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LA lECAMUE EES CORPS EEFflRMABLES

PAR

K. WEISSENßEltG
(University College, Southampton)

(Avec 5 flg.)

(suite et fin)

III. — La dynamique de l'element de volume et les
PRINCIPES FONDAMENTAUX DE LA MECANIQUE,

Pour appliquer le principe de d'Alembert ä l'element de

volume d'un corps deformable nous suivons le chemin suivant.
Nous considerons dv comme un agregat de N points mate-
riels Pn. Si chaque point pouvait etre deplace arbitrairement
dans l'espace nous aurions 3 N degres de liberte pour les

deplacements possibles de dv. Mais par definition dv ne peut se

deplacer que d'une maniere lineaire. Soient (1) et (1) deux
situations arbitraires, xi et x{ (i 1, 2, 3) les coordonnees

correspondantes d'un point materiel par rapport ä un Systeme 2
de coordonnees trirectangulaires. Le deplacement (11) sera

represente par la transformation lineaire

xi Ti + xh ^hi '

oü Tj et <\ihi peuvent etre consideres comme les composantes
d'un vecteur t et d'un tenseur cjj. Nous avons done douze degres
de liberte, 3vj et 9^, pour les deplacements possibles du

point Pn. Les composantes xi et <\>hi peuvent etre considerees

comme des coordonnees geometriques generalisees de dv (ou ce
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qui revient au meme de l'agregat des Pn dans dv), determinant
la position (1) de de par rapport ä la position (1) choisie comme
position de reference. Si on introduit un espace ä 12 dimensions,
chaque position de dv ou de l'agregat des Pn pourrait etre
represente par un point ä 12 coordonnees. Le deplacement
lineaire (11) est represente dans cette image par le vecteur

(11), ayant pour origine le point qui represente la position (1)
et pour extremite le point representant la position (1). Dans
le Systeme de coordonnees introduit, ce vecteur a les douze

compostantes xi et <\>hi.

La cinematique de dv est decrite alors si l'on donne et <\ihi

en fonction du temps. Chaque coordonnee determine la position
de dv selon le degre de liberte associe ä cette composante.

La dynamique est basee sur les enonces de Newton et

Boltzmann, qui precisent la definition fondamentale de la force

mecanique. Ces enonces se resument — comme on l'a mentionne
dans l'introduction — en un principe de variation virtuelle,
le theoreme de d'Alembert.

Nous admettons que Paction dynamique exercee sur dv est

representee par des variables forces exterieures, fonctions du

temps, /eCT et /e^, agissant respectivement sur la surface er

et sur la masse p. de dv. Le probleme exact de la mecanique
de dv revient ä determiner une composante de Paction
dynamique correspondant ä chacun des douze degres de liberte
choisis pour la description de la cinematique, puis ä determiner

pour ces douze degres de liberte les relations entre ces compo-
santes dynamiques et les variables cinematiques.

La determination des composantes dynamiques correspondant
aux composantes cinematiques introduites se fait en ecrivant
le travail virtuel accompli par dv. Soit St^e la densite du
travail virtuel,

8®e PmSxm

oil xm represente une composante d'une coordonnee generalisee
de position dans le degre de liberte m, et pm la composante
dynamique correspondant ä xm; 8xm est une variation virtuelle
de xm. La direction et la dimension de pm varient selon le choix
de xm; si par exemple xm represente une composante de trans-
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lation, pm est une densite vectorielle de force, si xm est un angle
de rotation, pm est une densite tensorielle de moment de

rotation, etc.
En general les pm sont des composantes de densites tenso-

rielles, c'est-ä-dire des pseudo-tenseursx, pourvu que les xm
soient des composantes de tenseurs, car le produit des pm par
les 8xm est une densite scalaire, done un pseudo-scalaire. Si on
determine les composantes dynamiques correspondant aux
composantes et tphi de la cinematique, on trouve des relations
extremement compliquees en general, etant donne la liberte

que nous avons dans le choix des variables. Nous ferons ce

choix de maniere que le principe de d'Alembert s'exprime pour
dv dans la forme la plus simple et la plus intuitive possibles, et

nous determinerons les variables cinematiques correspondantes
au moyen du theoreme du travail virtuel.

Pour adapter la forme dans laquelle nous avons introduit le

principe de d'Alembert au cas particulier d'un element de

volume dv il faut appliquer ce principe ä la portion infinitesimale
dm de la matiere contenue dans dv — ce qu'on fait en rapportant
les travaux ä l'unite de masse. Les variations virtuelles de ces

travaux par unite de masse seront designees par S®ei*, SSe*

et
On a tout d'abord

(8c&ei*)r (S'Se*)r + (8Si*)r

Or (S^e*)r est nul pour toute action dynamique exercee dans
les six degres de liberte qui correspondent aux deformations

pures virtuelles; ce principe exprime par consequent que toute
action dynamique exercee sur un element suffisamment petit du

corps peut etre decomposee ä chaque instant en deux parties:
Une partie, attachee aux six degres de liberte de la deformation

pure, effectue un travail virtuel dans un de ces six degres

au moins, mais un travail virtuel nul le long de tout deplace-
ment virtuel rigide; il y correspond comme action dynamique une
densite tensorielle symetrique P appelee la tension et definie par

1 La theorie des pseudo-tenseurs a ete donnee par Brillouin
(Ann. de Phys.. Ill, p. 251, 1925).
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(S't5e*(P))J, 0; c'est eile seule qui est ä chaque instant en

equilibre avec les forces interieures. L'autre partie, attachee

aux six degres de liberte qui correspondent aux deplacements
rigides, effectue un travail virtuel selon ces six degres de depla-
cement rigide seulement. Cette partie seule est en equilibre
avec les forces d'inertie. Nous la decomposerons en une densite
vectorielle de force F et une densite tensorielle antisymetrique
de moment de rotation M, de sorte que F n'effectue de travail
virtuel que par suite d'une translation, et M par suite d'une
rotation. En designant par J et 3 la densite vectorielle des

forces d'inertie et la densite tensorielle antisymetrique du

moment resultant des forces d'inertie, le principe de d'Alembert
s'exprime par

F + J 0

et
M + 3 0

et
P — P 0

Les composantes de ces densites tensorielles F, M et P

sont les composantes dynamiques les mieux adaptees au

principe fondamental de la mecanique. Nous nous proposons
premierement de determiner F, M et P en fonction des forces

exterieures fea et et deuxiemement de trouver les variables

geometriques correspondantes.
Nous defmirons des variables dynamiques en ecrivant des

relations de proportionnalite entre je,x et de, d'une part, fea et a,
de l'autre:

fe^ F,f.dv
1

fe„ n yOx
1

-

1 a est une surface, done un tenseur antisymetrique de deuxieme
ordre. C'est le produit vectoriel de deux vecteurs a et b infmiment
petits, qui s'exprime dans la forme tensorielle par:

a [ab] ~ ejei1

d'oü Ton tire la forme pseudo-vectorielle

aibjek

les trois indices i, j, k se rapportant aux trois axes de coordonnees

pour lesquelles on choisit un ordre de succession i j k.
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F,j est une densite vectorielle et II une densite tensorielle.
On a alors

p I(JI + fl) avec P P

M y (II + fl) avec M — M

F F„ + div P i.

Si on exprime F, M et P dans un Systeme trirectangulaire
portant des vecteurs unites ek on trouve pour F trois compo-
santes dynamiques Fft dans les trois degres de liberte de la
translation. On trouve de meme neuf composantes pour M, mais
ä cause de l'antisymetrie, les trois composantes Mtt sont nulles
et Mrk — Mftl, soit: trois composantes independantes pour
les trois degres de liberte de la rotation. Enfin, il y a neuf composantes

pour P, mais ä cause de la symetrie, Plk Pftl, ce qui
reduit ä six le nombre des composantes independantes de P

pour les six degres de liberte de la deformation.
II nous faut maintenant les variables cinematiques en fonc-

tion de t et et correspondant ä F, M et P. Pour les trouver,
il faut reprendre la decomposition du deplacement lineaire en

1 Les grandeurs tensorielles II, P et M qui sont definies ä l'aide
1

de sonI *Ies densites tensorielles qui, par multiplication avec le

volume donnent de vrais tenseurs. On les appelle des pseudo-tenseurs.
Si on veut eviter l'emploi des pseudo-tenseurs il faut poser
/ct III de, oü III represente un tenseur du troisieme ordre et
da le meme tenseur antisymetrique du deuxieme ordre que plus haut.
On obtient pour la tension et le moment de rotation de vrais tenseurs
de troisieme ordre Pra et Mln; leurs composantes se determinent
ä partir de Celles des pseudo-tenseurs P et M de la maniere suivante

(Mmhu 0 •

'Pmhu - (Pnili,

(Mm)it3 - jMl
Nous preferons nous en tenir aux pseudo-tenseurs, qui sont plus

simples que les vrais tenseurs, ayant moins de composantes (voir
L. Brillouin, l. c.).
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translation, rotation et deformation, et faire correspondre ä

ees trois mouvements une grandeur vectorielle ou tensorielle

qui satisfasse les conditions imposees par le theoreme du travail
virtuel. Ces grandeurs vectorielles et tensorielles, multipliees
respectivement par F, M et P, doivent donner la densite du

travail virtuel correspondant.
Ces variables cinematiques cherchees sont les suivantes:

le vecteur de translation t correspondant ä F, le tenseur

d'angle de rotation w In= In (Jf^2 • <]>) correspondant

ä M (on a w — w), et le tenseur de deformation
s sa In $a ln(^ (j)) correspondant ä P (on a s s).
La translation est representee comme d'habitude par un
vecteur. La rotation est representee par un tenseur antisyme-
trique w. Enfin, la deformation est caracterisee par un tenseur

symetrique s dont les axes principaux sont trirectangulaires
et paralleles aux directions dans lesquelles l'allongement
trirectangulaire anterotationnel est elfectue. Les valeurs

propres sk de s mesurent la deformation dans ces directions,
deformations representees par le logarithme de l'allongement.
Les composantes wik et sih correspondent aux composantes
FÄ, Mife et Pift, et sont considerees comme composantes des

variables geometriques generalisees dans les douze degres de

liberte de translation, de rotation et de deformation. Ayant
determine les variables cinematiques et dynamiques dans

chaque degre de liberte nous trouvons finalement ce que nous

cherchions, la densite du travail virtuel en fonction de ces

variables:
8??e F- T + M- -«' + P- -s.

Nous pouvons encore donner au principe de d'Alembert
une autre forme, qui n'est pas limitee aux deplacements
virtuels rigides, mais permet d'etudier les variations des

travaux virtuels par unite de masse correspondant ä tous les

deplacements virtuels admis pour dv, c'est-ä-dire tous les

deplacements lineaires virtuels.
Nous ne donnerons ici cette forme que pour le cas special

dans lequel le volume ne varie pas. Dans ce cas les variations
virtuelles des travaux par unite de masse peuvent etre rempla-
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cees par Celles prises par unite de volume qui seront designees

par 8S&e et Sfst (sans asterisque).
Remarquons que dans ce cas

S© i — (8® i)T 0

et
S'Se— (8'&e)d

oü (S®e)d est la densite du travail virtuel accompli par les

forces exterieures le long d'un deplaeement particulier qui est

une deformation pure. Cela nous permet d'ecrire

(8cSei)r 8f5e + S^t— (§¥s>e)d 0

Rappelons que
8 ©ei 8"Se + 8®;

oü §%ei est la somme des densites de travaux virtuels accom-
plis par les forces exterieures et les forces d'inertie, on obtient

S'Set (8tt>e)d P s

Cette relation exprime l'equilibre entre la partie des forces

exterieures qui agit dans les degres de liberte associes aux
deplacements rigides et les forces d'inertie; eile fournit de plus

pour la partie restante des forces exterieures — c'est-ä-dire

pour la tension — un theoreme d'anisotropie virtuelle, qui sera
discute dans le chapitre de la mecanique.

Remarque: Application de la theorie des groupes avec

deplacements lineaires successifs. — La decomposition que nous
avons faite des variables mecaniques est valable pour chaque
instant separement. Elle ne donne aucun renseignement sur
la composition des actions successives. Ce probleme doit etre
etudie tout specialement. Nous n'insisterons ici que sur le

fait que les variables mecaniques attachees aux six degres
de liberte des deplacements rigides (translation et rotation)
forment un groupe par rapport ä une suite d'operations effec-

tuees sur le meme do. En elfet, si on applique ä do successive-

ment deux deplacements rigides, ou successivement des densites
de force et des moments de rotation, le resultat est toujoursun
deplaeement rigide, une densite resultante de forces ,ou un
moment de rotation resultant. II n'en est pas de meme pour les
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variables attachees aux six degres de liberte de la deformation.
En effet le resultat de deux deplacements successifs dont chacun
est une deformation pure n'est pas necessairement une
deformation pure mais en general un deplacement lineaire compose

d'une rotation et d'une deformation pure. Dans le cas

seulement oü les deformations pures successives sont paralleles
ä des directions fixes par rapport au milieu deformable ou,
ce qui revient au meme, fixes par rapport au Systeme de

reference Zm, dans ce cas seulement les deformations pures forment
un groupe, c'est-ä-dire que deux deformations pures successives

sont äquivalentes ä une seule. La theorie exacte de la
superposition des deplacements successifs a ete donnee dans le

chapitre precedent. On peut dire en resume qu'un element
suffisamment petit d'un corps materiel quelconque cede aux
forces exterieures, ä chaque instant, selon les six degres de

liberte qui correspondent aux deplacements rigides exactement
comme un corps rigide de meme masse, c'est-ä-dire comme si
les autres degres de liberte n'existaient pas. Et si l'on fait agir
sur dv, ä partir d'un etat (0) isotrope et non-travaille, une
tension changeant d'intensite mais dans des directions fixes

par rapport au milieu deformable, dv cede (dans le Systeme
de reference defini par ces directions) selon les trois degres
de liberte de la deformation comme si les autres degres

n'existaient pas. On obtient un resultat analogue en effec-

tuant des allongements trirectangulaires sans changer l'orien-
tation. Par contre cela n'est plus vrai si la tension ou les

allongements successifs changent d'orientation par rapport au
milieu.

Dans le developpement systematique de la mecanique d'un
element de volume dv nous notons done les elements suivants:
1° une mecanique rigide pour six degres de liberte (translation
et rotation), 2° une mecanique de deformation pure pour les

trois degres de liberte associes, 3° la mecanique des

deformations quelconques, fondee sur des lois de superposition qui
sont donnees dans le chapitre precedent et qui doit etre etablie
dans les neuf degres de liberte des deformations et des

rotations, 4° la mecanique des deplacements lineaires quelconques

pour les douze degres de la liberte de dv.

Archives. Vol. 17. — Mars-Avril 1935. 10
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IV. — LA MECANIQUE DE L'ELEMENT DE VOLUME.

1. — Theorie thermodynamique.

Dans revolution des systemes mecaniques (en particulier des

matieres colloidales) peuvent se presenter des phenomenes
tres divers; par exemple des phenomenes calorifiques reversibles

et irreversibles, des changements de structure, des

transformations chimiques, des phenomenes electriques, etc. Tout
changement d'etat est determine ou non du point de vue meca-

nique suivant qu'il peut etre represents ou non, independam-
ment du temps, comme fonction des variables mecaniques
seules. Nous aurons pour objet de rechercher l'expression de

lois entre les variables mecaniques et les changements d'etat
determines du point de vue mecanique. Si l'on se placait du

point de vue plus strict de la mecanique ordinaire, on se

bornerait ä ecrire de& lois entre les variables mecaniques elles-

memes, done ä determiner une liaison entre les variables

dynamiques et l'etat cinematique.
Pour la representation quantitative des lois de la mecanique,

une unification des variables est necessaire. Si l'on choisit
celles-ci de telle maniere que ces lois s'expriment aussi simple-
ment que possible, on trouve (voir les chapitres precedents)

que la densite de force F, le moment de rotation M et la
tension P, d'une part, et le vecteur de translation t, le tenseur

antisymetrique d'angle de rotation W et le tenseur symetrique
de tension S ainsi que les vitesses, accelerations, etc., de ces

grandeurs sont les variables mecaniques qui conviennent le

mieux. Le probleme de leur combinaison a ete etudie dans le

chapitre eonsacre ä la superposition.
II n'a ete mis en jeu jusqu'ici que la mecanique proprement

dite, se bornant ä l'application du principe de d'Alembert, qui
ne fournit aucun renseignement sur la liaison qui existe entre
l'etat de la tension et l'etat de la deformation. Pour combler
cette lacune (voir l'introduction), nous proposons dededuire
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des deux premiers principes de la thermodynamique une « equation

d'etat mecanique » qui, jointe au principe de d'Alembert,
conduira ä une description generale de revolution des corps
deformables, pour autant qu'ils sont determines du point de

vue mecanique. Les deux premiers principes de la
thermodynamique apparaissent dans leur forme la plus simple, si on
les applique ä un Systeme ä temperature constante et ä masse
et energie fermees. Nous pouvons realiser un tel Systeme de la
maniere suivante. Premierement nous mettons le corps defor-
mable ä etudier dans un bain qui, par sa grande capacite de

chaleur, maintient la temperature constante; deuxiemement,
nous y adjoignons une masse capable d'effectuer sur le corps
n'importe quel travail mecanique et troisiemement nous
enfermons le tout entre des parois impermeables ä l'energie et
ä la matiere. C'est ä ce Systeme adiabatique et isotherme en
meme temps — et non pas le corps deformable isole — que
nous appliquerons les principes de la thermodynamique; il en
resulte que pour tout element de masse et en chaque instant la

somme de la puissance "5 developpee par les forces exterieures,
de la puissance % de l'energie libre et de celle © de l'energie liee

s'annule, ces puissances etant rapportees ä l'unite de masse:

'S + % + <k o

Nous dirons que le corps deformable est determine ou non au

point de vue mecanique suivant que les trois puissances en

question s'expriment, independamment du temps, en fonction
seulement des variables mecaniques ou non. Pour les corps
determines 1'equation ci-dessus etablit une nouvelle relation
entre les variables dynamiques et cinematiques et donne ainsi

une idee generale des proprietes mecaniques des corps en

question; les fonctions dans cette equation sont caracteris-

tiques pour le corps deformable et les constantes qui y
interviennent determinent d'une maniere quantitative ses

proprietes mecaniques ; en general on trouve done pour
chaque corps une equation caracteristique differente. C'est

pourquoi cette equation sera nommee equation d'etat mecanique

du corps.
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Gette equation d'etat etant tout ä fait generale et par consequent

valable pour tout corps determine au point de vue meca-

nique nous en deduisons les traits generaux de la mecanique
des corps deformables. Nous discuterons ces traits generaux
dans ce chapitre. (La theorie complete a deja ete publiee dans

«Die Mechanik deformierbarer Körper», Abhdlg. d. Preuss.

Akademie d. Wissenschaften, Jahrgang 1931, Heft No. 2.) Nous

ne donnerons ici qu'un bref apercu.
On peut, grace ä des considerations tirees de la theorie des

groupes, imaginer une classification des corps deformables en
families de corps analogues entre eux. Aux corps d'une meme
famille correspondent des equations d'etat pouvant se deduire
l'une de l'autre par un groupe de transformations. L'analogie
des corps reunis ainsi dans une meme famille consiste en ce qu'il
suffit de connaitre les resultats experimentaux relatifs ä un seul

corps de cette famille pour pouvoir determiner ceux de tous les

autres; les memes transformations qui font passer de l'equa-
tion d'etat du corps choisi ä celle des autres corps de la famille
transforment les conditions dans lesquelles se trouve le corps
examine ainsi que les resultats de l'examen en ceux qui
correspondent aux autres corps. Un exemple relevant l'utilite de cette
classification reside dans la similitude mecanique. Si on reunit
dans une famille tous les corps dont les equations d'etat se

deduisent de celle d'un corps de reference par les transformations

de similitude 1, on dira que les corps d'une telle famille
sont semblables au point de vue mecanique et on peut aisement
transformer toutes les experiences faites sur un corps en celles

concernant un corps semblable au moyen d'une transformation
convenable de similitude. Outre les applications bien connues
de Reynold, le groupement des corps deformables en families

1 Soient I, m, t les unites de longueur, de masse et de temps (par
exemple, 1 cm, lg, 1 sec.) dans un Systeme arbitraire de reference;
on en deduit les unites I', m', t' d'un autre Systeme par les transformations

de similitude
I' L I

m' M m

t' T t

ou L, M, T sont des constantes.
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est tres avantageux dans le domaine des colloides. Une serie

d'applications faites dans le domaine de la pratique sur diverses

solutions de cellulose, pour des temperatures et des concentrations

variant dans des limites tres larges, et faites avec diffe-
rents solvants, montrent que ces solutions sont des corps
semblables entre eux au sens precise plus haut. Quantite
d'autres solutions colloidales de caoutchouc, de gelatine, etc.,
font partie de la meme famille. L'essai de les analyser au moyen
de la theorie decrite est tres satisfaisant. (Voir divers travaux
de K. Wrissenberg, B. Rabinowitsch, R. Eisenschitz et

Philipoff, Mitteilungen der dtsch. Materialprüfungsanstalten
IX.21.1929; Zs. f. phys. Chem., A 145, I, 1929; Ber. der dtsch.

Chem. Ges., 64, 2522, 31 et Phys. Zs., 35, 883, 1934.)
Si l'on se fonde sur l'equation d'etat, la mecanique des corps

deformables se presente sous forme d'un cycle, que nous illus-
trerons ici pour une categorie speciale de corps deformables,

ceux qui sont incompressibles (parce que l'hypothese de l'in-
compressibilite est une grande simplification). Dans ce cas

l'equation d'etat etablie pour les puissances rapportees ä

l'unite de masse est valable aussi pour les memes puissances

rapportees ä l'unite de volume. C'est sous cette forme que nous
ferons usage de l'equation d'etat dans la suite, car les densites

de puissances s'expriment en fonction des variables mecaniques
d'une maniere plus simple que les puissances specifiques.

En appliquant le chapitre de d'Alembert, on obtient (voir le

chapitre Dynamique):

F p • x F;i + div P

p W M

ou p est la densite et t l'acceleration lineaire de l'element de

volume sur lequel s'applique une densite de force resultante F,

W son acceleration angulaire et M le moment qui lui imprime
une rotation.

1 •

Si on multiplie la premiere equation par ^ f, la deuxieme par
1 •

et qu'on fait la somme, on trouve que la puissance de

l'energie cinetique est egale a la puissance des forces exterieures
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developpee le long de la partie rigide du mouvement. Sous-

trayant la relation de cet equilibre de 1'equation d'etat, on
obtient pour des corps incompressibles:

— P..S + ® + G 0,

ou le produit scalaire change de signe de la tension P et de la
vitesse de deformation S est egal ä la puissance des forces

exterieures le long de la deformation contenue dans le mouvement

(cette puissance est la difference entre la puissance totale
des forces exterieures ® et la puissance developpee le long de la

partie rigide du mouvement), <D est la puissance du potentiel
interne <J> du Systeme (cette puissance est la difference entre

celle de l'energie libre % et celle de l'energie cinetique); finale-

ment G est la puissance de l'energie liee du Systeme (toutes ces

puissances sont toujours rapportees ä 1'unite de volume).
Du second principe de la thermodynamique decoulent des

restrictions sur les fonctions <f> et G. En vertu de la reversibilite

d'un changement du travail en energie libre, 0 doit etre la

derivee totale par rapport au temps d'une fonction <1> des

variables mecaniques seules, car d<|> doit etre une differentielle
totale. Par contre, en vertu de l'irreversibilite du changement
du travail en energie liee, il faut que

G ^ 0

d'oü l'on deduit que c'est G et non pas G qu'on peut donner en

fonction des variables mecaniques seules, car dG n'est jamais
une differentielle totale. Pour exprimer cette difference fonda-

mentale entre O et G nous introduisons dans 1'equation d'etat

® en ecrivant ~ au lieu de <I>, mais nous y laissons G et n'in-

troduisons pas G en ecrivant ^ parce que G n'est pas une

fonction des variables mecaniques seules.

Un corps incompressible determine au point de vue meca-

nique a done pour equation d'etat
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oü
© ®0>„)

G G(Vn)

Vn symbolisent les variables mecaniques (tension P, deformation

S, ainsi que leur vitesse, leur acceleration, etc. P, S, P, S,

etc. (la temperature, supposee constante, n'intervient pas dans

ces fonctions).
Le traitement explicite de 1'equation d'etat se fait de la

maniere suivante: Lorsqu'on resout 1'equation par rapport ä la
tension ou a la deformation, on obtient celles-ci sous forme

d'integrales dans le temps d'une fonction de la deformation,
ou de la tension. Cette integration necessite l'introduction des

etats anterieurs du Systeme, afin que l'on puisse estimer les

constantes qu'elle introduit. Nous obtenons de la sorte une
theorie de « post-action ».

Selon les trois termes dont l'equation d'etat est composee
nous distinguons trois domaines particuliers pour lesquels un
de ces trois termes s'annule. A chaque corps deformable on
associe trois corps idealises, dont le premier est parfaite-
ment elastique, le deuxieme parfaitement visqueux et le

troisieme a une relaxation parfaite de l'energie libre. Les equations

d'etat de ces trois corps s'obtiennent ä partir de l'equation
d'etat du corps deformable en y annulant un des trois termes.
On est ainsi ramene ä trois equations:

1° — P S + ^? 0 avec — P..S:^:G= — 1:1:0at at

2° — P S + G =0 avec —P..S:^:G= — 1:0:1dt

3° ^ + G 0 avec —P..S:^:G=0: — 1:1dt dt

On en deduit que si on determine les variables mecaniques
de maniere que la condition rattachee a 1° (resp. 2° ou 3°) soit
remplie, le corps deformable se comporte du point de vue
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energetique exactement comme le corps d'elasticite (viscosite,
relaxation) parfaite qu'on lui a associe.

La premiere equation donne ainsi la theorie d'elasticite du

corps deformable, et la condition accessoire determine des

variables mecaniques et par consequent un etat cinematique
et dynamique dans lequel le corps deformable montre une
elasticity parfaite. La deuxieme et la troisieme equations
donnent de meme la theorie du frottement interne et de la
relaxation ainsi que les conditions dans lesquelles le corps
deformable montre une viscosite ou une relaxation parfaite.

Ces trois lois, obtenues pour des domaines particuliers, ne

sont toutefois pas independantes. Voici en quoi: elles sont,
comme l'equation d'etat elle-meme, des equations differentielles

par rapport au temps et aux variables de tension et de

deformation. Les constantes qu'elles contiennent sont les constantes
des materiaux.

Nous appellerons les constantes intervenant dans $ et G

coefficients d'elasticite et de viscosite. Or, les trois lois dont il
est question ne contiennent que deux (® et G) et non pas trois
fonctions independantes; on doit done pouvoir calculer, ä

partir des constantes de deux de ces lois les valeurs des

constantes de la troisieme. Ce calcul constitue la theorie de la relaxation

du potentiel elastique au cours du frottement interne.
La decomposition ainsi effectuee de l'equation d'etat, suivie
de la determination des constantes, revient en quelque sorte
ä une analyse du corps deformable etudie en trois corps
ideaux, corps de relaxation, corps elastique et corps visqueux,
dont deux seulement sont definis d'une maniere independante.
Si on y ajoute une Synthese, qu'on realise par la superposition
des trois cas particuliers obtenus, on ferme le cycle de nos
theories. Dans cette theorie de superposition on melange pour
ainsi dire les trois corps imagines provisoirement pour reformer
le corps primitif. En general on peut donner une analogie
de ce cycle dans la theorie de l'electricite en faisant cor-
respondre la tension P ä la tension electrique et la vitesse

de deformation ä l'intensite du courant electrique. Un element
de volume dv du milieu deformable correspond alors ä un
schema de reluctance comprenant des capacites et des resistances
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ohmiques 1 qui correspondent aux resistance d'elasticity et de

frottement interne de dv. L'energie potentielle O correspond
alors ä l'energie du champ electrique contenu dans les capacites

et la puissance G ä la puissance developpee par la tension

electrique dans les resistances ohmiques. On realise aisement
avec un tel schema 1'analyse des trois cas particuliers qui
correspondent aux cas d'elasticity, de viscosite et de relaxation
parfaite; le schema des resistances et capacites est une sorte
d'illustration de la theorie de la superposition. La methode
de calcul que nous avon» ainsi exposee se resume au moyen
du schema suivant:

EQUATION DETAT

ELASTICITE RELAXATION
FROTTEMENT

INTERNE

RELAXATION DU POTENTIEL ELASTIQUE |

LORS DU FROTTEMENT INTERNE I

SUPERPOSITION

Diverses applications de cette theorie ont ete faites dans le
domaine des solutions colloidales (voir par exemple PhilippofT,
Phys. Zs., 35, 883, 1934).

1 L'inductance correspondrait ä la resistance d'inertie. Comme
nous avons separe de l'equation d'etat generale le principe de
d'Alembert qui traite les phenomenes d'inertie, ceux-ci n'apparaissent
plus ici; c'est pourquoi dans ce schema, l'inductance n'intervient pas.
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Le calcul complet est plus ou moins complique suivant la

forme qu'on attribue aux fonctions <I> et G. II y a deux classes

de corps deformables pour lesquelles le cycle s'interprete d'une

maniere simple et intuitive.
Ce sont les corps P et les corps S pour lesquels 3> et G sont

respectivement des fonctions des variables dynamiques (P,

P, P ou des variables cinematiques (S, S, S seulement.

L'element de volume dv d'un corps P (ou d'un corps S) est

represente par un schema dans lequel la capacitance est en

parallele (ou en serie) avec la resistance ohmique, et la loi du
schema en parallele (en serie) est parfaitement analogue ä la
loi de superposition valable pour les corps P (corps S). Pour
les corps deformables des autres categories, le schema est plus

complique.
Nous avons montre que l'equation d'etat seule permet

d'achever le developpement systematique de la mecanique des

corps deformables. II est commode d'abord d'etudier les diffe-
rents phenomenes (d'inertie, d'elasticite, de viscosite, de relaxation,

etc.) dans des conditions simples afm de determiner

l'equation d'etat d'un corps envisage et d'en deduire les cons-
tantes des materiaux puis de rechercher comment se comporte
dans des conditions generates et compliquees le corps dont
l'equation d'etat et les proprietes mecaniques sont connues.
C'est en principe ce chemin que nous suivrons. II nous faut
tout d'abord relever une difficulty que l'on rencontre en proce-
dant ainsi. Yoici en quoi eile consiste: Le principe de d'Alembert
est equivalent a six equations scalaires, l'equation d'etat ä

une seule, puisqu'elle est elle-meme une equation scalaire; nous

avons done sept equations pour les 11 degres de liberte du cas

general1.
II est done necessaire d'introduire des hypotheses nouvelles

qui permettent de substituer ä la place de l'equation d'etat
scalaire une equation tensorielle reliant les tenseurs qui
represented les variables cinematiques ä ceux de nature dynamique.

1 A cause de l'incompressibilite postulee l'element de volume
dispose d'un degre de liberte de moins que dans le cas des deplace-
ments lineaires quelconques, done 12 — 1 11 degres de liberte.
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L'hypothese necessaire pour le debut du chemin que nous

nous proposons de suivre est aisee ä faire. Nous avons vu dans
les chapitres precedents, qu'il est utile de separer les deplace-
ments elementaires en deplacements rigides (de translation et
rotation) d'une part et deformations pures isotropes de volume
et anisotropes ä volume constant d'autre part. Nous etudierons
tout d'abord le corps deformable ä l'etat (0) non travaille et

sujet aux deplacements elementaires en nous plaijant dans les

conditions les plus simples. La mecanique des mouvements
rigides est completement determinee par le principe de d'Alem-
bert et ne sera pas discutee ici; les deformations isotropes de

volume n'existent pas pour les corps incompressibles de sorte

qu'il ne nous faut considerer que les deformations pures
anisotropes ä volume constant. Pour plus de simplicity nous nous
bornerons ici ä la discussion des corps deformables qui dans

l'etat (0) sont isotropes. Dans ce cas particulier les directions
des axes principaux de tous les tenseurs dynamiques et cinema-

tiques sont paralleles ä des directions fixees dans le milieu
pendant tout le mouvement et on peut admettre que 1'equation
d'etat est valable separement pour cliacune de ces directions.
Cette hypothese permet de passer de l'equation d'etat scalaire
ä l'equation tensorielle cherchee. Nous insistons sur le fait
que cette hypothese n'est valide que pour les deformations

pures de corps incompressibles et isotropes ä l'etat (0). Mais
dans ce cas alors elle donne tres probablement une bonne

approximation, car si on admet qu'il existe une relation lineaire
entre les tenseurs dynamiques et les tenseurs cinematiques,
on peut la justifier pleinement (voir l'appendice).

Avant trouve ainsi l'equation d'etat sous une forme satis-
faisante on procede ä l'examen du corps deformable d'apres le

cycle indique dans la discussion generale. Les calculs explicites
sont tres simples pour ce cas particulier, car les hypotheses

que nous avons faites entrainent que dans un Systeme mobile
Sm de reference, qui suit la partie rigide du mouvement ä

partir de l'etat (0) non travaille:

a) Les derives ^ — du tenseur S par rapport au
dt ' dt* df

temps, sont identiques aux tenseurs S, S S donnant la vitesse,
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1'acceleration... de la deformation S; de meme les derives
dP d2 P d;iP
~r -jY —r- Par rapport au temps de la tension P sont
dt dt

identiques aux tenseurs donnant la vitesse, 1'acceleration...

P, P P de la tension P;

b) Tous les tenseurs mentionnes sous a) sont des deviateurs
et sont paralleles entre eux;

c) La superposition de deux deformations successives

conformes aux hypotheses de ce cas particulier s'exprime par
une loi additive

S S + s

Nous avons etudie tout specialement les corps P et S dans les

dites conditions. Ges deux categories de corps deformables

montrent dans leurs proprietes mecaniques deux extremes;
les details qui s'y rapportent ayant ete publies dans le travail
cite ci-dessus, nous nous contentons de dire que l'image d'un
schema en parallele ou en serie d'une capacite et d'une resistance

ohmique donne une illustration parfaite de toutes leurs
proprietes mecaniques.

Passons ä la seconde partie du chemin que nous avons ä

suivre. La question qui se pose ici est la suivante: Admettant

que l'equation d'etat d'un certain corps soit connue sous une
forme satisfaisante, comment se comporte ce corps dans des

conditions generates et compliquees En particulier, comment
se comporte le corps s'il est dans un etat travaille (1) obtenu
ä partir de l'etat (0) par des deformations ou des tensions

quelconques Pour plus de simplicity nous admettrons ici
aussi que le corps est incompressible et isotrope dans l'etat
non travaille (0). Le passage de l'equation d'etat scalaire ä

une equation tensorielle ne peut pas se faire dans le cas

general ä l'aide de l'hypothese supplementaire introduite
dans le cas special des deformations pures. Nous admettrons
eventuellement dans le chapitre suivant une relation tensorielle

entre les tenseurs dynamiques et les tenseurs cinema-

tiques au lieu d'une hypothese nouvelle (comme, par exemple,
une generalisation de la loi d'elasticity de Hooke ou du frotte-
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ment interne de Newton); cette relation remplacera l'equation
d'etat. (Si on veut appliquer la theorie cyclique donnee plus
haut on repasse d'abord de cette forme tensorielle ä la forme
scalaire de l'equation d'etat en ramenant tous les termes ä

trois: P S, et G, et l'on precede alors comme il a ete

indique 1).

2. — La mecanique de Velement de volume dans I'etat travaille.

La mecanique des corps dans un etat (1) travaille se fonde

sur les lois de superposition d'un effort accessoire ä un effort

primaire ayant fait passer d'un etat initial non-travaille ä I'etat
travaille. Pour plus de simplicity nous supposerons avoir affaire
ä des milieux deformables incompressibles qui, dans I'etat
non-travaille, sont isotropes.

La theorie des superpositions des deplacements lineaires

(y compris les deformations) a ete donnee plus haut d'une
maniere generale. Nous prendrons pour etat (0) I'etat isotrope
non-travaille. Si nous connaissions l'equation d'etat d'un
certain corps sous une autre forme qui donne la relation entre

les grandeurs dynamiques P, P, P et les grandeurs S, S, S,

oü la deformation S est comptee k partir de I'etat (0) non-
travaille, nous pourrions deduire ä l'aide des lois de superposition

la relation entre les grandeurs dynamiques et cinematiques
ou la deformation est comptee ä partir de I'etat (1) predeforme
arbitraire. Nous donnerons un bref aperpu de cette theorie.

Dans la premiere partie de ce travail, nous avons suppose

que tous les tenseurs dynamiques et cinematiques sont paralleles,

c'est-ä-dire, ont memes directions d'axes principaux. Pour
les corps predeformes les tenseurs dynamiques et cinematiques
ne sont pas paralleles, et l'angle entre ces tenseurs joue un

1 On passe de l'equation tensorielle ä la forme scalaire de l'equation
d'etat en la multipliant par le tenseur P de tension ou celui de vitesse
de deformation S avec une double contraction et en tenant compte

des proprietes des fonctions et G que nous avons notees dans

la premiere partie de ce chapitre.
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role fondamental dans les expression? mathematiques des lois.
En admettant que les milieux sont isotropes ä l'etat (0) (non
travaille) on demontre qu'en general la resistance mecanique
dans l'etat (1) travaille varie essentiellement avec la direction
dans laquelle agit l'effort accessoire. C'est done une anisotropie
« accessoire » de la resistance mecanique, ä l'etat (1) travaille,
l'etat (0) non travaille etant isotrope; cette anisotropie accessoire

a en general une symetrie rhombique. (Dans des cas

particuliers eile peut etre plus elevee.) On a souvent compare
cette anisotropie accessoire ä Celle d'un cristal anisotrope dans

l'etat (0) ayant une symetrie rhombique. Mais l'anisotropie
accessoire de la resistance mecanique dans l'etat (1) du milieu
differe completement de celle d'un cristal rhombique dans

l'etat (0) si l'etat (1) estcaracterise par une tension anisotrope 1.

On peut cependant comparer cette anisotropie accessoire

resultant d'une tension anisotrope dans l'etat (1) ä celle

d'un champ de forces. Si on effectue un deplacement dans

un champ de forces on observe une resistance dependant du
cosinus de Tangle y entre le vecteur force et le vecteur
deplacement. On effectuera un travail positif, nul ou negatif, suivant

que y est compris entre 0° et ± 90°, egal ä ± 90° ou compris
entre 180° et ± 90°. Nous allons montrer que l'anisotropie accessoire

d'un milieu parfaitement elastique est tout ä fait
analogue pourvu qu'on remplace 1'angle entre le vecteur force et le

vecteur deplacement par Tangle absolu entre le tenseur de tension

dans l'etat (1) et le tenseur de la deformation accessoire.

(II faut neanmoins effectuer du travail positif dans toutes les

directions si Ton veut deformer un cristal anisotrope ä partir
de son etat (0).) En general l'anisotropie d'un etat (1) travaille
peut etre decomposee en anisotropie provenant d'une tension

anisotrope et une anisotropie d'un type analogue ä celle d'un

1 En effet un corps isotrope ä l'etat (0) montre dans l'etat (1)

travaille, ä part une anisotropie accessoire mecanique, en general
aussi une anisotropie accessoire optique, magnetique, electrique,
etc.; chacune de celles-ci est tout ä fait analogue ä l'anisotropie
correspondante d'un cristal rhombique dans l'etat (0) non travaille;
c'est seulement l'anisotropie accessoire de proprietes mecaniques qui
peut en differer essentiellement.
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cristal anisotrope dans l'etat (0); cette seconde partie peut
etre produite par une deformation anisotrope.

Dans la suite nous nous bornerons ä l'etude des corps in-
compressibles et isotropes dans l'etat (0) non travaille.

Cela entralne les simplifications suivantes:

1° Toutes les constantes dans l'equation d'etat sont des

scalaires;

2° Toutes les variables cinematiques sont des deviateurs;

3° Toutes les variables dynamiques peuvent etre decompo-
sees en somme d'un tenseur isotrope et d'un deviateur; comme
la partie isotrope de la tension effectue un travail nul le long
de tout deplacement ä volume constant nous admettrons dans

ce qui suit que les variables dynamiques sont aussi des deviateurs.

Le theoreme de Vanisotropic du travail virtuel.

Dans le chapitre de la dynamique nous avons donne au

principe de d'Alembert la forme suivante:

(8®:0r 0

ou est la somme des travaux 8©* et 8??* effectues par
les forces exterieures et les forces d'inertie le long d'un deplacement

virtuel 8, tout travail etant rapporte ä l'unite de masse;
l'indice r indique que le deplacement virtuel 8 est rigide, qu'il
est done donne par une transformation

R t + R • co avec co • co I

Pour les corps rigides cette forme du principe nous donne

tout les renseignements necessaires. Pour les corps incompres-
sibles mais deformables pour lesquels tous les deplacements ä

volume constant (rigide ou non rigide) sont permis, nous
preferons une autre forme qui nous renseigne sur les travaux
virtuels accomplis au cours de tout deplacement ä volume

constant; il est aussi preferable, comme dans le chapitre
precedant, de rapporter tout travail ä l'unite de volume au lieu
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de 1'unite de masse. En designant par 8 8'&e et 8 '5, (sans

asterisque) les densites des travaux et par 8d une variation
virtuelle ä volume constant on obtient

(8%ei)d P-»

oü 8d est represente par la transformation lineaire ä volume
constant

R t + R •

avec <Jqn 1, et
s 14In (tjj • ip) >

avec 0; ou encore

(8 ©ei)cj P s IP I I s I cos (Ps)

oü cos (Ps) est le cosinus de l'angle absolu entre les tenseurs P

et s, s etant un deviateur.
Cette nouvelle forme du principe de d'Alembert est valable

pour tous les milieux, quelles que soient leurs proprietes meca-

niques et leur etat cinematique et dynamique. Si on considere
le milieu deformable ä ün instant t tx donne, il se trouve dans

un certain etat (1) et la tension a une valeur definie P; la
formule ci-dessus exprime que la densite du travail virtuel
accompli par la somme des forces exterieures fe et des forces

d'inertie fi le long d'un deplacement lineaire virtuel Sd (rigide
ou non) est identique ä celle du travail effectue par la tension P
des fe selon la deformation anterotationnelle s contenue dans Sd

et ne depend ni du placement (01) ni de l'etat cinematique dans

lequel l'element de volume se trouve, mais seulement de son

etat dynamique (qui defmit P) et de 8d. Si on prend pour 8d un
deplacement rigide 8d, s 0 et par consequent (8feei)r 0,

quelle que soit l'orientation dans laquelle il est effectue, selon

l'expression habituelle du principe. Mais si on prend pour 8r

un deplacement lineaire non rigide on obtient un theoreme

general sur l'anisotropie virtuelle de S%ei, que nous allons

discuter, car l'anisotropie reelle de l'element de volume est

en relation intime avec cette anisotropic virtuelle.
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Si on applique ce principe ä l'etat (0) oü P 0 ou ä un
1

etat (0) pour lequel P est isotrope: P -P, I, on a que

(8tpei)d 0 quelle que soit l'orientation dans laquelle 8d est

effectue, car le produit scalaire d'un tenseur isotrope par un
deviateur est nul; dans ce cas (8tsei)d ne depend pas de l'orientation

de 8d et nous dirons que (8tiei)d est isotrope. Par contre,
si on applique ce principe ä un etat (1) quelconque pour lequel P

est anisotrope on trouve que (8tsei)d varie avec l'orientation de

8d; nous dirons alors qu'il est anisotrope. Cette anisotropic
s'exprime d'une maniere intuitive dans l'espace ä 9 dimensions.

Dans l'espace ä 9 dimensions (voir l'appendice) nous pouvons
considerer P et s comme des vecteurs iß et §; les grandeurs de

ces vecteurs sont identiques aux valeurs absolues de P et de s

et leur produit scalaire au produit doublement scalaire de P

et s. Done

(8 tbei)d iß • 8 | !ß ] | a | cos (q3 S)

L'anisotropie virtuelle, due ä la presence du cosinus, et qui
est en rapport avec l'espace ä 9 dimensions, est formellement
identique ä ce qui apparait au sein d'un champ de force tri-
dimensionnel, oü la densite du travail virtuel s'exprime par

St; I F I | Ss | cos (F 8s)

Lorsqu'on se deplace dans un tel champ en suivant la direction

de la force ou sa projection sur un axe avec lequel elle
forme un angle aigu, le travail effectue est positif. Si la trajec-
toire est perpendiculaire au champ, il n'y a pas de travail.
Dans les autres directions il est negatif. II en est de meme dans

l'espace ä 9 dimensions. Cependant si l'on cherche ä expliquer
cette anisotropic virtuelle 9-dimensionnelle au moyen des

trois seules dimensions de l'espace ordinaire, il ne faut pas
perdre de vue que 1'angle absolu entre les deux vecteurs et § n'a

pas toujours une representation simple dans l'espace ordinaire,
car il depend non seulement de l'orientation relative des deux
triedres d'axes principaux des tenseurs, mais aussi de leur forme

Archives. Vol. 17. — Mars-Avril 1935. 11



154 LA MECANIQUE DES CORPS DEFORMABLES

respective L Pour determiner l'orientation de s par rapport ä

P nous designons les angles formes par les axes principaux
de P et de s par aj7{; la variation de (8^ei)d avec l'orientation
de s, c'est-ä-dire l'anisotropie en question, s'exprime alors par

(8 %ei)d Pfes. COS2 (Zjfr

II y a un cas tres special dans lequel l'interpretation est

tres simple; c'est le cas des derivateurs symetriques plans

(l'angle absolu entre deux deviateurs symetriques dans le meme

plan se trouve etre juste egal au double de l'angle forme par
les axes principaux de meme indice des tenseurs). Dans ce cas

on a

(8f?et)d cos 2 a |P| |s| cos 2 a

oü a est l'angle forme par les axes principaux de meme indice
de P et s. L'anisotropie virtuelle s'exprime alors dans l'espace
ordinaire de la maniere suivante: Supposons qu'une membrane

plane soit le siege d'un champ deviateur homogene de tension
et que les directions d'axes principaux de P et de s dans cette
membrane soient marquees par deux paires de vecteurs unites

orthogonaux ep1 ePz eai _L ea2 L'angle a est alors egal
ä <£ (ea, ep) <£ (ea2, ep2). Les valeurs propres sh de s et Pfe

de P sont de meme grandeur absolue mais de signe inverse

(Pj — P2; sq — s2), La densite du travail virtuel effectue

est proportionnel ä cos 2a; eile est done positive, nulle ou

negative suivant que l'angle absolu 2a est compris entre 0° et

± 90°, egal ä ± 90° ou compris entre 180° et + 90°. La courbe
ä quatre feuilles p cos 2a donne une image de l'anisotropie
du travail (p signifiant un rayon vecteur dans le plan) (voir
fig. 4). Pour expliquer la relation entre l'anisotropie virtuelle
de (8^ei)d et Celle de P nous choisissons pour s une valeur
absolue constante en posant | s [ 1. Si on change alors

l'orientation de la deformation s par rapport aux directions

1 Un tenseur spherique est par exemple toujours orthogonal,
dans l'espace ä 9 dimensions, ä un tenseur deviateur (leur produit
scalaire etant nul) quelle que soit l'orientation des axes principaux
de ces tenseurs dans l'espace a trois dimensions.
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d'axes principaux du tenseur P tout en laissant la grandeur
de la deformation constante, on trouve

(8 %ei)d PN vT

oü PN est la pression normale, dans la direction de s. L'aniso-
tropie virtuelle de (8"U>ei)d est done dans ce cas particulier la
meme que l'anisotropie reelle de la pression normale; on
obtient en effet la meme courbe ä quatre feuilles pour la
representation de la pression normale d'un tenseur deviateur
de tension

PN IP I cos 2 a

Dans l'espace les relations sont plus compliquees; l'anisotropie

de (8c&ei)d est encore determinee par celle de la tension P;
ces deux anisotropies sont du meme genre mais la surface qui
represente l'anisotropie de (8^>ei)d ne coincide en general pas
avec celle de PN. Lorsqu'on determine l'equation, on obtient
une surface compliquee mais d'un type analogue ä la courbe
plane, eile est composee de plusieurs feuilles ä signe inverse

separees par des directions dans lesquelles (8L&ei)d est nul.
Pour le cas trivial d'une tension isotrope la pression normale

est la meme dans toutes les directions et l'anisotropie disparait.
En resume, l'anisotropie virtuelle peut etre consideree

comme resultant de l'anisotropie de la tension; eile est iden-
tique pour tous les milieux qui sont sieges du meme champ de

tension, quelles que soient leurs proprietes mecaniques et quel

que soit l'etat de deformation ou de mouvement dans lequel on
les examine; e'est done une propriete generale des corps qui
sont le siege d'un champ de tension.

L1anisotropic reelle dans un etat (1) travaüle.

Tandis que l'anisotropie du travail virtuel (87s>ei)d dans un
etat (1) travaille ne depend que de la tension, l'anisotropie
accessoire des proprietes mecaniques reelles est plus compliquee
et depend en general de toutes les variables mecaniques.

On peut premierement etudier:
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Uanisotropic de la puissance reelle.

La densite de la puissance reelle est donnee pour chaque
element de volume dv et ä chaque instant par la relation

On en deduit comme on l'a fait pour le travail virtuel

— Ä 5ß-© |$H©| cos(sp@)

ou cos ()ß©) est le cosinus de 1'angle absolu entre les vecteurs

iß et © dans l'espace ä 9 dimensions; l'anisotropie de A dans

l'espace ä 9 dimensions est formellement analogue ä celle de

S%ei\ la discussion de l'anisotropie dans l'espace ä 9 et ä

3 dimensions se fait done d'une maniere analogue en remplagant

s et § (virtuel) par S et © (reel); mais il y a une difference
essentielle entre ces deux cas. Elle consiste en ce que les

variables P et s (virtuelles) dans l'expression de 3"6ei peuvent
etre eboisies arbitrairement et independamment l'une de 1'autre,

ce qui n'est pas necessairement le cas pour P et S (reels) dans A.
En effet, on ne peut avoir dans un milieu donne que des P et

des S qui soient compatibles avec l'equation d'etat du milieu.

L'equation A — P S ne dit rien sur la possibility d'une

variation de S correspondent ä un P donne dans un milieu

defini; eile donne l'anisotropie de A d'une maniere generale,
mais dans un sens potentiel. La forme explicite de cette

anisotropic s'obtient en combinant l'equation ci-dessus donnant A

avec l'equation d'etat du milieu de maniere que A soit exprime
en fonction des variables independantes l'une de l'autre.

Si l'equation d'etat n'etablit pas de relation entre P et S

ces grandeurs sont les variables independantes cherchees, mais

si par contre P et S dependent l'une de l'autre, il est difficile de

trouver une expression de A au moyen de variables independantes

et de l'interpreter d'une maniere intuitive ä l'aide d'une

anisotropie de A dans l'espace ä 3 dimensions.
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On peut de plus introduire dans l'equation d'etat de nou-
velles variables mecaniques telles que la tension et la deformation

ne soient plus comptees ä partir de l'etat (0) mais ä partir
de l'etat (1) en question. Les constantes dans cette equation
transformee ne seront plus des grandeurs scalaires et isotropes,
mais des grandeurs tensorielles et anisotropes, qui definissent

Pariisotropie reelle de l'etat (1).

Enfin, on peut evaluer les angles entre les axes principaux
des tenseurs dynamiques et cinematiques, et en particulier
l'angle absolu entre P et S dont l'importance est fondamentale
dans l'expression de la puissance du travail reel.

On demontre que pour les corps P (ou les corps S) cette
anisotropie s'exprime en fonction des variables dynamiques
seules (ou cinematiques seules); pour les corps presentant une
elasticite ou une viscosite parfaite, qui peuvent etre consideres

arbitrairement comme des corps P ou S, la dite fonction
s'exprime arbitrairement a partir des variables dynamiques ou
cinematiques et finalement pour les corps PS cette fonction
contient les deux sortes de variables mecaniques.

Nous donnerons dans ce qui suit quelques exemples illustrant
les differentes methodes, mais nous nous bornerons ä la discussion

des cas pour lesquels l'anisotropie reelle s'exprime en

fonction de la tension seule.

Elasticite parfaite.

Soit O la densite du potentiel elastique; on a

— dA d® P..s 8 | P I | s | cos (Ps)

Pour un corps parfaitement elastique on pose comme equation

d'etat une relation entre la tension et la deformation; la

vitesse de deformation n'y entre pas et par consequent P et S

ainsi que P et s sont independants l'un de 1'autre. La formule
ci dessus exprime done d'une maniere tout ä fait generale

l'anisotropie reelle du potentiel elastique d'un milieu siege

d'une tension P; eile montre que cette anisotropie est la
meme pour tous les corps parfaitement elastiques. Comme elle

est identique ä celle donnee pour (8'5ei)(i (mis ä part le fait
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qu'on a ici un travail reel) nous pouvons dire: L'anisotropie
reelle de la densite du potentiel est identique ä l'anisotropie
du travail virtuel, par unite de volume, effectue par les forces

exterieures et les forces d'inertie.
Dans le cas d'une tension caracterisee par un deviateur plan

l'anisotropie du potentiel > est de nouveau representee par la
courbe ä quatre feuilles et dans le cas d'un deviateur dans

l'espace par une surface de meme genre comprenant des

feuillets positifs et negatifs separes par des directions pour
lesquelles d<f> 0.

Ce qu'il y a de plus remarquable est qu'on peut effectuer
dans l'etat (1) un mouvement de deformation continu sans

depenser aucun travail. C'est le mouvement dirige en chaque
instant dans les directions tfO 0. Pour le cas plan ce mouvement

coincide avec le mouvement paradoxal dont nous avons
note l'existence en cinematique: Toutes les positions parcourues
par ce mouvement ont subi par rapport ä l'etat (0) (c'est-ä-dire

par rapport ä l'etat non travaille dans lequel le ruban d'acier
est circulaire) une deformation de meme grandeur et le potentiel
<I> a la meme valeur dans toutes ces positions; le mouvement
se fait done ä potentiel constant, ce qui fait que le travail est

nul et la difference A3> entre deux positions parcourues
arbitrages est nulle aussi. On montre egalement que dans ce

mouvement 1'angle absolu entre P et s est egal ä 90°, c'est pour-
quoi le produit doublement scalaire de ces tenseurs, donnant
la puissance, est nul (voir flg. 1, 2, 3).

La loi cVelasticite.

Nous avons suppose que le milieu est isotrope dans l'etat (0);
si par consequent on considere les deformations ä partir de cet

etat la condition initiale est donnee par P 0 pour S 0;
la loi d'elasticite sera etablie en trois etapes: a) deformations

pures ä partir de l'etat (0); b) generalisation des resultats
obtenus pour les deplacements lineaires quelconques effectues
ä partir de l'etat (0); c) lois d'elasticite pour un etat (1) pre-
deforme (ou, ce qui revient au meme, pour un corps qui est le

siege d'une tension).
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a) Les deformations pures ä partir de Vetat (0). — A cause
de l'isotropie admise dans l'etat (0), la loi generale est la
suivante:

P YjS + Y3S3 + £F(S)

oü la deformation pure est donnee par

r r • 0
avec S ln0.

Cette loi remplace 1'equation d'etat scalaire par une equation
tensorielle; P est une fonetion analytique Zf1 de S developpable
en serie convergente de S. De la condition initiale pour l'etat (0)

et de l'isotropie supposee pour cet etat on deduit premierement
que les termes pairs doivent etre nuls, done P est une fonetion

impaire de S, et deuxiemement que les yn, qui sont appeles
modules de rigidite, sont tous scalaires. Nous remarquons que
toute fonetion impaire possede un point d'inflexion (ä courbure

nulle) pour S 0; c'est pourquoi la loi lineaire de Hooke-

Hencky donne une si bonne approximation pour des S suffisam-

ment petits.

b) La loi (Lelasticite pour des deplacements lineaires generaux
ä partir de Vetat (0). — Si l'on repere un deplacement au moyen
d'un Systeme de reference lie ä la partie rigide du deplacement
(c'est-ä-dire un Systeme qui se deplace selon le vecteur de

translation t et tourne selon le tenseur de rotation Q) la loi
d'elasticity etablie en a) reste valable. Si l'on veut exprimer cette
loi dans un Systeme de reference fixe dans l'espace il faut
effectuer une transformation de coordonnees. Le tenseur S

(qui est identique ä Sa), lorsqu'on passe au Systeme fixe dans

l'espace, se transforme en Q.S .Q-1, qui est identique au tenseur
Sp. La loi d'elasticite relative au Systeme fixe a done, pour un
deplacement lineaire quelconque, la forme

P YjSp + y3Sps + 5<(Sp)

avec

r rY et Sp |-ln (T-T)
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c) La loi d'elasticite pour un milieu dans Vetat (1) travaille. —
L'etat (1) est atteint ä partir de l'etat (0) par un deplacement
lineaire general

r r • T

Le tenseur de deformation post-rotationnelle associe ä oe

tenseur etant Sp, et la tension dans l'etat (1) P nous avons

p &{sp)

1 *
avec Sp — In (Y Y). Si nous effectuons dans l'etat (1) un

deplacement accessoire (11)

r r •

nous atteignons l'etat (1); nous designerons par P et Sp Ia
tension de cet etat et le tenseur de deformation post-rotation-
nelle associe au deplacement r r Y resultant de (01). Nous

avons alors

p gF(Sp)

avec

Sp =|ln(Y-Y)

En vertu des lois de superposition que nous avons etablies

nous pouvons exprimer Sp en fonction des tenseurs associes aux
deux deplacements (01) et (ll), ce qui nous donne l'expression
generale

p — p gr In [$ • Y • Y • 4-]) — [Y • Y])

ou plus explicitement

P — P & Q. In [<rw esa esv e ew]) — ^(Sp)

Ces formules donnent la loi d'elasticite sous une forme
invariante et close dans le cas general d'un etat (1) travaille.

Pour un deplacement accessoire (11) infmiment petit on
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peut decomposer l'equation tensorielle en une equation entre
les valeurs propres et une autre entre les directions d'axes:

Pfe — p/i + Sj cos2 (Spsa)jh) — g?(Sft)

avec
1

s sa — In (ip • 40 •

Developpant P/; en serie, nous obtenons

_ (i)
dPh Pk — Pk y s. cos2 (Sp sa)jk

(1)
oü y represente la constante scalaire d'elasticite dans l'etat (1)

(i)
(pour une loi lineaire d'elasticite, y est egal ä yx). S'il s'agit de

deviateurs plans,
dph <P

y • cos 2 a
*k

oü a designe 1'angle entre les axes principaux de meme indice
de Sp et sa; cette relation exprime que le milieu se comporte
dans l'etat predeforme (1) comme un corps anisotrope, et la

(1)
courbe representant l'anisotropie de son module de rigidite y a

(i)
pour equation p y cos 2a. Nous retrouvons done ici pour
(i)
y et dPk la meme courbe ä quatre feuilles que pour dO, il y
a des directions dans lesquelles dPft est nul (voir fig. 4).

Dans la figure 4, les valeurs propres sk sont designees par Afe.

Les formules donnees ci-dessus constituent un nouveau point
de vue pour la discussion du mouvement paradoxal que nous
avons mentionne en rapport avec les milieux parfaitement
elastiques. Nous avons vu que la densite de la puissance est

egale au produit doublement scalaire de la tension P par la

vitesse de la deformation S; ce produit n'est nul que dans le cas

oü les deux tenseurs sont perpendiculaires, c'est-ä-dire si

1'angle absolu qui les separe vaut 90°. Au cours de la discussion
de ce mouvement paradoxal nous avons demontre que 1'angle

absolu entre S et Sp est egal ä 90°. Puisqu'il y a isotropie dans
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l'etat (0), le tenseur P doit etre toujours parallele ä Sp (la loi
d'elasticity etant lineaire ou non); done l'angle absolu entre P

et S vaut 90° et la densite de la puissance developpee est nulle.

L'angle absolu entre les deux deviateurs symetriques plans P

et S est egal au double de Tangle forme par leurs axes prineipaux
de meme indice; nous devons done constater dans notre modele

que les axes prineipaux de P sont ä 45° des axes prineipaux

Fig. 4.

Loi d'elasticite pour un etat (1) travaille.

de S. En effet les axes de Tellipse d'acier, qui sont evidemment

paralleles aux axes prineipaux de P, forment des angles de 45°

avec les axes de Tellipse qui represente S; si Ton interprete
de nouveau les tenseurs P et S comme des vecteurs de I'espace
ä 9 dimensions le champ de tension P est represente par un
champ de vecteurs ip et le mouvement paradoxal est effectue
dans le plan perpendiculaire k iß; c'est pourquoi les vecteurs ip
ne travaillent pas lors de ce mouvement. Ce fait est illustre

par les figures 1, 2 et 3.
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Les milieux visqueux.

Les milieux visqueux sont caracterises par 0; aux

diverses fonctions qui donnent le taux de variation de la densite

de l'energie, G, correspondent les differents types de corps
visqueux. Nous parlerons en particulier de viscosite parfaite
si G s'exprime en fonction de la tension P ou de la vitesse de

deformation S seulement. Nous developpons alors la loi de

viscosite en trois parties, comme pour la loi d'elasticite:

a) Loi de viscosite pour des deformations pures. — Dans ce

cas P s'exprime par une fonction lineaire de S (developpable en

serie convergente)

P f(S) i]jS + r)3S2 +

oü les termes pairs s'annulent ä cause de l'isotropie. Les 7)n,

qui seront nommes coefficients de viscosite, sont des quantites

scalaires, done P est parallele ä S. Cette equation tensorielle

remplace l'equation d'etat scalaire pour le cas etudie;

b) Loi de viscosite pour des deplacements lineaires quelconques
ä partir de Vetat (0). — On montre que la loi de viscosite etablie
en a) reste inchangee pour des deplacements quelconques. On

a par exemple la meme loi pour un courant resultant d'une
deformation pure et un courant laminaire;

c) Loi de viscosite pour un etat (1) travaille. — On trouve pour
l'etat (1) predeforme exaetement la meme loi que pour l'etat (0).

La loi etablie en a) est done valable dans tous les cas et il n'y a

a pas moyen de changer l'orientation relative de P et de S;

e'est pourquoi, dans les milieux visqueux, G ne presente aueune

anisotropie.
Ajoutons encore deux remarques :

1° La loi lineaire de Newton

P 7)S

est un cas particulier de la viscosite parfaite. Elle donne
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d'ailleurs pour le cas general une bonne approximation, pourvu

que P et S soient suffisamment petits, car la fonction f est

impaire et presente done un point d'inflexion pour P S 0.

2° On peut imaginer des milieux non parfaitement visqueux
dans le sens precise ci-dessus, en supposant que dans l'etat (0)

non travaille on observe dejä une viscosite anisotrope. Pour

un milieu anisotrope pareil, 1'angle absolu a entre P et S peut

varier, mais comme la fonction A — G est toujours limitee ä

des valeurs positives, er satisfait ä la condition — 90° ^ er < 90°.

Les milieux plasto-elastiques.

Les milieux plasto-elastiques peuvent etre consideres comme

une combinaison d'un corps elastique et d'un corps visqueux.
En general, ils permettent d'etablir une anisotropie de la
puissance reelle, qu'on peut calculer d'apres la theorie de

superposition des corps parfaitement elastiques et des corps parfaitement

visqueux. Nous donnerons un exemple en discutant le

corps P0.

Le corps P0.

Le corps P0 est defini en posant que la densite de son potentiel
elastique <I> est egale ä

P •• P
® —- + <D0

oü O0 est une constante, et la densite de la puissance due ä la
variation de l'energie liee ä

G=^P.
II en resulte pour son equation d'etat l'expression

P P
2 y P P_ p s + 0

dt rt

Le traitement du corps P0 selon le cycle des theories etablies
dans le chapitre de la thermodynamique etant dejä publie ne
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sera pas repete ici; nous rappelons seulement qu'il montre une
relaxation parfaite si la vitesse P du changement de la tension

satisfait la relation P - oü t (le temps de relaxation) est

donne par t ^; au point de vue energetique il s'approche

du corps ayant une elasticite ou une viscosite parfaite en
raison de la vitesse de variation de la tension, c'est-ä-dire

P
selon que P est tres grand ou tres petit par rapport ä —.

Pour etudier l'anisotropie accessoire de ce corps dans un
etat (1) oü il est siege d'une tension P constante on est tente de

changer l'orientation relative de P et S tout en maintenant
constantes leurs valeurs propres. Cependant cela ne peut pas

se faire car P et S ne sont pas independants l'un de l'autre
mais relies par l'equation d'etat. II est done preferable d'etu-
dier l'anisotropie de ce corps pour un etat (1) de tension

constante en considerant l'angle absolu entre P et S.

Pour P const, l'equation d'etat exprime qu'il n'y a que
du frottement interne, tout le travail est transforme en energie

liee; dans ce cas ^ 0 et par consequent

»)

avec O const. Bornons-nous ici ä discuter le cas plan, dans

lequel tous les tenseurs sont des deviateurs symetriques plans.
On a alors

P2
ps cos a —

avec p const., soit
P

S — COS CS

oü p et s sont les grandeurs absolues de P et de S et er l'angle

absolu entre P et S. Cette loi de frottement, interpretee dans

l'espace ä 9 dimensions, est tout ä fait analogue au cas corres-

pondant dans l'espace ä trois dimensions et montre une
anisotropic.
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II y a en particulier deux cas simples ä discuter. Dans le

premier nous supposons qu'il existe un mouvement de deformation

pure, dans le second, un mouvement laminaire.

Lors d'une deformation pure, P est parallele ä S, done
es 0; la loi de frottement etablie plus haut devient la loi
lineaire de Newton

Dans le cas d'un mouvement laminaire, le calcul de es est plus
complique, il se fait en deux parties. Nous supposons d'abord

que le milieu est deplace de l'etat non travaille (0) par un
deplacement laminaire jusqu'ä un etat (1) travaille; ce depla-
cement est cense effectue assez vite pour que la relaxation puisse
etre negligee et qu'il suive la loi d'elasticite. La deuxieme partie
consiste en un courant laminaire stationnaire pendant lequel
la tension P atteinte dans le premier deplacement est maintenue
constante. On a un probleme de frottement pur dans un etat (1)

travaille. A l'aide du premier deplacement nous pouvons
calculer l'orientation de P; ä l'aide du second celle de S et par la
difference de ces orientations l'angle absolu a, ce qui nous permet
d'etablir la loi de frottement dans le courant laminaire stationnaire.

Orientation de la tension.

La tension dans l'etat (1) est parallele et proportionnelle ä

la deformation postrotationnelle contenue dans le deplacement
(01), d'apres la loi d'elasticite

P r • Sp T - |ln ^ '

On en deduit pour l'orientation de Sp et de P

tg 2 9k

sinh\7T

i
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oü <pft est l'angle entre l'axe k de P (ou de Sp) et la direction
du mouvement laminaire. Cette equation exprime que Fomentation

de P dans l'etat (1) depend de sa grandeur absolue p
divisee par y.

Orientation de S.

On trouve pour Fomentation de S dans un courant laminaire,
en vertu des formules developpees dans le chapitre de la cine-

matique,
tg2-/fe oo yk 90° ± 45°

oü Xk est l'angle entre Faxe k de S et la direction du courant
laminaire.

Ayant determine Fomentation de P puis celle de S, nous
determinons l'angle absolu a entre ces deux tenseurs et en
deduisons la loi de frottement:

cosa cosh——,=
T A/2

d'oü

s — cosh
1 r V2

ou encore, par un developpement en serie,

S P(i + —F2— +
P4

+ \
7) \ 2 • 21 y'j 2a • 41 y4 '

ce qui est une loi non lineaire.
II existe done pour un meme corps des lois differentes regis-

sant le frottement interne, suivant que le mouvement est un
mouvement laminaire ou un mouvement de deformation pure.

Pour des valeurs petites de la tension on retrouve la loi
lineaire de Newton, mais pour des tensions plus elevees on
trouve une vitesse de deformation qui est plus grande, que celle

que fournit la loi lineaire. On a done l'impression que la vis-
cosite du corps P0 est plus petite pour des grandes tensions

que pour des petites. Cette impression est cependant complete-
ment erronnee. La viscosite du corps n'a pas change. C'est
seulement Fomentation relative de la tension et de la vitesse de
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deformation qui est differente, dans un mouvement laminaire,
pour de petites et de grandes tensions et c'est cette difference

de 1'angle absolu entre P et S qui fait croire ä un changement
de viscosite; par contre, dans les mouvements de deformation

pure dans lesquels l'orientation entre P et S ne change pas on
trouve la loi lineaire.

Ces considerations sur le courant laminaire et sur le fait
qu'il ditfere des deformations pures ont une importance
pratique, car de nombreuses solutions colloidales peuvent etre
assimilees en premiere approximation ä des corps P0, et toutes
les experiences faites pour determiner leur « viscosite » sont
basees sur les courants laminaires (voir, par exemple,
R. Eisenschitz et B. Rabinowitch, I. c.).

Nous ajoutons une remarque: pour y oo on trouve un
corps deformable caracterise par l'equation d'etat

P P
P S + —— 0

fi

Ce corps est incapable d'accumuler de 1'energie libre par des

deformations k volume constant; c'est un milieu parfaitement
visqueux et «sans elasticity de forme»; pour un tel corps on
deduit des formules donnees

tg 2 9fe co done yk 90° + 45°

et
c 0

et la loi de frottement interne est la meme pour le courant
laminaire que pour des deformations pures. Nombre de liquides
de faible poids moleculaire peuvent etre assimiles en premier
approximation ä des corps pareils. La difference entre les

courants laminaires et les deformations apparait done seulement

pour des corps capables d'accumuler de 1'energie libre au cours
de deformations ä volume constant.

Description du modele du deplacement laminaire (fig. 5).

Pour illustrer les deplacements laminaires nous avons cons-

truit un modele (fig. 5) ä l'aide duquel on peut effectuer un



Position (1).

Fig. 5.
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deplacement laminaire dans une lame de caoutchouc. Ce

modele illustre non seulement la deformation d'un milieu
elastique, mais aussi les displacements laminaires dans le corps
P0, car le deplacement (01) est suppose elastique et la
determination du courant laminaire necessite seulement de eonsiderer
deux positions infiniment voisines (1) et (1).

A la figure 5 on voit trois positions successives (0) (1) et (1)

d'un mouvement laminaire d'un continuum elastique. Pour

un tel continuum le tenseur P est parallele et proportionnel au
tenseur Sp de deformation postrotationnelle calcule ä partir
de l'etat (0) non travaille. On peut done representer le tenseur
de tension P si on dessine dans la position (0) un cercle de

rayon unite et qu'on observe l'ellipse en laquelle se transforme
ce cercle pendant le deplacement laminaire et qui coincide

avec la surface metrique de @p; les directions d'axes principaux
de P sont ä chaque instant paralleles ä Celles de l'ellipse et les

valeurs propres sont proportionnelles aux logarithmes des

grandeurs des axes de l'ellipse. Par un deplacement laminaire
infinitesimal ä partir de la position (0) le cercle de rayon 1 se

transforme en une ellipse dont les axes forment des angles
de 45° avec les directions du cadre; si le deplacement laminaire

continue, cette ellipse se deforme et tourne de plus en

plus, de sorte qu'apres un deplacement laminaire infmiment
grand les axes de l'ellipse et par consequent les axes de P sont
paralleles aux axes du cadre.

La representation du tenseur S de la vitesse de deformation
se fait d'une maniere analogue; on dessine dans n'importe quelle
position un cercle de rayon un et on observe l'ellipse en laquelle
se transforme ce cercle apres un deplacement laminaire
infinitesimal et qui coincide avec la surface metrique de S1; les

directions d'axes principaux de S sont paralleles ä Celles de

cette ellipse et les valeurs propres sont proportionnelles aux
logarithmes des grandeurs des axes de l'ellipse. En partant de la
position (0) on trouve, comme pour le deplacement laminaire
ci-dessus, une ellipse dont les axes sont ä 45° avec les axes du

cadre; au debut du mouvement laminaire P et S sont done

paralleles et la relation qui les lie est la meme que dans une
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deformation pure. Si on continue le displacement laminaire
d'abord jusqu'ä la position (1) et qu'on trace dans cette position

un cercle de rayon un, representant S dans cette position, on
constate que ce cercle se transforme par suite d'un deplacement
laminaire infinitesimal de nouveau en une ellipse dont les axes

sont ä 45° avec les axes du cadre, quelle que soit la position (1)

choisie. Cela montre que l'orientation de S reste fixe dans l'es-

pace (les directions de ses axes forment toujours le meme angle
de 45° avec le cadre) pendant tout le mouvement laminaire
tandis que l'orientation de P change de la maniere que nous
avons indiquee; pour des valeurs grandes de la tension les

tenseurs P et S ne sont plus paralleles et 1'angle entre leurs
axes principaux de meme indice augmente de 0 ä 45°, done

l'angle absolu de 0 ä 90°. C'est pourquoi, pour de grandes
tensions et dans un mouvement laminaire la relation entre P

et S differe essentiellement de celle correspondant ä une

deformation pure dans laquelle P et S sont paralleles.

L'anisotropie des proprietes mecaniques des corps S dans un
etat (1) travaille peut.etre etudiee d'une maniere analogue;
mais le resultat est bien different de celui donne ci-dessus.
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