de la couche renversante, adjacente a la derniére pellicule
photosphérique. N, passe de N, & zéro lorsqu’on approche de la

limite de la couche renversante. On a donc pour &;:

P, . = 0,75 cos Nt — cos (Nt + N;) + 515 cos (Nt + I}’) ; (87)

1 Cette pression moyenne P, est donnée par le jeu combiné de la
courbe des vitesses radiales (couche renversante) et de la courbe de
lumiére (émission de la photosphere).

ArcHIVEs. Vol, 17, — Juillet-Aout 1935. 20
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13 1 1 :
336 (1,9) 401 °% g MVF
rcn. Ainst N; étant négatif, comme les N; des couches sous-
jacentes, on a un décalage des phases des extrema de P, , de
la couche renversante par rapport aux phases des extrema de

le coeflicient du dernier terme est

pulsation.

Il semble donc bien que I'analyse précédente approche la
solution de plus prés que ce n’était le cas jusqu’ici, puisque
le probléme du décalage en question était resté sans explication.
La représentation analytique de la variation de P en fonction
de ¢ entraine celle de la variation de T, et par conséquent celle
de la variation d’ionisation dans la couche renversante et celle
de la variation de magnitude, par rapport a la pulsation.

Ajoutons encore que si I'on fait » = const. dans cette
analyse, on retrouve le cas ancien de la « pulsation uniforme »,

avec:
; P = a{* + A, cos Nt - [— 4a '],
\ P =P, 4A,cosNg ,
/ B y . N
\ Le:—&Aocosl\t:——gcoslt.
22. — Remarque. — Nous n’avons traité que le cas le plus

simple, celui ot ry o = Ay cos Ni; on sait que le cas le plus
fréquent est celui ou ry ; est de la forme & deux termes sui-
vante:

A, cos Nt + A, cos (2Nt + N') ;

mais le but que nous poursuivions était de montrer qu’avec une
analyse plus compléte de la formule de la pression, on pouvait
rendre compte du décalage caractéristique des courbes P,, T,
et de lumiére par rapport a celle de pulsation. Ce but parait
atteint.

(Février 1935.)
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