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1935 Vol. 17. Mai-Juin

Le probleme du “décalage ™ des phases
dans les variations périodiques des céphéides

PAR

Georges TIERCY

I. — GENERALITES.

1. — Rappelons tout d’abord en quoi consistent ce que nous
appelons ici les décalages des phases.

On sait que, dans la théorie des pulsations des Céphéides,
le rayon de la «sphére pulsante» varie périodiquement, oscillant
entre un maximum et un minimum. La courbe représentant
cette variation est quelquefois trés simple; le plus souvent, elle
présente des accidents sous la forme de maxima et minima
secondaires ou de points d’inflexion; on I’appelle communément
« courbe de pulsation ».

Simultanément, la magnitude de ’étoile varie périodiquement
et avec la méme période; il en est de méme de la pression et de la
température de la couche renversante, donc aussi de l’état
d’ionisation de cette derniére, et par conséquent du spectre
de I’étoile.

Mais il est bien connu que les extrema de la magnitude ne se
produisent pas aux moments des extrema de pulsation; I’étude
de la courbe des vitesses radiales d’une Céphéide permet de
constater un retard des extrema de magnitude sur les dates des
extrema du rayon. Il y a donc un décalage entre les phases res-
pectives des extrema de pulsation et celles des extrema de
lumiére. Semblablement, les extrema de la presswq dar\1§ ﬁ {,
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180 PROBLEME DU « DECALAGE » DES PHASES

couche renversante ou ceux de la température effective, quoique
précédant quelque peu les extrema correspondants de lumieére 1,
se produisent avec un retard sur les dates des extrema de
pulsation.

La théorie est-elle capable de rendre compte de ces décalages ?
Telle est la question que je me propose d’examiner dans les
pages qui suivent.

La théorie des sphéres pulsantes proposée par M. A. S. Ep-
DINGTON dés 1919 conduit au calcul de ’amplitude de la pulsa-
tion pour chaque valeur du rayon, au moyen d’une équation
différentielle du second ordre?; et ’on peut, par suite, représen-
ter analytiquement la courbe des vitesses radiales. Mais cette
théorie, basée sur une loi de pulsation du type adiabatique, ne
rend pas compte du retard dont il est fait mention ci-avant;elle
est par conséquent insuffisante a ce point de vue.

Apres avolr vainement essayé de la modifier et de la compléter
pour mieux l’ajuster aux faits constatés, je me suis demandé
si la théorie des pulsations de type adiabatique ne simplifiait
pas par trop le mécanisme de la pulsation dans la partie prin-
cipale de I'étoile (c’est-a-dire de r =0 & r =r' = %ro) en
considérant que, dans ce domaine, tous les rayons augmen-
taient ou diminuaient simultanément, réalisant leurs extrema
respectifs en méme temps ? Est-ce bien le cas ? Et n’y a-t-il pas
lieu de concevoir une différence de phase entre les variations
~correspondantes de deux rayons quelconques ? Dans une telle
conception, la pulsation se transmettrait de proche en proche,
du noyau central a la périphérie. |

C’est & ce nouveau point de vue que je me suis placé dans la
présente étude. La théorie que je propose ci-apres semble
permettre de rendre compte du décalage caractéristique en
question, a la recherche duquel je me suis particulierement
attaché.

Quant & l'amplitude de la pulsation pour chaque rayon r,

1 Voir Publ. Obs. Genéve, fasc. 20 a 25. Et aussi: G. Tiercy,
L’équilibre radiatif dans les étoiles. Gauthier-Villars, 1935, chap. XIII
et XIV. Voir aussi: Archives, 5 (15), 1933.

? G. Tiercy, loc. eit., chap. XII.
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on peut, semble-t-il, la considérer comme suffisamment bien
représentée par le calcul basé sur la loi adiabatique, au moins
en premiére approximation 1,

Nous examinerons successivement le cas d’une pulsation
uniforme (contraction uniforme et dilatation homogéne), et
celui d’une variation simplement homologue. J’ai adopté pour
cette analyse une notation de départ comparable & cellede
M. P. Rupzkr 2,

Nous admettrons qu’il ne se produit pas de courants dans le
sens radial ou dans tout autre sens, c’est-d-dire que lesseules
variations du rayon r afférent a une particule donnée pro-
viennent du mouvement de pulsation. Dans ces conditions, on
n’a a envisager que deux équations sur les quatre de I’hydro-
dynamique; en appelant » la vitesse dans le sens radial,

«. oy dr
c’est-a-dire w = =0 00 &

o w ow oY 1 P
—tw—_——4+—=.—= =10,
0L or or p or

, )
= — — 4+ =} =0,
0t +W0r+p(br ’ ;-) ’

ou P = p -+ p’ représente la pression totale, et ) le potentiel
de I’attraction.

LLa seconde équation (1) n’est pas autre chose que la dérivée,
par rapport a r, de cette autre égalité:

oM, oM, dM

o TP
dans laquelle on a:

M, = "iTEfpi‘?dr .

0

Ainsi la masse M, contenue a l'intérieur d’une sphére de
rayon 7 ne change pas, quelle que soit la contraction oula

1 Voir plus loin, aux nos 20 et 21.
% Bulletin astronomique, 1902. Etude de la contraction uniforme.
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dilatation, uniforme ou non; la matiére n’est pas échangée entre
les différentes couches successives; celles-ci sont plus ou moins
serrées, voila tout.

. r : .
Si le rapport » = - reste constant pour une couche donnée,
1]

la contraction ou la dilatation est dite uniforme; si la pulsation
est simplement homologue, le rapport z est fonction du
temps . '

On apercoit tout de suite que, dans le cas d’une contraction
uniforme, les extrema de la pression totale P coincideront dans
le temps avec ceux du rayon r; car le minimum de P corres-
pondra a la phase du maximum de place disponible, tandis que
le maximum de P se produira lorsque la place sera le plus
restreinte; il ne peut donc pas étre prévu de décalage dans ce cas.
Un décalage ne peut intervenir que si z est une fonction du
temps, fonction d’ailleurs périodique, et de période égale a celle
de la variation de magnitude; dans ces conditions, certaines
couches seront comprimées plus que d’autres au méme instant,
comparativement a ce qui se produit dans une transformation
uniforme.

Il ne sera pas dépourvu d’intérét, cependant, d’analyser de
plus pres le cas de la pulsation uniforme; nous aurons I’occasion
de retrouver la limite de celle-ci.

JI. — PULSATION DITE UNIFORME.

2. — Formaule générale de P. — La pression totale est donnée,
comme on sait, par 'expression suivante, résultant de I'inté-
gration de la premiere égalité (1):

To
oY dw
P=fo|5r—%]e. )
T

oul'on a:
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Pindice zéro se rapporte aux valeurs de surface. Nous poserons
ici, en reprenant les notations de Rudzki:

r=, k=1, 3)
Fa I'g
d’ou I’'on tire:
f — _?_ et éi e _— i t_%::
T dt <2 dt
On trouve:
nv }vI?" M?" 9
by —m =6 5

fe 2 @50 1 e
dt | w\dt = d? |’

et pour la pression:

1
A oM GM ‘dt\? 2z d=
P:/T?" L i & r'TQ_Z[z(%)—%’ﬁzg] £E (%)

v dx  hma® 2 x> K

. . , dt . L .
Cette expression met en jeu les vitesses Ei qui caractérisent

la transformation.
S1 ces vitesses sont négligeables, ¢’est-a-dire si la transforma-
tion est extrémement lente, 'expression (4) se réduit a:

P =10y, (5)

et la distribution des pressions P dans le corps de I'étoile est
réglementée par la fonction ¢ (z); on retrouve la le eas d’appli-
cation du théoreme du viriel, pour lequel il faut considérer une
durée extrémement longue. La pression est alors inversément
proportionnelle a la quatrieme puissance du rayon, puisque

1 5 : ; :
T=_;et la valeur que prend < & un instant ¢ détermine la
0

distribution de P a cet instant.
Mais si les vitesses de transformation ne sont pas négligeables,

il faut garder, dans I’expression (4), les termes en %,; et %t—:,

c’est ce qui se présente dans le cas des Céphéides; et I'on voit
qu’alors la pression ne varie plus comme I'inverse de r4; on ne
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se trouve plus dans les conditions analytiques qui étaient celles

d’une étoile invariable. D’ailleurs le fait que P n’est plus pro-
4

portionnelle & o3 entraine que la température T n’est plus
proportionnelle & 'inverse du rayon.

3. — Cas dune transformation extrémement lente. —
Entendons-nous bien; la transformation s’effectuant avec une
vitesse négligeable, la formule (5) donne la distribution des
pressions P dans toute I’étoile, puisque » reste constant pour
une couche déterminée; si, au bout d'un temps extrémement
grand, 7, a changé quelque peu de valeur (donc <), la distri-
bution des pressions est encore donnée par la fonction ¢ (),
(ui n’a pas varié.

D’autre part, dans de telles conditions de stabilité, c¢’est-a-dire

-~

lorsque les vitesses i—; sont négligeables, la distribution de P

a lintérieur de Détoile est acquise par la solution de
M. Bialobrzeski ou par celle de M. Eddington?!; on part,

7

comme on sait, de I’équation de I’équilibre mécanique:

dP .
= 80 (6)

avec p = “EQT &t p'= %(;T‘*, et en posant:

£
6 = uk, u = u}, ]:muc (7)
on trouve la distribution 2:
!1.
P = Cp’ = Cut = Cu, ¢t , (8)

ou C, u, et ® sont des constantes, et ou ¢ est donnée par

I'équation différentielle d’Emden (classe polyvtropique n = 3):

2

IS

g d¢r 3 —
(l‘i2+_.6l—ET. =8 . (9)

v G. Tiercy, L'équilibre radiatif dans les étoiles. Gauthier-Villars,
1935.
* Loc. cit.
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S1 alors on compare les deux expressions de P:

| P =t =22,
? P = Cuy ' = P, ¢*,
on voit qu’on a, pour la fonction ¢ (2):
p(z) = P, ¢ . (10)

Cette relation établit le passage de la solution de M. Rudzki
a la solution de M. Bialobrzeski et de M. Eddington. Remarquons
qu’au centre de 1’étoile, on a:

b=1, o.x = rnP,.
Avec la loi de Mariotte et de Gay-Lussac, on a encore:

T = 7. 9,(x) = &L"_) ) (11)

Fy

distribution de la température & un moment donné; la fonction
@, (%) caractérise cette distribution. Or, avec la solution de
Bialobrzeski et d’Eddington, on a:

T=u®-¢="T,4, (® = const.) ; (12)
en identifiant (11) et (12), il vient:
@1 (x) = rT, ¢ . (13)

A ces deux relations donnant respectivement P et T en
fonction de 7, il faut joindre la suivante:

p = - f(x), (14)
qui est tirée de:
r
B 3 oM
: — 2 I — . r
MT o !11-:‘/ préds ou T Grx dx

0
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L’égalité T = 7. ¢,(%) constitue ce que l'on a appelé
le paradoxe de Lane.
Les expressions

P = =t. q(x) et T =1 ¢,(2)

ne sont donc valables que si la transformation, est infiniment
lente; on se trouve alors en présence des conditions de stabilité
d’une étoile invariable, C’est le cas ou I'on peut utiliser le
fameux théoréeme du viriel de Clausius.

4. — Transformations plus rapides. — Or, dans le cas d’une
Céphéide, la variation de r, est au contraire rapide; les vitesses

j—;-r ne sont plus négligeables; les expressions (5) et (11) ne sont

plus valables; seule 1’égalité (14) subsiste, puisque 2 est
indépendant du temps.

La distribution de la pression P est alors donnée par
Iexpression (4) compléte, que nous reproduisons ci-apres:

1

P [ \oM, 2 (4= L L](d_
o 0% '41':?."? z? ) 13‘dt) <2 de? 51:

k4

La premiére partie en est proportionnelle a t¢; elle correspond
a la solution polytropique du cas de stabilité:

P = Curd' = ¢ 9(x) 3

la seconde partie est proportionnelle & une fonction de =,

d~ , d2=
5 Bt = o . On peut écrire:

d‘L‘ “SM 1
— -1, - . 3 M
P = T <P(/-) [ dt dt' l [‘ lj;]'r/ dt! ’

ou bien, en désignant 'intégrale par @ («):

P =t 9z + [CZT — “(cfz:)] HR - )

Les quantités, ¢ (z) et ®(») sont des constantes pour une
valeur donnée du rayon; et 1'on voit que, pour la couche
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correspondante, la pression :P dépend, non seulement de <

1 . X d*z
(donc de ~), mais encore de - et —
s dt dt?

Si 'on donne a r; une valeur moyenne r;, ;, on aura ce qu’on
peut appeler les données statiques, autour desquelles les variables
oscillent durant la pulsation. On écrira:

ou:

comme on a vu ci-avant.
Il résulte de ces remarques et de Iexpression (15) que la
variation 3P de la pression est due 4 deux causes:

1o La variation du rayon dans la forme statique:

P =t gx) = o7 _ Pt

n
Ty

qui entraine une variation de P, centrale; cette valeur de P
serait suffisante dans le cas d’une modification extrémement
lente du rayon r,.

Cette premieére partie de la variation de P & partir de I'état
statique peut s’écrire:

4 1
PP = o) — <o) = ot [T—]

4
Ty To,1

. ; . 4 dr
20 La variation due aux termes relatifs a la vitesse = de

transformation; cette variation a pour expression:

d*v 2/dVT
% — (%) ] I -

1
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On a donc au total, a partir de P;:

3P; — olx) - [r— ] + |25 —2 (9;—:)] D () . (16).

T

Si I'on adopte la notation:

P—P, = PP, =3P, (17)

ol I'on voit bien que P, ne peut pas étre supérieure & 'unité en
valeur absolue, il vient encore, avec P, = 1} . 7():

T

d’~ 2 fdt\*]-
o {x) - [+* — Tﬂ Al [:i’? — (E:) ] - O (x)

8P, y
Py== Pi = e : ’
i T CP(:')
ou bien: _
e s d*x  2/dx\*T @(»)
Gp =[]+ T -2E) Sy e

T

L’étude de cette fonction P, doit permettre de découvrir le
décalage des phases des extrema de P sur celles des extrema
du rayon, si ce décalage existe.

5. — Les fonctions t et ®. — Rappelons qu’on a posé:

/ 1

oM GM
\ cp(?.):[‘ z, z-dx,

J 0= hr
v

i
oM, 4
} o) = [

[} 0%
%

et la formule (10) a précisé la valeur de @ () en fonction de la
variable ¢ d’Emden: |
ofx) = P9t

la valeur centrale de ¢ étant ¢, = 1.
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Pour obtenir une expression plus commode de ® (%), nous

retiendrons que:
3 0 Mr

b dw

p:

comme on ’a vu par (14); de sorte qu’il vient:

er 1 . %P
o hwmw g3
et 'on a:
i | 1
0%
(I)(z):l/“‘r:_3 dx = frﬁpx-dz == rg[lpz-dx.
% * '3

et si, dans cette expression, on remplace p et r par les
variables (7) d’Emden, on trouve:

%o
O = 2. [ 5ds (19)

d’ailleurs, la théorie des spheéres gazeuses en état d’équilibre
polytropique donne !:
. 4 I,
o' = i :

o M est la masse totale de I’étoile; pour la classe polytropique
n = 3, les tables d’Emden donnent:

£, = 6,90 et I, = 2,0182 .

Par les formules (10) et (19), on peut calculer ¢ et @ pour
chaque valeur du rayon, ¢’est-a-dire chaque valeur de &; il
suffit d’utiliser les tables d’Emden pour n = 3.

Y G. Tiercy, L’équilibre radiaiif dans les étotles, loc. cit.
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On peut cependant simplifier le calcul de (19) en tenant
compte de I’équation (9), qui détermine ¢:

on en tire:

‘o fo w ‘o
Jy-eag=— [t gar—af

o

puisque Y, = 0; maintenant, la table d’Emden donne:

i
&
o
|
I —
A
I
s

d]~ [V = aﬁj—‘g—w - (33) + ¢

o (o d Y )
I, = — (\g d‘g)n‘ 2,0182 ;
on trouve ainsi:
o
. di
3. FJF — FoX 1 .
l/y £dE = Loy + b+ 0,278
et:
E d =
O () = aﬂg(g% P (),2/8) . (20)

Cette expression s’annule & la frontiére de la sphére poly-
tropique, de méme que la quantité o (»).

Ainsi les égalités (10) et (20) permettent un caleul numérique
facile de ¢ et @ pour toute valeur de &

6. — Variation de P. — Partons de expression (15), que nous
reproduisons ci-apres:
d*~ 2 (d'r 2
i e LA by [l .
P = 1" o(z) + ®@(») [dﬁ = dt)]

\

Désignant toujours par I'indice (¢) les conditions moyennes
ou de stabilité, nous posons ensuite: '

5 £, == rO,i(i + ),

(21)
-



DANS LES VARIATIONS PERIODIQUES DES CEPHEIDES 191

en rappelant que:

1 1
T = — ) ‘[’i oz g
o Po, i
On obtient:
dz dr, d= d*r,
e = PR ... p— 22
dt dr dt® vod? (22)
d’olt
d?r 2 dr\?
P == ol oL 4 ; L - e 1 9:
1‘? /) (1 Tl) + (D{/) T'L[ dl_g 1 71_( dt )] y ( ?)
puis:
/ 1 1 2 3, i
\ + 1= T+ r == R Fr g A e 3
2 ey e o O e o
1
1 + T; = by
et les dérivées suivantes:
dTl _ dr1 | ) ] ;.3 .
T _%(—1—%%1——371—}— hri— ...
d?r dir 5 . dr\2 9 3 .
dz-zl = dtjl{—"/l + 27"1—3]"1 + ...) + (T;) & (2 ”“6’11 + 12"1——20"1 T oeee) :

de sorte que I’expression (23) devient:

[P = e(x) (1 — &r, + 105, — 207" + ...)

+ ©(x) - T, [‘Z;l (—'1 + 2r, — 31"?) + (%r_;)- (2 — 6y 12r; — 20!‘?) —
Ir,\? |
( —2(1 + ) (—1 +2rl—3ri+&r?1’ - (%;1)] :

nous conserverons les termes de cette quantité jusqu’a 1'ordre
de 73; et nous rappelons que Ti0(x) = P,.

Admettons maintenant que nous ayons affaire avec le cas
le plus simple, celui ou la variation de r, serait donnée par une
fonction trigonométrique élémentaire:

r, = A cosN¢ ,

ou N = constante; il est entendu que, le plus souvent, la
courbe de pulsation correspond 4 une fonction moins simple;
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mais cela n’a aucune importance ici, puisque le but essentiel
de cette analyse est de dépister un décalage éventuel.

On a, dans ces conditions:
d*r,
dr?

o 2 -
= — N?pr, ;

\ Wy . AN sinNe ¢
dt

) (d;t) A2N? sin? Nz = A2N? — N2;{ ;
d’ou:
P =P, (1 —&r, + 107 — 207))
+ O - T [w(;«1 — 92 ¢ 3;«3)] . (28)
en abandonnant les puissances de r; supérieures a la troisieéme.
En ordonnant (24) par rapport a ry, il vient:
P =P, +nrn[N. 0.5 —4P]
— ri[2N*z;@ —10P;] + r{[3N2r; @ —20P;] . (25)
Ainsi, avec cette approximation, P apparait comme un poly-
nome du troisiéme degré en r,, et dont les coeflicients dépendent

de & par I'intermédiaire des fonctions o (%) et @ (=),
Or, avec (10) et (20), on a:

Pp= <igle) = PC ;o (répartition statique) ,
) N2, dv (25)

et d’ailleurs, d’aprés la théorie de I’équilibre radiatif stellaire 1:

1
=G . ki_o -1753](,)_97
)mszq_- M, = 2,0182 ;& = 6,90 ;

ces valeurs correspondent a la classe polytropique » = 3; on
en tire:
P. = {4t- =G %\ - 2_ gt P (28)
e . = . = . . 28
y (ro,i) (énmto) fa

1 G. Tiercy, Léquilibre radiatif dans les étoiles, loc. cit.
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Remarquons que, dans la couche renversante (limitée par la
valeur &), le produit (N27,®) est nul ou presque nul, puisque

la fonction (Eg% + ¢ + 0,278) s’annule pour £, = 6,888 1.

On peut donc poser que, pour la couche renversante, c’est-a-
dire la couche observée, il ne reste que les termes en P; dans
I’expression (25):

P, = P;[1 - 4r + 10 —20r] . (29)

= 1

Nous avons écrit P, pour désigner la pression dans la couche
renversante, comme on écrit souvent T, pour indiquer la tem-
pérature effective, qui réegne en moyenne dans cette méme
couche.

Pour les extrema de P,, on aurait done:

dPe . dr,

— i (4% + 20r —60n)

. . dr .. :
valeur qui ne s’annule que si ?1,?1 = 0. Ainsi les extrema de P,

se produiraient, dans I’hypothése de » indépendant du temps, en
méme temps que ceux de r;. Et 'on a rappelé au début que
cela ne correspond pas a ’observation.

Mais ici, nous devons avoir un scrupule; 'expression (29) a
été obtenue en donnant a £ la valeur £,; or, les tables d’Emden
ne sont directement applicables, pour un modele d’étoile, que
jusqu’a £ = 5, et non pas jusqu’a la limite &

On ne pourrait done utiliser I’expression (25) que jusqu’a la

; i 3 3
valeur £ = 5, qui correspond a un rayon r’ = 770 de r’ a r,,

couche qui ne contient pas méme 19, de la masse de I’étoile, on
pourrait admettre que la pulsation se transmet sans autre
perturbation 2. Dans ces conditions, il nous faut chercher quelles
sont les dates des extrema de P pour £ = 5.

! Avec les variables d’Emden, c’est pour £ = 6,888 que la tempé-
rature T prend la valeur de surface T,; on peut donc considérer
Zo = 6,888 comme donnant la limite effective de la photospheére
stellaire, au lieu de la valeur 6,90 d’Emden, pour laquelle T devien-
drait nulle.

2 Voir a ce sujet: A. S. Eppineron, The Internal Constitution of
the Stars; G. Tiercy, L'équilibre radiatif dans les étoiles, loc. cit.
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7. — Extrema de P. — Reprenons done 'expression (25), et

posons pour abréger:
f et N2 - (I) - T oo

1 ?

2

P="P,+r(f—4P)—r(2f—10P) + ri(3f — 20P,) . (30)
Il s’agit de voir si ’on peut avoir %]’; = 0 autrement qu’en
%. Cela conduit a I'équation:

3(3f — 20P)r; — 2(2f —10P)r, + (f—4P) = 0,

annulant

qui ne peut avoir de racines réelles que si:
— 5f + 56 fP, — 140P; = 0 ,

c¢’est-a-dire pour:
3,767P, < f < 7,433P; .

Or, les valeurs positives de f ne se produisent pas tant que
£ = E,, c'est-a-dire tant qu’on reste a I'intérieur de I’étoile.

11 en résulte que %) = 0 n’arrive que pour %1 = 0; les extrema

de P se produisent en méme temps que ceux de pulsation.
Remarquons que, prés de la frontiére &, mais a l'intérieur,
la quantité:
N8

pee N (gd_‘l’ I 0,278)

3
©'ry dt

est négative et trés petite en valeur absolue. D’autre part, P;
est de l'ordre de grandeur de quelques baryes seulement et
n’est autre que P,

Prenons par exemple le cas de I’étoile Y Sagittarii; la théorie
de I’équilibre radiatif conduit aux résultats suivants!:

re = (1,576) .10 cm;
M = 86 Mz = (1,71).10%gr;
pe = 0,05896;

T, = (9,22) . 108;
{ P. = (3,8).103;

ue — 0,3892 = o

2

o oWl =

—

[+

O — - = (2,37).10%.

Ue

L G. Tiercy, L'équilibre radiatif dans les étoiles, loc. cit. n°s 62 et 98.



DANS LES VARIATIONS PERIODIQUES DES CEPHEIDES 195

On trouve, d’autre part, que la pression P, de la couche
renversante oscille entre 13,3 et 2,8 baryes; on a donc la valeur
moyenne:

P, ~ 8 baryes .

Si on rappelle que P; = P, ;4 et quon fasse P, = P, =8
dans cette égalité, on trouve:
(3,8) - 1013 . §t = 8 ;
$ = 0,00068 ,
valeur qui correspond bien a ’ordre de grandeur de ¢ tout pres

de la frontiére de ’étoile; on sait que ¢ = 0 lorsque & = 6,9.
L’égalité (30) donne encore:

Py =§—1 = rl(gw.gé)éri(%]fMN) —lwri(g———%)) :

1 1 ] 1

ol ) (o2~ ) o

2, 1 1

Il est intéressant de comparer cette expression & celle que
donne la théorie de M. Eddington pour la pellicule frontiére:

T
Pl e I’l(li + N—rﬂ) 5
E-{)
o Moy : 1
ou —* = 1,25 environ, de sorte que P, = — 5,25r; environ.
8o

Nous reviendrons sur ce point dans le numéro suivant.

8. — Lumite de la pulsation. — Pour fixer les idées, prenons
encore le cas de I’étoile Y Sagittarii. On a:

N =25, 0= 498821 sec. (510018 57335)
N = (1,25961) - 10™° ; - £, = 6,888 ;

NE

ﬁg—‘i"— = (4,8386) - 10 ;

w rg,i

f = (4,8386) - 10“[5%% L+ 0,278] .

A la frontiére &, on a f = 0, car le crochet est alors nul.
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Considérons maintenant la valeur £’ = 5, ou I'on sait qu’on
arréte ’application pure et simple de la solution polytropique
du probléme; et supposons que la pulsation soit transmise de r’
a ry sans autre changement. On a:

S g = 5; Y = 0,11110;
, j—qé = — 0,08003; Yt = 0,000152;
- Py = (5,78) . 10%; f = — (10,16) . 107;

les valeurs de ¢ et de sa dérivée proviennent de la table d’Emden
pour n = 3. On a alors:

f
— = = 1,76 ;
Pi
P, = —r (& + 1,76) + 7 (10 + 3,52) — r- (20 + 5,28) ;
P, = — 5,767, + 13,52r, — 25,287 ,

relation qui montre que, en gros:
P, = —23,6r .

Nous avons rappelé a la fin du numéro 7 que la théorie de
M. Eddington conduit a:

P, = —5,25r, environ ;
11 y a done bon accord; l'observation montrant que P; ne

dépasse jamais—, on retrouve la conclusion que r; est limité

" , 4 1
superieurement a T TE

Tout cela est bel et bon, mais ne masque pas le déficit
de cet essai, pour lequel nous avons supposé ‘que » était indé-
pendant du temps; le résultat est que les extrema, tant de P,
que de P,(&" = 5), se produiraient en méme temps que ceux
de pulsation; on ne trouve pas le décalage observé. Il est
donc inutile de pousser plus loin ce probleme et de chercher
a calculer le facteur A de r;; nous en connaissons d’ailleurs la
valeur en fonction de r; par la théorie de M. Eddington.

Nous étudierons maintenant I’hypothése d’une pulsation
simplement homologue; le rapport = sera donc fonction du
temps {. (A suivre)
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