Zeitschrift: Archives des sciences physiques et naturelles

Herausgeber: Société de Physique et d'Histoire Naturelle de Genève

Band: 17 (1935)

Artikel: Caoutchouc et vitesse ascensionnelle des ballons-pilotes

Autor: Berger, P.

DOI: https://doi.org/10.5169/seals-741557

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 24.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

CAOUTCHOUC

ET

vitesse ascensionnelle des ballons-pilotes

PAR

P. BERGER

(Avec 2 fig.)

GÉNÉRALITÉS.

La comparaison des forces ascensionnelles dites nécessaires pour doter les ballons-pilotes d'une certaine vitesse ascensionnelle, met en lumière d'importantes différences entre les résultats obtenus par divers auteurs.

Ces quelques mots ont pour but de chercher une explication, qui n'est pas forcément la seule, des différents résultats obtenus par les météorologistes qui ont voué leur attention à cette question. Pour donner un aperçu de la grandeur des écarts entre les différentes forces ascensionnelles, quelques chiffres sont cités dans la tabelle suivante. Les chiffres de l'avant-dernière colonne sont égaux au quotient de la différence, entre la plus forte et la plus faible force ascensionnelle, divisée par cette dernière; les résultats sont multipliés par 100.

	Тан	BELLE	1.		
Force	ascensionnelle	dispon	ible en	gr	d'après:

Vitesse ascens. présumée en m/min	Tare du ballon	Tetens (1910)	Hessel- berg et Birke- land (1917)	Räthjen (1925)	Rouch	Diff. max. en %	Moyenne des %
100	20	26,7	15	16	35	133	
	50	38,4	25	26	52	108	115
	100	50	37	36	73	103	
160	20	93	77	99	90	29	
	50	110	106	121	112	14	20
	100	128	143	147	150	17	
200	90	47/	ā.		4/5	F,	
200	20 50	174 189	185	$\begin{array}{c c} 223 \\ 245 \end{array}$	145 179	54 37	42
	100	205	202	274	$\begin{array}{c} 179 \\ 224 \end{array}$	35	42
	100	200	202	2/4	224	33	
240	50	289	290	398		38	
	100	300	347	426		42	40

Cette tabelle permet de constater que les différences maximales des forces ascensionnelles disponibles correspondent:

- a) aux ballons de 20 gr pour les différentes vitesses ascensionnelles;
- b) à la vitesse ascensionnelle de 100 m/min pour les trois genres de ballons considérés.

Pour une même tare et une même vitesse, les diverses forces ascensionnelles disponibles sont trop différentes pour être attribuées, en entier, dans tous les cas, à des erreurs de mesure ou aux diverses méthodes qui servirent à les déterminer.

Tout en reconnaissant que les courants verticaux de l'atmosphère influent davantage la vitesse ascensionnelle des ballons montant lentement que celle de ceux à mouvement rapide, il n'est pas davantage possible d'expliquer tous les écarts de la force ascensionnelle par des tourbillons aériens. Si la turbulence de l'air était la cause principale de la diversité des résultats, les erreurs moyennes (dernière colonne de la tabelle) devraient varier en sens inverse des vitesses ascensionnelles. En effet, si un météorologiste a fait toutes ses expériences en un endroit

où les vents plongeants dominent, tandis qu'un autre a travaillé en un lieu favorisé par des courants ascendants, l'influence de la composante verticale du vent devrait diminuer si la vitesse ascensionnelle augmente, or ce n'est pas le cas.

Si la couleur du ballon (rouge sombre ou jaunâtre) ne joue aucun rôle par ciel couvert, ne faudrait-il pas en tenir compte par ciel sans nuage et établir deux tabelles au lieu d'une?

Un autre facteur, susceptible de modifier la vitesse ascensionnelle des ballons-pilotes, à tare égale, est le caoutchouc. Ces dernières années, son traitement chimique a subi de notables changements. Ses caractéristiques physiques: dilatation, sensibilité à la chaleur, etc. peuvent être modifiées à volonté, dans certaines limites.

Propriétés physiques du caoutchouc.

Depuis 1910, par exemple, ses caractéristiques ont probablement changé. Les ballons-pilotes Bognier-Burnet, Continental, Delasson, Kumi Tukken OK, Macinlop, Pirelli, Saul, Semperit ne possèdent pas aujourd'hui les mêmes propriétés. Comme première preuve, je ne désire citer que quelques chiffres indiquant la surpression intérieure Δp à force ascensionnelle égale ¹ Fd.

 Δp fut mesuré à l'aide d'un manomètre en mm d'eau à 0° et Fd à l'aide d'une balance, en grammes.

Force ascen- sionnelle	Surpressions						
disponible en gr	A	В	c	D	E	F	
3	195	102					
	145	165	_		225	220	
	142	145	18	95	135	130	
0	128	100	26	92	135	130	
20	124		30	78	92	90	
40	120	83	32	70	80	81	

TABELLE 2.

¹ Voir Archives des Sciences physiques et naturelles [5], vol. 14. p. 251 (1932).

TABELLE 2 (suite)

Force ascensionnelle	Surpressions						
disponible en gr	A	В	С	D	E	F	
70	115	75	33	63	74	77	
105	112	70	33	61	74	79	
130	110	67	33	59	77	82	
150	110	65	32	60	81	87	
180	109	64	32	60	88	93	
200	107	63	32	60	92	99	
230	107	62	31	61	103	109	
250	108	63	30	61	éclaté	éclaté	
280	108	63,5	30	63			
300	108	64	29	64			
330	109	64	éclaté	éclaté			
350	111	64					
380	112	65				,	
400	113	65					
420	116	66					
450	119	67		8			
470	120	69					
490	123			i.			
500	125	69		***			
520		70	2				
550	130	72		я ±		,	
570		73					
580	éclaté	73		H			
590	Colate	73					
600		74					
620		75					
650		76		91 40			
670		77					
700		80					
720		81	en e	and the state of the	-1.0	100 (0)	
750		, 82		70.		<i>(* 16</i>	
770		84				11	
780		83					
790		85					
800		85					
		mesure			1	1	

A = ballon-pilote; rouge; 48 gr; 30 cm.

B = ballon-pilote; rouge; 57 gr; 30 cm. C = ballon-pilote; rouge; 28 gr; 50 cm.

D = ballon-pilote; rouge; 28 gr; 30 cm.

E = ballon-pilote; rouge; 18 gr; 20 cm.

F = ballon-pilote; blanc; 18 gr; 20 cm.

Des surpressions Δp il est possible de déduire la tension du caoutchouc. En effet, nous avons :

$$p_i = p + \Delta p$$

 p_i = pression à l'intérieur du ballon.

p = pression atmosphérique.

Si nous supposons qu'une calotte infiniment petite « ds » du ballon-pilote est isolée, nous voyons qu'elle est soumise:

1º à la pression intérieure p_i qui tend à la chasser vers l'extérieur et à la pression atmosphérique p;

2º aux forces de liaison fc du caoutchouc entre cette calotte et les parties voisines.

Limitons notre calotte « ds » par deux parallèles et par deux méridiens sur le ballon. Nous avons:

 $dx = r \sin \alpha \cdot d \varphi$ (r = rayon du ballon, supposé sphérique,

où dx est porté sur la tangente au parallèle et dy sur celle au méridien.

$$ds = dx \cdot dy = r^2 \sin \alpha \cdot d\alpha \cdot \varphi .$$

La composante de Δp sur l'axe CN (C = centre du ballon, N = pôle « N » du ballon) est:

$$\Delta p \cos \alpha = \Delta' p$$
.

La pression sur « ds » est:

$$\Delta p \cdot r^2 \pi \sin \alpha \cdot \cos \alpha \cdot d \alpha \cdot d \varphi$$
.

La force, sur un hémisphère parallèle à un axe perpendiculaire au plan de base, devient:

$$\mathrm{F} c \,=\, r^2 \cdot \Delta \, p \int\limits_0^{rac{\pi}{2}} \int\limits_0^{2\pi} \sin \, lpha \cdot \cos lpha \, dlpha = \Delta \, p \pi \, r^2 \; .$$

La force totale Fc est indiquée dans la tabelle; la traction fc par unité de longueur, sur un grand cercle se déduirait sans autre:

$$fc = rac{\mathrm{F}c}{2\pi\,r} = rac{\Delta\,p\cdot r}{2}$$
 .

Les différentes épaisseurs du caoutchouc des ballons-pilotes n'étant pas les mêmes pour les diverses forces ascensionnelles disponibles Fd, les valeurs de fc ne représentent pas grand'chose.

Comme aucune mesure n'a été faite sur l'épaisseur des enveloppes des ballons A, B, C, etc., il n'est pas possible de ramener toutes les valeurs de fc à une unité commune de traction, mais il est cependant facile de comparer les divers f'c pour chaque ballon. A cet effet, choisissons une unité arbitraire de surface, par exemple celle ayant un cm de long et l'épaisseur de l'enveloppe du ballon-pilote correspondant à Fd = 130 gr et ramenons toutes les valeurs de fc à cette section, en supposant que l'épaisseur de l'enveloppe du caoutchouc est inversement proportionnelle à l'augmentation de surface S du ballon. Nous aurons donc :

pour
$$Fd = 130$$
 $f'c = fc_{130}$ $f'c = fc_{230} \frac{S_{230}}{S_{130}}$, etc.

 $S_{130} = surface du ballon-pilote gonflé à 130 gr.$

 $S_{230} = surface du ballon-pilote gonflé à 230 gr.$

Les ballons B, E et F sont les plus épais, leur pellicule est à peu près de même épaisseur. Le ballon C est de beaucoup le plus mince. L'enveloppe des ballons A et D est d'épaisseur intermédiaire. Les valeurs de f'c sont notées dans la tabelle 3.

TABELLE 3.

$\mathbf{F}d$	A	В	C	D	E	F	%
130 Fc	40.0 187	25.2 116	11,1 54	19,8 97	24,6 123	$\begin{vmatrix} 26,2\\131 \end{vmatrix}$	360
$230~\mathrm{F}c$ $f'c$	52,4 288	31,2 164	14,5 84	28,6 169	46,8 278	49,6 294	359
$300 \mathrm{F}c \ f'c$	61,5 367	37,0 210	15,8 99	35 216			389
$egin{array}{c} 400 \; \mathrm{F}c \ f'c \end{array}$	76,2 495	44,5 276				_	171
500 Fc f'c	97,5 670	53,7 356		_			181

Les % correspondent au rapport: $100 \frac{Fc \text{ max.}}{Fc \text{ min.}}$

La figure 1 représente les allongements du rayon en fonction des valeurs correspondantes de f'c.

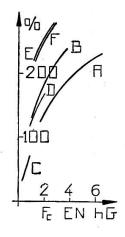


Fig. 1

Les lettres correspondent aux ballons A, B, etc.

Sans oublier que les valeurs de f'c, pour les différents ballons, ne sont pas réduites à une unité commune, les tabelles 2, 3 et la figure 1 confirment notre hypothèse: les caoutchoucs de ces six ballons ont des propriétés physiques bien différentes.

VITESSE ASCENSIONNELLE.

Quelle peut être l'influence de ces diverses propriétés physiques du caoutchouc sur la vitesse ascensionnelle?

Avant de traiter cette question, faisons les hypothèses que les masses d'hydrogène m et de l'enveloppe m' restent constantes au cours du sondage et que Δp est indépendant de la température.

Nous pouvons donc écrire:

$$m = \rho \cdot \rho = \rho \frac{pt}{R_{H_2}T} = \frac{\rho}{R_{H_2}T}(p + \Delta p)$$
 (1)

ρ = poids spécifique de l'hydrogène.

 $ho = ext{volume du ballon} = rac{ ext{M} \cdot ext{RT}}{p + \Delta p}; \quad ext{M} = m + m'.$

 $R_{\text{H}_2} = \text{constante du gaz.}$

T = température absolue de l'hydrogène dans le ballon.

Précédemment (tabelle 2), la relation entre Fd et Δp a été établie; sans difficulté la relation entre v et Δp peut en être tirée.

Au cours d'un sondage, sous l'impulsion de la force ascensionnelle, le ballon monte et traverse des masses d'air où p est de plus en plus faible; jusqu'à une certaine hauteur Δp diminue aussi, mais très lentement; pour de faibles variations d'altitude, supposons T constant; dans ces conditions v augmentera.

Admettons dès maintenant qu'à volumes égaux (obtenus par augmentation de m ou diminution de p) correspondent des Δp égaux pour un même ballon.

La force ascensionnelle totale Ft du ballon est égale au volume ϱ , multipliée par la poussée unitaire:

$$Ft = \rho (\rho_{air} - \rho)$$
.

De cette expression on tire aisément la valeur de la force ascensionnelle disponible

$$Fd = Ft - tare$$
;

après substitutions, elle devient:

$$\mathrm{F}d = m \left(\frac{p}{p + \Delta p} \cdot \frac{\mathrm{R}_{\mathrm{H}_2}}{\mathrm{R}} - 1 \right) - m' . \tag{2}$$

Si Δp augmente, le deuxième facteur diminue; à masses constantes, plus Δp est grand, plus Fd est faible; d'après la tabelle 1 la vitesse ascensionnelle diminuerait. Cherchons à prouver ce fait. Dans ce but, considérons deux ballons (que nous différencierons par les indices 1 et 2) de différentes surpressions intérieures $\Delta p_1 > \Delta p_2$, de même force ascensionnelle disponible $Fd_1 = Fd_2$, de même tare $m_1' = m_2'$, de même couleur, de même température intérieure $T_1 = T_2$ et égale à celle de l'air ambiant T, que nous lâcherons simultanément, par ciel couvert, dans une atmosphère dont le gradient thermique est égal à zéro. Dans ces conditions, nous aurons:

$$\mathrm{F}d = arrho_{1}igg(arrho_{\mathrm{air}} - rac{p + \Delta \, p_{1}}{\mathrm{R}_{\mathrm{H_{2}}} \cdot \mathrm{T}} igg) - \mathit{m}_{1}' = \mathit{v}_{2}igg(arrho_{\mathrm{air}} - rac{p + \Delta \, p_{2}}{\mathrm{R}_{\mathrm{H_{2}}} \cdot \mathrm{T}} igg) - \mathit{m}_{2}'$$

d'où

$$v_1 > v_2$$
 et $m_1 > m_2$.

D'autre part, Fd est aussi égal à la résistance aérodynamique due au mouvement ascensionnel du ballon

$$Fd = \rho_{air} \cdot \frac{\pi}{4} \cdot \psi (D.V)^2$$
 (3)

 ψ = coefficient de résistance spécifique (fig. 3, courbes 1, 2 et 3).

D = diamètre du ballon.

V = vitesse ascensionnelle.

Puisque $v_1 > v_2$, nous avons aussi:

$$D_1 > D_2 . (4)$$

A l'instant où les ballons sont lâchés simultanément et qu'ils sont pratiquement à égale altitude, Fd_1 est encore égal à Fd_2 ; en d'autres termes

$$\psi_1 (D_1 \cdot V_1)^2 = \psi_2 (D_2 \cdot V_2)^2 . \tag{5}$$

Pour un nombre de Reynolds R¹ supérieur à 3.10⁵, ψ est à peu près constant, d'où

$$V_2 > V_1 . ag{6}$$

Le ballon-pilote de moindre surpression Δp monte donc le plus vite. Si le nombre de Reynolds est inférieur à 2.105, ψ varie rapidement; à égalité de turbulence, lorsque R diminue, ψ augmente (fig. 2). Reprenons l'équation (5) et cherchons les valeurs de V_1 et V_2 qui peuvent la vérifier tout en étant compatible avec celles de ψ_1 , ψ_2 , et $D_1 > D_2$.

A. Commençons par l'hypothèse $V_1 = V_2$.

L'équation (5) se réduit à:

$$\psi_1 D_1^2 = \psi_2 D_2^2 = \text{constante}$$
 (hyperbole cubique). (7)

¹ Le nombre de Reynolds est égal à:

$$R = V . D : v$$

ν = coefficient cinématique de viscosité de l'air;

 $\nu = 0.000014 \text{ à } 15^{\circ} \text{ et pour } 760 \text{ mm de Hg.}$

A conditions météorologiques égales, R est proportionnel à V.D.

Il faudrait que les points ψ_1 , D_1 et ψ_2 , D_2 soient simultanément sur une hyperbole cubique et sur la courbe $\psi = f(R)$; or le dessin de la première ne rappelle aucunement l'allure de la seconde. Cette solution est donc impossible, à moins qu'à certains courts arcs de la courbe $\psi = f(R)$ on puisse substituer

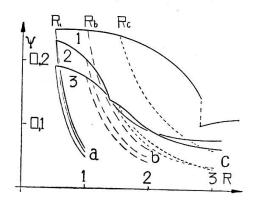


Fig. 2. R est à multiplier par 10^5 .

un segment d'hyperbole. Ce serait alors seulement sur l'étendue de ces arcs problématiques que V_1 pourrait être égal à V_2 (fig. 2). D'autre part, l'équation (5) ne tient pas compte du genre d'écoulement de l'air autour du ballon. Considérons les valeurs de R que l'on rencontre usuellement:

TABELLE 4.

	Vitesse ascensionnelle en m/min	Diamètre approximatif du ballon à l'origine	$ m R_2$
Cas a Cas b Cas c	100 150 200	0,40 m 0,55 m 0,65 m	$0.5 \cdot 10^{5} = R_{a}$ $1 \cdot 10^{5} = R_{b}$ $\sim 1.5 \cdot 10^{5} = R_{c}$

Dessinons les hyperboles cubiques théoriques (équation 5) qui passent par les points R_a , R_b et R_c (fig. 2) et les trois courbes expérimentales ψ correspondant à :

un écoulement laminaire (1) ¹; un écoulement légèrement tourbillonnaire (2) ¹; un écoulement tourbillonnaire (3) ².

² Comptes rendus, t. 155, p. 1597 (1912).

¹ Zeitschrift für Flugtechnik und Motorluftschiffahrt 1914. Heft 8.

Si nous faisons croître R_a , R_b ou R_c de ΔR , les valeurs de ψ correspondantes à $R_a + \Delta R$, etc., tirées de l'équation (5) ou (7) seront très différentes de celles obtenues au moyen des courbes expérimentales. L'examen de la figure 2 montre qu'il est:

exclus que $V_1 = V_2$ pour les cas a et b et tous les genres d'écoulement;

exclus que $V_1 = V_2$ pour le cas c si l'écoulement est laminaire; peu probable que $V_1 = V_2$ pour le cas c si l'écoulement est tourbillonnaire.

Sauf de rares cas, V₁ est différent de V₂.

B. Passons à l'hypothèse:

$$V_1 > V_2 . (8)$$

Des inégalités (4) et (8) nous obtenons:

$$D_1 V_1 > D_2 V_2 \quad \text{où} \quad R_1 > R_2 , \qquad (9)$$

par conséquent, pour que l'équation (5) soit satisfaite, il faut que:

$$\psi_1 < \psi_2 \ . \tag{10}$$

L'équation (5) représente une hyperbole cubique dont les coordonnées sont ψ et R; ainsi nous sommes ramenés au cas A et à ses conclusions, c'est-à-dire:

Sauf de rares cas, V₁ ne peut être supérieur à V₂.

C. Analysons la dernière possibilité:

$$V_1 < V_2 . ag{11}$$

Il est avantageux de diviser la discussion de l'équation (5) en trois parties:

a)
$$D_1 V_1 < D_2 V_2$$
,

b)
$$D_1 V_1 > D_2 V_2$$
,

c)
$$D_1V_1 = D_2V_2$$
 ou $R_1 = R_2$.

Les possibilités a et b nous ramènent au cas A et à des conclusions similaires.

La solution très spéciale c) est la seule qui satisfasse l'équation (5) et les courbes expérimentales $\psi = f(R)$ quel que soit la valeur attribuée à R.

En résumé, pour des ballons étant à même altitude, ayant même température intérieure, dotés de la même Fd mais de différentes surpressions intérieures, leurs vitesses ascensionnelles seront différentes.

Celui qui aura la plus faible Δp montera le plus vite.

Quelques exceptions ne sont cependant pas exclues.

Admettons finalement: $T_1=T_2$ mais différent de la température T de l'air, $\Delta p_1=$ constant et $\Delta p_2=$ constant.

Après quelques secondes le ballon 2 sera plus haut que le ballon 1.

A l'altitude h, aurons-nous toujours $Fd_1 = Fd_2$?

Précédemment nous avons exprimé Fd de la manière suivante:

$$\begin{split} \mathrm{F}d_1 &= \mathrm{F}d_2 = m_1 \left(\frac{p}{p + \Delta p_1} \cdot \frac{\mathrm{R}_{\mathrm{H_2}} \mathrm{T}_1}{\mathrm{R}_{\mathrm{air}} \cdot \mathrm{T}} - 1 \right) \\ &- m_1' = m_2 \left(\frac{p}{p + \Delta p_2} \cdot \frac{\mathrm{R}_{\mathrm{H_2}} \mathrm{T}_1}{\mathrm{R}_{\mathrm{air}} \mathrm{T}} - 1 \right) - m_2' \; . \end{split}$$

Lorsque la pression atmosphérique p baisse, que ce soit à cause d'un changement d'altitude ou d'une fluctuation barométrique, $\frac{p}{p+\Delta p_2}$ diminue moins rapidement que $\frac{p}{p+\Delta p_1}$; le deuxième membre devient plus grand que le premier.

En altitude, nous aurons:

$$\mathrm{F}d_2 > \mathrm{F}d_1$$
.

Si $Fd_2 > Fd_1$, on peut s'attendre à ce que l'augmentation de la vitesse de V_2 soit encore accentuée. En effet, précédemment, lorsque nous admettions que $Fd_1 = Fd_2$ nous étions arrivés à la conclusion que V_2 était en général supérieur à V_1 ; à plus forte raison il en sera ainsi si $Fd_2 > Fd_1$.

On pourrait alors compléter cette analyse en tenant compte des variations de température, mais nous n'apprendrions rien de nouveau. Les différents degrés d'élasticité du caoutchouc et les diverses surpressions Δp provoquent des variations des vitesses ascensionnelles. Ces deux phénomènes sont probablement partiellement cause des diverses vitesses ascensionnelles citées dans la tabelle 1.

La surpression Δp (due à l'élasticité du caoutchouc) ayant une influence sur V, il serait avantageux que les fabricants fassent établir des abaques donnant Fd en fonction des tares, de chaque genre de leurs ballons pilotes, pour diverses vitesses ascensionnelles.

Zurich, janvier 1935.