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LA MECANIQUE DES CORPS DEFORMABLES

PAR

K. \VEISSi:\BKI!(;
(University College, Southampton)

(Avec 5 flg.)

I. — Introduction L

Si l'on fait agir de l'exterieur des forces mecaniques sur un
corps materiel, celui-ci cede d'une maniere plus ou moins

compliquee. Cette maniere de ceder peut etre decrite par des

variables cinematiques qui determinent, par rapport ä un
Systeme de reference donne, la position dans l'espace de chaque
element materiel du corps, en fonction du temps. Les forces

mecaniques exterieures sont representees par des variables

dynamiques. La mecanique se propose d'etablir les relations qui
existent entre ces variables cinematiques et dynamiques; les

1 Conferences faites a l'Universite de Geneve en avril et mai 1934.
Les theories decrites dans ces lignes ont ete egalement le sujet
d'exposes faits au « Kaiser Wilhelm-Institut für physikalische
Chemie», Berlin-Dahlem (Haber-Kolloquium), en janvier 1933.

Je tiens a remercier tout specialement M. le professeur R. Wavre
qui m'a invite ä prendre part aux « Conferences internationales des
Sciences mathematiques » ä Geneve, oü j'ai eu le plaisir de pouvoir
discuter des questions ici traitees, je remercie en particulier
MM. les professeurs K. H. Meyer et J. Weigle pour leur contribution

ä la discussion.
La redaction frangaise de ces conferences a ete facilitee grace ä

l'aide de M. A. Mercier, de l'Institut de Physique de l'Universite
de Geneve, ä qui j'adresse ici mes remerciements.
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constantes qui apparaissent dans ces relations determinent
d'une maniere quantitative les proprietes mecaniques du corps,
on peut les interpreter comme representant la resistance de la
matiere envers les actions dynamiques.

Lorsqu'on se place d'un point de vue empirique, on cherche

ä determiner, par l'etude de la reaction d'un corps donne envers
divers efforts, comment, dans le cas particulier du corps en

question, les variables cinematiques et les variables dynamiques
sont reliees entre elles. Mais ces resultats ne sont valables que

pour le cas specialement etudie. On pourrait alors proceder ä

une comparaison, une analyse des resultats obtenus pour divers

corps, afin de determiner les relations les plus generates
possibles qui decrivent d'une maniere satisfaisante le comportement
de tous ces corps. Cette etude est tres difficile, car pour les corps
reels en general, les causes exterieures ont une repercussion

sur le milieu meme, en mettant en jeu les forces interieures qui
maintiennent les particules materielles Constituantes du milieu,
avec toutes les complications de la structure que ces particules
definissent par leur arrangement, et de leurs mouvements

chaotiques düs ä l'energie interne du corps, ainsi que du change-
ment de cette structure et de ce mouvement chaotique. C'est

pourquoi, dans revolution des systemes mecaniques (en particulier

des matieres colloidales), peuvent se presenter des phenomenes

tres divers: des phenomenes calorifiques reversibles ou

irreversibles, des changements de structure, des transformations
chimiques, des phenomenes electriques, etc. A cause de ces

difficultes, nous choisirons un autre chemin dans notre etude.
Nous fondant sur les lois les plus generales, nous developperons
une etude systematique des phenomenes en question, en
introduisant une serie de corps idealises que nous definirons;
des lors les lois que suivent ces corps sont parfaitement deter-
minees. Pour faire oeuvre utile, il s'agit de s'approcher de plus
en plus des corps reels. C'est la un procede d'approximations
commode, parce que pour chaque approximation nouvelle il n'y
a pas lieu de discuter la validite des considerations developpees:
on recherche comment se comporte un corps defini d'une certaine
maniere. Si l'experience a revele que tel corps reel se comporte
conformement aux definitions donnees pour un certain type de



46 LA MECANIQUE DES CORPS DEFORMABLES

corps imagine, on en deduira que, dans les limites experimen-
tales, ce corps reel est assimilable ä un corps du type imagine.

Notre point de vue sera d'admettre que les hypotheses
generales de la physique macrocospique, qui sont verifiees

pour tous les corps reels (comme le principe de d'Alembert,
la conservation de la masse et de l'energie dans un Systeme
ferme, ainsi que les theoremes fondamentaux de la thermo-
dynamique) sont valables aussi pour tous les corps idealises

que nous introduirons. Nous verrons jusqu'a quel point on

peut assimiler les corps reels ä des milieux tels que ceux qui
sont definis lorsqu'on fait ces hypotheses generales, et de plus,
nous rechercherons oil il faut introduire des hypotheses supple-
mentaires et lesquelles, pour mieux decrire les corps reels.

Les hypotheses fondamentales qui sont ä la base de la meca-
nique sont les lois d'inertie de Newton et l'hypothese de

Boltzmann de la symetrie de la tension. L'hypothese de

Boltzmann exige que les forces interieures (actions entre les

points materiels d'un corps) soient des forces centrales obeissant
ä la loi de l'egalite entre Paction et la reaction, c'est-ä-dire

qu'elles soient centro-symetriques et que par consequent dans

un element suffisamment petit de volume le champ des forces

internes puisse etre represents par une grandeur tensorielle

symetrique du deuxieme ordre. De ceci on deduit que les forces

internes effectuent un travail nul le long de tout deplacement
rigide et n'entrent par consequent en ligne de compte que pour
les deplacements qui entrainent la deformation du milieu.

Ces hypotheses se resument au moyen du principe de

d'Alembert, selon lequel la somme des vecteurs des forces

exterieures et des vecteurs des forces d'inertie est nulle en

chaque instant et pour chaque partie d'un corps materiel
quelconque. II est commode de resumer plutot en un principe
de travail virtuel1 les hypotheses qui viennent d'etre rappelees,

principe que l'on traduira mathematiquement en ecrivant qu'ä
chaque instant et pour chaque point materiel du corps la somme
des travaux virtuels effectues par les forces exterieures et les

1 Le principe du travail virtuel a ete etabli par Bernoulli pour le
cas particulier d'un equilibre des forces.
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forces d'inertie le long de tout deplacement virtuel rigide 8r
est nul:

(S®ei)r Wr + (8®j)r 0 •

oü S®e et S'Sj- sont les travaux virtuels des forces exterieures
et d'inertie, et 8'EL la somme de ces deux sortes de travail,
l'indice r indiquant que la variation a lieu le long d'un deplacement

virtuel rigide. Cette forme du principe de d'Alembert
est äquivalente ä 6 equations independantes selon les 6 degres
de liberte du deplacement rigide virtuel 8r car on peut decomposer

tout deplacement rigide Sr en 3 composantes d'un deplacement

lineaire et trois composantes independantes d'une
rotation.

En ecrivant ce principe, on peut faire une premiere approximation,

en idealisant le corps comme un corps rigide invariable
defini de telle maniere que sa mecanique soit completement
determinee par l'enonce ci-dessus, ce corps est done defini

comme suit: il ne cede aux actions qui lui sont imprimees que

par des deplacements rigides; il a 6 degres de liberte (3 de

translation et 3 de rotation) et les distances entre ses elements

constituants restent invariables.
Nous ne voulons pas insister sur la mecanique du corps

rigide, car eile est bien connue; bornons-nous ä deux remarques:
1° La mecanique du corps rigide ne met en jeu que l'inertie
de ce corps. 2° La decomposition d'un deplacement rigide en

trois translations et trois rotations se fait de maniere qu'on
puisse considerer les trois premieres comme si les dernieres

n'existaient pas et vice versa, et que trois translations (trois
rotations) sont äquivalentes ä une seule. C'est-ä-dire que les

six degres de liberte peuvent etre consideres independamment
les uns des autres.

Voici comment on passe de la premiere approximation
(corps rigide) ä une approximation plus proche de la realite
(changement des distances entre les molecules ä l'interieur
du corps reel, en vertu de l'energie interne qu'il possede, — les

molecules etant assimilees a des points materiels). La cinema-

tique d'un corps rigide est caracterisee par six degres de liberte
de deplacements rigides; sa dynamique en a autant et sa
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mecanique est completement determinee par le principe de

d'Alembert. Pour introduire dans la cinematique, dans la dyna-
mique et dans la mecanique une nouvelle approximation, on

adjoint d'abord dans la cinematique les degres de liberte permet-
tant de modifier les distances qui separent les points materiels les

uns des autres. Ces degres de liberte caracterisent la possibility
de deformations et les corps auxquels on les attribue sont dits

corps deformables. Le corps deformable le plus simple que l'on
puisse imaginer est un continuum homogene deformable, tel
que pour un element dv de volume pris dans ce corps tout
deplacement lineaire soit permis; pour une partie fmie du milieu,

par consequent, tous les deplacements analytiques sont permis.
C'est dans ce sens restreint que nous considererons dorenavant
le corps deformable. Les deplacements rigides (de translation
et de rotation) etant lineaires sont compris dans cette
possibilite, de sorte que le corps rigide peut etre considere comme

un cas special du corps deformable.
La definition des corps deformables limite leur maniere de

reagir vis-ä-vis des actions exterieures aux deplacements
lineaires de tout element de volume dv. On en deduit que dv a

12 degres de liberte, 6 correspondant aux deplacements rigides
et 6 aux deformations.

La dynamique de tout corps reel — done aussi des corps
idealises, rigides ou deformables — est fondee sur le principe de

d'Alembert qui reunit les enonces de Newton et de ßoltzmann;
si on suppose que les actions dynamiques sont donnees arbi-

trairement, on peut les decomposer en deux parties, l'une aura
un effet sur un des degres de liberte au moins,1 soit une action
ä laquelle dv est autorise a ceder d'une maniere ou d'une autre,
— 1'autre n'aura aucun effet cinematique sur le corps, le dv ne

cedant pas aux actions qu'elle englobe. Nous nous interesserons
seulement a la premiere partie puisque l'autre est sans effet sur

1 Cette premiere partie comprend les forces pour lesquelles un
travail effectue le long du chemin selon lequel dv se deplace virtuelle-
ment n'est pas nul.

2 Pour les corps rigides, la tension peut etre negligee completement
dans les actions dynamiques car elle n'effectue aucun travail le long
des deplacements rigides que le dv est autorise ä subir.
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le corps deformable 2. On demontre que la dynamique de la
premiere partie, qui seule nous interesse, se traduit par des

expressions lineaires en ce qui concerne l'element de volume.
Nous admettons done dans la dynamique des corps defor-

mables autant de degres de liberte que dans la cinematique,
ce qui entraine l'introduction de «la tension », grandeur
dynamique qui agit seulement dans les degres de liberte nouvelle-
ment introduits, mais ne produit aucune action dans les degres
de liberte associes aux deplacements rigides.

L'etude d'un corps homogene et deformable pris dans son
ensemble se reduit en principe ä celle d'un de ses elements dv

(de volume), en vertu meme de l'homogeneite postulee, car
tous les elements dv sont equivalents; et Ton connaitra le

comportement du corps par simple integration sur le volume
entier, ou sur toute portion de dimensions finies dont on s'occupe.
Pour cette raison, ne considerant dorenavant que des corps
homogenes, nous nous bornerons ä l'etude de ce que nous

appellerons la cinematique, la dynamique et la mecanique de

dv et le probleme qui se pose sera done la recherche des relations
entre la cinematique et la dynamique, toutes deux etant

supposees lineaires.
Pour definir des corps deformables dont la mecanique soit

completement determinee, le principe de d'Alembert ne suffit

pas (car il ne determine la mecanique que dans les degres de

liberte associes aux deplacements rigides) et il faut recourir
aux lois generates de la conservation de l'energie et de la masse
dans un systeme ferme ainsi qu'aux principes fondamentaux
de la thermodynamique. Cela nous conduit a une equation
valable pour tout element infinitesimal de masse dm; eile

exprime que la puissance mecanique (developpee par les forces

exterieures) ajoutee aux variations dans le temps des energies
fibre et liee du systeme ferme 1 donne une somme nulle, chaque
puissance etant rapportee a l'unite de masse.

Si on admet que ces trois densites de puissances sont des

fonctions des variables mecaniques seulement (variables

1 Le systeme ferme est compose du corps deformable, d'un bain a
temperature constante entourant le corps et d'un «reservoir » de
travail mecanique.

Archives. Vol. 17. — Janvier-Ffvrier 1935. S
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cinematiques et dynamiques) l'equation en question est une
relation entre ces variables et determine de cette maniere la
mecanique du corps. Dans ces conditions on appellera cette

equation Vequation d'etat et le corps lui-meme, un corps defor-
mable determine du point de vue mecanique. Pour proceder d'une
maniere systematique on envisagera d'abord des fonctions
simples, puis des fonctions de plus en plus compliquees, de

maniere ä obtenir toute une serie de corps idealises qui se

rapprochent de plus en plus de la realite.
Nous avons ainsi precise le sens de ce que nous appelons une

deuxieme approximation dans la cinematique, dans la
dynamique et dans la mecanique; nous l'etudierons avec plus
de detail dans la suite.

Le probleme qui se rapporte ä 12 dimensions est extreme-
ment complique; aussi faut-il trouver d'abord la forme la plus
simple possible et la plus intuitive des variables cinematiques
et dynamiques ainsi que celle des relations qui les lient. On y
parvient par deux etapes. La premiere est d'ordre purement
mathematique: On se fonde sur le calcul tensoriel et le developpe
dans une forme invariante afin de pouvoir se debarrasser des

indices de covariance et de contravariance necessairement
rattaches aux systemes de coordonnees; cela est necessaire,

car toute relation entre deux tenseurs qui s'exprime ä l'aide
d'une fonction analytique generale ne peut etre donnee pour les

composantes que par un developpement en serie convergente
de puissances, dont la forme n'est pas close. Par contre si on

passe des composantes k des grandeurs invariantes (valeurs

propres et directions d'axes principaux des tenseurs) ces

relations s'expriment d'une maniere simple et close. Nous avons
reuni dans un appendice des formules et des developpements
purement mathematiques, qui sont necessaires pour suivre la
theorie que nous exposons, en particulier les demonstrations
relatives ä l'invariance des tenseurs. Nous avons fait usage
autant que possible de l'invariance en question, en particulier
dans les ehapitres de la cinematique et de la dynamique. Le
calcul tensoriel laisse encore un choix arbitraire assez grand
dans les variables cinematiques et dynamiques; c'est pourquoi
nous determinerons dans une deuxieme etape ces variables de
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telle maniere que les relations generates qui les lient — soit le

principe du travail virtuel et celui de d'Alembert — s'expriment
sous une forme aussi simple que possible; les variables dyna-
miques seront definies directement par le principe de d'Alembert
et elles s'exprimeront par des densites vectorielles et des densites

tensorielles antisymetriques et symetriques (densite de forces,
de moment de rotation, de tension); les variables cinematiques
associees seront determinees par le principe du travail virtuel;
elles s'exprimeront par un vecteur de translation, un tenseur

antisymetrique d'angle de rotation et un tenseur symetrique de

deformation. Les definitions de tous ces tenseurs s'expriment ä

l'aide des formules invariantes de l'appendice dans une forme

exacte, close et valable aussi bien pour les deformations
infinitesimales, que pour les deformations finies. Ayant determine

les variables mecaniques, nous pourrons proceder au

developpement de la cinematique et de la dynamique. Le

Probleme le plus interessant qui se pose ici est celui de la
superposition des displacements successifs, et des actions dynamiques
successives, oü chaque deplacement est decompose en

translation, en rotation et en deformation et toute action

dynamique d'une maniere analogue.
Ce probleme a ete etudie surtout dans les travaux classiques

de E. et F. Cosserat, Leon Brillouin, E. Hencky et nous suiverons
la methode employee par ces auteurs. Nous faisons d'abord

une distinction entre l'etat non travaille 1 pris comme etat (0)
de reference et les etats travailles atteints grace ä une action

cinematique ou dynamique exercee sur l'etat (0). Pour la

cinematique nous donnons alors les formules explicites qui
permettent de calculer le deplacement resultant de deux
deplacements successifs, tout deplacement etant decompose en
translation, rotation et deformation; puis nous donnons une

systematique des mouvements lineaires, qui nous conduit
ä l'etude de certaines classes de mouvement privilegiees.
Outre les mouvements rigides et les deformations pures, il
apparait un type de mouvement ä deformation constante,

1 G'est-ä-dire un etat de repos dans lequel aucune action
dynamique n'a lieu.
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classe qui n'a pas encore ete etudiee jusqu'ä present et qui
presente des phenomenes paradoxaux, et finalement la classe

des mouvements laminaires. Ces mouvements privilegies nous
serviront dans l'etude qui fait suite, celle de la dynamique et
de la mecanique de l'etat non travaille et des etats travailles.

Pour plus de simplicity nous ferons dans le traitement de la

mecanique trois hypotheses: premierement le corps deformable
est isotrope dans l'etat non-travaille, deuxiemement il est

incompressible (ces hypotheses facilitent beaucoup les calculs,
et les resultats obtenus peuvent etre facilement generalises pour
le cas des corps anisotropes et compressibles), et troisiemement
la temperature est maintenue constante.

Nous ajoutons encore quelques remarques generates eclairant
les deux hypotheses introduites et les simplifications qu'elles

comportent.
En combinant le principe de d'Alembert et l'equation d'etat,

on obtient une premiere simplification; on en ajoute une
deuxieme en faisant l'hypothese que le milieu est isotrope dans

l'etat non-travaille, car cette hypothese implique que toute
relation lineaire entre deux tenseurs symetriques d'ordre 2

(par exemple entre la tension et la deformation ou la vitesse de

deformation) se decompose (voir I'appendice) en deux relations
independantes, dont l'une represente une dilatation isotrope de

volume et l'autre cree des deformations ä volume constant.
En admettant que cette independance, valable pour des

relations lineaires, soit valable encore dans le cas general, on

peut etudier separement le mecanisme de la dilatation isotrope,
qui est connu et ne sera pas traite dans ce travail, et celui des

11 autres degres de libertes. Si on admet, comme troisieme

simplification, que la dilatation est nulle, c'est-ä-dire que le

milieu deformable est incompressible, la forme generate de

l'equation d'etat est la suivante:

dA d(D ^
dt dt '

dG
dt

0

oü A, <l> et G sont des densites (volumiques) d'energie: A la
densite du travail (reel) accompli par la tension, $ et G celles
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de l'energie libre et de l'energie liee de dv. Les densites de

puissance qui apparaissent dans cette equation sont fonc-
tions des variables mecaniques, cette equation est done tres
generale.

La simplification obtenue par l'hypothese de l'isotropie dans

l'etat non-travaille (etat que nous noterons (0)) ressort de la

remarque suivante. Si on applique ä l'etat (0) une action

dynamique quelconque, toutes les grandeurs tensorielles,
dynamiques (tension, pression, etc.) et cinematiques
(deformation, vitesse, acceleration, etc.) sont paralleles, de sorte

que l'on peut reduire tous les tenseurs ä la forme diagonale
et identifier selon les trois termes qui subsistent (valeurs
propres).

La simplification obtenue par l'hypothese de l'incompressi-
bilite consiste en ce que les trois equations que l'on obtient ä la
suite de cette identification sont identiques et que les derivees

par rapport au temps des densites massiques et volumiques sont

identiques aussi.

Pour le cas general d'un etat travaille ou d'une deformation
quelconque, les tenseurs ont des orientations quelconques, ces

simplifications n'apparaissent naturellement pas, et l'on doit
superposer la connaissance des expressions qui relient les

valeurs absolues des tenseurs ä celle des relations entre les

orientations de ceux-ci.
Nous avons divise ce travail en quatre chapitres et un

appendice. A la suite de la presente introduction vient un
deuxieme chapitre qui donne le traitement rigoureux de la
cinematique lineaire de dv, fonde sur les resultats contenus
dans 1'appendice; le sens physique de ce traitement apparait
dans le troisieme chapitre qui s'occupe de la dynamique
lineaire et des relations generales entre les variables cinematiques

et dynamiques. Dans le quatrieme chapitre nous expo-
serons la mecanique de l'eloment de volume, en resumant dans

une premiere partie la theorie thermodvnamique ä partir de

l'equation d'etat döjä citee. et en relevant dans une seconde

partie les traits les plus marquants de la mecanique des corps
deformables dans un etat travaille. qui se resument dans un
theoreme d'anisotropie.
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II. — La cinematique de l'element de volume.

A. Notions fondamentales.

Pour caracteriser la cinematique de l'element de volume,
introduisons un Systeme 2 de coordonnees trirectangulaires
Xft et considerons la transformation1 qui fait passer les coordonnees

des points materiels d'un continuum envisage d'une

position arbitraire (1) occupee au moment t txen une autre
(1) occupee au moment t t-

xh + xi+ift •

Ce deplacement a douze degres de liberte selon les trois
grandeurs ik et les neuf grandeurs <\iih independantes l'une de

l'autre. Cette transformation est invariante si les t/; sont les

trois composantes d'un vecteur t et les neuf <\iik les neuf compo-
santes d'un tenseur 41 d'ordre 2. Chaque deplacement (11)
s'ecrit alors2

R T + R • iJJ

oü R et R sont des rayons vecteurs issus du centre C du Systeme
de coordonnees et marquent la position des points du continuum

par rapport ä ce Systeme. Nous prendrons t et 41 en fonction
du temps comme variables cinematiques, et nous les decompose-

rons en des Operateurs de translation, rotation et deformation
correspondant au deplacement (11), afin de trouver le plus
simplement possible les expressions qui relient ces variables
cinematiques aux variables dynamiques.

Pour cette decomposition, il faut tout d'abord voir
comment un deplacement lineaire affecte les distances et les directions

entre les points materiels du corps.

1 Nous convenons que dans toutes les i'ormules il y a sommation
sur tout indice redouble.

2 Pour l'explication des symboles et des calculs de ce chapitre,
voir l'appendice.
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Envisageons deux points materiels arbitraires PN et PM.

Le vecteur PKPM qui determine leur distance sera designe par
r avant et par r apres le deplacement.

En substituant pour RM et Rlv les valeurs indiquees par la
transformation on obtient

;• ?'• (J)

r et r peuvent etre consideres comme des rayons vecteurs issus

du point materiel PK du milieu.
Nous pouvons aussi considerer t et <1; comme des Operateurs

agissant sur les rayons vecteurs r\ t effectue une translation et

^ une representation affine. Pour determiner le changement
de distance resultant d'un deplacement lineaire nous envisageons
le rapport des valeurs absolues de r et r:

| r | \/r r s/{r - <Ji) •(r • 41) l/r • • <ji) • r
r I \/r • r \/r V*r r

_ I/r • (1/iji - $ • \/1p - if) •

s/r-r

Puisque • <j,) est toujours un tenseur symetrique1, |/tj, ^
est egalement symetrique, et on peut intervertir l'ordre des

termes sous la racine, ce qui nous donne

I r [

_
V'\r -\/ ijj) • (?• • V7 q* 4>)

_
[ r\/^ ^ |

I r I \/r • r \ r |

Si l'on pose, pour abreger

r' — r 1/ tj> !ji /• • ä

il vient

1 On a en effet

(•$)=$• ^

ce qui met cette symetrie en evidence.
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et

r r • iji r' • ((<Ji • 4»)
'z

• 4>) )•' • 9

avec

On peut interpreter ees resultats d'une maniere intuitive;
cela nous permettra de montrer le role des tenseurs S et cp dans

la cinematique des corps deformables et de les definir comme
tenseur d'allongement trirectangulaire et tenseur de rotation
(sans ou avec inversion) associe au deplacement (11).

Pour cette interpretation il faut considerer les r' comme des

rayons vecteurs issus, dans la position (1), du meme point
materiel PN que les r\ les r' determinent alors une certaine

position (1') du continuum et nous imaginons que le deplacement

total (11) soit effectue en deux etapes dont la premiere
fasse passer de (1) en (1') et la deuxieme de (1') en (1).

Ce premier deplacement (11') caracterise par r' r • 3
entralne un changement des distances de | r | en | r' j qui est

identique ä celui du deplacement total (11) parce que la relation
entre | r | et j r' j est la meme que celle entre j r | et | r |-

Le deuxieme deplacement (l'l) caracterise par r r' • 9 est

rigide et ne produit aucun changement des distances parce
que la relation entre j r' | et j r \ est qu'ils sont identiques.

Si enfm on realise les deplacements (11') et (l'l) Tun apres
l'autre on retrouve le deplacement total

/•' r (4* • ^)A

r r'{(^ +T1/Z. +)

done

4»

Nous fondant sur ces considerations nous introduirons les

definitions fondamentales concernant la mecanique des corps
deformables. Nous considerons: a) les grandeurs associees au

deplacement (11), qui caracterisent le changement de distances;
b) Celles qui caracterisent la partie rigide de ce deplacement; et
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finalement c) ce qui decoule de ces considerations, c'est-ä-dire
la decomposition du deplacement general (11) en translation,
rotation et deformation.

a) Les grandeurs caracterisant le changement de distances dans
le deplacement (11).

1. Le tenseur symetrique avec trois valeurs propres
1 reelles

et positives:
3 V if • 5

sera nomme tenseur d'allongemenl associe au deplacement
general (11), car il caracterise le changement des longueurs
des distances entre les points materiels.

Le theoreme de Cayley-Hamilton permet de determiner les

valeurs propres et les directions des axes principaux de 3.

Les valeurs propres sont toutes reelles et positives; elles

valent

äk + V'(<l> 4>)k

ou (<J/. (^)ft sont les trois valeurs propres du tenseur t|i <p. Les

directions d'axes principaux de 3 sont normales entre elles, car
3 est symetrique, et elles coincident avec Celles du tenseur

& Soient alors trois vecteurs unites ek le long des trois axes

principaux de 3:
'' >kek

>' >iek

3kekek

d'oü Ton tire
>•' /•• 3 r'hek äkruek

1 On prouve que l'equation de Gayley-Hamilton pour le tenseur
^ • 4* a toujours trois racines reelles et positives (41 • ijOfti les 3ft
etant definis comme leur racine carree sont par consequent reelles
et puisque pour toutes les racines il faut prendre le signe +, ces
racines representent les valeurs absolues des vecteurs, ils sont positifs
egalement.
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relation qui decompose l'allongement subi par r en trois allonge-
ments perpendiculaires dans les directions des efe; les grandeurs
de ces allongements sont mesurees par le rapport des loqgueurs

apres et avant l'allongement, ces rapports etant identiques aux
valeurs propres Sk de Les formules qui donnent explicitement
les valeurs propres de S1 et les vecteurs unites eh sont les sui-

vantes:
5 — äkeheh

avec

/

V
/*, 2,/-, -- /2tc(Ä—1) 1 -2^ + 9^1,-27*,,Jl 2,/-, /27t A —1 1J. + |/tr _ cos -V-' + ¥cos" \ 3 3 21/ (jJ — 3^n)3

oü Jj, äu et JIU sont les trois invariants fondamentaux du

tenseur i),
(ft)

e - Ay
"h''

NT1
3 > Az—i tj

oü sJ sont trois vecteurs unites orthogonaux pris comme bases

d'un Systeme de reference, et A£- le mineur relatif ä l'element ij
dans la matrice

| ("i1 ' $)«» ^uv |
•

Si deux des valeurs Sk ou toutes les trois coincident (3'1 X2

ou S2 S'g), le tenseur 5 est dit deux ou trois fois

degenere, sa symetrie (symbolisee par Vh) etant alors cylin-
drique ou spherique Kh. Dans les cas degeneres, l'orien-
tation des axes principaux n'est pas completement determinee;
dans le cas deux fois degenere l'axe 3 coincide avec l'axe du

cylindre, l'axe 1 peut etre choisi arbitrairement dans le plan
perpendiculaire ä l'axe 3 et l'axe 2 perpendiculaire ä l'axe 1

et ä l'axe 3; dans le cas trois fois degenere 1'orientation des axes
est completement arbitraire.

En general le volume change par suite d'une deformation;
soient c et c le volume avant et apres la deformation; on trouve

" p(S)m
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Le volume reste done constant si ($)m 1. Dans ce cas

1 •

Chaque deformation peut etre decomposee en une
dilatation isotrope et spherique ne modifiant que le volume et
une deformation anisotrope a volume constant:

ä 5„. S'

So I

et
1

-ä
V'Wm

En general les surfaces changent aussi. Mais il existe une
deformation particuliere pour laquelle les aires sont conservees,
et qui est caracterisee par les relations

(S)ii. 1

ou
• 52 5, 1

C'est une deformation, dans le plan des axes prineipaux ev e2,

les rayons vecteurs paralleles ä l'axe principal es restant
inchanges.

II. Pour simplifier, dans la suite, les calculs (voir la dyna-
mique), on introduit le tenseur de deformation s defini comme
suit:

Le tenseur symetrique

s In 3 i/2 In (4< • 4)

qui a des valeurs propres reelles sk In Sk et des directions
d'axes prineipaux paralleles ä Celles de 5 sera appele tenseur de

deformation, et les valeurs propres sk peuvent etre considerees

comme des mesures de la deformation dans ces directions. La
deformation peut etre definie en general comme le logarithme
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de l'allongement, c'est-ä-dire le logarithme du rapport des

longueurs apres et avant Pallongement. Si, par exemple,
Tallongement est egal ä 1, la deformation est egale ä In 1, soit
ä zero.

La decomposition d'une deformation en une dilatation
spherique et une deformation ä volume constant, qui pour les

tenseurs B se fait d'une maniere multiplicative, se fait pour les

tenseurs logarithmiques de la maniere additive suivante:
On a d'abord

In v In v + In (2JU)

Or (voir l'appendice)

ln l^ni) si

oil s ln B. Done: le volume reste constant si =0; dans

ce cas

«! + s3 0

et s est par consequent un deviateur.

Chaque tenseur de deformation s s'ecrit alors

$ — s0 -f s'

oü
1

In ir0 ^ i/3 In (5m) -I 3-V
1

et

s' In j' s — • I

Le tenseur s0 est associe ä la deformation spherique du

volume, le tenseur s' ä la deformation ä volume constant; le

tenseur s' est un derivateur, car s', 0.

Les considerations concernant le changement des surfaces

sont analogues. On a en particulier pour les deformations ä

aire constante
0

et
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Le tenseur s est dans ce cas un deviateur plan, car une de ses

valeurs propres est nulle et la somme de deux autres donne zero.
Le tenseur d'allongement 3 ainsi que le tenseur de deformation

determinent done, en vertu des definitions ci-dessus, le

changement des distances entre les points materiels lors d'un
deplacement lineaire general (11) et, par consequent «la
deformation » du milieu pendant le passage de la position (1) ä la
position (1).

Nous avons jusqu'ici discute le cas general dans lequel il
fallait preciser l'allongement et la deformation correspondant
ä un deplacement lineaire general (11). II faut encore envisager
deux cas particulars, nommes deformation pure et deplacement

rigide, pour lesquels nous donnerons les definitions suivantes:

III. Un deplacement qui consiste en trois allongements
trirectangulaires sera nomme « deformation pure »; il est carac-

terise par (]; 3 y/ ij; • tji. La deformation pure est done

representee par
r r 3

ou
R R • 3

oil 3 3 est un tenseur symetrique avec les valeurs propres 3fe

reelles et positives. La symetrie de 3 impose ä ses composantes
trois conditions, de sorte que 6 seulement des 9 composantes
sont independantes. D'oii, 6 degres de liberte pour ces displacements.

IV. Un deplacement qui laisse inchange les distances sera dit
rigide.

b) Partie rigide d'un deplacement general (11).

La partie rigide du deplacement (11) consiste en le deplacement

(I'l) qui se presentait sous la forme

r r' • ©

avec

<p ((4* • •fr1/2 • <!>)
•
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Le tenseur qj est un tenseur orthogonal car

9 • 9 (4" - • (+ +) • (+ • <w~y2 1

(la symetrie des tenseurs - cp) et • ^<) permet de

changer l'ordre des termes).
Nous avons done cp co ou cp / co suivant que le

determinant <pm de cp vaut + 1 ou — 1. Le signe de ce determinant
est toujours identique ä celui du determinant <J;m de done

si on suppose que <J> ne contient pas d'inversion son determinant
est positif et cp co represente une rotation. Cette supposition
sera faite dans la suite de ce travail. Cela etant nous pouvons
introduire les definitions suivantes:

V. Le tenseur orthogonal

CO ((+ $)-* +)

avec un determinant positif sera appele tenseur de rotation
associe au displacement general (11).

En parfaite analogie avec le tenseur d'allongement nous
introduisons egalement ici le logarithme de ce tenseur:

VI. Le tenseur antisymetrique

w In co In ((cp • • 41)

sera nomine tenseur d'angle de rotation associe au deplacement
general (11).

Les displacements rigides sont definis par la condition

ce qui implique que

avec

Autrement dit, la condition necessaire et süffisante pour qu'un
deplacement lineaire soit rigide, est que le tenseur <p soit

r r • 9

p • <p I
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orthogonal. II faut distinguer deux sortes de tenseurs orthogo-

naux, selon que leur determinant vaut + 1 ou — 1. Les

tenseurs orthogonaux auxquels correspond le determinant + 1

representent une rotation et seront designes par co; les tenseurs

avec determinant — 1 representent une rotation ä laquelle se

superpose une inversion 1, ils seront designes par j co (oü /
designe le tenseur d'inversion / —i°/;e/;). Les deplacements
rigides seront done representes par

r — r co ou r r • / co

soit
R t + R co ou R t + R / • Cd

avec la condition d'orthogonalite

Cd • Cd I

Cette condition est äquivalente ä 6 equations entre les

9 composantes de co, de sorte qu'il n'y a que 3 composantes de co

qui soient independantes; les deplacements rigides n'ont par
consequent que 6 degres de liberte, 3 associes ä t et trois aux
composantes independantes de co.

Les formules ci-dessus montrent que chaque deplacement
rigide peut etre considere comme compose d'une translation
et d'une rotation, eventuellement d'une translation et d'une
rotation avec inversion. Dans le mouvement continu d'un
milieu homogene, il ne peut y avoir d'inversion. C'est pourquoi
nous admettrons que tout deplacement rigide est represente

par t et co et non par t et / co.

Pour un calcul explicite, nous devons definir l'axe et l'angle q
de la rotation. Iis peuvent etre determines au moyen de 1'equation

de Cayley-Hamilton. Un tenseur orthogonal co a un axe

principal reel qui coincide avec l'axe de la rotation et deux axes

1 Par une transformation 9 oü l'on choisit pour r successivement
ies eh, on trouve efe, ce qui represente un Systeme trirectangulaire;
selon que ek et representent tous deux des systemes droits (ou

gauches) ou que l'un represente un Systeme droit et l'autre un
Systeme gauche, le tenseur effectue une rotation ou une rotation combi-
nee avec une inversion.



t>4 LA MECANIQUE DES CORPS DEFORMABLES

imaginaires dans le plan perpendiculaire au premier. Les valeurs

propres du tenseur sont elf/, e~lq, et 1 oü q represente 1'angle de

la rotation; les logarithmes de ces valeurs propres sont done

iq, — iq et 0. Nous avons introduit le tenseur (Tangle de rotation

(r par la relation
(v In co

w est un tenseur antisymetrique:

w iv

ses valeurs propres sont i(q + 2nn), — i(q + 2niz) et 0 + 2nni,
et ses axes prineipaux coincident avec ceux de cd. Dans un

Systeme trirectangulaire de coordonnees dont l'axe 3 coincide

avec Taxe de rotation, on trouve 1

0 1 0

(V q(e1ei — e2ei) —<? 0 0

0 0 0

ce qui justifie le nom de tenseur d'angle de rotation donne ä w.

Dans un svsteme trirectangulaire Oriente d'une maniere quel-

conque on trouve
«' wikeiek

avec wu 0 et wih — wki. On peut aussi trouver 1'angle et
l'axe de la rotation en introduisant le pseudo-vecteur (vecteur
axial)

<Ox

l'axe de rotation est alors parallele ä n> et 1'angle q est donne

par la relation
q 2 arctg j n> |

Ajoutons encore une remarque:
Nous avons considere plus haut le deplacement lineaire

general (11) comme etant compose de deux deplacements
successifs (11') et (11); d'apres les definitions ci-dessus ces deux

1 On peut negliger les multiples de 2ir dans cette representation.
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composantes sont une deformation pure et un deplacement
rigide.

c) La translation, la rotation et la deformation associees au
deplacement general (11).

La decomposition d'un deplacement quelconque se fera de

la maniere suivante: Nous admettrons d'abord que le deplacement

lineaire ne contient pas d'inversion et que par consequent
le determinant <Jim de cp est positif. Dans ce cas on peut
decomposer cp en une rotation et une deformation pure. Selon

qu'on effectue la deformation avant ou apres la rotation (ce

que nous indiquerons par un a ou un p ajoute au symbole
tensoriel) on a

r'
r"

r r"

On en tire (voir le detail äl'appendice) la valeur des tenseurs:

äa \/4 • 4 >

3p V/ $ 4 >

co <oa cop (4 • 4)~'^ • 4 4 (4 4r'/2 J

d'oü les tenseurs logarithmiques

1
sa — In (4 4)

1
sp j ln (4 • 4)

w — wa wp In | (4 4)"1/2 •. 4} In {4 " (4 " 4)~,//2} •

Si on compare ces formules avec Celles du paragraphe precedent
on voit apparaitre ce fait que seul B'a est identique ä Sr et non
Sp. Nous appellerons done Sa le tenseur d'allongement, sa le

tenseur de deformation, tandis que Sp et sp seront les tenseurs

post-rotationnels d'allongement et de deformation. Le tenseur

r* r co ar j a

r' co p

r-3a-ap r-th, r r** r-eoa-So r*4

Archives. Vol. 17. — .Tanvier-Fevrier 1935. 5
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uta etant identique ä u>p et wa ä wp on notera simplement
g> et «\ qui seront appeles tenseur de rotation et tenseur d'angle
de rotation. Selon l'ordre de la superposition de la translation,
de la rotation et de la deformation pure on obtient deux diffe-
rents tenseurs d'allongement Ba et Bp. Pour la translation et la
rotation on obtient toujours les memes valeurs t et <o, quel que
soit l'ordre. Remarquons qu'en principe on pourrait se contenter
d'introduire seulement les tenseurs Ba et sa en exprimant
Bp et sp ä partir de Ba et sa, to et w, mais comme dans les

calculs explicites les grandeurs Bp et sp interviennent souvent,
il est preferable de les introduire lorsqu'on se rapporte a, un
Systeme de reference £ fixe dans 1'espace

Les directions d'axes principaux de Ba coincident avec Celles

de sa d'une part, Celles de Bp avec Celles de sp d'autre part;
elles sont trirectangulaires et dirigees dans les directions des

trois allongements (avant ou apres la rotation). En introdui-
sant des vecteurs unites eak et epk dans ces directions on trouve
les formes dvadiques suivantes pour les tenseurs:

CO eakepk w q(e1e2 — e,ex)

5 a — so. — ea. e

Bp Bkepkepk sp shepkepk

Nous nommerons t le vecteur-operateur de translation, w le

tenseur-Operateur de rotation et B le tenseur d?allongement pur,
ces tenseurs etant associes au deplaeement (11).

Nous prendrons comme variables cinematiques, fonctions
du temps, le vecteur de translation t, le tenseur d'angle de

rotation w Inco et le tenseur de deformation s In B.

L'ordre dans lequel on effectue la superposition des operations
translation, rotation et allongement a une grande importance
quant au deplaeement resultant. Le deplaeement (11) est

equivalent ä trois deplacements successifs representes par les

1 La loi d'elasticite, par exemple, s'exprime alors beaucoup plus
simplement en fonction de sp qu'en fonction de sa, car dans le cas
lineaire la tension est simplement proportionnelle a sp et non pas
ä sa.
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trois operations lineaires t, w, et S a condition de respecter
1' ordre suivant:

R' R äa

R" R' co

R'" R" + T R T + R 4,

La succession des operations est done 1° l'allongement,
2° la rotation et 3° la translation; si on compose les memes

operations dans un autre ordre on n'obtient en general pas le

deplacement (11).
Pour diverses applications il est utile de discuter brievement

une autre methode equivalente ä celle exposee ci-dessus pour
la decomposition d'un deplacement lineaire general en une
deformation pure et un deplacement rigide; cette methode

emploie un systeme mobile de reference.
Au lieu du systeme de reference 2, qui etait fixe dans

l'espace, on introduit un systeme mobile 2m qui se deplace et

tourne, tout en restant rigide, de maniere que le deplacement
(ll) soit dans 2m une deformation pure. La composante rigide
du deplacement (11) est alors donnee par le deplacement
de 2m par rapport ä 2, la composante de deformation par le

deplacement du milieu par rapport ä 2m.
Pour plus de simplicite nous supposerons dans le calcul

explicite que l'origine de 2 soit le point materiel PN et qu'au
temps t ^ le systeme 2m coincide avec 2.

Les rayons vecteurs de 2m, qui seront designes par p, suivent
le deplacement rigide du systeme mobile. Au temps t ty nous
avons en vertu de notre supposition

p r — R

tandis qu'au temps t t~

r r <l>

R t + R • <J)
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Les relations qui relient ä 2 sont

R T* + p • U*
et

> — p <x>*

En eliminant les rayons vecteurs dans ces equations on
obtient

t* T ; S* äa Vi(j !jj et <o* m ((ip t|i) - tp)

Les formules ci-dessus montrent comment les tenseurs
introduits dans le Systeme £ operent dans le Systeme mobile 2m
sur les rayons vecteurs p.

Representation geometrique. — Nous terminerons ces

considerations generales par une representation geometrique.
Un deplacement lineaire (11) transforme une sphere de rayon
unite en un ellipsoide. Le vecteur de translation t est le vecteur
—*-
CG qui joint les centres de la sphere et de l'ellipsoide; les demi-

grands axes de l'ellipsoide sont les leurs directions sont

paralleles ä eph\ d'autre part le triedre trirectangulaire defini

par trois vecteurs unites issus du centre de la sphere, qui par
suite du deplacement (11) est transforme en les trois axes de

l'ellipsoide, est identique au triedre eah\ les directions de eah et

epk sont done differentes dans l'espace mais identiques dans le

milieu deforme, c'est-ä-dire que ce sont les memes points
materiels qui se trouvent au moment t t1 sur les eak et au
moment t t\ sur les axes Bh epk de l'ellipsoide. Enfin la
rotation w est identique ä la rotation qui transforme le triede eah

en un triedre epk.
Mathematiquement cela s'ecrit de la maniere suivante:

Le deplacement r r <b transforme la sphere r r 1

de rayon 1 en une surface

r • tjr1 • r tjj-1 l
soit

/ (J/-1 r 1

•ou encore

/• (ij) • tjj)
1

/• r •/•
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ce qui est un ellipsoide puisque 5 est symetrique. Explicitement
l'equation de cet ellipsoide est la suivante:

Les directions d'axes de cet ellipsoide sont done bien

paralleles aux axes prineipaux de Sp et les longueurs des axes

egales ä Sh eph.
Si on remplace ij; par sa valeur Sa w et r par un des vecteurs

unites eak,
5,; epk eak

et
(O eakepk

ce qui montre que le triedre eak se transforme par suite du

displacement en un triedre parallele aux axes de l'ellipsoide
et que e'est la rotation w qui fait passer du triedre eah au
triedre eph.

On peut se demander d'autre part quel est l'ellipsoide dans
la position (1) qui a donne dans la position (J) une sphere
dont l'equation est

7- 7 1

Get ellipsoide a pour equation

• ijj tji Bar r — 1

ce qu'on verifie en effectuant sur lui la transformation (11) qui
donne bien l'equation de la sphere r r 1.

B. Le, probleme de la superposition de displacements successifs.

Etat non-travaille el etat travaille. — Dans tout ce qui precede

nous n'avons etudie qu'un seul deplacement d'une position (1)
ä une position (1) d'un element de volume dv du milieu defor-
mable. Pour etablir la cinematique de l'element de volume on
considere d'abord dv dans un etat oü il n'existe aucune action,
soit un etat dans lequel tous les points materiels qui constituent
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da soilt en repos par rapport ä un Systeme de reference fixe
dans l'espace. Cet etat sera nomme etat non-travaille et sera

designe par (0). Au cours d'un deplacement l'etat (0) passe
ä d'autres etats (u), (b)... (n), qui seront nommes etats travailles.
Suivant qu'on prend l'etat non-travaille (0) ou un etat travaille
(1) comme reference, on dira que l'on etudie la mecanique du
milieu non-travaille ou celle du milieu travaille.

Le probleme qui se pose est de determiner comment on passe
d'un etat (0) ä un etat (k) au moyen des intermediaires (a), (b)

(l); c'est-ä-dire qu'il faut trouver la superposition des

deplacements (0a), (ab) (Ik) qui fournit le deplacement
global (0k), les deplacements elementaires (ab)... etant eux-
memes decomposes en translation, rotation et deformation

pure.
Au cours d'un mouvement quelconque. les points materiels

contenus dans un element de volume changeront leur position
d'une maniere lineaire par rapport ä un Systeme de reference
donne. Soit (0) une position arbitraire prise comme base,

(1) et (1) deux autres positions; le probleme qui se pose est de

calculer les variables caracterisant le deplacement resultant
(01) en fonction des variables caracterisant les deplacements
successifs (01) et (11). Ce probleme est connu sous le nom
de probleme de la superposition; il sert de base pour etablir
la cinematique des corps predeformes, c'est-ä-dire des corps
qui, par rapport ä un certain etat (0) etaient soumis ä un
deplacement lineaire (en particulier ä une deformation) (01),

et auxquels on fait subir dans cet etat un deplacement lineaire

(une deformation) accessoire (11).
Nous nous interesserons dans ce travail ä la superposition

des rotations et des deformations seulement, en faisant la

supposition que pendant tout le mouvement le point PN reste

inchange. Dans ce cas tous les R possibles sont identiques aux

r correspondants et t est nul; les deplacements (01), (11) et (01)

seront representes par les equations

r r T (deplacement (01))

r r 4» (deplacement (11))

; r • T (deplacement resultant (01))
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oü r, r et r sont les rayons vecteurs dans les positions (0), (1)

et (1), VF, eL lF les tenseurs Operateurs qui caracterisent les

deplacements (Ol), (11) et (Ol)- On en deduit que

T Y • 6

S'il suffisait de caracteriser les deplacements par les tenseurs

Operateurs, le probleme serait resolu par cette equation, mais

pour determiner les relations entre les deplacements et les

grandeurs dynamiques (forces, moments de rotation, tension)
cela ne suffit pas. II faut connaitre pour chaque deplacement la
translation, la rotation et la deformation qui le composent.

En associant 0a, ®p et Q ainsi que leurs logarithmes Sa, Sp
et W au tenseur *F, de meme en associant Sa, Sp et co ainsi

que leurs logarithmes sa, sp et w au tenseur '\i et enün 0a,
0p, O et leurs logarithmes Sa, Sp, W au tenseur *F on obtient
la loi de superposition pour les rotations et les deformations
en appliquant la methode de decomposition etablie ci-dessus

aux deplacements (01), (11) et (01). Les lois generates de

superposition sont les suivantes:

©a fi • &a* Q-'

0p co
^ •©/)*• CO

^ ----- £2 • Q* * to

oü ©a*, @p* et Q* sont des grandeurs auxiliaires associees ä un
tenseur *F* 0p Sa resultant de la superposition des deux

allongements purs 0p et Sa; le calcul explicite donne

0o* (®p Sa! @p)'/s

&p* — {ia ®p- äa)'2

fl* eakep*k

(eah et epli sont les vecteurs unites diriges dans les directions
d'axes principaux de 0* et de 0*).
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La loi de superposition pour les tenseurs logarithmiques est

analogue; on trouve
Sa ew Sa* e~w

Sp e_wSp*exv

oü Sa*, Sp* et W* sont les tenseurs logarithmiques de @a*,

0p* et Q*.
II est commode de formuler ces lois en reduisant les tenseurs

ä leur forme diagonale, ce qui se fait ä l'aide de l'equation de

Cayley- H amilton.
Les derivees des tenseurs par rapport au temps sont donnees

par la limite des differences entre les tenseurs surlignes et les

autres, divisees par dt (dt —*- 0). Par contre les tenseurs de la
vitesse de deformation S et de rotation W sont donnes par

Pour le cas particulier de displacements ä aire constante dans

un plan, tous les Operateurs logarithmiques sont des deviateurs

plans, on a alors Sft + sk cos 2cj, oü a signifie Tangle entre
deux axes de meme indice de sa et de Sp. Les figures que nous
donnons illustrent ces formules, precisement pour le cas oü

Ton a affaire ä des deviateurs plans, car il s'agit de mouvements

qui conservent les aires. Dans les mouvements ä aire constante,
les tenseurs Sa, sa, Sa, Sp, sp, Sp, W, w et W sont aussi des

deviateurs plans, ainsi que Sa, Sp et W.
La decomposition de T, ij; et y en tenseur d'angle de rotation

et de deformation nous donne ce qui suit:
1° Pour les tenseurs de deformation associes a Y on trouve

les formes dyadiques

dans lesquelles les valeurs propres Sft s'expriment ainsi:

W ewew*ew

W lim
<i(=0 dt

Sa 8>kzak sak

Sp Shzpkzah
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oü © est la valeur absolue de Sa et Sp:

VS« Sa -s/Sp Sp arcdi^F^ Yife

et les vecteurs unites zah et e pk, diriges selon les directions
d'axes principaux de Sa et de Sp, ainsi:

zak ej cos Ajh

BPk ßj cosBjft

oü e-} signifie Tun de deux vecteurs unites diriges dans les

directions d'axes de coordonnees d'un Systeme de reference

rectangulaire; AJfe et B-fe sont les angles entre e- et zak d'une

part, e,- et sph de l'autre. En tenant compte du fait que

Au A22 90° — A„ A„ — 90° A

Btl B22 90° — B12 B21 — 90° B

on peut ecrire

2Y»lTft2
t«2A ^ tg 2Bxtr xlf» \ij* \ta ' ^ \t ' vr * Vf.' \T'^ lk Mfe ~ T2fe^ 2/? — Tfe2T/i2

2° Pour le tenseur d'angle de rotation associe ä on trouve

W Q (e^e2 — etex)

oü Q, 1'angle de rotation, vaut

2Q 2A — 2B

Les formules se rapportant aux tenseurs surlignes et en
earaetere miniscule, sont analogues.

Ayant determine les valeurs propres et les directions d'axes
de tous les tenseurs en question, nous donnerons les lois de

superposition pour deux deplacements successifs finis. La
relation entre les valeurs propres est la suivante

_ |
Sk (— i)k — arcch (cosh 2SÄ cosh 2sk — sinh 2Sfe sinh 2sk cos a)
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oü ct signifie le double de Tangle entre les axes principaux de

meme indice de sa et Sp. Les orientations sont reliees entre elles

par les relations

Ä a - - arctg
sin a tanh (-y/2g)

2 sinh {\/2&) + cos ct cosh (\/2©) tanh (v/2^)

B B + q

+
^

aretc
co^anh V"2) sinh (s\/2) sin ct + sin a cos a (cosh § \/2 - l)

2 B
cosh («\/2) cos2 ct + cos ct cotanh (© V2) sinh («s/2) + sin2 CT

oü Ä, A et a, R. B el b signifient les angles entre les axes de

meme indice du Systeme de reference et des tenseurs Sa, Sa

et sa, Sp, Sp et sp, tandis que Q, Q et q sont les angles de

rotation de W, W et w. ©, © et § sont les grandeurs absolues

de Sa et Sp, Sa et Sp et de sa et sp. Pour ]'angle ct on obtient

ct 2 (B — a) 2 (A + Q — a) 2 (B — b + q)

Pour les rotations on a

W W + w + W*

d'oü Tangle de rotation

Q Q + + Q* B — A '

oü B et A sont donnes par les formules ci-dessus pour l'orienta-
tion suivante des axes de rotation: Wx || Wx |j wx || W*x • Si

on passe pour le deplacement (11) ä la limite infinitesimale, on
obtient pour les deformations infiniment petites

clSk S — sk cos ct

s> sin ct
rfA A — A

V2 sinh (@ V2

dB B — B q H sin ct cotanh © \/,2
V2

et pour le tenseur d'angle de rotation infinitesimale

dQ Q — Q <7 -i — sin ct tanh - —_V2 V2
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II faut remarquer que ces formules, qui donnent des diffe-

rentielles, ne sont valables que lorsque les grandeurs des

tenseurs d'angle de rotation et de deformation associes au

deplacement (11) sont infiniment petites comparees aux
grandeurs analogues associees au premier deplacement (Ol). Pour
le cas dans lequel le premier deplacement (Ol) est de meme
ordre de grandeur1 que le second (11), il faut appliquer
les formules donnees plus haut pour le cas general. Le cas

general tridimensionnel donne des formules beaucoup plus
compliquees, mais du meme type; elles seront publiees ailleurs.

Pour obtenir des formules par des differentielles, il faut
etudier separement le cas dans lequel le tenseur de deformation

S associe au deplacement (Ol) est degenere, en partant
des formules etablies pour la superposition des deplacements
finis.

Pour le cas special oü le premier deplacement (Ol) est fini
et n'est pas degenere tandis que le deplacement accessoire (11)
est infiniment petit, on obtient pour la superposition des valeurs

propres des tenseurs de deformation

% sk + si cos2

signifie Tangle entre l'axe / de sa et l'axe k de Sp.

C. Etude systematique des moiwements.

Nous discuterons les divers mouvements de deformation, et

nous serons par la amenes ä considerer plusieurs sortes de

mouvements lineaires qui, quoique importants pour la meca-

nique, n'ont pas encore ete envisages jusqu'ä present, et qui
paraissent paradoxaux.

Afin de faciliter cette etude systematique, nous eliminerons
la partie rigide du mouvement en introduisant un Systeme de

1 Ce cas est tres important pour les corps «solides » (du point de
vue physique), car avec eux on ne peut realiser que des deformations
petites.
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reference Xm tournant avec les rayons vecteurs p. Comme nous
l'avons vu, chaque deplacement lineaire

r r 41

se reduit alors ä la forme

p p * rj Ct

avec Sa V <|> et p r co-4. On peut prendre pour les r
les rayons vecteurs r donnant la position (0) non deplacee des

points du milieu; les p sont associes ä la meme position que
les r, mais dans le Systeme 2m tournant, aussi ecrivons-nous °.
II faut cependant remarquer que la position (0) sert de reference

seulement pour les positions parcourues par le mouvement et

qu'en general eile ne fait pas partie du parcours du Systeme.
Le tenseur Sa en fonetion du temps sera pris comme base

de la systematique des mouvements de deformation. Chaque
tenseur symetrique est caracterise completement et d'une
maniere invariante par ses directions d'axes et par ses valeurs

propres. La classification que nous nous proposons de faire

nous oblige done ä distinguer le cas dans lesquels ces directions
et ces valeurs propres restent inchangees de ceux oü elles ne le

restent pas. Pour distinguer les valeurs propres de Sa de son

orientation relative ä 2m, on exprime Sa sous la forme (voir
appendice)

* *
S O, CO

1 w

ou co est un tenseur orthogonal, qui exprime en fonetion du

temps la rotation qui fait passer du triede trirectangulaire
de description ek (choisi arbitrairement mais fixe dans le

Systeme des p) au triedre eak de Sa; le Symbole S^ represente
un tenseur avec les memes valeurs propres Sk que Sa mais

dirige dans les directions fixes du triedre de description Xm.

Nous trouvons done pour le mouvement general l'expression

P P - CO 1

Sj, CO

avec co w(t) et 3-// S,j(t)
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Nous distinguons alors le cas general dans lequel oo (t) et

(t) varient avec le temps, et les cas particuliers dans lesquels

un des tenseurs reste constant. Le cas particulier u> const,
et Sy 2y(t) representera la classe des deformations pures,
tandis que le cas particulier w w (t) et By, const, representera

une classe de niouvements lineaires qui n'a pas encore ete

etudiee jusqu'ä present et qui apparait comme paradoxale.
Pour eclairer le sens physique de cette classification nous
discuterons les differents cas plus explicitement.

Pour plus de simplicity nous conviendrons que le triedre

eh de description (fixe dans le Systeme tournant des p) est

choisi de telle maniere que pour un instant arbitraire t — l1}
(1) (1)

By soit parallele ä Ba, Ba representant le tenseur Ba al'instant
t t1. Dans ce cas le tenseur w caracterise directement la

rotation 1 des axes principaux de Ba par rapport au Systeme

tournant des p, done par rapport au milieu deformable.
Considerons une position arbitraire (k) du milieu et le

displacement (ik). On a

- (1)

p i — p * a

_ (ft)
Pft P ' ~!a '

done pour le deplacement (1 k)

_ _ (i) h _
Pfe Pi ' Ba • äa Px '/.

OÜ

0) ft

'/ 3a -3a

Suivant qu'on rapporte chaque position p pfe ä une

position (1), p =pj, faisant partie du parcours ou ä la position
(0), p p, qui en general ne fait pas partie du parcours, on
trouve

P/t P " äa ou Pfe Pi • X •

*
1 Cette rotation io de 3a par rapport au milieu (ou plus exactement

par rapport au Systeme tournant 2m des p) ne doit pas etre confondue
avee la rotation to du continuum (du Systeme Em) par rapport a un
Systeme de reference E fixe dans l'espace.
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Tout deplacement entre deux positions (1) et (/c) parcourues
est done caracterise par le tenseur % et non par 5a.

Le tenseur d'allongement associe au deplacement (t/c) est
donne par \/y y

Pour le premier cas particulier m const, on obtient, en
substituant pour / 'u valeur donnee ci-dessus:

Vx • X X ;

done tout deplacement (1/c) contenu dans ce mouvement est

une deformation pure. D'autre part on prouve, si l'on admet

pour un mouvement que tout deplacement (1 k) parcouru
entre deux positions arbitraires (1) et (k) est une deformation

pure, que <o doit etre constant.
Pour la deformation pure on a

x Vx
ce qui donne

ii) W (ft) Of
äa 3a 3a 3a

Done: le deplacement (1 k) est une deformation pure par rapport
(i) (ft)

au Systeme tournant si, dans le produit zaT1. 3a, les deux
tenseurs commutent. La condition necessaire et süffisante pour
qu'ils commutent (voir 1'appendice) consiste en ceci:

ce qui exprime que la rotation qui fait passer du triedre d'axes
(i) (ft)

principaux de 5a ä celui de 5a est donne par le tenseur
d'identite I:

cd const I et 3/: 3 (t)

Le cas de deformation pure correspond done au cas oil
l'orientation de 5a, representee par d>, reste inchangee par
rapport ä Em, tandis que les valeurs propres representees

par 5^ varient en fonction du temps.
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Autrement dit les trois directions dans lesquelles l'allongement
(l)
Sa est effectue restent inchangees dans le Systeme tournant de

maniere que tout allongement trirectangulaire accessoire %

soit effectue dans les memes directions du milieu. Ces directions
trirectangulaires restent done inchangees pendant tout le

mouvement et peuvent etre considerees comme les directions
(i) (ft)

d'axes prineipaux de Sa, de / et de Sa.
(i) (ft)

Par contre, si Sa n'est pas parallele ä Sa le deplacement (1/c)

caracterise par y n'est pas une deformation pure, mais contient
une rotation, bien que le mouvement (1k) se rapporte au

Systeme tournant dans lequel il est decrit au moyen d'un
seul tenseur d'allongement trirectangulaire Sa fonetion du

temps; l'explication de ceci est que Sa est defini comme un
Operateur agissant sur le Systeme des rayons vecteurs p, tandis

que x agit sur le Systeme des pr
En resume, nous distinguons parmi les deformations Celles

p p • äa

qui sont des deformations pures des mouvements generaux,
selon que le triedre trirectangulaire de directions paralleles
aux axes de Sa reste inchange (w const. I) ou change
son orientation (w w (t)) dans le continuum au cours du
mouvement. Dans un mouvement de deformation pure, il y a

trois degres de liberte seulement, selon les trois valeurs

propres, variables de Sa. Nous ajoutons une remarque: Ces

mouvements de deformation pure sont tres importants pour la

mecanique des corps deformables. Cela est clair, si on considere

ces mouvements du point de vue differentiel. On deduit des

formules de superposition donnees ci-dessus ce qui suit:
En general les derivees par rapport au temps des tenseurs S

et W ne sont pas identiques aux tenseurs S et W qui repre-
sentent la vitesse de deformation et la vitesse de rotation.
II n'y a qu'une seule classe privilegiee de mouvements :— les

deformations pures — pour laquelle
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Pour cette classe il y a des relations analogues entre les derivees
d'ordre 2, et d'ordre superieur par rapport au temps et
1'acceleration ordinaire et Celles d'ordre superieur de la
deformation.

Dans un tel mouvement, et seulement dans un tel mouvement,
tous les tenseurs associes ä la cinematique (tenseur de deformation

et ses derives par rapport au temps) sont paralleles entre

eux, et si l'on suppose que le milieu est isotrope, les tenseurs

dynamiques associes (tension P et ses derivees par rapport au

temps) sont aussi paralleles. Ce fait implique une grande
simplification, car en general un de ces tenseurs n'a pas des axes

principaux paralleles ä ceux des autres tenseurs.
Nous venons d'envisager les deformations pures. Nous y

distinguons les divers mouvements possibles suivant que
0, 1, 2 ou les trois valeurs propres (done aussi les valeurs

propres de 3,y) restent constantes. Le cas zero est evidemment
le cas general d'une deformation pure dans les trois dimensions
de l'espace. Le cas 1 (3S const.) est plan, on a affaire ä un
mouvement rigide dans la direction de l'axe 3 et ä une
deformation pure dans le plan perpendiculaire ä cet axe. Le cas 2

(33 const., 32 const.) est lineaire, on a un mouvement
rigide dans le plan contenant les axes 1 et 2, une deformation
dans la direction de l'axe 3. Enfin le cas 3 correspond ä un
mouvement rigide dans les trois dimensions de l'espace.

Envisageons maintenant I'autre cas particulier. Les conditions

qu'il pose entrainent que

p — p * ^ (Z

avec
* *-

^ (X — CO • $n - CO

ou
* ¥

$U const et to to (£) const.

done

?h Pi ' '/-

avec
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Ces formules caracterisent completement le mouvement
en question.

Si on discute ce mouvement du point de vue differentiel
on trouve — contrairement au cas des deformations pures —-

que

et ^W.dt dt

En ce qui concerne 1'orientation des tenseurs la difference

entre les deux cas particuliers devient encore plus evidente.
Pour les deformations pures nous avons vu que les tenseurs
S et S sont paralleles; on trouve par contre ici que ces deux
tenseurs sont orthogonaux, Tangle absolue y entre eux
valant 90°:

S S

IsI•|SI
0

La discussion du mouvement se fait d'une maniere intuitive
lorsqu'on se rapporte aux surfaces metriques des tenseurs.

Envisageons dans la position (1) du milieu une serie d'ellipsoides
d'axes &heak

Pl • Sa 2
• Pl 1

La surface de chacun d'eux peut etre consideree comme

representant 3y/,. Dans la position (1) nous avons par definition
co I et par consequent l'equation des ellipsoides est

Pi • A/2 • pi i •

Par suite du mouvement les px se transforment en c/£ selon

la relation donnee plus haut et les ellipsoides deviennent

fk-vr*-z]?- !-1-fk i

ce qui donne, en substituant pour x sa valeur

pfe • • 57/2'" ' pä 1 •

Or co"1 Sjf. (a represente un tenseur ayant les memes
valeurs propres que äjJ- mais une orientation differente de

Archives. Vol. 17. — Janvier-Fevrier 1935. 6
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sorte que la rotation u> fait passer 3^2 en w-1 a>; done
la relation ei-dessus represente dans la position (k) une serie

d'ellipsoides de forme et de volume identiques ä ceux des

ellipsoides dans la position (1), de sorte que seule l'orientation
(par rapport au Systeme 2m tournant) varie selon le tenseur
de rotation w.

Chaque ellipsoiide dans la position (1) est done transforme

par le mouvement en un ellipsoiide dans la position (k) tel que
seule l'orientation par rapport au Systeme tournant des p ait
change. Par rapport au Systeme non tournant des r il n'y a

egalement qu'un ehangement d'orientation, mais cette fois egal1
ä « co.

D'autre part, si on envisage dans la position (1) du milieu
une serie de spheres

Pi Pi 1

ees spheres deviennent des ellipsoides 2

Pfeif1 X-'-Pfe 1

II en est de meme dans le Systeme non tournant des r.
La transformation des spheres en ellipsoides montre que le

1 Aussi si l'on imagine dans la position (1) du milieu des ellipsoides
dont les equations sont

i\ • )\ — const

tous ces ellipsoides restent inchanges en forme et en grandeur au
cours du mouvement, et seule leur orientation change selon &>. to.

2 Cette relation ne represente une sphere que si

x_1 • X"1 I •

En substituant pour '/ sa valeur on en tire

<o I,
ce qui est realise seulement dans la position (1), ä laquelle ces spheres
ont ete rapportees; pour toute autre position parcourue par le
mouvement ces spheres sont transformees en ellipsoides.
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mouvement en question contient une deformation car les

distances1 entre les points materiels ont change.
Le meme mouvement — earacterise par les formules ci-dessus

— transforme done d'une part une serie d'ellipsoides en d'autres
ellipsoides de meme forme et meme volume et, d'autre part,
une serie de spheres en ellipsoides. Cela semble paradoxal, vu
qu'il s'agit d'un mouvement lineaire et homogene. Ce paradoxe
apparait encore plus curieux si on considere par rapport au

Systeme 2 non tournant des r le cas special de ce mouvement

qui est earacterise par co co I, c'est-ä-dire co <a-1.

Dans ce Systeme la rotation co co des axes des ellipsoides est

egale ä I de sorte que non seulement la forme et le volume des

ellipsoides, mais aussi les orientations de leurs axes restent
les memes par rapport au Systeme 2 fixe dans l'espace,
tandis que les spheres se transforment en ellipsoides dont les

axes tournent par rapport au meme Systeme des r. Ce mouvement

particulier est earacterise par l'equation 1

r — r co S/i

1 Cela ressort du cas general

— * _j #
r r • co • 3~u • o> • co ;

on a alors
*
CO • CO I J

soit
CO CO

et par consequent
r r co 3n

avec co co (t) et 3^ const. Si on compare cette equation avec

l'equation generale

r — r co 3p

1 Dans la position (1) tous les points materiels de la surface de la
sphere sont equidistants du point materiel situe au centre; par suite
du mouvement les points de la surface et le point central de la sphere
deviennent les points de la surface et le point central de l'ellipsoide;
ils ne sont plus equidistants.
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on constate que le mouvement paradoxal que nous notions
correspond au cas Sp const., et w u> (t) const.

Le paradoxe s'explique d'une maniere simple lorsqu'on fait
les calculS explicites et qu'on procede ä la superposition des

deplacements lineaires successifs. On voit alors que les ellipsoides
subissent dans chaque intervalle de temps exactement le meme
allongement trirectangulaire que les spheres; chaque sphere

change necessairement sa forme si on effectue un allongement
de n'importe quelle grandeur et quelle orientation; tandis qu'un
ellipsoide peut subir des allongements tels que l'ellipsoide
resultant ait exactement la meme forme et le meme volume

que le premier ellipsoide.
Ce mouvement paradoxal a une certaine importance, il peut

etre realise aisement dans un milieu elastique. Nous donnerons

un exemple pour le cas plan, pour lequel nous avons fait cons-
truire un modele (reproduit dans les figures 1, 2 et 3 annexees

au present article): Si on applique ä une membrane elastique
dans l'etat (0) non travaille un allongement birectangulaire on
obtient un etat (1) deforme; chaque cercle de l'etat (0) passera a

une ellipse, qui peut etre consideree comme la trace de la
surface metrique du tenseur S"p d'allongement. Si nous dis-

posons d'une machine (un Operateur) capable d'effectuer un
allongement birectangulaire le long de deux directions fixes
dans l'espace, nous pouvons realiser toute une serie d'etats (1),

(2), (k) (n) ä partir de l'etat (0) en appliquant ä la
membrane d'abord une rotation (k 1, 2, n) puis toujours ä

l'aide de la machine le meme allongement birectangulaire. La
grandeur de l'allongement est la meme pour tous ces etats
(k) (k 1, n) mais ce sont chaque fois de nouveaux rayons
vecteurs materiels qui sont dans les directions dans les-

quelles l'allongement est effectue. Un mouvement continu
qui passe successivement de l'etat (1) aux etats (2), (3),... (n)
est precisement le mouvement cherche, qui correspond ä

J'equation

r r • co • 3p (avec to co (t) et äp const.)

qui exige d'effectuer d'abord une rotation puis le meme allongement

fixe par rapport ä l'espace. On realise aisement ce mouve-
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ment avec une membrane de caoutchouc fixee sur un cercle

d'acier; on fixe la membrane d'abord dans l'etat (0) non
deforme; eile suit toutes les deformations que l'on imprime au
cercle d'acier; si l'on effectue un allongement birectangulaire
sur le cercle, celui-ci est transforme en une ellipse dont on peut

Fig. 1.

Illustration du mouvement ä deformation (post-rotationnelle)
constante äp montrant la serie d'ellipses qui representent Sp et qui
restent inchangees. On a dessine des cercles sur la membrane de
caoutchouc, dans l'etat (0) non deforme; par une deformation du cadre on
atteint l'etat (1) et les cercles peints, ainsi que le cercle d'acier,
deviennent des ellipses. On realise alors le mouvement en question en
flxant le cadre dans cette position (1) et en tournant l'ellipse d'acier
dans le cadre, ce qui imprime ainsi ä tout etat (k) parcouru la
meme deformation 5 p par rapport ä l'etat (0). On constate alors
que les ellipses dans l'etat (1) restent des ellipses de directions d'axes
principaux et de grandeur constantes. On atteint un etat (2) gräce
ä une rotation de 30°; en continuant le mouvement au delä de 30°
on revient ä l'etat (1).



Fig. 2.

Illustration du nieme mouvement ä deformation post-rotationnelle
constante qu'ä la fig. 1, montrant la serie de cercles qui, dans ce
mouvement, sont transformes en des ellipses ä forme et orientation
variables. On a dessine sur la membrane de caoutchouc, dans l'etat (0)
non deforme, des ellipses qui, par la deformation (01), sont devenues
des cercles dans l'etat (1). En effectuant alors le mouvement en
question en faisant tourner la lame d'acier dans le cadre fixe dans
la position (1), on obtient successivement les etats (2), (3) et (4),
qui correspondent ä des angles de rotation de 30°, 60° et 90°. On
constate alors que les cercles dans l'etat (1) deviennent des ellipses
d'axes variables en grandeur et en direction. Si on continue le
mouvement jusqu'ä 360° on retrouve l'etat (1), et, lors du parcours
total au travers des quatre quadrants, les configurations (1), (2),
(3) et (4) se repetent d'une maniere symetrique et periodique.



Fig. 3.

Cette figure illustre les deux phenomenes representes separement
aux figures 1 et 2 sur une seule membrane de caoutchouc : les
cercles fonces ä l'etat (0) non deforme deviennent des ellipses dans
l'etat (1) deforme, et le restent au cours du mouvement ä deformation

post-rotationnelle constante, tandis que l'ellipse de l'etat (0)
non deforme (en couleur claire) qui devient un cercle ä l'etat (1)
deforme se transforme en ellipses d'axes variables en grandeur et
en direction dans les etats (2), (3) et (4), qui correspondent aux
angles de rotation 30°, 60° et 90°.
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fixer les axes dans l'espace par un cadre articule ä quatre
branches de longueur egale, et qui prend une forme de losange;
il maintient la forme elliptique de la monture d'acier et l'oblige
ä rester de memes dimensions (voir les figures 1, 2 et 3). Le
cercle en acier est ainsi devenu une ellipse; eile peut tourner
dans le cadre rigide, les elements geometriques de l'ellipse
etant constitues ä tout instant par des points materiels nou-
veaux, les allongements restant constants en grandeur, mais pas
en grandeur dans la matiere meme de la membrane. Pour
mettre en evidence le paradoxe mentionne, on a dessine des

cercles sur la membrane dans l'etat (0), ces cercles deviennent
des ellipses par suite de l'allongement birectangulaire (01).
Dans l'etat deforme (1), on dessine de nouveaux cercles;
en effectuant alors le mouvement continu que nous avions

imagine, on voit que toutes les ellipses restent inchangees
en forme, orientation et grandeur, mais que, en meme

temps, les cercles (dessines dans la position (1)) sont deformes

en des ellipses; on voit de plus que tous les cercles

d'une part, et toutes les ellipses, d'autre part, sont affectes de

la meme maniere, ce qui met en evidence l'homogeneite du

mouvement, et si enfin on dessine sur la membrane des lignes
droites, elles restent des lignes droites, ce qui doit etre en vertu
de la linearite1 du mouvement. A l'aide des formules explicites
qui permettent de faire la superposition des displacements
successifs ä aire constante dans le plan et qui sont resumees
dans ce chapitre, on peut analyser tous les details du mouvement

paradoxal qui vient d'etre esquisse; en les comparant avec
le modele reel on verifie que les milieux elastiques se deforment
effectivement de cette maniere.

L'orthogonalite des tenseurs S et S, par exemple, qui est

caracteristique pour ce mouvement, apparait dans ces figures
de la maniere suivante:

Si on considere les cercles places dans la position (1) on

remarque qu'en passant de (1) en une position infiniment

1 La fixation de la membrane au cercle d'acier telle que nous l'avons
realisee ne correspond pas rigoureusement aux conditions posees par
la theorie, c'est pourquoi ä proximite de cette fixation la linearite et
l'homogeneite ne sont pas exactement respectees.
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voisine (1) ils se transforment en ellipses dont les axes sont ä

45° avec ceux de l'ellipse d'acier; ees ellipses peuvent etre
considerees comme representant le tenseur Ba associe au
deplacement (11), leurs axes sont done paralleles aux axes

prineipaux de sa et par consequent de S; d'autre part les axes
de l'ellipse d'acier sont paralleles ä ceux de 0a, done de S.

Pour les deviateurs plans S et S, l'orthogonalite se traduit (voir
l'appendice) dans l'espace ordinaire par le fait que l'angle
entre les axes prineipaux de ces tenseurs vaut 45°.

Ayant discute les deux cas particuliers comme s'ils etaient
des cas extremes des deformations generates, revenons au cas

general.
Pour le cas general de deformation nous avons

dS d dW -T^ S et Tt * W

et l'angle absolu entre les tenseurs S et S peut avoir une valeur
quelconque.

La classification des deformations generates est tres compli-
quee. En principe il faut distinguer les differents cas pour
lesquels 0, 1, 2 ou les trois valeurs propres de 5 restent
constantes, les cas oü l'orientation de Taxe de la rotation w

reste inchangee et coincide ou ne coincide pas avec un axe

principal de S-, oü il y a telle ou telle relation entre oetö, etc.
Nous ne voulons pas entrer dans les details, mais il nous faut
reternir l'existence d'une classe importante de deformation
generale, la classe des mouvements laminaires. Ces mouvements
se placent entre les deux cas particuliers consideres plus haut
et ne doivent pas etre confondus avec eux.

(A suivre)

Appendice.

Ualgebre des tenseurs d'ordre 2 sous une forme invariante. —
Dans l'espace ä trois dimensions, un tenseur d'ordre 2 est une
forme bilineaire1 de deux triplets de vecteurs ai> tt3> ^1, ^2, ^3:

cqA ci313

1 Dans toutes les formules, il sera convenu d'efTectuer une som-
mation sur tout indice redouble.



90 LA MECANIQUE DES CORPS DEFORMABLES

Dans chaque terme la multiplication est indeterminee (ni
scalaire ni vectorielle).

Les operations fondamentales interieures. — II y a trois
operations fondamentales interieures:

a) La transposition, b) la contraction, c) la pseudo-contraction.

a) Si on change l'ordre de la succession des deux triplets
(transposition) on trouve un tenseur Y (dit Y transpose):

* •

b) et c). Si on remplace la multiplication indeterminee par la

multiplication scalaire (contraction) ou la multiplication
vectorielle (pseudo-contraction), on trouve soit une grandeur
scalaire Y., soit une grandeur vectorielle Y x :

Y. ah ih

Oft X h

Les grandeurs Y., Yx et Y sont en relation avec Y d'une
maniere invariante. La grandeur vectorielle Yx n'est pas un
veritable vecteur, c'est-a-dire qu'il ne se transforme pas comme
un vecteur, c'est un vecteur axial ou pseudo-vecteur. La
theorie complete des pseudo-tenseurs et pseudo-vecteurs a ete

donnee par Leon Brillouin (Ann. de Phys., Ill, 251, 1925).
Si nous donnons les composantes et bft par rapport ä un

Systeme de reference trirectangulaire portant des vecteurs
unites ek de meme longueur, nous obtenons pour Y la forme

Y
et par consequent

Y. Yu + Y2a + Y33

Yx (T» - Y„)ei + (Y„ - Y13) e2 + (Y„ - Y,j) es

Y >

done

* M >
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Les Operations fondamentales exterieures. — a) L'addition et
la soustraction des tenseurs se definit par l'addition et la sous-

traction des formes lineaires correspondantes.
b) La multiplication (qui donne des termes zero, une, deux,

n fois contractus) de deux tenseurs d'ordre quelconque se

definit par la multiplication indeterminee des deux formes qui
correspondent aux tenseurs, suivie de zero, une, deux, n

contractions de la forme resultante.
La multiplication une fois contractee sera nommee simple-

ment multiplication. Elle sera representee par un point. La
multiplication deux, trois, fois contractee par deux, trois,

points places entre les tenseurs.
Dans un produit de tenseurs ceux-ci ne commutent pas en

general, mais les lois d'association et de distribution sont
valables.

Pour la multiplication une fois contractee de Y par un vecteur

r — rkek et un tenseur d'ordre y Xuekei 011 obtient les

relations

(en general r1 •Y r et %
' y). De la definition du

tenseur transpose il resulte que

Nous fondant sur ces regies de multiplication nous intro-
duisons le tenseur I d'identite en disant qu'il existe un tenseur I
et un seul pour lequel 1'equation

est verifiee pour tout tenseur / d'ordre quelconque. Ge tenseur I
est appele tenseur d'identite, il est d'ordre deux et s'exprime
dans le Systeme trirectangulaire des ek par

'' ' 'r rh'i'ern(ek ' ee> em rk^hmem

!- ' ^ /.hi ek \el ' em) en /.hiIn ek en

r T Y • r
et

(X 1") v • X •

X 1 • X X 1

pour
pour
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Pour la multiplication deux fois contractee on a

x Y Y ..x (Y .x). (x • V). VikWhi

La multiplication deux fois contractee des tenseurs est

analogue ä la multiplication scalaire (une fois contractee) des

vecteurs; pour tirer profit de cette analogie nous introduirons
des notions analogues ä Celles du calcul vectoriel:

La valeur absolue | Y | d'un tenseur est defmie par

| Y[ -r VF '

Uangle absolu e entre deux tenseurs est defini par

Y y
C0S£ ~ m i-/j'

ce qui nous permet d'ecrire

^ 7 1^'I I 7 I cose

et l'analogie avee le produit scalaire de deux vecteurs est

complete. Deux tenseurs sont orthogonaux si s 90°, c'est-ä-
dire si leur produit doublement scalaire est nul. Le tenseur
Y'

P^r-| sera designe sous le nom de tenseur d'orientation de Y.

Les puissances et les racines d'un tenseur. — La puissance

(p etant un nombre entier et positif) est definie comme la

multiplication, p fois repetee de Y, effectuee comme suit:

Yp Y • Y Y
V

Si p est un nombre entier et negatif, les puissances negatives
sont determinees par l'equation

__ J

On en tire
fL * 7)"' 7"1 • F"1 •



LA MECANIQUE DES CORPS DEFORMABLES 93

Si p est une fraction rationnelle m/n les racines et les

puissances fractionnelles sont definies par

On deduit de ces definitions que les differentes puissances
d'un meme tenseur VF commutent dans un produit, soit

Pour le cas particulier oü p + q 0, on trouve T0 I.

La division. — On effectue une division par un tenseur
d'ordre 2 en multipliant par le tenseur reciproque, et en conser-
vant l'ordre d'ecriture des tenseurs. Si par exemple

Caractere d^invariance d'un tenseur. — Une premiere carac-

teristique invariante d'un tenseur est celle qui se rattache ä sa

symetrie eventuelle. En general il n'y a pas d'autre relation

independante entre *F et T que celle donnee par la definition
de ^F; nous dirons dans ce cas que le tenseur *F est sans symetrie
(asymetrique). Si, par contre, il existe une autre relation

independante entre T et *F nous parlerons d'une certaine symetrie
du tenseur. Nous distinguons trois types de symetrie: un tenseur
est symetrique (a), antisymetrique (a), orthosymetrique ou
orthogonal (<p) suivant que

*p® __ vp®

a • ß • y X.

on a

ß ' T «
1

• X

a • ß x. • Y~'

a — a aift

OU

9.9 1, fhi fil I 0 pour k =7= I '
1 pour k — I
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La premiere equation dans chaque ligne donne la definition

sous sa forme invariante, la deuxieme l'exprime en

composantes relatives au Systeme trirectangulaire des eh.

On tire de ces formules

a a — 0 ;

done a et a sont orthogonaux.
Un tenseur peut avoir plusieurs sortes de symetrie en meme

temps. Par exemple le tenseur spherique K aekek est en

meme temps symetrique et orthogonal.
Les symetries spatiales que peut presenter un tenseur

d'ordre 2 sont: Ct (triclinique), C2ft (monoclinique), Yh (rhom-
bique), C„h (symetrie polarisee de rotation), Drh (cylindrique)
et (spherique).

Pour les tenseurs symetriques a, il y a seulement Vh, Dxh et

Kh. Les tenseurs antisymetriques a ont les symetries C „ h et K.h,

et les tenseurs orthogonaux cp les symetries Cxh, et Kh.
Si on introduit un Systeme de reference trirectangulaire

portant des vecteurs unites sk, la maniere de le faire pour
obtenir la forme la plus simple des tenseurs consiste ä faire
coincider l'axe de la symetrie la plus elevee avec Faxe 3;
alors

c °ksk*k

± 9 cos jtejEj + S2e2) + (e1e2 —s2ej) sin q + e3s3

Une autre caracteristique, plus importante que les deux

premieres, est mise en evidence par un theoreme de Cailey-
Hamilton d'apres lequel il existe toujours une relation lineaire
et scalaire entre quatre puissances successives d'un tenseur
d'ordre 2. Pour plus de simplicite, prenons les quatre premieres
puissances d'un tenseur ce sont T"0, ^F1, ^F2, *F3. L'equation
de Cailey-Hamilton s'ecrit comme suit:

Y3 — 31 Y2 + JnT — Jhi -1 0

oü J,, Jn et JUI sont trois grandeurs scalaires, nommees les

trois invariants fondamentaux. I est le tenseur d'identite egal ä
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VF°. Pour le calcul explicite nous supposerons que *F est donne
ä partir de vecteurs unites eh (k 1, 2, 3) orthogonaux. Nous

avons alors

* ^ikVk
et

Jj (xF)j TX1 + xt'22 + Y33 (somme des termes diagonaux
de T).

Jn (*?),! =| | + | + I j (somme des mineurs relatifs
aux termes diagonaux).

Jm CPJni I I (determinant de Y).

Un tenseur pour lequel (T), 0 est appele un tenseur
deviateur.

A l'aide de l'equation de Cayley-Hamilton on determine les

valeurs propres et les directions d'axes principaux d'un tenseur.
Les trois valeurs propres de W sont les trois racines Y'j, VF2 et XF3

de l'equation scalaire

X3 — Jtx2 + JjjX — Jnl 0

On trouve pour les valeurs propres

n J + +

2n(k — 1) 1 — 2 Jj + 9 J, Jn — 27 Jln J

cos 1 - — j- — arc cos >

}
3 3

2 \/ (Jj 2 Jn)3 j

(ft)
En designant par Aaß le mineur de la matrice

iv Y • T I
I UV k UV \

relatif au terme aß de cette matrice, on trouve, caracterisant
la direction principale k associee ä, la valeur propre *F;j, des

cosinus directeurs tels que

(ft) (ft) (ft)
cos (k 1) : cos (k 2) : cos (k 3) Ai4 : Ai2 : Ai3

et

3 V COS2 (kj) 1
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oü (kj), pour / 1, 2, 3, designe l'angle forme par la direction

principale k et Faxe / du Systeme de reference.

Le tenseur est determine completement et d'une maniere

invariante par ses valeurs propres et ses directions d'axes

principaux. Si deux des valeurs propres ou les trois coincident,
le tenseur est dit degenere, la multiplicity de la degene-

rescence etant respectivement 2 ou 3. On parle aussi d'un
tenseur degenere si les trois directions d'axes principaux du

tenseur sont dans le meme plan ou si deux ou les trois
coincident.

Les considerations que nous venons de developper nous

permettent de donner aux tenseurs des formes privilegiees
specialement adaptees ä leurs diverses applications:

a) Forme normale. — On peut reunir les valeurs propres et
les directions d'axes principaux de Y dans une forme normale.
En general on ecrit

y T.X'L

oü Y^ sont les valeurs propres de Y, et tt^ des vecteurs unites

diriges dans les directions d'axes principaux et H* les vecteurs

reciproques 1 de tt^. Gette representation peut toujours se faire,
ä moins que le tenseur soit asymetrique et degenere en meme

temps. Pour les tenseurs symetriques, antisymetriques et ortho-

gonaux on obtient

II

ii •T„ J...

a au

a
'

0 f 0

tp
j| ± (1 + 2 cos q) ± (1 + 2 cos q) ± 1

1 Si on fixe pour les indices une succession X, [x, v, on trouve les
vecteurs reciproques au moyen de la relation

„ n; X na
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II faut done distinguer deux sortes de tenseur orthogonal,
celle pour laquelle J, est positif, celle pour laquelle il est negatif.
La premiere represente une rotation, la deuxieme la combinaison
d'une rotation et d'une inversion. Nous n'envisagerons que la
premiere, qui sera representee par co. Nous avons

cp 0> pour (9)m (o>)m + 1

et
9 / • (o pour (<p)m — (to)m — 1

oil / — I — ehek est appele le tenseur d'inversion.
Les valeurs propres et les orientations d'axes principaux

sont donnees par le tableau suivant:

1

Valeurs propres
1

Orientations d'axes principaux i

^3 "i "s llg

CT 0 0 1 0 10 0 0 1

a Wan ~Wau 0 1 i 0 i 1 0 0 0 1

CO eiq e-iq 1 1 i 0 i 1 0 0 0 1

cox
oü q 2 arctg ^ ^

• On en deduit 1° que les directions

d'axes principaux d'un tenseur symetrique sont trirectangu-
laires, 2° que tout tenseur antisymetrique est un deviateur plan.

Fonctions analytiques d'un tenseur. — Pour former une fonc-
tion analytique /(T) d'un tenseur, nous supposons d'abord que
la fonction analytique y f(x) est celle d'un argument
scalaire x, et est representee par une serie convergente des

puissances de x:

II \ VT /(n>(0) ny fix)
n

x

1 L'orientation de chaque axe principal est donnee par trois
grandeurs proportionnelles aux cosinus des angles entre eet axe et les axes
d'un Systeme de reference.

Archives. Vol. 17. — .Janvier-Fevrier 1935. 7



98 LA MECANIQUE DES CORPS DEFORMABLES

On definit alors un tenseur y /(Y) fonction dutenseur Y
par la relation

y •= f(W) /<n)[0)TB
i n!

II faut remarquer que les relations qui peuvent exister pour
des fonctions ä argument scalaire ne sont pas necessairement
valables pour des fonctions de tenseurs 2.

On deduit de l'equation de Cayley-Hamilton que chaque
puissance Tn d'un tenseur Y a les memes directions d'axes

principaux que Y, et des valeurs propres qui sont la meme
puissance des valeurs propres de Y. Le tenseur '/ defini ci-dessus

apparait done comme une somme de puissances de Y; ses

valeurs propres sont par consequent yJt / (Y/() et ses directions

d'axes principaux sont paralleles ä Celles de *F. Dans le

cas oü *F peut etre mis sous la forme normale

(ce qui est toujours possible pour les tenseurs symetriques,
orthogonaux et antisymetriques, ainsi que pour les tenseurs

asymetriques non degeneres) on a

/. m •

La representation de Y sous forme invariante au moyen des

valeurs propres et des directions d'axes principaux nous permet
done de calculer les fonctions analytiques tensorielles sans

developpement en Serie, eile leur donne une forme ä nombre fini
de termes.

Envisageons le cas particulier de la fonction logarithmique,
dont nous faisons usage dans ce travail.

L'equation de Cayley-Hamilton nous dit que
1° Soit p InW:

p. '»m„,.
2 Soit par exemple eA eB ec, une relation entre des exponen-

tielles. Si A, B et G sont des arguments scalaires, eA en+c, mais si

A, B et C sont des tenseurs il n'en est pas ainsi en general.
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Si le determinant de T* est egal ä 1, le tenseur p est un
deviateur.

2° Soit un tenseur symetrique dont les trois valeurs

propres Sk sont reelles et positives:

5 3kehek (avec h > °) •

Le tenseur s In S est egalement symetrique et ses valeurs

propres sk sont reelles aussi mais pas necessairement toutes
positives; nous avons

s In ä sk ek

oil sh ln 'i

3° Soit (x> un tenseur orthogonal dont le determinant est

positif:
o.co I (avec (w)nl + t) •

Le tenseur w Ina est un deviateur antisymetrique plan:

Les valeurs propres de w etant donnees par

U2 e^'3 to, 1 \q 2 arctg-'1 + <Oj/

on trouve 1 pour les wk:

wi — '(? + 2 ß 7t) — — i(q + 2» 7t) vps 0 + 2 7i 7t i

Decomposition (Pun tenseur. — a) Decomposition additive
d'un tenseur quelconque *F. — Tout tenseur VF peut etre
decompose en la sornme d'un tenseur symetrique et d'un
tenseur antisymetrique (qui est en meme temps deviateur) *Fa:

Y + T„
oü

T + t T-t
2 ' 2"

1 On peut ecrire cela si l'on considere le logarithme comme une
fonction periodique ayant une periode imaginaire 27ti.
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On decompose quelquefois eil la somme d'un tenseur sphe-

jue T0 et d'un tenseur symetrique deviateur TVa:

Y„ Y0 + Y„„

oü
T» m, • i

et
Y I 4'

-2 - •1

Le tenseur prend alors la forme

Y Y0 + Y„, + Y»

6) Decomposition d'un tenseur quelconque tjj en un produit.
— Tout tenseur ^ peut etre decompose en un produit d'un
tenseur orthogonal <p et d'un tenseur symetrique S- dont les

valeurs propres sont toutes reelles et positives. Selon la position
des deux tenseurs dans le produit, position qui sera indiquee

par un a (anterieure) ou un p (posterieure), on obtient deux

decompositions:
<(» 3 a qtp

OU

4 cpa • 5p

Ces tenseurs valent1

5a + V(4 • 40

%p + V(4 • 4)

et

9a <4 4r,/2 • 41

1 En multipliant 4 par 4 en avant ou en arriere on trouve

4*4= 3 a 9p • (5a • 9p) 3a cpp • 9p 5a 3a2

4 • 4 (9® ' 3p) tpa 5p 5p 9a 9a 3p 5p2



LA MECANIQUE DES CORPS DEFORMABLES 101

Les tenseurs ^ ^ et ^ ^ sont symetriques1 et on demontre

au moyen du theoreme de Gayley-Hamilton qu'ils ont les memes
valeurs propres, toutes trois reelles et positives. En choisissant
le signe + devant les racines on constate que les valeurs

propres de Ba et de Bp sont identiques, et de plus reelles et

positives. En designant par eak des vecteurs unites diriges dans

les directions d'axes principaux de Ba et par epk des vecteurs
selon les axes principaux de Bp on trouve

3 Cl ^3
y, 6dj^6CLp

Sp 5kepkepk
et

9 / • w

oil j est egal ä + 1 ou — 1 suivant que le determinant (i)m de ^
estpositif ou negatif. Les valeurs de Bk, eak et epk sont deter-
minees ä partir de l'equation de Cayley-Hamilton relative

aux tenseurs ip - ip et V y; les eak et epk sont identiques aux
deux triplets de vecteurs unites diriges dans les directions
d'axes principaux de ces tenseurs, tandis que les B> sont les

racines carrees de leurs valeurs propres. On obtient les for-
mules explicites en remplagant M;' dans l'equation de Cailey-
Hamilton par • d; et par ^ • if;.

On decompose parfois les tenseurs symetriques en produits
d'un tenseur spherique et d'un tenseur B' ä determinant 1:

3 a 3a0 • 3 a'
et

Sp Sp0 - 3 p'
oil

3. 3a0 — 3p0 tpIn • I
1

5a' ä—• 5-

• in

Bp' -.--VI • * •

TU!

1

et.
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Le tenseur <J; s'ecrit dans ce cas

i[» 50 Sa' 9

ou
+ 50 9 • äP

Orientation d'uti tenseur. — L'orientation d'un tenseur est

caracterisee par ses directions d'axes principaux. Deux tenseurs
A et B sont dits paralleles (A//B) si leurs directions d'axes
coincident. Pour des tenseurs paralleles, la multiplication est

commutative:
A • B B • A

done
In (A B) In A + InB

Ces regies ne sont valables que pour des tenseurs paralleles.
Si l'orientation d'un tenseur A change par rapport ä un

Systeme de reference quelconque, A se transforme en un
tenseur A' de la maniere suivante

A' tr1 • a a

oü LI est un tenseur orthogonal qui effectue une rotation faisant

passer le triedre des axes principaux de A ä celui des axes

principaux de A'.

Deviateurs symetriques plans. — Pour les deviateurs syme-
triques plans les regies generales se simplifient. Les valeurs

propres d'un tel tenseur a sont a2 — «x. Sa valeur absolue

vaut jaj «!%/2=—a2\/2. L'angle absolu entre deux
deviateurs symetriques plans a et b vaut

£ 2 (ab)kh

oü (ab)kh represente l'angle entre les axes principaux de meme
indice de a et b. Deux tenseurs deviateurs symetriques plans
sont done orthogonaux si (ab)kk 45°. Le produit doublement
scalaire de a et b vaut

a b | a | | b [ cos e [ a \ \ b \ cos 2 (ab)hk
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La symetrie (Pun Systeme materiel. — La symetrie d'une
grandeur est definie par son invariance par rapport ä un groupe
de transformations de coordonnees. Nous dirons en particulier
qu'une grandeur est isotrope ou anisotrope suivant qu'elle est

invariante ou non relativement au groupe qui contient toutes
les rotations. Pour diseuter la symetrie des proprietes meca-

niques, il faut considerer les proprietes mecaniques d'un corps
materiel representees par les relations entre les variables cine-

matiques et dynamiques, soit en general entre des grandeurs
tensorielles; elles determinent les proprietes mecaniques du

corps d'une maniere quantitative et permettent done de

definir la symetrie plus ou moins grande des proprietes
mecaniques.

Les proprietes mecaniques qui nous interessent particuliere-
ment ici sont donnees par des relations entre des grandeurs
tensorielles symetriques 1 d'ordre 2 qui representent les

variables dynamiques et cinematiques. II suffit de diseuter les

relations lineaires, les resultats obtenus s'appliquant aussi a
des cas plus generaux. Soient a et ß deux tenseurs variables
d'ordre 2; la relation lineaire la plus generale entre leurs

composantes s'exprime par un tenseur constant d'ordre 4:

ßift alm fik '

En general les 34 composantes de p. sont independantes et p
est asymetrique (anisotrope); si on suppose que « et ß sont des

tenseurs symetriques, et que la propriete mecanique
representee par p est parfaitement isotrope, il n'y a que deux

composantes de p qui soient independantes. Si on represente
les tenseurs oc et ß par leurs valeurs propres et leurs directions

d'äxes, la condition d'isotropie exige premierement que

« // ß

1 Pour l'isotropie et l'anisotropie la difference entre les pseudo-
tenseurs d'ordre deux et les veritables tenseurs peut etre negligee,
e'est pourquoi nous dirons simplement «tenseurs ».
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c'est-ä-dire que les directions d'axes principaux de oc et ß

coincident, et deuxiemement que l'equation generale se decompose

en deux relations independantes, l'une entre a, et ß,:

ßj aCj • M

avec a, *x + + ot3 et ß, ßx + ß2 + ßs, 1'autre entre
les valeurs propres des deviateurs a' et ß':

p; h M'

oü

et
1

xu xk — fa. ;

M et M' sont deux grandeurs scalaires calculables ä partir des

deux composantes independantes de u.

Representation geometrique.

a. Vespace ä neu/ dimensions des variables cinematiques et

ilynamiques. — Dans l'etude de la mecanique des corps defor-
mables il est tres avantageux d'introduire un espace ä 9 dimensions

dans lequel tous les tenseurs (d'ordre 2) dynamiques et
cinematiques peuvent etre representes par des vecteurs, car
il y a une analogie profonde entre la mecanique d'un point
materiel dans l'espace ordinaire ä trois dimensions et la mecanique

de l'element de volume dans l'espace ordinaire ä trois
dimensions complete par un espace ä 9 dimensions.

Par rapport ä notre Systeme trirectangulaire des e/; nous

avons pour chaque tenseur 9 composantes. Nous imaginons
alors un espace ä 9 dimensions avec un Systeme de reference

ennearectangulaire. Nous numerotons chaque axe de ce Systeme

au moyen de deux indices i, k (oü i et k 1, 2, 3) et nous
definissons des vecteurs unites selon chaque axe au moyen du

tenseur eiek. Chaque tenseur d'ordre 2, % Xikeieki apparait

alors dans l'espace ä 9 dimensions comme un vecteur y ayant
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"9 composantes %ih ennearectangulaires. En general la valeur
absolue | ^ | du tenseur ^ n'est pas identique ä la valeur

absolue (longueur) du vecteur ^ definie comme la racine carree
de la somme des carres de ses neuf composantes. Mais les ten-
seurs caracterisant la cinematique et la dynamique de dv

(tels que P, M, sa, sp, w, etc.) sont tous symetriques ou

antisymetriques et la valeur absolue de tels tenseurs, | x |5 est

egale ä la valeur absolue | x | du vecteur correspondant ;

selon que l'on considere le cas symetrique ou le cas antisyme-
trique 1'angle absolu s entre deux tels tenseurs T et x est

egal ä Tangle, ou ä 180° moins Tangle entre les vecteurs

correspondants. L'orientation d'un tel tenseur est donnee par
la direction du vecteur correspondant dans l'espace ä 9 dimensions.

En general il n'y a pas une relation simple entre
Tangle absolu z dans l'espace ä 9 dimensions et Tangle a.hh

dans l'espace ordinaire ä trois dimensions compris entre deux

axes principaux de meme indice des tenseurs, mais pour le cas

particulier des deviateurs symetriques dans un plan, on trouve

£ 2aft/s >

de sorte que deux deviateurs symetriques donnes dans le

meme plan sont orthogonaux si Tangle entre les axes principaux

de meme indice est egal ä 45°.

II faut cependant remarquer que le vecteur resultant de

deux vecteurs dans cet espace ne represente pas le tenseur
resultant des deux deplacements successifs correspondant ä

ces vecteurs.

b. L'espace ä trois dimensions. — La representation geome-
trique des vecteurs est connue. Pour les tenseurs symetriques a
d'ordre 2, il existe plusieurs representations geometriques;
on utilise Tune ou l'autre suivant ce qu'on se propose de faire.
On associe premierement ä er la surface decrite par l'extremite du

vecteur r dans Tequation
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On associe deuxiemement ä a une surface metrique qui est
du deuxieme degre; ses axes coincident avec ak eh (oü ak sont
les valeurs propres et ek sont diriges dans les directions d'axes

principaux de o); cette surface metrique a pour equation

r a"2 -7=1.
Les tenseurs antisymetriques a seront representes par le

pseudovecteur^(veeteur axial) les tenseurs orthosyme-

(O

tnques <o par le vecteur axial in ^1 + &>!

(A suivre)
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