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1935 Vol. 17. Mai-Juin

Le Probleme du" decalage" des phases

dans les variations periodiques des eepheides

1. — Rappelons tout d'abord en quoi consistent ce que nous

appelons ici les decalages des phases.
On sait que, dans la theorie des pulsations des Cepheides,

le rayon de la « sphere pulsante» varie periodiquement, oscillant
entre un maximum et un minimum. La courbe representant
cette variation est quelquefois tres simple; le plus souvent, eile

presente des accidents sous la forme de maxima et minima
secondaires ou de points d'inflexion; onl'appelle communement
« courbe de pulsation ».

Simultanement, la magnitude de l'etoile varie periodiquement
et avec la meme periode; il en est de meme de la pression et de la

temperature de la couche renversante, done aussi de l'etat
d'ionisation de cette derniere, et par consequent du spectre
de l'etoile.

Mais il est bien connu que les extrema de la magnitude ne se

produisent pas aux moments des extrema de pulsation; l'etude
de la courbe des vitesses radiales d'une Cepheide permet de

constater un retard des extrema de magnitude sur les dates des

extrema du rayon. II y a done un decalage entre les phases res-

pectives des extrema de pulsation et Celles des extrema de

lumiere. Semblablement, les extrema de la pressio

PAR

G eorges TIEKCV

I. — Generalites.

Archives. Vol. 17. — Mai-Juin 1935.



180 PROBLEME DU «DECALAGE» DES PHASES

couche renversante ou ceux de la temperature effective, quoique
precedant quelque peu les extrema correspondents de lumiere 1,

se produisent avec un retard sur les dates des extrema de

pulsation.
La theorie est-elle capable de rendre compte de ces decalages

Telle est la question que je me propose d'examiner dans les

pages qui suivent.
La theorie des spheres pulsantes proposee par M. A. S. Ed-

dington des 1919 conduit au calcul de Pamplitude de la pulsation

pour chaque valeur du rayon, au moyen d'une equation
differentielle du second ordre2; et l'on peut, par suite, represen-
ter analytiquement la courbe des vitesses radiales. Mais cette
theorie, basee sur une loi de pulsation du type adiabatique, ne
rend pas compte du retard dont il est fait mention ci-avant; elle

est par consequent insuffisante ä ce point de vue.
Apres avoir vainement essaye de la modifier et de la completer

pour mieux l'ajuster aux faits constates, je me suis demande
si la theorie des pulsations de type adiabatique ne simplifiait
pas par trop le mecanisme de la pulsation dans la partie prin-

g
cipale de l'etoile (c'est-ä-dire de r=0 ä r=/•'=—/•„) en

considerant que, dans ce domaine, tous les rayons augmen-
taient ou diminuaient simultanement, realisant leurs extrema
respectifs en meme temps Est-ce bien le cas Et n'y a-t-il pas
lieu de concevoir une difference de phase entre les variations
correspondantes de deux rayons quelconques Dans une telle
conception, la pulsation se transmettrait de proche en proche,
du noyau central ä la peripheric.

C'est ä ce nouveau point de vue que je me suis place dans la

presente etude. La theorie que je propose ci-apres semble

permettre de rendre compte du decalage caracteristique en

question, k la recherche duquel je me suis particulierement
attache.

Quant ä 1'amplitude de la pulsation pour chaque rayon r,

1 Voir Puhl. Obs. Geneve, fasc. 20 ä 25. Et aussi: G. Tiercy,
L'equilibre radiatif dans les etoiles. Gauthier-Villars, 1935, chap. XIII
et XIV. Voir aussi: Archives, 5 (15), 1933.

2 G. Tiercy, loc. cit., chap. XII.
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on peut, semble-t-il, la considerer comme suflisammeDt bien

representee par le calcul base sur la loi adiabatique, au moins

en premiere approximation 1.

Nous examinerons successivement le cas d'une pulsation
uniforme (contraction uniforme et dilatation homogene), et
celui d'une variation simplement homologue. J'ai adopte pour
cette analyse une notation de depart comparable ä cellede
M. P. Rudzki 2.

Nous admettrons qu'il ne se produit pas de courants dans le

sens radial ou dans tout autre sens, c'est-ä-dire que lesseules

variations du rayon r afferent ä une particule donnee pro-
viennent du mouvement de pulsation. Dans ces conditions, on
n'a ä envisager que deux equations sur les quatre de l'hydro-
dynamique; en appelant w la vitesse dans le sens radial,

c'est-ä-dire w on a:dt'

oü P p + p' represente la pression totale, et V le potentiel
de l'attraction.

La seconde equation (1) n'est pas autre chose que la derivee,

par rapport ä r, de cette autre egalite:

dans laquelle on a:

Ainsi la masse Mr contenue ä l'interieur d'une sphere de

rayon r ne change pas, quelle que soit la contraction oula

(1)

r

ft

1 Voir plus loin, aux nos 20 et 21.
2 Bulletin astronomique, 1902. Etude de la contraction uniforme.
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dilatation, uniforme ou non; la matiere n'est pas echangee entre
les differentes couches successives; celles-ci sont plus ou moins

serrees, voila tout.

Si le rapport x — reste constant pour une couche donnee,
ro

la contraction ou la dilatation est dite uniforme; si la pulsation
est simplement homologue, le rapport x est fonction du

temps t.

On apercoit tout de suite que, dans le cas d'une contraction
uniforme, les extrema de la pression totale P coincideront dans

le temps avec ceux du rayon r; car le minimum de P

corresponds ä la phase du maximum de place disponible, tandis que
le maximum de P se produira lorsque la place sera le plus
restreinte; il ne peut done pas etre prevu de decalage dans ce cas.

Un decalage ne peut intervenir que si x est une fonction du

temps, fonction d'ailleurs periodique, et de periode egale ä celle
de la Variation de magnitude; dans ces conditions, certaines
couches seront comprimees plus que d'autres au meme instant,
eomparativement ä ce qui se produit dans une transformation
uniforme.

II ne sera pas depourvu d'interet, cependant, d'analyser de

plus pres le cas de la pulsation uniforme; nous aurons l'occasion
de retrouver la limite de celle-ci.

II. — Pulsation dite uniforme.

2. — Formule generale de P. — La pression totale est donnee,

comme on sait, par l'expression suivante, resultant de l'inte-
gration de la premiere egalite (1):

'-/'[s-f]*-
r

oü Ton a:

_
1 öMr

^ 4 7ir! Or '
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l'indice zero se rapporte aux valeurs de surface. Nous poserons
ici, en reprenant les notations de Rudzki:

r

d'oü l'on tire:
X

T
et

dr
dt

X d T

-r2 dt

(3)

On trouve:

*V GMr
r r-

G
M.

dtv
dt

2 (dxY- t d'x~I
t3 \ dt / t2 dt1 J

et pour la pression:

\ öMr { GMr ^ f2 /dxy 2 d*xl\dx
P=J - '

Cette expression met en jeu les vitesses qui caracterisent

la transformation.
Si ces vitesses sont negligeables, c'est-ä-dire si la transformation

est extremement lente. l'expression (4) se reduit ä:

P x* <p(0 (5)

et la distribution des pressions P dans le corps de l'etoile est

reglementee par la fonction 9 (z); on retrouve lä le cas d'appli-
cation du theoreme du viriel, pour lequel il faut considerer une
duree extremement longue. La pression est alors inversement

proportionnelle ä la quatrieme puissance du rayon, puisque
1

t — ; et la valeur que prend v ä un instant t determine la

distribution de P ä cet instant.
Mais si les vitesses de transformation ne sont pas negligeables,

il faut garder, dans l'expression (4), les termes en ~ et ^4 ;

c'est ce qui se presente dans le cas des Ceph.eid.es; et l'on voit
qu'alors la pression ne varie plus comme l'inverse de r4; on ne



184 PROBLEME DU «DECALAGE» DES PHASES

se trouve plus dans les conditions analytiques qui etaient Celles

d'une etoile invariable. D'ailleurs le fait que P n'est plus pro-
4

portionnelle ä p:i entraine que la temperature T n'est plus
proportionnelle ä l'inverse du rayon.

3. — Cas d'une transformation extremement lente. —
Entendons-nous bien; la transformation s'effectuant avec une
vitesse negligeable, la formule (5) donne la distribution des

pressions P dans toute l'etoile, puisque z reste constant pour
une couche determinee; si, au bout d'un temps extremement
grand, r0 a change quelque peu de valeur (done t), la
distribution des pressions est encore donnee par la fonetion cp(/-),

qui n'a pas varie.
D'autre part, dans de telles conditions de stabilite, c'est-a-dire

lorsque les vitesses ^ sont negligeables, la distribution de P

& l'interieur de l'etoile est acquise par la solution de

M. Bialobrzeski ou par celle de M. Eddington1; on part,
comme on sait, de l'equation de l'equilibre mecanique:

dP
Tr=~g? ;

R 1

avec p=—pT et p' g"flT4, et en posant:

(6)

u u„ y r —c o>

on trouve la distribution2:

P Cp" Cu* Cuc^ (8)

oü C, uc et o) sont des constantes, et oil ij; est donnee par
l'equation differentielle d'Emden (classe polvtropique n 3):

dl± + 1 ^ ^ 63 o (9)
dEr + 5 dä;

' V U ' [ '

1 G. Tiercy, L'equilibre radiatif dans les etoiles. Gauthier-Villars,
1935.

- Lac. cit.
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Si alors on compare les deux expressions de P:

i p _ _ aM,

P Cuctf

on voit qu'on a, pour la fonction 9 (•/.):

?(*)=r;pc^. (10)

Cette relation etablit le passage de la solution de M. Rudzki
ä la solution de M. Bialobrzeski et de M. Eddington.Remarquons
qu'au centre de l'etoile, on a:

1 <PCM roPc

Avec la loi de Mariotte et de Gay-Lussac, on a encore:

T T <?,(*) (11)
r0

distribution de la temperature a un moment donne; la fonction
<px(x) caracterise cette distribution. Or, avec la solution de

Bialobrzeski et d'Eddington, on a:

T uc& 4- Tc4 (© const.) ; (12)

en identifiant (11) et (12), il vient:

9i M '0Tc^ • (13>

A ces deux relations donnant respectivement P et T en
fonction de t, il faut joindre la suivante:

qui est tiree de:
p T3 f(x) (14)
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L'egalite T t <p! (x.) constitue ce que Ton a appele
le paradoxe de Lane.

Les expressions

P t4 • <f(x) et T t • 9l(z)

ne sont done valables que si la transformation, est infiniment
lente; on se trouve alors en presence des conditions de stabilite
d'une etoile invariable. C'est le cas oü l'on peut utiliser le
fameux theoreme du viriel de Clausius.

4. — Transformations plus rapides. — Or, dans le cas d'une
Cepheide, la variation de r0 est au contraire rapide; les vitesses
d x

ne sont plus negligeables; les expressions (5) et (11) ne sont

plus valables; seule l'egalite (14) subsiste, puisque v. est

independant du temps.
La distribution de la pression P est alors donnee par

l'expression (4) complete, que nous reproduisons ci-apres:

P /V. *3:. _J_^^A. Aiil (Ai
J i>z 4TCZ1 *2 "|_T3\df / t2 dt2 J ^ t

La premiere partie en est proportionnelle ä v4; eile correspond
ä la solution polytropique du cas de stabilite:

P CUc (A T+ • tp (z) ;

la seconde partie est proportionnelle ä une fonction de t,
T- et A-l1. On peut ecrire:
dt dt* ^

r ^ - [I (5) -y • 4i- • d* ;

ou bien, en designant l'integrale par (D(z):

* *•*<"> +[£-!(£)'] I*5'

Les quantites, cp(z) et <£>(•/.) sont des constantes pour une
valeur donnee du rayon; et l'on voit que, pour la couche
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correspondante, la pression P depend, non seulement de t
done de —\, mais encore de ^ et ^.rj' dt dt*

Si l'on donne ä rQ une valeur moyenne / 0 on aura ce qu'on
peut appeler les donnees statiques, autour desquelles les variables
oscillent durant la pulsation. On ecrira:

_ 1

4
r0, i

et la repartition statique de la pression est la suivante:

Pi < 9W

oü:

9(x) r0,i " Pc

comme on a vu ei-avant.
II resulte de ces remarques et de l'expression (15) que la

variation SP de la pression est due ä deux causes:

1° La variation du rayon dans la forme statique:

P t*. 7(>) ^ Pcp
ro

qui entraine une variation de Pc centrale; cette valeur de P

serait süffisante dans le cas d'une modification extremement
lente du rayon /'0.

Cette premiere partie de la variation de P ä partir de l'etat
statique peut s'ecrire:

P' — Pj T4 <?(") — Tj <p(Z)
1

41.
(i> t2° La variation due aux termes relatifs ä la vitesse — de
dt

transformation; cette variation a pour expression:
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On a done au total, ä partir de Pt:

sp, _ tW. [,.-<•] + [S-f(a)I «(«). («)
i

Si l'on adopte la notation:

P p4(i + Pl)

P~Pi Pi Pi 8 Pi (17)

oil l'on voit bien que Pt ne peut pas etre superieure ä l'unite en
valeur absolue, il vient encore, avec P, T(r.):

• ®oo
spi

p i _1 p. 4 / \
» Tt •

ou bien:

L'etude de cette fonction P1 doit permettre de decouvrir le

decalage des phases des extrema de P sur Celles des extrema
du rayon, si ce decalage existe.

5. •— Les fonctions t et <t>. — Rappelons qu'on a pose:

' 1 Tr
[ /*dMr
| *<> "/—
I ®M=/-sr

et la formule (10) a precise la valeur de 9 (y-) en fonction de la
variable ^ d'Emden:

<?(,) rJPc«|d

la valeur centrale de ^ etant 1.

GM„
4 71*7

' dx

Ay.
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Pour obtenir une expression plus commode de <t> (*), nous
retiendrons que:

öM.
4 7IÄ2 öx 1

comme on l'a vu par (14); de sorte qu'il vient:

ö Mr i z • p

frx 4 TT y. f3 '

et l'on a:
l i l

$ (*) Jdv. frlpx • dx f p x dx
V. X -X

Mais ä cause de la definition de z.ona encore:

r1 i \ r°

®W rl f pf • d(f) 'o f P " rdr ;
• 'o V'o/ •

et si, dans cette expression, on remplace p et r par les

variables (7) d'Emden, on trouve:

$ (*) =if. />• ; (19)
CO «/

d'ailleurs, la theorie des spheres gazeuses en etat d'equilibre
polytropique donne 1:

4 7t PI L0
CO'' —

M

oü M est la masse totale de l'etoile; pour la classe polytropique
n 3, les tables d'Emden donnent:

50 6,90 et P1l0 2,0182

Par les formules (10) et (19), on peut calculer 9 et <b pour
chaque valeur du rayon, c'est-ä-dire chaque valeur de il
suffit d'utiliser les tables d'Emden pour n 3.

1 G. Tiercy, Uequilibre radiatif dans les etoiles, loc. cit.
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Oil peut cependant simplifier le calcul de (19) en tenant
compte de l'equation (9), qui determine d;:

d2i/ 2

df" I d% + ~ '

on en tire:

puisque <ji0 0; maintenant, la table d'Emden donne:

•'"•—HD.-*"« «

on trouve ainsi:

.dt)f if 5 dl + ^ + 0,278

et:

+ * + °'278) • (2n)

Cette expression s'annule ä la frontiere de la sphere polv-
tropique, de meme que la quantite <p (z).

Ainsi les egalites (10) et (20) permettent un calcul numerique
facile de <p et O pour toute valeur de E.

6. — Variation de P. — Partons de l'expression (15), que nous
reproduisons ci-apres:

rd'1-
TJ • tp ('/.) + <[>(*)

d2 t 2 /d-r\21
dt2 t \ dt / _|

Designant toujours par l'indice (i) les conditions moyennes
ou de stabilite, nous posons ensuite:

ro, if1 + >

j
T TAI + Tj)

(21)
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en rappelant que:
1 1

0, i
T — T- -

r„ 1 r,

On obtient:
dr d t, cV1= d^,
dt 1 dt ' dt- 1 dt- ' 1 '

d'oü:

p »w. (i + ..)• + ®. „ [*£ _^ ($)'
puis:

1 + r+ ri
1 - + *-r* + - '

— r1 + r* — /" + ;

1

23)

1 + >'i ;i +

et les derivees suivantes:

1?=S-1^1+2ri-3^++($)"•(2 -6''1++••
de sorte que l'expression (23) devient:

/ P T-9(0 • (1 — 4rj + 10/-1 —20/-1 +

+ ®00 • ^[$(-1 +2/4-3^) + (~^y. (2-6r1 + 12r:-20r5

j _2(l + r1)(-l+2r1-3rJ + 4^...)2.(^y ;

nous conserverons les termes de cette quantite jusqu'ä l'ordre
de r\-, et nous rappelons que fl<p(>e)

Admettons maintenant que nous ayons affaire avec le cas

le plus simple, celui oü la variation de r± serait donnee par une
fonction trigonometrique elementaire:

r1 A cos Nt

oü N constante; il est entendu que, le plus souvent, la
courbe de pulsation correspond ä une fonction moins simple;
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mais cela n'a aucune importance ici, puisque le but essentiel
de cette analyse est de depister un decalage eventuel.

On a, dans ces conditions:

1 ^ — AN sin Nt ; ^ — NV, ;dt dl~

| (^)"= A2N2 Si"2Ni A2N2 _ N2r' '

d'oü:

P P8(l — 4/, -L 10/* — 20/')

+ ©(*) • t^N2^ - 2+ 31-J)] (24)

en abandonnant les puissances de superieures ä la troisieme.
En ordonnant (24) par rapport ö r,, il vient:

P Pl + /1f^.$.xi-4Pt]
— ri[2N3Tt© — 10 Pj + /-'[SN2^© — 20Pt] (25)

Ainsi, avec cette approximation, P apparait comme un poly-
nöme du troisieme degre en /q, et dont les coefficients dependent
de E, par l'intermediaire des fonctions cpl'-) et Of*).

Or, avec (10) et (20), on a:

i Pj Tj<p(x) Pc 14'4 (repartition statique)

\ X2? i d it \ '26)

N't,® [tjl + + + 0.278j

et d'ailleurs, d'apres la theorie de l'equilibre radiatif stellaire 1:

r> ~G * 5o /4TTP110\_3
c ^7\ttc' "c=4 M (27)

I CO3 ; jn, 2,0182 ; 6,90 ;

ces valeurs correspondent ä la classe polytropique n =3; on
en tire:

,28)

1 G. Tiercy, L'equilibre radiatif dans les eloiles, loc. cit.
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Remarquons que, dans la couche renversante (limitee par la
valeur £„), le produit (N2-;<!>) est nul ou presque nul, puisque

la fonction ^ + 0,278^ s'annule pour ^ 6,888 1.

On peut done poser que, pour la couche renversante, e'est-a-
dire la couche observee, il ne reste que les termes en P, dans

1'expression (25):

Pe P{[l — 4rx + lor' — 20 rf] (29)

Nous avons ecrit Pe pour designer la pression dans la couche

renversante, comme on ecrit souvent Te pour indiquer la
temperature effective, qui regne en moyenne dans cette meme
couche.

Pour les extrema de Pe, on aurait done:

^ (-4 + 20^-60^,

valeur qui ne s'annule que si ~ 0. Ainsi les extrema de Pe

se produiraient, dans VhypotMse de /. independant du temps, en

meme temps que ceux de r1. Et l'on a rappele au debut que
cela ne correspond pas ä l'observation.

Mais ici, nous devons avoir un scrupule; 1'expression (29) a
ete obtenue en donnant ä ^ la valeur i;0; or, les tables d'Emden
ne sont directement applicables, pour un modele d'etoile, que
jusqu'ä \ 5, et non pas jusqu'ä la limite i;0.

On ne pourrait done utiliser 1'expression (25) que jusqu'ä la
3valeur £ 5, qui correspond ä un rayon r' — r0; de r' ä r0,

couche qui ne contient pas meme 1% de la masse de Petoile, on

pourrait admettre que la pulsation se transmet sans autre
perturbation 2. Dans ces conditions, il nous faut chercher quelles
sont les dates des extrema de P pour £ 5.

1 Avec les variables d'Emden, e'est pour 5 6,888 que la temperature

T prend la valeur de surface T0; on peut done considerer
50 6,888 comme donnant la limite effective de la photosphere
stellaire, au lieu de la valeur 6,90 d'Emden, pour laquelle T devien-
drait nulle.

2 Voir ä ce sujet: A. S. Eddington, The Internal Constitution of
the Stars', G. Tiercy, IJequilibre radiatif dans les etoiles, loc. cit.
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7. — Extrcma de P. — Reprenons done l'expression (25), et

posons pour abräger:
/ N2 <J> • Tj ;

P Pi + M/-4Pi)-#i(2/-10Pi) +rJ(3/-20Pi) (30)

dP
dt
dPII s'agit de voir si Ton peut avoir — 0 autrement qu'en

annulant Cela conduit ä l'equation:

3 (3/ — 20Pj) /'i — 2 (2/ — 10 Pj) /*! + (/ — 4P4) 0

qui ne peut avoir de racines reelles que si:

— 5f + 56/Pt — 140P- ^ 0

c'est-ä-dire pour:
3.767 Pj ^ f ^ 7,433Pj

Or, les valeurs positives de / ne se produisent pas tant que
5 := £o; c'est-ä-dire tant qu'on reste ä l'interieur de l'etoile.

drII en resulte que 0 n'arrive que pour -~ 0; les extrema

de P se produisent en meme temps que ceux de pulsation.
Remarquons que, pres de la frontiere ?n. mais ä l'interieur,

la quantite:

' - (5« + + + °'278)

est negative et tres petite en valeur absolue. D'autre part, P,

est de 1'ordre de grandeur de quelques baryes seulement et
n'est autre que Pe.

Prenons par exemple le cas de l'etoile Y Sagittarii; la theorie
de l'equilibre radiatif conduit aux resultats suivants1:

r„ (1,576) 1012 cm;
M 8,6 Mq (1,71) 1034 gr;
pc 0,05896;

Tc (9,22) 106;
<

Pc (3,8) 1013;
t

uc 0,3892 p* ;

Tc
0 — (2,37) 10;.

uc

G. Tiercy, Uequilibre radiatif dansles etoiles, loc. cit. nos 62 et 98.
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On trouve, d'autre part, que la pression Pe de la couche

renversante oscille entre 13,3 et 2,8 baryes; on a done la valeur

moyenne:
Pe ~ 8 baryes

Si Ton rappelle que Pt Pc et qu'on fasse Pj Pe 8

dans cette egalite, on trouve:

(3,8) • KR3 • 4* 8 ;

(J; 0,00068

valeur qui correspond bien ä l'ordre de grandeur de tout pres
de la frontiere de l'etoile; on sait que <]; 0 lorsque !• 6,9.

L'egalite (30) donne encore:

P, ~ - 1 rjl - 4\ - r\ - Id) +r\iy— 2o) ;

Pi + (10 ~ 19 - ' (20 ~ r^) ' |3,)

II est interessant de comparer cette expression ä celle que
donne la theorie de M. Eddington pour la pellicule frontiere:

R _ Ji + — «

N2 roil —- 1,25 environ, de sorte que Px — 5,25 rx environ.
80

Nous reviendrons sur ce point dans le numero suivant.

8. — Limite de la pulsation. — Pour fixer les idees, prenons
encore le cas de l'etoile Y Sagittarii. On a:

N ~ 0 498821 sec. (5iours,77335) ;
O

N (1,25961) 1(T5 ; ?0 6,888 ;

Nz E—-Y°- (4,8386) • 10" ;

<»r0,i

f (4,8386) 1011 + 0,278J

A la frontiere £0, on a / 0, car le crochet est alors nul.

Archives. Yol. 17. — Mai-Juin 1935. 14
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Considerons maintenant la valeur i;' 5, oü l'on sait qu'on
arrete l'application pure et simple de la solution polytropique
du probleme; et supposons que la pulsation soit transmise de r'
ä r0 sans autre changement. On a:

I' 5; ^ 0,11110;

] ^|= — 0,08003; 0,000152;
I d s

P{ (5,78) 109; f — (10,16) 109;

les valeurs de ^ et de sa derivee proviennent de la table d'Emden

pour n 3. On a alors:

-w ;

i

Pi — ri(4 + 1,76) + rj(10 + 3,52) — rj(20 + 5,28) ;

Pt — 5,76rx + 13,52 r* — 25,28 r®

relation qui montre que, en gros:

Pj — 5,6

Nous avons rappele ä la fin du numero 7 que la theorie de

M. Eddington conduit ä:

Pj — 5,25>\ environ ;

il y a done bon accord; l'observation montrant que Px ne
1

depasse jamais —, on retrouve la conclusion que est limite

superieurement ä ^ ou ^
Tout cela est bei et bon, mais ne masque pas le deficit

de cet essai, pour lequel nous avons suppose que z etait inde-

pendant du temps; le resultat est que les extrema, tant de Pe

que de P^^' =5), se produiraient en meme temps que ceux
de pulsation; on ne trouve pas le decalage observe. II est

done inutile de pousser plus loin ce probleme et de chercher
ä calculer le facteur A de iq; nous en connaissons d'ailleurs la
valeur en fonction de ri par la theorie de M. Eddington.

Nous etudierons maintenant l'hypothese d'une pulsation
simplement homologue; le rapport x sera done fonction du

temps t. (A suivre)
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