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LA MECANIQUE DES CORPS DEFORMABLES

PAR

K. WEISSENBERG
{(University College, Soﬁthampton)
(Avec b fig.)

(suite et fin)

III. — LA DYNAMIQUE DE L’ELEMENT DE VOLUME ET LES
PRINCIPES FONDAMENTAUX DE LA MECANIQUE.

Pour appliquer le principe de d’Alembert & 1'élément de
volume d’un corps déformable nous suivons le chemin suivant.
Nous considérons d¢ comme un agrégat de N points maté-
riels P,. Si chaque point pouvait étre déplacé arbitrairement
dans l’espace nous aurions 3 N degrés de liberté pour les
déplacements possibles de dv. Mais par définition dv¢ ne peut se
déplacer que d’une maniére linéaire. Soient (1) et (1) deux
situations arbitraires, z; et x; (i = 1, 2, 3) les coordonnées
correspondantes d’un point matériel par rapport a un systéme 2
de coordonnées trirectangulaires. Le déplacement (11) sera
représenté par la transformation linéaire

we wsan |
xp = T+ Xy pi

ou t; et ¢, peuvent étre considérés comme les composantes
d’un vecteur t et d’un tenseur §. Nous avons donc douze degrés
de liberté, 3t; et 9¢,,, pour les déplacements possibles du
point P, . Les composantes 7, et ¢,; peuvent étre considérées
comme des coordonnées géométriques généralisées de dv¢ (ou ce
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qui revient au méme de 1’agrégat des P, dans dv), déterminant
la position (1) de de par rapport & la position (1) choisie comme
position de référence. Si on introduit un espace 4 12 dimensions,
chaque position de dv ou de I'agrégat des P, pourrait é&tre
représenté par un point & 12 coordonnées. Le déplacement
linéaire (11) est représenté dans cette image par le vecteur

—
(11), ayant pour origine le point qui représente la position (1)
et pour extrémité le point représentant la position (1). Dans
le systéme de coordonnées introduit, ce vecteur a les douze
compostantes t; et ..

La cinématique de d¢ est décrite alors si I’on donne t; et ¢,
en fonction du temps. Chaque coordonnée détermine la position
de dv selon le degré de liberté associé a cette composante.

La dynamique est basée sur les énoncés de Newton et
Boltzmann, qui précisent la définition fondamentale de la force
mécanique. Ces énoncés se résument — comme on ’a mentionné
dans I'introduction — en un principe de variation virtuelle,
le théoreme de d’Alembert.

Nous admettons que I’action dynamique exercée sur d¢ est
représentée par des variables forces extérieures, fonctions du
temps, fes et fey, agissant respectivement sur la surface o
et sur la masse p de de. Le probleme exact de la mécanique
de dv revient a déterminer une composante de 1’action dyna-
mique correspondant a chacun des douze degrés de liberté
choisis pour la description de la cinématique, puis a déterminer
pour ces douze degrés de liberté les relations entre ces compo-
santes dynamiques et les variables cinématiques.

La détermination des composantes dynamiques correspondant
aux composantes cinématiques introduites se fait en écrivant
le travail virtuel accompli par dv. Soit 83 Ge la densité du

travail virtuel,
8Ge = p, Sz,

ou z,, représente une composante d'une coordonnée généralisée
de position dans le degré de liberté m, et p,, la composante
dynamique correspondant a z,,; dx,, est une variation virtuelle
de z,,. La direction et la dimension de p,, varient selon le choix
de x,; si par exemple z,, représente une composante de trans-
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lation, p,, est une densité vectorielle de force, si z,, est un angle
de rotation, p,, est une densité tensorielle de moment de
rotation, etc.

En général les p,, sont des composantes de densités tenso-
rielles, c¢’est-a-dire des pseudo-tenseurs!, pourvu que les z,,
solent des composantes de tenseurs, car le produit des p,, par
les 8z, est une densité scalaire, donc un pseudo-scalaire. Si on
détermine les composantes dynamiques correspondant aux
composantes t; et (,; de la cinématique, on trouve des relations
extrémement compliquées en général, étant donné la liberté
que nous avons dans le choix des variables. Nous ferons ce
choix de maniére que le principe de d’Alembert s’exprime pour
de¢ dans la forme la plus simple et la plus intuitive possibles, et
nous déterminerons les variables cinématiques correspondantes
au moyen du théoreme du travail virtuel.

Pour adapter la forme dans laquelle nous avons introduit le
principe de d’Alembert au cas particulier d’un élément de
volume dy il faut appliquer ce principe 4 la portion infinitésimale
dm de la matiére contenue dans d¢ — ce qu’on fait en rapportant
les travaux & I'unité de masse. Les variations virtuelles de ces
travaux par unité de masse seront désignées par 3Ter*, dGe*
et 3Gi*,

On a tout d’abord

(3Terk), = (3Be*), + (3Bi*), .

Or (3%e*), est nul pour toute action dynamique exercée dans
les six degrés de liberté qui correspondent aux déformations
pures virtuelles; ce principe exprime par conséquent que toute
action dynamique exercée sur un élément suffisamment petit du
corps peut étre décomposée & chaque instant en deux parties:

Une partie, attachée aux six degrés de liberté de la déforma-
tion pure, effectue un travail virtuel dans un de ces six degrés
au moins, mais un travail virtuel nul le long de tout déplace-
ment virtuel rigide; il y correspond comme action dynamique une
densité tensorielle symétrique P appelée la tension et définie par

1 La théorie des pseudo-tenseurs a été donnée par Brillouin
(Ann. de Phys., 111, p. 251, 1925).
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(8‘@6*(P))r = 0; c’est elle seule qui est & chaque instant en
équilibre avec les forces intérieures. I’autre partie, attachée
aux six degrés de liberté qui correspondent aux déplacements
rigides, effectue un travail virtuel selon ces six degrés de dépla-
cement rigide seulement. Cette partie seule est en équilibre
avec les forces d’inertie. Nous la décomposerons en une densité
vectorielle de force F et une densité tensorielle antisymétrique
de moment de rotation M, de sorte que F n’effectue de travail
virtuel que par suite d’une translation, et M par suite d’une
rotation. En désignant par J et J la densité vectorielle des
forces d’inertie et la densité tensorielle antisymétrique du
moment résultant des forces d’inertie, le principe de d’Alembert
s’exprime par

F4+J =0
et

M+ =0,
et

P—DP=0.

Les composantes de ces densités tensorielless F, M et P
sont les composantes dynamiques les mieux adaptées au
principe fondamental de la mécanique. Nous nous proposons
premiérement de déterminer F, M et P en fonction des forces
extérieures feg et fe,, et deuxiémement de trouver les variables
géométriques correspondantes.

Nous définirons des variables dynamiques en écrivant des
relations de proportionnalité entre fe,, et dv, d’une part, fes et o,
de ’'autre:

]cep, == F:J, dV 3
1
feo =11 - 2o, 1.

! ¢ est une surface, donc un tenseur antisymétrique de deuxiéme
ordre. G’est le produit vectoriel de deux vecteurs « et & infiniment
petits, qui s’exprime dans la forme tensorielle par:

c = [ab] = aibj(eiej — eje,i) ,
d’out T'on tire la forme pseudo-vectorielle
1
E‘Gx _ a?, bjek .
les trois indices i, j, k se rapportant aux trois axes de coordonnées
pour lesquelles on choisit un ordre de succession i j k.
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F u est une densité vectorielle et Il une densité tensorielle.

On a alors

P s —;-(II 4 1) avec P =P
1

M=2(II+1HI) avec M = — M

F = F, +divP

Si on exprime F, M et P dans un systéme trirectangulaire
portant des vecteurs unités e, on trouve pour F trois compo-
santes dynamiques F, dans les trois degrés de liberté de la
translation. On trouve de méme neuf composantes pour M, mais
4 cause de ’antisymétrie, les trois composantes M;; sont nulles
et M;, = — M,,, soit: trois composantes indépendantes pour
les trois degrés de liberté de la rotation. Enfin, il y a neuf compo-
santes pour P, mais a4 cause de la symétrie, P;;,, = P,;, ce qui
réduit a six le nombre des composantes indépendantes de P
pour les six degrés de liberté de la déformation.

Il nous faut maintenant les variables cinématiques en fonc-
tion de 7 et ¢, et correspondant & F, M et P. Pour les trouver,
il faut reprendre la décomposition du déplacement linéaire en

! Les grandeurs tensorielles II, P et M qui sont définies a I'aide
1 o ame G

de 3 Ox sont des densités tensorielles qui, par multiplication avec le
volume donnent de vrais tenseurs. On les appelle des pseudo-tenseurs.
Si on veut éviter I'emploi des pseudo-tenseurs il faut poser
fo = 111 .. do, ou III représente un tenseur du troisiéme ordre et
do le méme tenseur antisymétrique du deuxiéme ordre que plus haut.
On obtient pour la tension et le moment de rotation de vrais tenseurs
de troisiéme ordre Py et Myy;; leurs composantes se déterminent
a partir de celles des pseudo-tenseurs P et M de la maniére suivante

(Pm)lii = (MIII)Hi =0,
1 ok
(Pm)zij = (Pm)ui = §Pz »
g
(MIII)lij A (Mm)lji = 'Q—Ml

Nous préférons nous en tenir aux pseudo-tenseurs, qui sont plus
simples que les vrais tenseurs, ayant moins de composantes (voir
L. Brillouin, [ ¢.).
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translation, rotation et déformation, et faire correspondre a
ces trois mouvements une grandeur vectorielle ou tensorielle
qui satisfasse les conditions imposées par le théoréme du travail
virtuel. Ces grandeurs vectorielles et tensorielles, multipliées
respectivement par F, M et P, doivent donner la densité du
travail virtuel correspondant.

Ces variables cinématiques cherchées sont les suivantes:
le vecteur de translation < correspondant a F, le tenseur
dangle’ de rotation w = lne = In ((L[J . 'C[)_Vz - ) correspon-
dant & M (on a w = — ), et le tenseur de déformation
s =sa =In3a = In(y - f]:) correspondant & P (on a s =3).
La translation est représentée comme d’habitude par un
vecteur. La rotation est représentée par un tenseur antisymé-
trique w. Enfin, la déformation est caractérisée par un tenseur
symétrique s dont les axes principaux sont trirectangulaires
et paralleles aux directions dans lesquelles I’allongement
trirectangulaire antérotationnel est effectué. Les valeurs
propres s, de s mesurent la déformation dans- ces directions,
déformations représentées par le logarithme de I’allongement.
Les composantes 1,, w;, et s;, correspondent aux composantes
Fp, M, et P, et sont considérées comme composantes des
variables géométriques généralisées dans les douze degrés de
liberté de translation, de rotation et de déformation. Ayant
déterminé les variables cinématiques et dynamiques dans
chaque degré de liberté nous trouvons finalement ce que nous
cherchions, la densité du travail virtuel en fonction de ces
variables:

3e=F -7+ M..w+P--5.

Nous pouvons encore donner au principe de d’Alembert
une autre forme, qui n’est pas limitée aux déplacements
virtuels rigides, mais permet d’étudier les variations des
travaux virtuels par unité de masse correspondant a tous les
déplacements virtuels admis pour de¢, c’est-a-dire tous les
déplacements linéaires virtuels.

Nous ne donnerons ici cette forme que pour le cas spécial
dans lequel le volume ne varie pas. Dans ce cas les variations
virtuelles des travaux par unité de masse peuvent étre rempla-
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cées par celles prises par unité de volume qui seront désignées
par 3®ei, 3Te et 3%i (sans astérisque).
Remarquons que dans ce cas
§Bi— (3%Bi), = 0
et '
dGe — (S%E)T = (S%e)d ,

ou (3®e),; est la densité du travail virtuel accompli par les
forces extérieures le long d’un déplacement particulier qui est
une déformation pure. Cela nous permet d’écrire

(3Bei), = 3Te + 3Gi— (3Be); = 0 .

Rappelons que
3Ger = §Te + 301

ou 3®ei est la somme des densités de travaux virtuels accom-
plis par les forces extérieures et les forces d’inertie, on obtient

3Ger = (S@e)d = Pu¥q

Cette relation exprime I’équilibre entre la partie des forces
extérieures qui agit dans les degrés de liberté associés aux
déplacements rigides et les forces d’inertie; elle fournit de plus
pour la partie restante des forces extérieures — c’est-a-dire
pour la tension — un théoréme d’anisotropie virtuelle, qui sera
discuté dans le chapitre de la mécanique.

Remarque: Application de la théorie des groupes avec dépla-
cements linéaires successifs. — La décomposition que nous
avons faite des variables mécaniques est valable pour chaque
instant séparément. Elle ne donne aucun renseignement sur
la composition des actions successives. Ce probleme doit étre
étudié tout spécialement. Nous n’insisterons ici que sur le
fait que les variables mécaniques attachées aux six degrés
de liberté des déplacements rigides (translation et rotation)
forment un groupe par rapport a4 une suite d’opérations effec-
tuées sur le méme de. En effet, si on applique & dv successive-
ment deux déplacements rigides, ou successivement des densités
de force et des moments de rotation, le résultat est toujours un
déplacement rigide, une densité résultante de forces .ou un
moment de rotation résultant. Il n’en est pas de méme pour les
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variables attachées aux six degrés de liberté de la déformation.
En effet le résultat de deux déplacements successifs dont chacun
est une déformation pure n’est pas nécessairement une défor-
mation pure mais en général un déplacement linéaire com-
posé d’une rotation et d’une déformation pure. Dans le cas
seulement ol les déformations pures successives sont paralléles
a des directions fixes par rapport au milieu déformable ou,
ce qui revient au méme, fixes par rapport au systéme de réfé-
rence %, , dans ce cas seulement les déformations pures forment
un groupe, c¢’est-a-dire que deux déformations pures successives
sont équivalentes 4 une seule. La théorie exacte de la super-
position des déplacements successifs a été donnée dans le
chapitre précédent. On peut dire en résumé qu’'un élément
suffisamment petit d’un corps matériel quelconque céde aux
forces extérieures, & chaque instant, selon les six degrés de
liberté qui correspondent aux déplacements rigides exactement
comme un corps rigide de méme masse, ¢’est-a-dire comme si
les autres degrés de liberté n’existaient pas. Et si ’on fait agir
sur de, a4 partir d’un état (0) isotrope et non-travaillé, une
tension changeant d’intensité mais dans des directions fixes
par rapport au milieu déformable, d¢ céde (dans le systéme
de référence défini par ces directions) selon les trois degrés
de liberté de la déformation comme si les autres degrés
n’existaient pas. On obtient un résultat analogue en effec-
tuant des allongements trirectangulaires sans changer ’orien-
tation. Par contre cela n’est plus vrai si la tension ou les
allongements successifs changent d’orientation par rapport au
milieu.

Dans le développement systématique de la mécanique d’un
élément de volume d¢ nous notons done les éléments suivants:
10 une mécanique rigide pour six degrés de liberté (translation
et rotation), 20 une mécanique de déformation pure pour les
trois degrés de liberté associés, 3° la mécanique des défor-
mations quelconques, fondée sur des lois de superposition qui
sont données dans le chapitre précédent et qui doit étre établie
dans les neuf degrés de liberté des déformations et des rota-
tions, 4° la mécanique des déplacements linéaires quelconques
pour les douze degrés de la liberté de do.

Arcuives, Vol. 17. — Mars-Avril 1935. 10
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IV. — LA MECANIQUE DE L'ELEMENT DE VOLUME.

1. — Théorie thermodynamique.

Dans I’évolution des systémes mécaniques (en particulier des
matiéres colloidales) peuvent se présenter des phénomenes
trés divers; par exemple des phénoménes calorifiques réver-
sibles et irréversibles, des changements de structure, des trans-
formations chimiques, des phénomenes électriques, etc. Tout
changement d’état est déterminé ou non du point de vue méca-
nique suivant qu’il peut étre représenté ou non, indépendam-
ment du temps, comme fonction des variables mécaniques
seules. Nous aurons pour objet de rechercher I'expression de
lois entre les variables mécaniques et les changements d’état
déterminés du point de vue mécanique. Si 'on se plagait du
point de vue plus strict de la mécanique ordinaire, on se
bornerait a écrire des lois entre les variables mécaniques elles-
‘mémes, donc a déterminer une liaison entre les variables
dynamiques et 1'état cinématique.

Pour la représentation quantitative des lois de la mécanique,
une unification des variables est nécessaire. Si I'on choisit
celles-ci de telle maniére que ces lois s’expriment aussi simple-
ment que possible, on trouve (voir les chapitres précédents)
que la densité de force F, le moment de rotation M et la ten-
sion P, d’une part, et le vecteur de translation 7, le tenseur
antisymétrique d’angle de rotation W et le tenseur symétrique
de tension S ainsi que les vitesses, accélérations, etc., de ces
grandeurs sont les variables mécaniques qui conviennent le
mieux. Le probleme de leur combinaison a été étudié dans le
chapitre consacré a la superposition.

Il n’a été mis en jeu jusqu’ici que la mécanique proprement
dite, se bornant & I'application du principe de d’Alembert, qui
ne fournit aucun renseignement sur la liaison qui existe entre
I'état de la tension et I’état de la déformation. Pour combler
cette lacune (voir l'introduction), nous proposons de déduire
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des deux premiers principes de la thermodynamique une « équa-
tion d’état mécanique » qui, jointe au principe de d’Alembert,
conduira & une description générale de I’évolution des corps
déformables, pour autant qu’ils sont déterminés du point de
vue mécanique. Les deux premiers principes de la thermo-
dynamique apparaissent dans leur forme la plus simple, si on
les applique & un systéme 4 température constante et & masse
et énergie fermées. Nous pouvons réaliser un tel systéme de la
maniére suivante. Premiérement nous mettons le corps défor-
mable a étudier dans un bain qui, par sa grande capacité de
chaleur, maintient la température constante; deuxiémement,
nous y adjoignons une masse capable d’effectuer sur le corps
n’importe quel travail mécanique et troisiemement nous
enfermons le tout entre des parois imperméables & I'énergie et
a la matiére. C’est a ce systéme adiabatique et isotherme en
meéme temps — et non pas le corps déformable isolé — que
nous appliquerons les principes de la thermodynamique; il en
résulte que pour tout élément de masse et en chaque instant la

somme de la pulssance e développée par les forces extérieures,

de la puissance %} de I’énergie libre et de celle ® de I'énergie liée
s’annule, ces puissances étant rapportées a l'unité de masse:

Grg+L6=0.

Nous dirons que le corps déformable est déterminé ou non au
point de vue mécanique suivant que les trois puissances en
question s’expriment, indépendamment du temps, en fonction
seulement des variables mécaniques ou non. Pour les corps
déterminés I'équation ci-dessus établit une nouvelle relation
entre les variables dynamiques et cinématiques et donne ainsi
une idée générale des propriétés mécaniques des corps en
question; les fonctions dans cette équation sont caractéris-
tiques pour le corps déformable et les constantes qui y
interviennent déterminent d’une maniére quantitative ses
propriétés mécaniques ; en général on trouve donc pour
chaque corps une équation caractéristique différente. C’est
pourquoi cette équation sera nommée équation détat méca-
nique du corps.
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Cette équation d’état étant tout & fait générale et par consé-
quent valable pour tout corps déterminé au point de vue méca-
nique nous en déduisons les traits généraux de la mécanique
des corps déformables. Nous discuterons ces traits généraux
dans ce chapitre. (La théorie compléte a déja été publiée dans
« Die Mechanik deformierbarer Korper », Abhdlg. d. Preuss.
Akademie d. Wissenschaften, Jahrgang 1931, Heft No. 2.) Nous
ne donnerons ici qu’'un bref apercu.

On peut, grace a des considérations tirées de la théorie des
groupes, imaginer une classification des corps déformables en
familles de corps analogues entre eux. Aux corps d’une méme
famille correspondent des équations d’état pouvant se déduire
I'une de I'autre par un groupe de transformations. L’analogie
des corps réunis ainsi dans une méme famille consiste en ce qu’il
suffit de connaitre les résultats expérimentaux relatifs a un seul
corps de cette famille pour pouvoir déterminer ceux de tous les
autres; les mémes transformations qui font passer de 'équa-
tion d’état du corps choisi & celle des autres corps de la famille
transforment les conditions dans lesquelles se trouve le corps
examiné ainsi que les résultats de 'examen en ceux qui corres-
pondent aux autres corps. Un exemple relevant I'utilité de cette
classification réside dans la similitude mécanique. Si on réunit
dans une famille tous les corps dont les équations d’état se
déduisent de celle d’un corps de référence par les transforma-
tions de similitude !, on dira que les corps d’une telle famille
sont semblables au point de vue mécanique et on peut aisément
transformer toutes les expériences faites sur un corps en celles
concernant un corps semblable au moyen d’une transformation
convenable de similitude. Outre les applications bien connues
de Reynold, le groupement des corps déformables en familles

! Soient I, m, t les unités de longueur, de masse et de temps (par
exemple, 1 cm, 1g, 1 sec.) dans un systéme arbitraire de référence;
on en déduit les unités I, m/, ¢’ d’un autre systéme par les transfor-
mations de similitude

! =L.1
m =M.m
! = T.t

ou L, M, T sont des constantes.
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est trés avantageux dans le domaine des colloides. Une série
d’applications faites dans le domaine de la pratique sur diverses
solutions de cellulose, pour des températures et des concentra-
tions variant dans des limites trés larges, et faites avec diffé-
rents solvants, montrent que ces solutions sont des corps
semblables entre eux au sens précisé plus haut. Quantité
d’autres solutions colloidales de caoutchoue, de gélatine, etc.,
font partie de la méme famille. L’essai de les analyser au moyen
de la théorie décrite est trés satisfaisant. (Voir divers travaux
de K. WEISsENBERG, B. Rapinowirsch, R. EisEnscHITZ et
Puivirorr, Mittedlungen der disch. Materialpriifungsanstalten
[X.21.1929; Zs. f. phys. Chem., A 145, 1, 1929; Ber. der dtsch.
Chem. Ges., 64, 2522, 31 et Phys. Zs., 35, 883, 1934.)

Si I'on se fonde sur I'équation d’état, la mécanique des corps
déformables se présente sous forme d’un cycle, que nous illus-
trerons ici pour une catégorie spéciale de corps déformables,
ceux qui sont incompressibles (parce que I'hypothese de I'in-
compressibilité est une grande simplification). Dans ce cas
Iéquation d’état établie pour les puissances rapportées a
I'unité de masse est valable aussi pour les mémes puissances
rapportées a I'unité de volume. C’est sous cette forme que nous
ferons usage de 'équation d’état dans la suite, car les densités
de puissances s’expriment en fonction des variables mécaniques
d’une maniére plus simple que les puissances spécifiques.

En appliquant le chapitre de d’Alembert, on obtient (voir le
chapitre Dynamique): '

F=¢-1t=F, +divP
p-W:M,

ou p est la densité et = accélération linéaire de 'élément de
volume sur lequel s’applique une densité de force résultante F,

W son accélération angulaire et M le moment qui lui imprime
une rotation.

Si on multiplie la premiére équation par 37 la deuxiéme par
| M ; .
§W et qu'on fait la somme, on trouve que la puissance de

I'énergie cinétique est égale 4 la puissance des forces extérieures
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développée le long de la partie rigide du mouvement. Sous-
trayant la relation de cet équilibre de I'équation d’état, on
obtient pour des corps incompressibles: '

—P.S+Dd+G =0,

ou le produit scalaire changé de signe de la tension P et de la
vitesse de déformation S est égal a la puissance des forces
extérieures le long de la déformation contenue dans le mouve-
ment (cette puissance est la différence entre la puissance totale

des forces extérieures ® et la puissance développée le long de la

partie rigide du mouvement), ® est la puissance du potentiel
interne ® du systeme (cette puissance est la différence entre

celle de I'énergie libre ¥ et celle de I'énergie cinétique); finale-
ment G est la puissance de 1’énergie liée du systéme (toutes ces
puissances sont toujours rapportées a l'unité de volume).

Du second principe de la thermodynamique découlent des
restrictions sur les fonctions @ et G. En vertu de la réversibilité
d’un changement du travail en énergie libre, ® doit étre la

dérivée totale C%D- par rapport au temps d’une fonction @ des

variables mécaniques seules, car d® doit étre une différentielle
totale. Par contre, en vertu de I'irréversibilité du changement
du travail en énergie liée, il faut que

G>0

d’ou ’on déduit que c’est G et non pas G qu’on peut donner en
fonction des variables mécaniques seules, car dG n’est jamais
une différentielle totale. Pour exprimer cette différence fonda-
mentale entre @ et G nous introduisons dans I’équation d’état
ao
dt

. e dG ’
troduisons pas G en écrivant —; parce que G n’est pas une

® en écrivant au lieu de @, mais nous y laissons G et n’in-

fonction des variables mécaniques seules.
Un corps incompressible déterminé au point de vue méca-
nique a done pour équation d’état

_P"S+W+G:0
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ou
D=0V,
G=0G(WV),

n

Y, symbolisent les variables mdécaniques (tension P, deforma- ‘

tion S, ainsi que leur vitesse, leur accélération, etc. P S P S
etc. (la température, supposée constante, n mtervmnt pas dans
ces fonctions).

Le traitement explicite de 'équation d’état se fait de la
maniére suivante: Lorsqu’on résout I'équation par rapport a la
tension ou a la déformation, on obtient celles-ci sous forme
d’intégrales dans le temps d’une fonction de la déformation,
ou de la tension. Cette intégration nécessite I'introduction des
états antérieurs du systéme, afin que I'on puisse estimer les
constantes qu’elle introduit. Nous obtenons de la sorte une
théorie de « post-action ».

Selon les trois termes dont I'équation d’état est composée
nous distinguons trois domaines particuliers pour lesquels un
de ces trois termes s’annule. A chaque corps déformable on
associe trois corps idéalisés, dont le premier est parfaite-
ment élastique, le deuxiéme parfaitement visqueux et le
troisitme a une relaxation parfaite de I’énergie libre. Les équa-
tions d’état de ces trois corps s’obtiennent a partir de I'équation
d’état du corps déformable en y annulant un des trois termes.
On est ainsi ramené A trois équations:

d® ;. dd

10 — —_— = — 2T G =—1:1:0
P S+dt 0 avec P..S 7 G 1:1:0
2 —P,..8§4+G =0 avec—P..'S:%:G=~1:O:1
d y ;
30 —Eg—[—(} = (0 avec ﬁP..S:@:G:O:m—i:l'
dt dt

On en déduit que si on détermine les variables mécaniques
de maniére que la condition rattachée a 1° (resp. 2° ou 3°) soit
remplie, Je corps déformable se comporte du point de vue
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énergétique exactement comme le corps d’élasticité (viscosité,
relaxation) parfaite qu’on lui a associé.

La premiére équation donne ainsi la théorie d’élasticité du
corps déformable, et la condition accessoire détermine des
variables mécaniques et par conséquent un 6tat cinématique
et dynamique dans lequel le corps déformable montre une
élasticité parfaite. La deuxiéme et la troisieme équations
donnent de méme la théorie du frottement interne et de la
relaxation ainsi que les conditions dans lesquelles le corps
déformable montre une viscosité ou une relaxation parfaite.

Ces trois lois, obtenues pour des domaines particuliers, ne
sont toutefois pas indépendantes. Voici en quoi: elles sont,
comme I'équation d’état elle-méme, des équations différentielles
par rapport au temps et aux variables de tension et de défor-
mation. Les constantes qu’elles contiennent sont les constantes
des matériaux.

Nous appellerons les constantes intervenant dans @ et G
coefficients d’élasticité et de viscosité. Or, les trois lois dont il

est question ne contiennent que deux (® et G) et non pas-trois
fonctions indépendantes; on doit donc pouvoir calculer, a
partir des constantes de deux de ces lois les valeurs des cons-
tantes de la troisieme. Ce calcul constitue la théorie de la relaxa-
tion du potentiel élastique au cours du frottement interne.
La décomposition ainsi effectuée de I’équation d’état, suivie
de la détermination des constantes, revient en quelque sorte
a une analyse du corps déformable étudié en trois corps
1déaux, corps de relaxation, corps élastique et corps visqueux,
dont deux seulement sont définis d’une maniére indépendante.
Si on y ajoute une synthése, qu’'on réalise par la superposition
des trois cas particuliers obtenus, on ferme le cycle de nos
théories. Dans cette théorie de superposition on mélange pour
ainsi dire les trois corps imaginés provisoirement pour reformer
le corps primitif. En général on peut donner une analogie
de ce cycle dans la théorie de I'électricité en faisant cor-
respondre la tension P a la tension électrique et la vitesse
de déformation a I'intensité du courant électrique. Un élément
de volume dv du milien déformable correspond alors & un
schéma de réluctance comprenant des capacités et des résistances
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ohmiques ! qui correspondent aux résistance d’élasticité et de
frottement interne de d¢. L’énergie potentielle @ correspond
alors & I'énergie du champ électrique contenu dans les capacités

et la puissance G a la puissance développée par la tension
électrique dans les résistances ohmiques. On réalise aisément
avec un tel schéma l'analyse des trois cas particuliers qui
correspondent aux cas d’élasticité, de viscosité et de relaxation
parfaite; le schéma des résistances et capacités est une sorte
d’illustration de la théorie de la superposition. La méthode

de calcul que nous avons ainsi exposée se résume au moyen
du schéma suivant:

EQUATION DETAT

et

RELAXATION FROTTEMENT
| INTERNE

| ELASTICITE
1

' RELAXATION DU POTENTIEL ELASTIQUE |
LORS DU FROTTEMENT INTERNE

|
|
|

SUPERPOSITION

Diverses applications de cette théorie ont été faites dans le

domaine des solutions colloidales (voir par exemple Philippoff,
Phys. Zs., 35, 883, 1934).

! L’inductance correspondrait a la résistance d’inertie. Comme
nous avons séparé de I’équation d’état générale le principe de
d’Alembert qui traite les phénomeénes d’inertie, ceux-ci n’apparaissent
plus ici; ¢’est pourquoi dans ce schéma, I'inductance n’intervient pas.
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Le calcul complet est plus ou moins compliqué suivant la

forme qu’on attribue aux fonctions @ et G. 11 vy a deux classes
de corps déformables pour lesquelles le cycle s’interpréte d’une
maniére simple et intuitive.

Ce sont les corps P et les corps S pour lesquels @ et G sont
respectivement des fonctions des variables dynamiques (P,

B, P ...) ou des variables cinématiques (S, S, S ...) seulement.
I7élément de volume d¢ d’'un corps P (ou d’un corps S) est
représenté par un schéma dans lequel la capacitance est en
paralléle (ou en série) avec la résistance ohmique, et la loi du
schéma en paralléle (en série) est parfaitement analogue & la
loi de superposition valable pour les corps P (corps S). Pour
les corps déformables de« autres catégories, le schéma est plus
compliqué.

Nous avons montré que I'équation d’état seule permet
d’achever le développement systématique de la mécanique des
corps déformables. Il est commode d’abord d’étudier les diffé-
rents phénomenes (d’inertie, d’élasticité, de viscosité, de relaxa-
tion, etc.) dans des conditions simples afin de déterminer
I'équation d’état d’un corps envisagé et d’en déduire les cons-
tantes des matériaux puis de rechercher comment se comporte
dans des conditions générales et compliquées le corps dont
I'équation d’état et les propriétés mécaniques sont connues.
C’est en principe ce chemin que nous suivrons. Il nous faut
tout d’abord relever une difficulté que I’on rencontre en procé-
dant ainsi. Voici en quoi elle consiste: Le principe de d’Alembert
est équivalent & six équations scalaires, I'équation d’état a
une seule, puisqu’elle est elle-méme une équation scalaire; nous
avons donc sept équations pour les 11 degrés de liberté du cas
général 1,

Il est donc nécessaire d’introduire des hypotheses nouvelles
qui permettent de substituer a la place de I'équation d’état
scalaire une équation tensorielle reliant les tenseurs qui repré-
sentent les variables cinématiques a ceux de nature dynamique.

1 A cause de l'incompressibilité postulée I’élément de volume
dispose d’un degré de liberté de moins que dans le cas des déplace-
ments linéaires quelconques, donc 12 — 1 = 11 degrés de liberté.
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L’hypothese nécessaire pour le début du chemin que nous
nous proposons de suivre est aisée & faire. Nous avong vu dans
les chapitres précédents, qu’il est utile de séparer les déplace-
ments élémentaires en déplacements rigides (de translation et
rotation) d’une part et déformations pures isotropes de volume
et anisotropes & volume constant d’autre part. Nous étudierons
tout d’abord le corps déformable & I'état (0) non travaillé et
sujet aux déplacements élémentaires en nous placant dans les
conditions les plus simples. La mécanique des mouvements
rigides est complétement déterminée par le principe de d’Alem-
bert et ne sera pas discutée ici; les déformations isotropes de
volume n’existent pas pour les corps incompressibles de sorte
qu’il ne nous faut considérer que les déformations pures aniso-
tropes a volume constant. Pour plus de simplicité nous nous
bornerons ici 4 la discussion des corps déformables qui dans
Pétat (0) sont isotropes. Dans ce cas particulier les directions
des axes principaux de tous les tenseurs dynamiques et cinéma-
tiques sont paralleles & des directions fixées dans le milieu
pendant tout le mouvement et on peut admettre que I'équation
d’état est valable séparément pour chacune de ces directions.
Cette hypothése permet de passer de 'équation d’état scalaire
4 l'équation tensorielle cherchée. Nous insistons sur le fait
que cette hypothese n’est valide que pour les déformations
pures de corps incompressibles et isotropes a I'état (0). Mais
dans ce cas alors elle donne trés probablement une bonne
approximation, car si on admet qu’il existe une relation linéaire
entre les tenseurs dynamiques et les tenseurs cinématiques,
on peut la justifier pleinement (voir I'appendice).

Ayant trouvé ainsi Iéquation d’état sous une forme satis-
faisante on procéde a 'examen du corps déformable d’apres le
cycle indiqué dans la discussion générale. Les calculs explicites
sont trés simples pour ce cas particulier, car les hypothéses
que nous avons faites entrainent que dans un systéme mobile
X,, de référence, qui suit la partie rigide du mouvement &
partir de I'état (0) non travaillé:

. dsS dzS asS
Arivés — . —— 22 du tenseur S par rapport au
a) Les dérivés LA o Y PP

temps, sont identiques aux tenseurs S, S ... S donnant la vitesse,
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Paccélération... de la déformation S; de méme les dérivés
dapP 4P a*pP
Et" W cee _d—t?
identiques aux tenseurs donnant la vitesse, 'accélération...

par rapport au temps de la tension P sont

E.’, P.. P de la tension P;

b) Tous les tenseurs mentionnés sous «) sont des déviateurs
et sont paralléles entre eux;

¢) La superposition de deux déformations successives
conformes aux hypotheéses de ce cas particulier s’exprime par
une loi additive
S=284s.

Nous avons étudié tout spécialement les corps P et S dans les
dites conditions. Ces deux catégories de corps déformables
montrent dans leurs propriétés mécaniques deux extrémes;
les détails qui 8’y rapportent ayant été publiés dans le travail
cité ci-dessus, nous nous contentons de dire que I'image d’'un
schéma en parallele ou en série d’une capacité et d’une résistance
ohmique donne une illustration parfaite de toutes leurs pro-
priétés mécaniques.

Passons & la seconde partie du chemin que nous avons a
suivre. La question qui se pose ici est la suivante: Admettant
que I'équation d’état d’un certain corps soit connue sous une
forme satisfaisante, comment se comporte ce corps dans des
conditions générales et compliquées ? En particulier, comment
se comporte le corps s’il est dans un état travaillé (1) obtenu
a partir de I'état (0) par des déformations ou des tensions
quelconques ? Pour plus de simplicité nous admettrons ici
aussi que le corp: est incompressible et isotrope dans I'état
non travaillé (0). Le passage de I'équation d’état scalaire a
une équation tensorielle ne peut pas se faire dans le cas
général a l'aide de I'’hypothése supplémentaire introduite
dans le cas spécial des déformations pures. Nous admettrons
éventuellement dans le chapitre suivant une relation tenso-
rielle entre les tenseurs dynamiques et les tenseurs cinéma-
tiques au lieu d’une hypothése nouvelle (comme, par exemple,
une généralisation de la loi d’élasticité de Hooke ou du frotte-
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ment interne de Newton); cette relation remplacera I'équation
d’état. (Si on veut appliquer la théorie cyclique donnée plus
haut on repasse d’abord de cette forme tensovielle a la forme

scalaire de I'équation d’état en ramenant tous les termes &

trois: P .. S, d_(tb et G, et 'on procéde alors comme il a été

indiqué 1),

2. — La mécanique de ['élément de volume dans I'état travallé.

La mécanique des corps dans un état (1) travaillé se fonde
sur les lois de superposition d'un effort accessoire & un effort
primaire ayant fait passer d’un état initial non-travaillé a I’état
travaillé. Pour plus de simplicité nous supposerons avoir affaire
a des milieux déformables incompressibles qui, dans I'état
non-travaillé, sont 'isotropes.

La théorie des superpositions des déplacements linéaires
(v compris les déformations) a été donnée plus haut d’une
maniére générale. Nous prendrons pour état (0) I'état isotrope
non-travaillé. Si nous connaissions |'équation d’état d’un
certain corps sous une autre forme qui donne la relation entre

les grandeurs dynamiques P, P, ... E et les grandeurs S, S, ... S,
ou la déformation S est comptée & partir de I'état (0) non-
travaillé, nous pourrions déduire a I'aide des lois de superposi-
tion la relation entre les grandeurs dynamiques et cinématiques
ou la déformation est comptée a partir de I’état (1) prédéformé
arbitraire. Nous donnerons un bref apercu de cette théorie.
Dans la premiére partie de ce travail, nous avons supposé
que tous les tenseurs dynamiques et cinématiques sont paral-
leles, c’est-a-dire, ont mémes directions d’axes principaux. Pour
les corps prédéformés les tenseurs dynamiques et cinématiques
ne sont pas paralleles, et 'angle entre ces tenseurs joue un

! On passe de l’équatibn tensorielle & la forme scalaire de I’équation
d’état en la multipliant par le tenseur P de tension ou celui de vitesse

de déformation S avec une double contraction et en tenant compte
des propriétés des fonctions 62—? et G que nous avons notées dans

la premiére partie de ce chapitre.
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role fondamental dans les expressions mathématiques des lois.
En admettant que les milieux sont isotropes a I’état (0) (non
travaillé) on démontre qu’en général la résistance mécanique
dans I’état (1) travaillé varie essentiellement avec la direction
dans laquelle agit I'effort accessoire. C’est donc une anisotropie
« accessoire » de la résistance mécanique, a I'état (1) travaillé,
Iétat (0) non travaillé étant isotrope; cette anisotropie acces-
soire a en général une symétrie rhombique. (Dans des cas
particuliers elle peut étre plus élevée.) On a souvent comparé
cette anisotropie accessoire a celle d’un cristal anisotrope dans
I'état (0) avant une symétrie rhombique. Mais I'anisotropie
accessoire de la résistance mécanique dans I'état (1) du milieu
differe complétement de celle d’un cristal rhombique dans
Pétat (0) sil’état (1) estcaractérisé par une tension anisotrope 1.

On peut cependant comparer cette anisotropie accessoire
résultant d’'une tension anisotrope dans Détat (1) a celle
d’un champ de forces. Si on effectue un déplacement dans
un champ de forces on observe une résistance dépendant du
cosinus de 'angle v entre le vecteur force et le vecteur dépla-
cement. On effectuera un travail positif, nul ou négatif, suivant
que v est compris entre 0° et + 90°, égal & + 90° ou compris
~entre 180° et 4= 90°. Nous allons montrer que I’anisotropie acces-
soire d’'un milieu parfaitement élastique est tout a fait ana-
logue pourvu qu’on remplace I’angle entre le vecteur force et le
vecteur déplacement par I’angle absolu entre le tenseur de ten-
sion dans I'état (1) et le tenseur de la déformation accessoire.
(I1 faut néanmoins effectuer du travail positif dans toutes les
directions si 'on veut déformer un cristal anisotrope a partir
de son état (0).) En général ’anisotropie d’un état (1) travaillé
peut étre décomposée en anisotropie provenant d’une tension
anisotrope et une anisotropie d’un type analogue a celle d’un

! En effet un corps isotrope a I’état (0) montre dans 'état (1)
travaillé, 4 part une anisotropie accessoire mécanique, en général
aussi une anisotropie accessoire optique, magnétique, électrique,
etc.; chacune de celles-ci est tout a fait analogue a l’anisotropie
correspondante d’un cristal rhombique dans 1’état (0) non travaillé;
c’est seulement ’anisotropie accessoire de propriétés mécaniques qui
peut en différer essentiellement.
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cristal anisotrope dans I'état (0); cette seconde partie peut
étre produite par une déformation anisotrope.

Dans la suite nous nous bornerons a I'étude des corps in-
compressibles et isotropes dans I'état (0) non travaillé.

Cela entraine les simplifications suivantes:

1o Toutes les constantes dans I’équation d’état sont des
scalaires;

2° Toutes les variables cinématiques sont des déviateurs;

30 Toutes les variables dynamiques peuvent étre décompo-
sées en somme d’un tenseur isotrope et d’un déviateur; comme
la partie isotrope de la tension effectue un travail nul le long
de tout déplacement a volume constant nous admettrons dans
ce qui suit que les variables dynamiques sont aussi des dévia-
teurs.

Le théoréme de Uanisotropie du travail virtuel.

Dans le chapitre de la dynamique nous avons donné au
principe de d’Alembert la forme suivante:

(S@Zi)r =0,

ot 3,; est la somme des travaux 3, et 3G, effectués par
les forces extérieures et les forces d’inertie le long d’'un déplace-
ment virtuel 3, tout travail étant rapporté & I'unité de masse;
I'indice r indique que le déplacement virtuel 8 est rigide, qu’il
est donc donné par une transformation

R=74+R o avec w-o = 1.

Pour les corps rigides cette forme du principe nous donne
tout les renseignements nécessaires. Pour les corps incompres-
sibles mais déformables pour lesquels tous les déplacements &
volume constant (rigide ou non rigide) sont permis, nous
préférons une autre forme qui nous renseigne sur les travaux
virtuels accomplis au cours de tout déplacement a volume
constant; il est aussi préférable, comme dans le chapitre
précédant, de rapporter tout travail a 'unité de volume au lieu
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de 'unité de masse. En désignant par 3G,;, 3G, et 3G; (sans
astérisque) les densités des travaux et par 3, une variation

virtuelle & volume constant on obtient
(8%;81)(1 — P - )

ou 9, est représenté par la transformation linéaire & volume
constant

R=t+R-¢

avec §,,, = 1, et

s = %In($-§) >
avec s; = 0; ou encore

(83Ger); = P ..s = |P]||s]| cos (Ps) ,

ou cos (Ps) est le cosinus de 'angle absolu entre les tenseurs P
et s, s étant un déviateur.

Cette nouvelle forme du principe de d’Alembert est valable
pour tous les milieux, quelles que soient leurs propriétés méca-
niques et leur état cinématique et dynamique. 51 on considére
le milieu déformable & un instant ¢ = ¢, donné, il se trouve dans
un certain état (1) et la tension a une valeur définie P; la
formule ci-dessus exprime que la densité du travail virtuel
accompli par la somme des forces extérieures fe et des forces
d’inertie fi le long d’un déplacement linéaire virtuel 3, (rigide
ou non) est identique & celle du travail effectué parla tension P
des fe selon la déformation antérotationnelle s contenue dans d,
et ne dépend ni du placement (01) ni de I’état cinématique dans
lequel I’élément de volume se trouve, mais seulement de son
état dynamique (qui définit P) et de 8,. Si on prend pour 3, un
déplacement rigide §; s = 0 et par conséquent (3ei), =0,
quelle que soit V'orientation dans laquelle il est effectué, selon
I’expression habituelle du principe. Mais si on prend pour 8,
un déplacement linéaire non rigide on obtient un théoréme
général sur D'anisotropie virtuelle de 3%ei, que nous allons
discuter, car l'anisotropie réelle de I’élément de volume est
en relation intime avec cette anisotropie virtuelle.
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Si on applique ce principe a I’état (0) ot P=0 ou a un
état (0) pour lequel P est isotrope: P = -;—PI .1, on a que

(8ei); = 0 quelle que soit Dorientation dans laquelle 5, est
effectué, car le produit scalaire d’un tenseur isotrope par un
déviateur est nul; dans ce cas (8Gei), ne dépend pas de I'orien-
tation de 8, et nous dirons que (3®ei), est isotrope. Par contre,
si on applique ce principe & un état (1) quelconque pour lequel P
est anisotrope on trouve que (3Gei), varie avec I'orientation de
34; nous dirons alors qu’il est anisotrope. Cette anisotropie
s’exprime d’une maniére intuitive dans l’espace a 9 dimensions.

Dans I'espace & 9 dimensions (voir ’appendice) nous pouvons
considérer P et s comme des vecteurs P et 8; les grandeurs de
ces vecteurs sont identiques aux valeurs absolues de P et de s
et leur produit scalaire au produit doublement scalaire de P
et s. Done

(3Bei); = P -8 =

B[ 18] cos (Pg) .

L’anisotropie virtuelle, due & la présence du cosinus, et qui,
est en rapport avec I'espace & 9 dimensions, est formellement
identique a ce qui apparait au sein d'un champ de force tri-
dimensionnel, ou la densité du travail virtuel s’exprime par

3G = |F| |38s]| cos (F 8s) .

Lorsqu’on se déplace dans un tel champ en suivant la direc-
tion de la force ou sa projection sur un axe avec lequel elle
forme un angle aigu, le travail effectué est positif. Si la trajec-
toire est perpendiculaire au champ, il n’y a pas de travail.
Dans les autres directions il est négatif. Il en est de méme dans
Iespace a 9 dimensions. Cependant si 'on cherche a expliquer
cette anisotropie virtuelle 9-dimensionnelle au moyen des
trois seules dimensions de l'espace ordinaire, il ne faut pas
perdre de vue que I’angle absolu entre les deux vecteurs 3 et n’a
pas toujours une représentation simple dans I'espace ordinaire,
car il dépend non seulement de 'orientation relative des deux
triedres d’axes principaux des tenseurs, mais aussi de leur forme
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respective 1. Pour déterminer I'orientation de s par rapport &

P nous désignons les angles formés par les axes principaux

de P et de s par a;,; la variation de (8ei); avec I'orientation

de s, ¢’est-a-dire 'anisotropie en question, s’exprime alors par
(3Gei)y = Pys;cos® oy,

Il y a un cas tres spécial dans lequel I'interprétation est
trés simple; c’est le cas des dérivateurs symétriques plans
(langle absolu entre deux déviateurs symétriques dans le méme
plan se trouve étre juste égal au double de I'angle formé par
les axes principaux de méme indice des tenseurs). Dans ce cas

on a
(3Tet); = Pys,, cos20 = |[P||s]| cos2a ,

ou o est 'angle formé par les axes principaux de méme indice
de P et s. L’anisotropie virtuelle s’exprime alors dans I'espace
ordinaire de la maniere suivante: Supposons qu’une membrane
plane soit le siege d’'un champ déviateur homogéne de tension
et que les directions d’axes principaux de P et de s dans cette
membrane soient marquées par deux paires de vecteurs unités
orthogonaux ep; | ep, et ea; | ea,. L'angle o est alors égal
a <t (ea, ep) = <{C (eay, ep,). Les valeurs propres s, de s et P,
de P sont de méme grandeur absolue mais de signe inverse
(P = — Py; 85y = — s,). La densité du travail virtuel effectué
est proportionnel & cos 2u«; elle est donc positive, nulle ou
négative suivant que I’angle absolu 2« est compris entre 0° et
+ 90°, égal & + 90° ou compris entre 180° et 4+ 90°. La courbe
& quatre feuilles p = cos 2« donne une image de I'anisotropie
du travail (p signifiant un rayon vecteur dans le plan) (voir
fig. 4). Pour expliquer la relation entre I’anisotropie virtuelle
de (3Get); et celle de P nous choisissons pour s une valeur
absolue constante en posant |s I = 1. S5i on change alors
Porientation de la déformation s par rapport aux directions

t Un tenseur sphérique est par exemple toujours orthogonal,
dans P’espace 4 9 dimensions, & un tenseur déviateur (leur produit
scalaire étant nul) quelle que soit 'orientation des axes principaux
de ces tenseurs dans ’espace a trois dimensions.
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d’axes principaux du tenseur P tout en laissant la grandeur
de la déformation constante, on trouve

(3%ei); = Px V2 ,

ou P, est la pression normale, dans la direction de s. L’aniso-
tropie virtuelle de (3'®ei),; est donc dans ce cas particulier la
méme que l'anisotropie réelle de la pression normale; on
obtient en effet la méme courbe a quatre feuilles pour la
représentation de la pression normale d’un tenseur déviateur
de tension

P :~-‘—1——]P| cos2a .

Dans l'espace les relations sont plus compliquées; ’aniso-
tropie de (8%ei), est encore déterminée par celle de la tension P;
ces deux anisotropies sont du méme genre mais la surface qui
représente I'anisotropie de (3®ei),; ne coincide en général pas
avec celle de P, . Lorsqu’on détermine I’équation, on obtient
une surface compliquée mais d’un type analogue & la courbe
plane, elle est composée de plusieurs feuilles & signe inverse
séparées par des directions dans lesquelles (8ei), est nul.

Pour le cas trivial d’une tension isotrope la pression normale
est ]a méme dans toutes les directions et I’anisotropie disparait.

En résumé, l'anisotropie virtuelle peut étre considérée
comme résultant de I’anisotropie de la tension; elle est iden-
tique pour tous les milieux qui sont siéges du méme champ de
tension, quelles que soient leurs propriétés mécaniques et quel
que soit I’état de déformation ou de mouvement dans lequel on
les examine; c¢’est done une propriété générale des corps qui
sont le siége d’'un champ de tension.

L’anisotropie réelle dans un état (1) travaillé.

Tandis que I'anisotropie du travail virtuel (8Gei); dans un
état (1) travaillé ne dépend que de la tension, I'anisotropie
accessoire des propriétés mécaniques réelles est plus compliquée
et dépend en général de toutes les variables mécaniques.

On peut premiérement étudier:
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L’ anisotropie de la puissance réelle.

La densité de la puissance réelle est donnée pour chaque
élément de volume dv et & chaque instant par la relation

dA

On en déduit comme on I’a fait pour le travail virtuel
—A =8 =|P] €] cos(S) ,

ou cos (EB\‘:;) est le cosinus de I’angle absolu entre les vecteurs

L et S dans Iespace a 9 dimensions; l’anisotropie de A dans
'espace a 9 dimensions est formellement analogue a celle de
dGei; la discussion de I'anisotropie dans Pespace 4 9 et a
3 dimensions se fait donc d’une maniére analogue en remplagant

s et § (virtuel) par S et & (réel); mais il y a une différence
essentielle entre ces deux cas. Elle consiste en ce que les va-
riables P et s (virtuelles) dans I’expression de 3®ei peuvent
étre choisies arbitrairement et indépendamment I'une de I’autre,

ce qui n’est pas nécessairement le cas pour P et S (réels) dans A.
En effet, on ne peut avoir dans un milieu donné que des P et

des S qui soient compatibles avec I'équation d’état du milieu.
L’équation A = — P .. S ne dit rien sur la possibilité d’une
variation de S correspondant & un P donné dans un milien

défini; elle donne I'anisotropie de A d’une maniére générale,
mais dans un sens potentiel. La forme explicite de cette ani-

sotropie s’obtient en combinant I'équation ci-dessus donnant A

avec I'équation d’état du milieu de maniére que A soit exprimé
en fonction des variables indépendantes I'une de I'autre.

Si I’équation d’état n’établit pas de relation entre P et S
ces grandeurs sont les variables indépendantes cherchées, mais

si par contre P et S dépendent 'une de I'autre, il est difficile de

trouver une expression de A au moyen de variables indépen-
dantes et de I’mterpreter d’une maniére intuitive a ’aide d’une

amsotrople de A dans ’espace a 3 dimensions.
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On peut de plus introduire dans I’équation d’état de nou-
velles variables mécaniques telles que la tension et la déforma-
tion ne soient plus comptées a partir de I’état (0) mais & partir
de I'état (1) en question. Les constantes dans cette équation
transformée ne seront plus des grandeurs scalaires et isotropes,
mais des grandeurs tensorielles et anisotropes, qui définissent
Panisotropie réelle de I’état (1).

Enfin, on peut évaluer les angles entre les axes principaux
des tenseurs dynamiques et cinématiques, et en particulier

Pangle absolu entre P et S dont I'importance est fondamentale
dans I'expression de la puissance du travail réel.

On démontre que pour les corps P (ou les corps S) cette
anisotropie s’exprime en fonction des variables dynamiques
seules (ou cinématiques seules); pour les corps présentant une
élasticité ou une viscosité parfaite, qui peuvent étre considérés
arbitrairement comme des corps P ou S, la dite fonction
s’exprime arbitrairement & partir des variables dynamiques ou
cinématiques et finalement pour les corps PS cette fonction
contient les deux sortes de variables mécaniques.

Nous donnerons dans ce qui suit quelques exemples illustrant
les différentes méthodes, mais nous nous bornerons a la discus-

sion des cas pour lesquels 'anisotropie réelie s’exprime en
fonction de la tension seule.

Elasticité parfaite.
Soit @ la densité du potentiel élastique; on a
—dA =d®P =P..s =P-8 = |P||s| cos(Ps) .

Pour un corps parfaitement élastique on pose comme équa-
tion d’état une relation entre la tension et la déformation; la

vitesse de déformation n’y entre pas et par conséquent P et S
ainsi que P et s sont indépendants 'un de Pautre. La formule
ci dessus exprime donc d’'une maniére tout a fait générale
’anisotropie réelle du potentiel élastique d’un milieu siége
d’'une tension P; elle montre que cette anisotropie est la
méme pour tous les corps parfaitement élastiques. Comme elle
est identique a celle donnée pour (3®ei); (mis a part le fait
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qu’on a ici un travail réel) nous pouvons dire: L’anisotropie
réelle de la densité du potentiel est identique & I’anisotropie
du travail virtuel, par unité de volume, effectué par les forces
extérieures et les forces d’inertie.

Dans le cas d’une tension caractérisée par un déviateur plan
I’anisotropie du potentiel @ est de nouveau représentée par la
courbe a quatre feuilles et dans le cas d’'un déviateur dans
Iespace par une surface de meéme genre comprenant des
feuillets positifs et négatifs séparés par des directions pour
lesquelles d® = 0.

Ce qu'il y a de plus remarquable est qu'on peut effectuer
dans I'état (1) un mouvement de déformation continu sans
dépenser aucun travail. C’est le mouvement dirigé en chaque
instant dans les directions d® = 0. Pour le cas plan ce mouve-
ment coincide avec le mouvement paradoxal dont nous avons
noté ’existence en cinématique: Toutes les positions parcourues
par ce mouvement ont subi par rapport a 'état (0) (c’est-a-dire
par rapport a4 I’état non travaillé dans lequel le ruban d’acier
est circulaire) une déformation de méme grandeur et le potentiel
® a la méme valeur dans toutes ces positions; le mouvement
se fait donc & potentiel constant, ce qui fait que le travail est
nul et la différence AQ entre deux positions parcourues arbi-
traires est nulle aussi. On montre également que dans ce mou-
vement I'angle absolu entre P et s est égal & 90°, ¢’est pour-
quoi le produit doublement scalaire de ces tenseurs, donnant
la puissance, est nul (voir fig. 1, 2, 3).

La lot d’élasticité.

Nous avons supposé que le milieu est isotrope dans I'état (0):
si par conséquent on considére les déformations & partiv de cet
état la condition initiale est donnée par P = 0 pour S = 0;
la loi d’élasticité sera établie en trois étapes: a) déforma-
tions pures a partir de I'état (0); b) généralisation des résultats
obtenus pour les déplacements linéaires quelconques effectués
a partir de 1'état (0); ¢) lois d’élasticité pour un état (1) pré-
déformé (ou, ce qui revient au méme, pour un corps qgui est le
siege d’une tension).
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a) Les déformations pures & partir de U'état (0). — A cause
de l'isotropie admise dans I’état (0), la loi générale est la
suivante: ‘

P=rvyS+v8+.=5%,

ou la déformation pure est donnée par

r=r-0,
avec S = In©. ,

Cette Ioi remplace |'équation d’état scalaire par une équation
tensorielle; P est une fonction analytique & de S développable
en série convergente de S. De la condition initiale pour I’état (0)
et de I'isotropie supposée pour cet état on déduit premiérement
gue les termes pairs doivent étre nuls, donc P est une fonction
impaire de S, et deuxiémement que les v,, qui sont appelés
modules de rigidité, sont tous scalaires. Nous remarquons que
toute fonction impaire posséde un point d’inflexion (& courbure
nulle) pour S = 0; c’est pourquoi la loi linéaire de Hooke-
Hencky donne une si bonne approximation pour des S suffisam-
ment petits.

b) La loi d’élasticité pour des déplacements linéaires généraus
a partir de I'état (0). — Si’on repére un déplacement au moyen
d’un systéme de référence lié a la partie rigide du déplacement
(c’est-a-dire un systéme qui se déplace selon le vecteur de
translation t et tourne selon le tenseur de rotation Q) la loi
d’élasticité établie en a) reste valable. Sil’on veut exprimer cette
loi dans un systéme de référence fixe dans lespace il faut
effectuer une transformation de coordonnées. Le tenseur S
(qui est identique & Sa), lorsqu’on passe au systéme fixe dans
Iespace, se transforme en Q.S.Q!, qui est identique au tenseur
Sp. La loi d’élasticité relative au systéme fixe a done, pour un
déplacement linéaire quelconque, la forme

P =8 + v:8p° + ... = F(8p) ,
avec

r=FT et Sp=ln(¥.¥)



160 LA MECANIQUE DES CORPS DEFORMABLES

¢) La lot d'élasticité pour un miliew dans U'état (1) travaillé. —
[’état (1) est atteint & partir de I’état (0) par un déplacement
linéaire général

r=179-%.

Le tenseur de déformation post-rotationnelle associé a ce
tenseur étant Sp, et la tension dans I’état (1) P nous avons

P = F(Sp) ,

avec Sp = %ln (‘if' . ¥). Si nous effectuons dans I'état (1) un

déplacement accessoire (11)

r:r-q)

nous attéignons I'état (1); nous désignerons par P et Sp la
tension de cet état et le tenseur de déformation post-rotation-
nelle associé au déplacement 7 = 7 . ¥ résultant de (01). Nous
avons alors

—

P = J(Sp)

8

avec

Sp = %In . 7).

En vertu des lois de superposition que nous avons établies

nous pouvons exprimer Sp en fonction des tenseurs associés aux
deux déplacements (01) et (11), ce qui nous donne I'expression
générale

P—P = @T(%ln[?ﬁ-fif-?-q,])_.@(%ln[l‘if-\y])
ou plus explicitement

P— P = fy—'(—ln (W g%, 0, g, ew]> — & (Sp) -

Ces formules donnent la loi d’élasticité sous une forme inva-
riante et close dans le cas général d’un état (1) travaillé.
Pour un déplacement accessoire (11) infiniment petit on
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peut décomposer I'équation tensorielle en une équation entre
les valeurs propres et une autre entre les directions d’axes:

avec

Développant P, en série, nous obtenons

i ()]

dPy = P, — P, = ¥ S cos? (Sp sa)jp

(1)
ou v représente la constante scalaire d’élasticité dans I'état (1)
(1)
(pour une loi linéaire d’élasticité, v est égal & v,). S’il s’agit de
~ déviateurs plans,

dP,. ()
— =y - c0S2a,
Sk

ou « désigne I'angle entre les axes principaux de méme indice
de Sp et sa; cette relation exprime que le milieu se comporte

dans I'état prédéformé (1) comme un corps anisotrope, et la
courbe représentant 1’anisotropie de son module de rigidité (-:f)a
pour équation p :(-;) cos 2x. Nous retrouvons donc ici pour
(';) et dP, la méme courbe a quatre feuilles que pour d®, il y

a des directions dans lesquelles dP, est nul (voir fig. 4).

Dans la figure 4, les valeurs propres s, sont désignées par A,.

Les formules données ci-dessus constituent un nouveau point
de vue pour la discussion du mouvement paradoxal que nous
avons mentionné en rapport avec les milieux parfaitement
élastiques. Nous avons vu que la densité de la puissance est
égale au produit doublement scalaire de la tension P par la
vitesse de la déformation S; ce produit n’est nul que dans le cas
ou les deux tenseurs sont perpendiculaires, c’est-a-dire si
Pangle absolu qui les sépare vaut 90°. Au cours de la discussion
de ce mouvement paradoxal nous avons démontré que I'angle

absolu entre S et Sp est égal a 90°. Puisqu’il y a isotropie dans
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Pétat (0), le tenseur P doit étre toujours parallele & Sp (la loi
d’élasticité étant linéaire ou non); donc I'angle absolu entre P
et S vaut 90° et la densité de la puissance développée est nulle.

L’angle absolu entre les deux déviateurs symétriques plans P

et S est égal au double de I’angle formé par leurs axes principaux
de méme indice; nous devons done constater dans notre modéle
que les axes principaux de P sont a 45° des axes principaux

AE =E Ax COUZGK'[

Fig, 4.

Loi d’élasticité pour un état (1) travaillé.

de S. En effet les axes de Pellipse d’acier, qui sont évidemment
paralléles aux axes principaux de P, forment des angles de 45°

avec les axes de l'ellipse qui représente S; si 'on interprete

de nouveau les tenseurs P et S comme des vecteurs de I'espace
a 9 dimensions le champ de tension P est représenté par un
champ de vecteurs 3 et le mouvement paradoxal est effectué
dans le plan perpendiculaire & P; ¢’est pourquoi les vecteurs T
ne travaillent pas lors de ce mouvement. Ce fait est illustré
par les figures 1, 2 et 3.
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Les milieux visqueuz.

vis A . e dd
Les milieux visqueux sont caractérisés par = 0; aux

diverses fonctions qui donnent le taux de variation de la densité

de I'énergie, G, correspondent les différents types de corps
visqueux. Nous parlerons en particulier de viscosité parfaite

si G s’exprime en fonction de la tension P ou de la vitesse de

déformation S seulement. Nous développons alors la loi de
viscosité en trois parties, comme pour la loi d’élasticité:

a) Lot de viscosité pour des déformations pures. — Dans ce

cas P s’exprime par une fonction linéaire de S (développable en
série convergente)

P = T(S) == 7)1s + 71383 + o

ou les termes pairs s’annulent a4 cause de I'isotropie. Les 7,
qui seront nommés coefficients de viscosité, sont des quantités
scalaires, donc P est parallele & S. Cette équation tensorielle
remplace I'équation d’état scalaire pour le cas étudié;

b) Loi de viscosité pour des déplacements linéaires quelconques
a partir de U'état (0). — On montre que la loi de viscosité établie
en a) reste inchangée pour des déplacements quelconques. On
a par exemple la méme loi pour un courant résultant d’une
déformation pure et un courant laminaire;

c) Loi de viscosité pour un état (1) travaillé. — On trouve pour
Pétat (1) prédéformé exactement la méme loi que pour I'état (0).
La loi établie en a) est donc valable dans tous les cas et il n'y a
a pas moyen de changer I'orientation relative de P et de S;

¢’est pourquoi, dans les milieux visqueux, G ne présente aucune
anisotropie.
Ajoutons encore deux remarques :

10 La loi linéaire de Newton
e “qS

est un cas particulier de la viscosité parfaite. Elle doune
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d’ailleurs pour le cas général une bonne approximation, pourvu
que P et S soient suffisamment petits, car la fonction | est

impaire et présente donc un point d’inflexion pour P = S = 0.

20 On peut imaginer des milieux non parfaitement visqueux
dans le sens précisé ci-dessus, en supposant que dans I'état (0)
non travaillé on observe déja une viscosité anisotrope. Pour

un milieu anisotrope pareil, ’angle absolu ¢ entre P et S peut

varier, mais comme la fonction A == G est toujours limitée a
des valeurs positives, ¢ satisfait a la condition — 90° < ¢ < 90°.

Les milieux plasto-élastiques.

Les milieux plasto-élastiques peuvent étre considérés comme
une combinaison d’un corps élastique et d’un corps visqueux.
En général, ils permettent d’établir une anisotropie de la puis-
sance réelle, qu'on peut calculer d’aprés la théorie de super-
position des corps parfaitement élastiques et des corps parfaite-
ment visqueux. Nous donnerons un exemple en discutant le
corps P,

Le corps P,.

Le corps P est défini en posant que la densité de son potentiel
élastique @ est égale a

ou @, est une constante, et la densité de la puissance due a la
variation de I’énergie liée a

G == p..p .

7
Il en résulte pour son équation d’état I’expression
d P..P

: 2y i
— P .. = 0.
P..S + pr -+ -

Le traitement du corps P, selon le cycle des théories établies
dans le chapitre de la thermodynamique étant déja publié ne
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sera pas répété ici; nous rappelons seulement qu’il montre une
relaxation parfaite si la vitesse P du changement de la tension

satisfait la relation P = I; ou t (le temps de relaxation) est

donné par t = 3; au point de vue énergétique il s’approche
du corps ayant une élasticité ou une viscosité parfaite en
raison de la vitesse de variation de la tension, c’est-a-dire
selon que P est trés grand ou trés petit par rapport a g

Pour étudier I'anisotropie accessoire de ce corps dans un
état (1) ou il est siége d’une tension P constante on est tenté de
changer Porientation relative de P et S tout en maintenant
constantes leurs valeurs propres. Cependant cela ne peut pas
se faire car P et S ne sont pas indépendants I'un de l'autre
mais reliés par I'équation d’état. 11 est donc préférable d’étu-
dier I'anisotropie de ce corps pour un état (1) de tension cons-
tante en considérant I’angle absolu entre P et S.

Pour P = const. ’équation d’état exprime qu’il n’y a que
du frottement interne, tout le travail est transformé en énergie

liée; dans ce cas %?— = ( et par conséquent

avec @ = const. Bornons-nous ici a discuter le cas plan, dans
lequel tous les tenseurs sont des déviateurs symétriques plans.
On a alors
ps COS & = b
n
avec p = const., soit

s =L coso
N

ou p et s sont les grandeurs absolues de P et de Set o I'angle

absolu entre P et S. Cette loi de frottement, interprétée dans
Iespace & 9 dimensions, est tout a fait analogue au cas corres-
pondant dans I'espace a trois dimensions et montre une aniso-
tropie.



166 LA MECANIQUE DES CORPS DEFORMABLES

Il y a en particulier deux cas simples a discuter. Dans le
premier nous supposons qu’il existe un mouvement de déforma-
tion pure, dans le second, un mouvement laminaire.

Lors d’une déformation pure, P est parallele & é, donce
6 = 0; la loi de frottement établie plus haut devient la loi
linéaire de Newton

s =L,
7

Dans le cas d’'un mouvement laminaire, le calcul de o est plus
compliqué, il se fait en deux parties. Nous supposons d’abord
que le milieu est déplacé de I’état non travaillé (0) par un
déplacement laminaire jusqu'a un état (1) travaillé; ce dépla-
cement est censé effectué assez vite pour que la relaxation puisse
étre négligée et qu’il suive la loi d’élasticité. La deuxiéme partie
consiste en un courant laminaire stationnaire pendant lequel
la tension P atteinte dans le premier déplacement est maintenue
constante. On a un probléme de frottement pur dans un état (1)
travaillé. A T'aide du premier déplacement nous pouvons

calculer I'orientation de P; a I'aide du second celle de S et par la
différence de ces orientations I’angle absolu ¢, ce qui nous permet
d’établir la loi de frottement dans le courant laminaire station-
naire.

Orientation de la tension.

La tension dans I'état (1) est paralléle et proportionnelle a
la déformation postrotationnelle contenue dans le déplacement
(01), d’apres la loi d’élasticité

On en déduit pour I'orientation de Sp et de P

1 1

tg2¢, = T

Y2

sinh — P.;.In " .9 { sinh

\2
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ou ¢, est I'angle entre axe £ de P (ou de Sp) et la direction
du mouvement laminaire. Cette équation exprime que I’orien-
tation de P dans I'état (1) dépend de sa grandeur absolue p
divisée par vy.

Orientation de S.

On trouve pour 'orientation de S dans un courant laminaire,
en vertu des formules développées dans le chapitre de la ciné-
matique,

tg27-k: 0 , xh:900i45°

ou y, est 'angle entre 'axe k& de S et la direction du courant
laminaire. _

Ayant déterminé l'orientation de P puis celle de S, nous
déterminons l'angle absolu ¢ entre ces deux tenseurs et en
déduisons la loi de frottement:

cos o = cosh —~—p—~_- s

T 4/2

§ = E cosh -

Y\/

ou encore, par un développement en série,

, 2 4
s=£(1+2p o+ F 4+.‘.),
- Y . .Y

ce qui est une loi non linéaire.

Il existe donc pour un méme corps des lois différentes régis-
sant le frottement interne, suivant que le mouvement est un
mouvement laminaire ou un mouvement de déformation pure.

Pour des valeurs petites de la tension on retrouve la loi
linéaire de Newton, mais pour des tensions plus élevées on
trouve une vitesse de déformation qui est plus grande, que celle
que fournit la loi linéaire. On a donc I'impression que la vis-
cosité du corps P, est plus petite pour des grandes tensions
que pour des petites. Cette impression est cependant compléte-
ment erronnée. La viscosité du corps n’a pas changé. Cest
seulement I'orientation relative de la tension et de la vitesse de
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déformation qui est différente, dans un mouvement laminaire
q ) ’
pour de petites et de grandes tensions et ¢’est cette différence

de I'angle absolu entre P et S qui fait croire & un changement
de viscosité; par contre, dans les mouvements de déformation

pure dans lesquels I'orientation entre P et S ne change pas on
trouve la loi linéaire.

Ces considérations sur le courant laminaire et sur le fait
qu’il différe des déformations pures ont une importance pra-
tique, car de nombreuses solutions colloidales peuvent &tre
assimilées en premiére approximation & des corps P,, et toutes
les expériences faites pour déterminer leur « viscosité» sont
basées sur les courants laminaires (voir, par exemple,
R. Eisenschitz et B. Rabinowitch, [. ¢.).

Nous ajoutons une remarque: pour y = oo on trouve un
corps déformable caractérisé par I’équation d’état

P..S+u=0.
n

Ce corps est incapable d’accumuler de 1’énergie libre par des
déformations & volume constant; ¢’est un milieu parfaitement
visqueux et «sans élasticité de forme »; pour un tel corps on
déduit des formules données

tg2¢, = = donc @y =7 = 90° 1 45°

et
c =10

et la loi de frottement interne est la méme pour le courant
laminaire que pour des déformations pures. Nombre de liquides
de faible poids moléculaire peuvent étre assimilés en premier
approximation a des corps pareils. La différence entre les cou-
rants laminaires et les déformations apparait donc seulement
pour des corps capables d’accumuler de 1’énergie libre au cours
de déformations a volume constant.

Description du modéle du déplacement laminaire (fig. 5).

Pour 1illustrer les déplacements laminaires nous avons cons-
truit un modele (fig. 5) & I'aide duquel on peut effectuer un
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Position (1).

Fig. 5.
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déplacement laminaire dans une lame de caoutchoue. Ce
modele illustre non seulement la déformation d’un milieu
élastique, mais aussi les déplacements laminaires dans le corps
Py, car le déplacement (01) est supposé élastique et la déter-
mination du courant laminaire nécessite seulement de considérer
deux positions infiniment voisines (1) et (1).

A la figure 5 on voit trois positions successives (0) (1) et (1)
d’un mouvement laminaire d’un continuum élastique. Pour
un tel continuum le tenseur P est paralléle et proportionnel au
tenseur Sp de déformation postrotationnelle calculé a partir
de I'état (0) non travaillé. On peut donc représenter le tenseur
de tension P si on dessine dans la position (0) un cercle de
rayon unité et qu'on observe 'ellipse en laquelle se transforme
ce cercle pendant le déplacement laminaire et qui coincide
avec la surface métrique de ®p; les directions d’axes principaux
de P sont & chaque instant paralléles a celles de I'ellipse et les
valeurs propres sont proportionnelles aux logarithmes des
grandeurs des axes de I'ellipse. Par un déplacement laminaire
infinitésimal & partir de la position (0) le cercle de rayon 1 se
transforme en une ellipse dont les axes forment des angles
de 45° avec les directions du cadre; si le déplacement lami-
naire continue, cette ellipse se déforme et tourne de plus en
plus, de sorte qu'aprés un déplacement laminaire infiniment
grand les axes de l'ellipse et par conséquent les axes de P sont
paralleles aux axes du cadre.

La représentation du tenseur S de la vitesse de déformation
se fait d’une maniére analogue; on dessine dans n’importe quelle
position un cercle de rayon un et on observe l'ellipse en laquelle
se transforme ce cercle aprés un déplacement laminaire infini-
tésimal et qui coincide avec la surface métrique de Z; les

directions d’axes principaux de S sont paralléles a celles d=
cette ellipse et les valeurs propres sont proportionnelles aux
logarithmes des grandeurs des axes de I’ellipse. En partant de la
position (0) on trouve, ‘comme pour le déplacement laminaire
ci-dessus, une ellipse dont les axes sont & 45° avec les axes du

cadre; au début du mouvement laminaire P et S sont donc
paralléles et la relation qui les lie est la méme que dans une
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déformation pure. Si on continue le déplacement laminaire
d’abord jusqu’a la position (1) et qu’on trace dans cette position
un cercle de rayon un, représentant S dans cette position, on
constate que ce cercle se transforme par suite d’un déplacement
laminaire infinitésimal de nouveau en une ellipse dont les axes
sont & 45° avec les axes du cadre, quelle que soit la position (1)

choisie. Cela montre que I'orientation de S reste fixe dans I'es-
pace (les directions de ses axes forment toujours le méme angle
de 45° avec le cadre) pendant tout le mouvement laminaire
tandis que lorientation de P change de la maniére que nous
avons indiquée; pour des valeurs grandes de la tension les

tenseurs P et S ne sont plus paralleles et I’angle entre leurs
axes principaux de méme indice augmente de 0 a 45°, donc
I'angle absolu de 0 & 90°. C’est pourquoi, pour de grandes
tensions et dans un mouvement laminaire la relation eatre P
et S differe essentiellement de celle correspondant & une défor-
mation pure dans laquelle P et S sont paralléles.

L’anisotropie des propriétés mécaniques des corps S dans un
état (1) travaillé peut.étre étudiée d’une maniére analogue;
mais le résultat est bien différent de celui donné ci-dessus.
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