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1935 Vol. 17. Juillet-Aoüt

Le Probleme du" decalage" des phases

dans les variations pdriodiques des cepheldes

PAR

Georges TIEKCY
(suite et fin)

III. — Pulsation homologue.

9. — Generalites. — L'hypothese d'une pulsation dite homologue

offre la seule possibility d'envisager un decalage, tel que
celui qu'on observe entre les phases des extrema de pulsation
et les phases correspondantes des extrema lumineux, ou Celles

des extrema de P. On a:

1
— fonction de t ;
ro

r
— fonction de E et de t ;
r»

cela revient ä dire qu'un rayon r quelconque est une fonction
du temps differente de la fonction r0(t); r(t) differe de r0(t) d'une

part en raison de l'amplitude A de la variation (laquelle amplitude

depend de rt), et d'autre part, en raison de la phase. On

aura d'ailleurs toujours, ä la surface:

*o 1 ;

autrement dit, si l'on pose:

* x4( 1 +
Archives. Vo!. 17. — Juillet-Aoüt 1935.



256 PROBLEME DU «DECALAGE» DES PHASES

on aura toujours:

*1, o 0 *o *t, o * •

En ecrivant comme precedemment:

r r%( 1 + g)

on pourrait ecrire, dans le cas le plus simple, c'est-ä-dire celui
oü la pulsation est harmonique:

G At cos (Ne + NJ

les quantites A{ et dependant de rl ou de A la surface

limite meme, on aurait:

\ ^i, 0 -^o ^i, 0
®

'

rl q A0 cosNj (limite de la couche renversante)

II y aurait ainsi un decalage progressif, du centre ä la
peripheric.

Disons tout de suite, et nous preciserons le fait au n° 21, que,
dans une couche dont les \ comprennent la valeur E# de frontiere
photospherique, la quantite Nt prendrait une valeur N0 non
nulle, pour tomber ensuite ä zero, par exemple ä la limite de la
couche renversante; la valeur de N0 dependrait du retard
observe dans la variation de Pe.

Rappeions qu'on a toujours:

ro

p rpi——/ 1321

ft V Mroü — G—; dans cette integrale de P, il s'agit naturelle-

ment de passer de r ä r0 ä temps constant, done ä i constant,
puisque:

1

t — fonction de t seul
'o

On a d'autre part:
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ä temps constant, il vient:

dr ;
T

c'est-ä-dire que d>t est proportionnelle ä dr ä ce moment-lä.
On trouve ensuite:

comme pour la pulsation dite uniforme; puis:

dr d / x \ x dx ^
1 dx

dt dt\ x) x- dt x dt '

dtv T2 fdx\2 1 d2-r~| 2 d-r dx 1 d2x

dt * t3 \ dt / t2 dt2 x2 dt dt x dt2

et comme on a encore, ä temps constant:

1 ö M a M.r
kizr2 br bx 47t*2

1'expression (32) devient:

P= J2/dx\2_i d?x\
J ö* 4?xx2 j x'2 [T3\dJ/ x2 dt2 \ +

2 dx dx 1 d2x dx
+ 72' ~dt

'
~dt ~ 1' ~W '

Si les vitesses de transformation sont negligeables, on retrouve
le type d'egalite:

P r* • tp (*) ;

et la distribution de P est donnee par <p(*); c'est le cas du
theoreme du viriel, oü la duree du phenomene est extremement
longue. II faut preciser qu'ici, cette fonction o (*-) varie d'une

epoque ä l'autre, les deux epoques considerees etant
extremement lointaines l'une de l'autre.

Mais, dans le cas des Cepheides, on doit conserver 1'expression

(33) complete, en gardant les termes en Et
la pression ne varie plus comme l'inverse de r4. Repetons,
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pour bien fixer les idees, que l'integrale (33) est prise ä temps
arrete.

Si les vitesses de transformation etaient negligeables, la

pression P serait donnee par la distribution polytropique
de classe 3; et l'on sait qu'alors:

<pM ^Pc <K

comme on l'a vu au n° 3 (egalite 10); de meme on aurait pour
la temperature:

T t • 9i(ü) 9l(z) r0Tc^

Quant ä la densite p (distribution ä temps arrete):

3öMr l
p T 77 ' 477 '

eile est proportionnelle ä t3; mais, si le temps s'ecoule, le

facteur de t3 ne reste pas constant pour une couche donnee,

puisqu'alors /- varie avec t.

Les egalites:
S P T4- 9W

T T • 9l(z)

ne sont valables que si la modification est infiniment lente;
on a alors les conditions de stabilite d'une etoile invariable,

pour une valeur donnee de t. C'est encore la solution de

M. Bialobrzeski ou de M. Eddington.

10. — Cas des Cepheides. — Les modifications sont alors

rapides, et les egalites precedentes ne sont plus acceptables;
il faut etudier l'expression:

p _ ^
'»M, OM^ ^J fix 47C)t J ö* 4it? [T\dt) dt J
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remarquons que les facteurs et ne peuvent pas etre

sortis des signes integraux, parce que le rapport v. est fonction,
non seulement de t, mais aussi de E.

Posons maintenant:

Ii ö M. GM
9(x) =/tt'-^dr- r°Pc*' ;

®(X) J tiy. 4 7t x

\ i
i

-p l \
1 (d*\jrw J — ;

/ftMr 1 MM,
|

Z<z> J — ^ (-dF)dy- >

ce qui permet d'ecrire plus rapidement:

P ,'?(«> + [5-|(a)'] • ®M + s • rw - - 2W •

(36)

Pour une couche donnee, les fonctions <p (/.), P (*)
et Z(x) ne sont pas constantes; elles varient avec le temps;
de sorte que la pression P depend ä la fois de t et des vitesses
d t d v.

T et r, •dt dt
Si l'on considere la valeur moyenne r0 t de r0, on aura pour

les conditions statiques, autour desquelles oscillent les conditions
reelles:
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On voit par (36) que la variation SP de la pression se compose
des variations respectives de quatre termes. Par exemple, le

premier terme de (36) donne la contribution suivante ä SP:

T4 9 (•/.) — Tj 9 (/j) ;

et, ä la difference de ce qui se passait pour une pulsation
uniforme, <p (*) n'est plus constamment egale ä cp (*,),
puisque /. varie avec le temps. On fera une remarque identique
pour les fonctions ff>, T et Z.

On a, de plus:

r Tl (1 + et * — *,(i + G:

' d-r _ _ dTi 1 d /. d z,
^ dt 1 dt ' J dt Y~l~di ]

1 d2 t d~ z1
\ d2 v. N

dt2 T'~dir ' dt' 1 dt'

et, comme nous l'avons dejä releve, on a toujours y0 0
1

ä la surface, c'est-ä-dire stj 0 0. La quantite varie avec
le temps pour une couche donnee; ä temps constant, eile

depend encore de

11. — La fonction <p(*). — La fonction cp(-c) oscille autour
de la valeur cp (*,). La premiere formule (35) donne:

AM, GM
9(,) 9K + .,i,.i) j _.__.dx

x,+v- i
oü Ton a:

Si l'on developpe cp (x) suivant les puissances croissantes
de on obtient:

2 2

9(x) cp(-Ct) + -Ll • 9'(Xi) + -L-1 • 9"(/-4) + (38)
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Or, on peut calculer les valeurs respectives des derivees
successives <p'(stj), <p"('i), en utilisant les tables d'Emden

pour la solution polytropique de stabilite. On a tout d'abord:

-Ü- I
ro,i 5. '

^; dri ^.;
co Uc

1
CO Uc

et la valeur de dxj (temps arrete, solution de stabilite) est:

d,, ^- (39)' r0,i ri,Oauc

D'autre part, on sait que:

9 N r0, iPc iV '

d'oü l'on deduit:

9' N [-0 pc ^4]i So ^K i Pc, i 44] ;

9'('-i) ^;,iPc,i-^[W; (40)

or, on a encore:

'0, i

et l'on a dejä rappele aux nos 3 et 5 que la theorie des spheres

gazeuses en equilibre polytropique donne O

_ l
r, tO 4 4 IT <T) C0 5o /4ttJH0\ 3

pc,i -r-«c; «' =—M~ ; (-M-J '

5o 6,9 ; J1t0 2,018 ;

de sorte que le coefficient de la derivee de dans (40) vaut:

4 D
5?GM'

_^r0,iPc,i UnJ]V
So* c

1 G. Tiercy. L'equilibre radiatif dans les etoiles, loc. cit.
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et l'on a pour la premiere derivee cp'C-i):

gGM! dil '"I

la table d'Emden en fournira la valeur numerique pour toute

aleur de le r<

On a ensuite:

valeur de le resultat est negatif, car < 0.

et l'equation (9) permet de se debarrasser de la seconde derivee
de <];:

_ 1 M _ J.3 •

d ^ I '
d I y '

d'oii l'expression:

calculable au moyen de la table d'Emden pour n 3. II est

facile de trouver pour les derivees suivantes de cp (*,), des

expressions ne contenant que <]; et ^ ; il suffit de faire appel,

apres chaque nouvelle derivation, ä l'equation (9); mais il est

inutile de faire ce calcul, comme on le verra bien par la suite.

12. — La fonction O (*).
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Semblablement ä ce qu'on a vu au n° 5, on peut ecrire:

®(*i) r{

l 0

>,if?rdr k,J +«. Idl ;

puis:

®w-&[5ji + + + 0'H '

grace ä l'equation (9); ou encore:

+ 0'2M)' 1481

La premiere derivee est:

»'(.,) + * + «.«)] ;

«•M _2i?L ["**+ + syi.

or, ä cause de (9):

de sorte qu'il vient:

=-7J^r-5-^ ; (44)
47t J\L„

on trouve d'ailleurs directement cette valeur en partant de la
definition de <£(*); on en tire:

Ö M ^ y Q „ 0

w =—jr-izi -l
5o SoM

r ii3 • 5 • 5 • V
47tau0
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Maintenant, il vient:

+ '•«]• 1451

II est inutile de chercher les derivees suivantes. Ainsi, 'es

expressions (43), (44) et (45) permettent de calculer numeri-

quement O, O' et O" par les tables d'Emden. On afinalement:

®(x) ®(x, + xiXl) ®(x.) + ^CD'K) +i^<l>"(*i) + •

(46)

13. — La fonction r(v-).

rw=/^-jk,
ici interviennent les viteeses de transformation ^, du moins

at
leurs valeurs ä l'instant t, puisque l'integrale T est prise ä

temps arrete.
On a:

dr d /•!
x xi(1+x1), ä=*iW''

d'autre part, on sait que:

?Mr 1 2r p öMr 1 2p
—— • «;— —^ ou bien — •

5 -l ;
ö/. 2 Tz r t» öx 2 tz t

de sorte qu'il vient:

rW /f(s)A
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£ £
et comme p uc ^3, ruc — — et j- :

r(Zi) ~ f ^ (^Xdl XnlXL f V(p)d^ ;
<o* J y \dtj "•

4?t JTL0 J \dt)

r(x,)=J^ fv(p)dt=J**L1 2kDTL0J V\dtJ ZnDliJ V \dtj
(47)

le calcul ne pourra etre termine que lorsqu'on connaitra la
fonction y.^c).

Ensuite, on trouve:

r'(/.) - (dS) 5 ^ _ v(dA(*> -\dv.)i ^di 27Tjho
* U;

5o M fdv \
1481

puis:

(-*] U*a 5o
^5 2t.jii0 <*51/

% W</J'

27t JTl0 L \dtj
5oM

r"(/s)

Connaissant la fonction on aura le developpement de

I»:
r(x) r(,,) + r, (z.} + M r»(,,) + (so)

dont les formules (47) ä (49) permettent de calculer les
coefficients gräco aux tables d'Emden.
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La fonction Z (z).

-{wh-
y.

On a:

l

d2v. d2 7., I d2 X,
ou encore, puisque -rr z_- -—-J -? ——i :> p a dt2 1 dt1 i„ dl2

zt^=^kJv 1511

expression dont on terminera le calcul des qu'on connaitra la
fonction Zj (<;).

On trouve ensuite:

fdZ\ r dZ 5oM
+' • s (S*) (52)

et:

,_(dZ'\ r dZ' 5«M a
{/-i> [dxji dl 4 71 tTTLn d*>

<!<'• 5
d2

dt2

Z "(x.) P
4-01t0

d2 /.,
dt2

• (53)

On aura done:

z (x) z (*,) + -i- Z' (Xi) + ^ Z" (-^ + (54)
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form'ule dont le detail numerique sera des lors fourni par les

tables d'Emden pour n 3.

Tels sont les developpements ä porter dans la formule (36)
fixant la distribution de P ä un certain instant. On a d'ailleurs,
comme on sait:

nGut / g \i / M \2
p, ,;9w Pt., +• •«, _ *0 (A) (—J • <,.

(55)

15. —• Relation entre Xj, -rq et rx. — on a pose:

I r r4(l + iq) ;

1
o '•o.i'1 + 0,0) ; T 7 ;

1 'o
1

T Tj(l + Tj) ; T4

Z M1 + *l) ; *

r0,i

r„

remarquons tout d'abord que la lettre t ne fait jamais allusion

qu'ä la surface de l'etoile; et comme ttr0i 1, il vient:

1 + ttt— 1 ~ 0,0 + 0,0 - o,o + - ;
1 + 0,o

Ti — o,o + o,o — o, o + - ; <56>

d'oü les derivees:

d x1 O1dt dt v

d2 Tj *0.0
dt2 dt2

+ 1(T) " (2 ~ + 12/b0 - 20r31;0 +

II faut constater ici que la variation de r0 est connue par
l'observation de la courbe des vitesses radiales; on connait
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done la variation de /q 0 avec le temps; dans le cas le'plus
simple (celui d'une variation symetrique), on a:

ri 0 A0 cos N«

oü A0 et N sont des constantes connues.
Mettons maintenant en jeu un rayon quelconque, e'est-a-dire

le rapport /, qui, repetons-le, est fonction de t et de On a:

r
x — ; r-u /. ; zi -/{ ;

ro

M1 + ri) • -M1 + ^i) M1 + zi) ;

(1 + L) (1+ 1 + x, ; (57)

dans ce cas, et ä la difference de ce qui se presentait pour
une pulsation uniforme, la petite quantite r± n'est pas la meme

pour tous les rayons; eile differe notamment de rl 0 et depend
de On a dit dejä que Xj 0 0.

Le facteur (1 + t2) de (57) est connu par (56), puisque /q 0 est

donne par l'observation; de Sorte qu'il suffira des lors de

connaitre la fonction r^t) pour en deduire Xj(Z), ou vice-versa.
Par exemple, toujours dans le cas le plus simple, on posera:

rx — Aj cos (Nt + Nj)

oü A, et Nt sont des fonctions de la variable statique rt ou
Le maximum du rayon r se produira done lorsqu'on aura
Nt + Nt 0, et le minimum pour Ni + les dates
de ces extrema, par rapport ä Celles des extrema de r0, dependent
de la fonction Nt(£). On a aussi:

NAj sin (Ni + Nt) ;

N2Aj cos (Nt + Nt) — N2rx ;

on introduit ainsi dans le calcul deux fonctions de ä-,

indeterminees pour l'instant, les fonctions A, et N,t; on sait

pourtant que:

\ 0 Ao et Ni, 0
0 '

!dr1
dt

d2 rx
'It2
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puisque, ä la limite consideree, on a:

r, 0 A, cosNl

Nous aurons d'autre part besoin des valeurs de et ;

l'egalite (57) donne:

d/i ia T /o M „ /Ti
dt - (1 + Tl) dt + {l+ ^Ht '

ce qui devient, ä cause de l'egalite (56) et de sa derivee par
rapport ä t:

d"/-! drx 2 3,4~dt — ~dt[1 ~ ''1.0 + rl,0 —rl,0 + O.O

dri 0 2 3+ ^r(_1 + 2ri,o-Br\,o + Ho--)*1 + v ; <58>

puis:

d2 Xj d2 / ,2 3 \
HF ~HF^~r10 + ri,o — O,o) +

ndrx dri.o „ „ 2 3 \+ 2dT ~HT + 2rl,0 3rl,0 + 4rl,o) +

^10, 2
(")

+ ~HF^{- 1 + 20,o - 3^,0 + ^i.oX1 + 'i) +

jdr, „\2
+ Vir) (2 — 6rl,0 + 12rl,0 20/-j o) (1 + rj

16. — Cas le plus simple. — C'est celui d'une variation r{ 0

barmonique; les fonotions ä considerer sont du type indique
plus avant:

l A0 cos Nl ;

I Aj cos (Nt + Nj)
'6°'

On a:

dri o' — A„N • sinNi ;dt

d-r1,0 — — A0N2 cos Ni — N2r,
dl2 0 ~ 1,1 '1,0

~ — AjN sin (N« + N{)

^1 -N2r •

dt 1 '
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comme la constante d'amplitude de surface A0 est au plus
1 1

de l'ordre de — ä ^, nous ne conserverons, dans les developpe-

ments, que les termes contenant A0 ou A.; au premier degre; les

termes en A„, ou A^ ou AoAj seront negliges. On ecrira done:

|
1 ~ O,o + r\to ~~ O.o + - 1 — A„ cosNj ;

\ — 1 + 2ri 0 — 3rs10 + — 1 + 2A0 cosN« ;

|
2 — 6rlj0 + 12rj 0 — 2 — 6A0 cos ISO ;

portant ces expressions dans (58) et (59), et ne gardant, des

produits, que les termes de l'ordre indique, on obtient:

^ — AjN sin (Ni + N4) + A„N sin Nj ; (61)

rf2 •/

-^i,1 — AjN2 cos (Nt + Nj) + A0N2 cos N« ; (62)

ce qui correspond bien k:

jq Ai cos (Nt + N{) — A0 cos Ni (63)

comme il fallait s'y attendre ä cause de (57); cette derniere

egalite donne en effet:

xi A + + ATi

dont on laisse tomber le dernier terme; et comme x1 — rY 0,
on trouve (63). A la frontiere, avec Ai 0 A0 et Ni0 0,

on obtient bien /.j 0 0.

17. — Approximation süffisante pour les fonctions cp, O, T et Z.

— Reprenant les developpements exposes dans les numeros



DANS LES VARIATIONS PERIODIQUES DES CEPHEIDES 271

11 ä 14, on y abandonnera les termes contenant y.f en facteur;
ils sont au plus de l'ordre de grandeur de A„. II reste:

9 (*) 9 (x{) + -Li «p' (/..) ;

4 So GM2
9 (*i) 'o, i Pc, i V

167c m2
• ^ ; (64)

i
5»GM2

pW=I^rtT

oü Xi j- ; puis:
So

®W ®(*i) + va • ®'(xi) ;

®K) + + + °>278 );
47T5110\ 7 j65|

?oM
$' (-,..) ^ • <Jj3 ;

4*211,

r M r(*4) + ;

r(Xi) f i ^ f^-lW ;1 ItzJKJ \ dt (66)

5oM
r'(x,) - 2*211,

Z(x) Z^) + xjx, Z' (xj) ;

z(*4) -JiM_ r5^1
4 ttJH0J v 1,<W (67)

SM
Z'(xd

4*211,, A+--(S>).
Archives. Vol. 17. — Juillet-Aoüt 1935. 19
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Teiles sont les approximations qu'on portera dans l'expression
(36) de P, que nous reproduisons ici en (68):

P t4- <p(x) +
d? t 2 fd t\2~| dx

(ä)J-®W+Ä-r(x)-T-z(x)-
(68)

Rappeions que, pour calculer la variation de cette

expression P, il faut tenir compte du fait que, non seulement t
varie avec le temps, mais qu'il en est de meme des fonctions

<p, o, r et z.

18. — Calcul detaille de P. — On a:

l to • uc
T1 f S '

'O,i

r1 0 A0 cos Nt ; 1 + x1 i — tq Q
1 — A0 cos N« ;

to • u
t Tt(l — A0 cos Nt) —=— (1 — A0 cos Nt) ;

So

d-r ton A0N
-T- t A0N • sin Nt • sin N« ;
dt <^q

d2 x ton A0N2

tt g cos Nt ;
dt2 5»

1fdx\2 2toncA0N sin2Nt
x \ dt 5o t — A0 cos Nt

sin2 Nt (1 + A0 cos N« + ;

2 to nc A„ N2

5»

4 4
CO U„

T4 T4(l + Tl)4 —— (1 + 4T, + 6T| +
4 4

CO w.
—(1 — 4A0 cos Nt)

5o

En portant toutes ces expressions dans Celle de P, on se trouve
en presence de nouveaux termes negligeables de l'ordre de A„;
c'est le cas, par exemple, de la quantite ^
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II faut rappeler ici les egalites (61), (62) et (63), dont nous
reproduisons ci-apres la derniere:

Aj cos (Nt + Nj) — A0 cos Nt

II vient:

4 4
(0 U

P —4^(1 — 4A0cosNi)
lo

?:gm2 ^:GM2

167tDXLl
+

knJXll
' +

ton A0N2
+ —2L cosNt AM / d*

47t JTL (5j-l + + +.OT)-AA-.et. +

+ —sin Ni
§o .AA'-Ct»«- 5o M

ET2 I S /d
27tJTl„

5

(69)

— (1 — A0 co&N«)
So

i M

4*211,

Le dernier terme de chacun des trois derniers crochets de (69)

ne donnant que des apports de l'ordre de A2 ou de A-, il reste:

P —j— (1 — 4 A0 cos Nt) +

+
4 4

<0 U„

to GM2

167t Oll2

?Jgm2 dil r
(1 — 4A0 cosNi) 4tc^21' V- [Ai cos (Nt + N{) —A0 cosNi] +

uu,A0N2 L.M / db \+ ——cos Nt • ^ + 4* + 0,278 +
5. 47tJO0V«i5 (70)

"kcA«N • XT+ r Sm Nt "

5o 2 7t 011,

c0

f 5. ijs3 ["— A;N sin (Nf + N{) + A0N sin Ntl dt,
:DTL0J

CO ur
p— (1 — A0 cosN t)
So 47U

?0

2^- f 5-4i3 [—AjN2 cos (Nt + Nj) + A0N2 cosNtjdE.
J\IqJ



274 PROBLEME DU «DECALAGE» DES PHASES

On voit ici que la determination des fonctions At et N{ de

constitue un probleme d'equation integrale.
Nous simplifierons le calcul en admettant une approximation

qui me paralt amplement süffisante pour notre probleme: nous
donnerons ä A{ et dans les integrales, leurs valeurs moyennes

A0 + Aj N-
respectives dans le domaine d'integration, soit —-— et —

et nous sortirons ces facteurs moyens des signes integraux.
Toute la participation de la premiere integrale de (70) est de

l'ordre de grandeur de A2 ou de A0At; eile tombe done complete-

ment; en ce qui concerne la derniere integrale, le facteur
(1 — A0 cos Nt) doit etre reduit ä l'unite, le second terme
fournissant une participation negligeable. II en est de meme du

facteur (1 — 4A0 cos Nt) du second terme de l'expression totale
de P. II vient done:

Co4«* GM2

lünDVd
(J;4 • (1 — 4 A0 cos Nt) +

+
4 7t 511

5 • 4-3 • || [A{ cos (Nt + Nt) — A0 cos Nt] +

oii A0N!M / di> \+ ^op"-cosNi-(^ + ^+0'278)
47t 5Tl0

to WCMN2

47t51l„

A0 -f- Aj
A„ • cos N« • cos M)]/«

Tous les coefficients fonctions de £ et ip seront calcules au

moyen des tables d'Emden, y compris l'integrale du dernier

terme, pour laquelle on pourra preparer une table auxiliaire.
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On peut grouper ce developpement comme suit:

to4 w4 GM2
P +

1 6 TT OTL

+ cos Nt •

to4 u GM2 A0 to4 ut GM2 A0 (l ,tj
5 -d/> - • E d,3^ +

4tzJRl
V

inJRl * * dl

+
cöu A0N2M/ ^<1 \ u« MN2A„ ftou/,MN2A„

i>3dE + (72)

4 4/-x,,2
<0 U GM A Aj

+ ^rkr-?-^-dl'^cos(Nj + N4) +

+
WMcMN2

4 TT

A„ + A. / N{— cosNI+2
_ *0

]/
le premier terme de (72) est independant du temps t] il n'est
autre chose que Pc i t];4; les deux lignes suivantes ne dependent
de t que par cos Ni; les derniers termes contiennent les fonc-
tions A4 et de

Ainsi, en posant:

4 4 /—+ n **2
to u„ GM

a — p — £
C,l ,r OTT 2 '

16ttJR0

b
<o N2 M I 4N2311q

4 TT Jit, a CO3
Uc GM
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la pression P s'exprime par la forme:

P aili' +

+ A0 cosNi — 4a^4+5-4,».^|) +

Eo

+ b(ß,j^+ <|i + 0,278)—

+ AjCOsfNf + Nj) • [4« J|] +

+
(73)

+
A0 + A{

cos (n« + y) • 6/l-Vdl

19. — Calcul de Px. — On a:

pi pc,i+4 <*+4 ;

pi
p - p.-

ii vient done:

Pt A0 cos Nj -M.+^) +

+

+ A. cos (Nt + N{)

j E,<p. + + + 0,278 J
fl-Vdl

+
(74)

45" <|»r

N,

Eo

fl - ¥dl

et il ne faut pas oublier que, dans cette expression, les quantites
Aj et Nt sont des fonetions de

Si l'on donne ä £ une valeur quelconque inferieure ä H0 ou
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au plus egale ä Ea> les coefficients de (74), fonctions de \ et <j;,

prennent des valeurs finies; on sait, en effet, qu'ä la limite de la
photosphere, n'est pas nulle; par exemple, dans le cas de

Y Sagittarii, on a Pe Pc i 8 baryes environ pour la
couche renversante. On a done une expression Px de la forme:

Pj G, • A0 cosNt + D.A, cos (Nt + N4) +

A0 + A{ I N4)
+ E; • ^4—1 cos Nt + 4

oü C^, et sont des fonctions de £.

Nous utiliserons ci-apres le cas de Y Sagittarii, pour lequel
les resultats numeriques suivants ont ete etablis precedem-
ment1:

a Pc>i (3,8) 1013 C.G.S.;

N (1,25961) 10-5;

M (1,71). 10s4;

i-O,t= (1,576) 1012;

uc 0,3892;

en outre, on a:

on en deduit:

5. 6-888 ;

01l„ 2,018 ;

3
4 7C J]l0

G

M

(6,66) • 10"

jSp
nus„ G

0,01287

20. — Valeur de Px pour c,' 5. — Cette valeur de E est

interessante, puisqu'elle marque la limite du domaine d'appli-

1 G. Tiercy. L'equilibre radiatif dans les etoiles, loc. cit.
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cation de la solution polytropique dans une etoile invariable.
D'apres les tables d'Emden, on a pour \ 5:

i|> 0,11110 ; <\>3 0,0013713 ; 0,00015235 ;

^ — 0,08003 ; 5-^ — 0,40015 ; ~ — 3,602 ;

on trouve alors:

Coefficient de A0 cos N<:

+ 10,408 — 0,933 — 0,546 + 8,929 ;

Coefficient de cos (Nf + N^:

45 - ^:—4 — 14,408 ;

A0 + A, / NA
Coefficient de cos I Ni + J '

b- - m 0,546
a ijr

On a done, en resume, pour ce point oü E,' 5:

Pi 8,929 A0 cosNt — 14,408 Ai cos (Nt + N4) +

-^o ~t" Ai / N.
+ 0,546 'coslNj+yj. (75)

Remarquons que les grandeurs caracteristiques de l'etoile
n'interviennent pas dans les coefficients principaux (10,408 et

— 14,408); elles n'interviennent dans les autres que par le
b N2

facteur — ——, qui est petit. On peut done considerer
a -kucG

l'egalite (75) comme valable ä tres peu pres pour toute Cepheide

lorsqu'on y fait 1; 5.
1 1

On sait que A0 est de l'ordre de grandeur de — ä ^ au plus.
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Par exemple, voici les valeurs de A0 trouvees pour quelques
etoiles:

S Sagittae

7) Aquilae

SU Cygni

U Aquilae

1

14

i_
TÖ

i_
To

i_
12

W Sagittarii

X Sagittarii

Y Sagittarii

10

i_
13

1

TÖ

Nous prendrons A0 — comme valeur moyenne ä mettre

dans la formule (75).

Quant ä Ai5 c'est une fonction de E inconnue, de meme que
N^, ces deux fonctions doivent etre telles que, pour £ 5, la

valeur absolue maxima de Px soit de l'ordre de On peut, en

effet, admettre que l'amplitude de la pulsation ne subit plus
de modification considerable entre E 5 et En. D'autre part,
le decalage chercbe ne doit pas etre tres different pour 5=5-
de ce qu'il est pour la couche renversante. On sait, en outre,
que, pour cette derniere, la valeur absolue de Pj ne depasse

1
jamais —.

Cherchons les phases des extrema de Px; pour cela, nous
negligerons le dernier terme de (75); le coefficient de ce terme

ne vaut que — environ de chacun des coefficients des deux

premiers termes; ceux-ci donnent done Failure de la fonction P^
On a:

Pi aq cosNj — b1 cos (Nt + NJ

8,929 A0 (75')

14,408 A{

On peut ecrire:

Pi («i — K cos N{) • cos Nt + bx sin N4 • sin Nt (76)

expression qui peut se mettre sous la forme:

Px =.<x cos (Nt — ß) (77)



280 PROBLEME DU «DECALAGE» DES PHASES

Que pouvons-nous dire de a et ß dans (77)

Lorsque r10 A0 cos Nt atteint son maximum A0 (pour
t 0), il faut que Pj approche de son minimum; c'est du moins

ce que montre l'etude de la couche renversante, et nous avons
admis qu'il n'y avait pas grande difference entre les phases
relatives a celle-ci et les phases de la couche \ 5. II s'ensuit

que le coefficient a est negatif. Quant ä la quantite ß de (77),
eile est positive, car le minimum de l't est atteint pour:

N« — ß 0 t ;

Or, cette valeur de t doit etre positive.
De (76) et (77), on tire:

[ a cos ß a, — 6, cos N.-
(78)

/ a sin ß bx sin N4 ;

puisque a < 0,. il faut bien que N4 soit negatif; et comme
a cos ß < 0, on a aussi:

ai — cos Nj < 0
» cos Nj > -T1 ;

1 CL

cela fournit le renseignement cos > —, car le quotient

vaut environ ^; ou bien

7t

!Nt|< 3
;

nous verrons en effet, plus loin, que | | yä j.
On peut, d'ailleurs, ape^cevoir tout de suite la grandeur

approchee de ß; on sait, en effet, que le retard du minimum
0 2 TZ TZ

de P sur le maximum de pulsation vaut ä peu pres ß 3^
on doit done avoir pour la phase de ce minimum:

ß n o n
m N 3N ' 0U ß

"3" environ ;

nous verifierons plus loin l'exactitude de cette valeur.Precisons

qu'en realite, le retard en question est plus faible en ce qui
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concerne la phase du maximum de Px qu'en ce qui regarde le

minimum de Px; du moins en general; mais comme, pour
simplifier, nous avons pris le cas oü r\ est simplement harmo-
nique, le decalage est alors partout le meme.

Des egalites (78), on tire maintenant:

a2 a\ — 2 a, b1 cos N, + b\ ;

Ii 1
or | a I est de l'ordre de au maximum, comme on sait, pour la

i i 1
couche renversante; admettons cette valeur |a| on a:

a* — 2a,cos N{ + b\ j, (79)

equation contenant les inconnues et A{. Ensuite:

bx sin Nj
N^=tg3 (environ) ;

bx sin Nj y/W (at — bt cos Nj) (80)

seconde equation en Ai et Nt.
IAvec A0 —, et en ecrivant ax 9A0 et b1 15A4 pour

simplifier le calcul, les equations (79) et (80) deviennent:

81 45 XT
1

144 2^ i COsNi + 225 Ai =4 >

- \ (81)

/ 15 Ai sin \/3 (j- — 15 Ai cos N^)

En eliminant les termes constants, on trouve, avec ces

approximations et en tenant compte de ce que \/3 vaut
7

presque -j-:

75 A{ sin N4 + 4725 A- Ai cos N4 ;
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et comme A4 0:

27Q
15 sin Nj + 945 Ai -7- cos N4 ;

273 XT 60 AT

3780 C0SN^ 3780 SmNi '

A
91

AT
1 ' AT (82)

Ai =126ÖCOsNi-63SmNi '

1 Aj 0,07222 cos Nj — 0,01587 sin Nj

En portant cette valeur de A{ dans la seconde equation (81),
on obtient:

2 • AT AT
5 ,a, 21 91

3- sin N4 cos Nj — — sin2 Nj — — — cos- Nj ;

ce qui s'exprime comme suit en fonction de (2Ni):

224 sin 2 Nj + 717 cos 2N{ — 325 0 (83)

La resolution de (83) donne:

564265 sin2 (2Nj) — 145600 sin (2Nj) — 408464 0

equation presentant deux racines reelles et de signes contraires;

or, c'est la solution negative qu'il faut retenir, puisque Nj < 0;
d'oü:

olvT 72800 — 485573,6
Sm2N* 564265 - °'731524

N{ — 23° 30'25" ou — 0,4103 radian ;

N{ — 0,1306 TT

soit environ:
AT 13 7T TT

Ni — Too ou -8-
Ayant la valeur approchee de N{, l'expression (82) donne A;:

lAj 0,0724 soit ä peu pres Ai —
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On obtient ainsi pour Px:

„ 8,929 AT 14,408 /AT 13TC\
cos Nt — cos (Nt - —)

Px 0,744 cos Nt —• 1,029 cos ^Nf — • (84)

Verification du minimum de P1: Annulons la derivee de P2

par rapport au temps t; il vient:

0,744 sin Nt 1,029 sin (^Nt —\ 100/

equation dont la solution est:

tg Nt 2,055

32
(Nt)extr. 64° ou gö71 i

«'est un peu plus de ~ ; c'est la valeur de ß, que nous avons des
o

le debut posee comme etant ä ^ ä peu pres. Quant ä la valeur

correspondante de Px, eile est:

(pi)min. °>33 - °>68 - 0'35 >

1
seit (Pi)min. — -3

environ

1 1 1
Nous avons fait le calcul en posant | a | — au debut,

c'est-ä-dire en donnant ä [ a [ sa valeur maxima observee dans

la coucbe renversante.
En refaisant tout le calcul precedent en admettant au depart

1 1
a I

-g-, c'est-ä-dire en doniiant au second membre de la
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premiere equation (81) la valeur y, on trouve (toujours pour
5 5):

Ai (0,06111) cos Ni — (0,02222) sin N4 -4 ;
15

Nj — 0,15 7t, soit ä peu pres — y ;

Px 0,744 cos Nt — (0,960) cos (nt — ;

5
Phase du min. de Pj : (N;)extr. 75° ou — n ß

(un peu plus de y, comme precedemment) ;

(Pi)rain. 0,19 — 0,64 — 0,45

1 1

^ valeur plus proche de — — que de — —

En prenant comme valeur de depart | a | une valeur comprise

entre ^ et ^, par exemple ^, on retrouve ä la fin (Pi)min — ^ -

Ce serait lä la valeur de l'amplitude pour \ 5.

Rappelons ici les valeurs trouvees pour le (P^extr. de

couche renversante de quelques Cepheides:

S Sagittae

r] Aquilae

SU Cygni

_5_

13

1

T
j_
3

W Sagittarii

X Sagittarii

Y Sagittarii

On voit qu'elles sont toutes comprises dans le domaine allant
n 1

<
5

e
3" a —

Les resultats de notre analyse pour la couche \ 5 paraissent
done parfaitement admissibles.

1 1
On remarquera que A; — ou — est un peu plus petit que

1
A° i ce fiui est en complet accord avec les resultats de la

methode de M. Eddington pour le calcul des amplitudes.
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II ne parait pas possible d'appliquer la solution precedente,
basee sur les formules de la solution polytropique de stability,

ä des couches dont le E est compris entre E 5 et E0.

On sait, en effet, que la solution polytropique est valable
excellemment jusqu'ä E 5; mais que, de E 5 ä Eo> il faut
considerer une distribution modifiee, en raison du voisinage
immediat de la frontiere, d'oii l'energie rayonne vers l'exte-
rieur 1.

II faut d'ailleurs remarquer que, pour la couche renversante

moyenne observee, on ne peut pas poser Nt 0 =0; cette valeur
n'est applicable qu'ä la limite, oü l'on aq A0 cos Nt.

21. — Couche peripherique. — On sait que la distribution de

la temperature n'y est pas la distribution pure et simple de la
3

solution polytropique2; ä partir de 5 ou r' -r0 environ,

la distribution convenable donne des temperatures supe-
rieures ä Celles de la distribution polytropique, et cela jusqu'ä
E 6,886; puis, brusquement, il y a chute de temperature T,
et la temperature de frontiere (E0 6,888 donnant la limite
pratique de la photosphere) coincide avec la temperature T0
de la solution polytropique pour E0 6,888.

Autrement dit, le gradient de temperature, apres s'etre
maintenu ä peu pres constant de E 5 ä E 6,886 (500° ä 550°

par 0,001 d'unite de E), passe brusquement ä une valeur de

2500° par 0,001 d'unite de E entre 6,886 et 6,888; comme
2500° est une moyenne, cela indique que le gradient prend une
valeur beaucoup plus grande encore dans la derniere pellicule
infiniment mince.

Cela revient ä constater que, ä travers cette derniere pellicule,
la fonction B(t)3 de la theorie del'equilibre radiatif4 ne saurait

1 G. Tiercy, Sur la distribution des temperatures ä l'interieur des
etoiles, C. R. Soc. de Phys., II, 1934 (Supplement aux Archives); le
meme dans Publ. Obs. Geneve, fasc. 26.

2 G. Tiercy, C. R. 1934, II, loc. cit.
3 La lettre t avait alors une autre signification que dans le present

calcul oü r —.
''o

4 G. Tiercy. L'equilibre radiatif dans les etoiles, loc. cit.
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avoir une forme lineaire eil t, puisque B'(t) augmente enorme-
ment pour t 0; la fonction B(t) semble presenter une singularity

pour t 0.

II va sans dire que cette distribution peripherique et cette
chute brusque de temperature vers la frontiere du corps ne

vont pas sans entrainer un comportement special de la pression
dans cette region peripherique.

Les temperatures distributes entre 5 et £0 sont donnees

par la formule 2:

T /-Tc +

ce sont les temperatures (Tc^) de la distribution polytropique,
multiplies par un facteur f(E); ce facteur part de la valeur 1

pour |=5, passe progressivement ä 1,9 environ pour
E, 6,886, pour retomber brusquement ä 1'unite, pour
Eo 6,888 ä la frontiere de la photosphere. Cela revient ä

dire que, en ce qui concerne la distribution des temperatures
dans la couche peripherique, il faut utiliser des valeurs (/. <p)

au lieu des polytropiques.
Faisons de meme pour le calcul des pressions. En transpor-

tant ces valeurs (f <]>) ä la place de <\> dans les formules relatives
ä la variation de P1, on remarque tout d'abord que cela revient
ä doubler presque les valeurs anciennes de <1; vers la couche

E 6,886; il en resulte une diminution considerable de la

valeur absolue de |^| ; de sorte que le coefficient 45-^ de
L <1»

la relation (74) conserve une valeur de l'ordre de grandeur de

14 ä 15 unites. Et Ton a, presque comme pour E 5:

Pi 9 A0 cos Nt — 14Ai cos (Nt 4- N{) +

0 5 + -4-j / ^i\+ ¥• 5—icos NI + -' (85)
/ ' 2 V

' 2

1 1
Avec A0 ^ et A4 —, on a:

is / NA
Pj 0,75 cos N« — cos (Nt + N{) + • cos iNt + y I ; (86)

ä la limite de la photosphere, / 1.

2 G. Tiercy, C. R., 1934, II, loc. cit.
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Si l'on peut admettre que Ai 0 soit egal ä A0, que dire de la
fonction

On ne peut pas poser que Nt tend vers zero lorsque £ tend
vers E,0; car alors on obtiendrait pour la couche peripherique
extreme:

Pt q — 0,2 cos Ni

fonction dont les extrema se produisent en meme temps que
ceux de /"1 0; or, nous savons que cela ne Concorde pas avec
I'observation.

Mais il faut tenir compte du fait que la sphere stellaire

proprement dite se prolonge par une atmosphere, dont la partie
basse est justement la couche renversante observee; on peut
d'ailleurs comprendre dans celle-ci la pellieule extreme de la
photosphere, de E, 6,886 ä oil se produit la chute brusque
de temperature, comme on a vu.

On est alors amene ä poser, pour une couche moyenne ä

cheval sur la limite photospherique ?0 et comprenant la partie
inferieure de la couche renversante:

(Ni)0 N° ' Par exemPle N0 — f
N0 resultant du calcul de la pression moyenne Pe dans la couche

renversante 1.

Quant ä rl 0, cette fonction concerne essentiellement la couche

renversante, et on peut la rapporter ä la limite de celle-ci;
on trouve en effet la courbe de pulsation par l'etude des vitesses

radiales; et l'on sait que les raies spectrales sont dues ä Taction
de la couche renversante, adjacente ä la derniere pellieule
photospherique. Nj passe de N0 ä zero lorsqu'on approche de la

limite de la couche renversante. On a done pour £0:

P4 e 0,75 cosN« — cos (N« + N0) + ~ cos^Nj + ; (87)

1 Cette pression moyenne Pe est donnee par le jeu combine de la
courbe des vitesses radiales (couche renversante) et de la courbe de
lumiere (emission de la photosphere).

Archives. Vol. 17. — Juillet-Aoüt 1935. 20
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le coefficient du dernier terme est
336 (1,9) 49,1 50

13 1 1

- 77—7 OU 77 environ.

Ainsi N0 etant negatif, comme les des couches sous-

jacentes, on a un decalage des phases des extrema de Pt de

la couche renversante par rapport aux phases des extrema de

pulsation.
II semble done bien que 1'analyse precedente approche la

solution de plus pres que ce n'etait le cas jusqu'ici, puisque
le probleme du decalage en question etait reste sans explication.
La representation analytique de la variation de P en fonction
de t entraine celle de la variation de T, et par consequent celle

de la variation d'ionisation dans la couche renversante et celle

de la variation de magnitude, par rapport ä la pulsation.
Ajoutons encore que si l'on fait z const, dans cette

analyse, on retrouve le cas ancien de la « pulsation uniforme »,

avec:

22. — Remarque. — Nous n'avons traite que le cas le plus
simple, celui oil ri 0 A0 cos Nt; on sait que le cas le plus
frequent est celui oü rl 0 est de la forme ä deux termes sui-

vante:

mais le but que nous poursuivions etait de montrer qu'avec une

analyse plus complete de la formule de la pression, on pouvait
rendre compte du decalage caracteristique des courbes Pe, Te

et de lumiere par rapport ä celle de pulsation. Ce but parait
atteint.

(Fevrier 1935.)

P aty* + A0 cos Nf • [— 4 a <Jj4]

P P4(l — 4A0 COSNJ)

A0 cosNJ + a'0 COS (2Nt + N') ;
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