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LA MECANIQUE DES CORPS DEFORMABLES

PAR

K. WEISSENBERG
(University College, Southampton)

(Avec 5 fig.)

I. — InTrRODUCTION 1,

o1 Pon fait agir de ’extérieur des forces mécaniques sur un
corps matériel, celui-ci cede d’une maniére plus ou moins
compliquée. Cette maniere de céder peut étre décrite par des
variables cinématigues qui déterminent, par rapport & un
systéme de référence donné, la position dans I’espace de chaque
élément matériel du corps, en fonction du temps. Les forces
meécaniques extérieures sont représentées par des variables
dynamiques. La mécanique se propose d’établir les relations qui
existent entre ces variables cinématiques et dynamiques; les

! Conférences faites & I'Université de Genéve en avril et mai 1934.
Les théories décrites dans ces lignes ont été également le sujet
d’exposés faits au « Kaiser Wilhelm-Institut fir physikalische
Chemie », Berlin-Dahlem (Haber-Kolloquium), en janvier 1933.

Je tiens & remercier tout spécialement M. le professeur R. Wavre
qui m’a invité a prendre part aux « Conférences internationales des
Sciences mathématiques » & Genéve, ou j’ai eu le plaisir de pouveir
discuter des questions ici traitées, je remercie en particulier
MM. les professeurs K. H. Meyer et J. Weigle pour leur contribu-
tion a la discussion.

La rédaction francaise de ces conférences a été facilitée grice a
I’aide de M. A. Mercier, de I'Institut de Physique de 1’Université
de Genéve, a qui j’adresse ici mes remerciements.
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constantes qui apparaissent dans ces relations déterminent
d’une maniére quantitative les propriétés mécaniques du corps,
on peut les interpréter comme représentant la résistance de la
matiére envers les actions dynamiques.

Lorsqu’on se place d’un point de vue empirique, on cherche
& déterminer, par I’étude de la réaction d’un corps donné envers
divers efforts, comment, dans le cas particulier du corps en
question, les variables cinématiques et les variables dynamiques
sont reliées entre elles. Mais ces résultats ne sont valables que
pour le cas spécialement étudié. On pourrait alors procéder a
une comparaison, une analyse des résultats obtenus pour divers
corps, afin de déterminer les relations les plus générales pos-
sibles qui décrivent d’une maniére satisfaisante le comportement
de tous ces corps. Cette étude est tres difficile, car pour les corps
réels en général, les causes extérieures ont une répercussion
sur le milieu méme, en mettant en jeu les forces intérieures qui
maintiennent les particules matérielles constituantes du milieu,
avec toutes les complications de la structure que ces particules
définissent par leur arrangement, et de leurs mouvements
chaotiques diis & I’énergie interne du corps, ainsi que du change-
ment de cette structure et de ce mouvement chaotique. Clest
pourquol, dans I’évolution des systémes mécaniques (en parti-
culier des matieres colloidales), peuvent se présenter des phéno-
menes tres divers: des phénomeénes calorifiques réversibles ou
irréversibles, des changements de structure, des transformations
chimiques, des phénoménes électriques, etc. A cause de ces
difficultés, nous choisirons un autre chemin dans notre étude.
Nous fondant sur les lois les plus générales, nous développerons
une étude systématique des phénomeénes en question, en
introduisant une série de corps idéalisés que nous définirons;
dés lors les lois que suivent ces corps sont parfaitement déter-
minées. Pour faire ceuvre utile, il s’agit de s’approcher de plus
en plus des corps réels. C’est la un procédé d’approximations
commode, parce que pour chaque approximation nouvelle il n’y
a pas lieu de discuter la validité des considérations développées:
on recherche comment se comporte un corps défini d’une certaine
manieére, Si I’expérience a révélé que tel corps réel se comporte
conformément aux définitions données pour un certain type de
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corps imaginé, on en déduira que, dans les limites expérimen-
tales, ce corps réel est assimilable & un corps du type imaginé.
Notre point de vue sera d’admettre que les hypothéses
générales de la physique macrocospique, qui sont vérifiées
pour tous les corps réels (comme le principe de d’Alembert,
la conservation de la masse et de ’énergie dans un systéme
fermé, ainsi que les théorémes fondamentaux de la thermo-
dynamique) sont valables aussi pour tous les corps idéalisés
que nous introduirons. Nous verrons jusqu’a quel point on
peut assimiler les corps réels a des milieux tels que ceux qui
sont définis lorsqu’on fait ces hypothéses générales, et de plus,
nous rechercherons ou il faut introduire des hypothéses supplé-
mentaires et lesquelles, pour mieux décrire les corps réels.
Les hypothéses fondamentales qui sont & la base de la méca-
nique sont les lois d’inertie de Newton et I’hypothese de
Boltzmann de la symétrie de la tension. L’hypotheése de
Boltzmann exige que les forces intérieures (actions entre les
points matériels d’un corps) soient des forces centrales obéissant
4 la loi de I'égalité entre I’action et la réaction, c’est-a-dire
qu’elles soient centro-symétriques et que par conséquent dans
un élément suffisamment petit de volume le champ des forces
internes puisse étre représenté par une grandeur tensorielle
symétrique du deuxiéme ordre. De ceci on déduit que les forces .
internes effectuent un travail nul le long de tout déplacement
rigide et n’entrent par conséquent en ligne de compte que pour
les déplacements qui entrainent la déformation du milieu.
Ces hypothéses se résument au moyen du principe de
d’Alembert, selon lequel la somme des vecteurs des forces
extérieures et des vecteurs des forces d’inertie est nulle en
chaque instant et pour chaque partie d’un corps matériel
quelconque. 1l est commode de résumer plutdt en un principe
de travail virtuel ! les hypothéses qui viennent d’étre rappelées,
principe que I’on traduira mathématiquement en écrivant qu’a
chaque instant et pour chaque point matériel du corps la somme
des travaux virtuels effectués par les forces extérieures et les

! Le principe du travail virtuel a été établi par Bernoulli pour le
cas particulier d’un équilibre des forces.
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forces d’inertie le long de tout déplacement virtuel rigide &,

est nul:
(8%31)7' - (8‘66)7- + (8‘63)7- =0 s

ou 3%, et 3%, sont les travaux virtuels des forces extérieures
et d’inertie, et 3%, la somme de ces deux sortes de travail,
Pindice r indiquant que la variation a lieu le long d’un déplace-
ment virtuel rigide. Cette forme du principe de d’Alembert
est équivalente a 6 équations indépendantes selon les 6 degrés
de liberté du déplacement rigide virtuel 8. car on peut décom-
poser tout déplacement rigide 3, en 3 composantes d’un déplace-
ment linéaire et trois composantes indépendantes d’une
rotation.

En écrivant ce principe, on peut faire une premiére approxi-
mation, en idéalisant le corps comme un corps rigide invariable
défini de telle maniére que sa mécanique soit complétement
déterminée par I’énoncé ci-dessus, ce corps est donc défini
comme suit: il ne céde aux actions qui lui sont imprimées que
par des déplacements rigides; il a 6 degrés de liberté (3 de
translation et 3 de rotation) et les distances entre ses éléments
constituants restent invariables. / '

Nous ne voulons pas insister sur la mécanique du corps
rigide, car elle est bien connue; bornons-nous 4 deux remarques:
1o La mécanique du corps rigide ne met en jeu que l'inertie
de ce corps. 20 La décomposition d’un déplacement rigide en
trois translations et trois rotations se fait de maniére quon
puisse considérer les trois premiéres comme si les derniéres
n’existaient pas et vice versa, et que trois translations (trois
rotations) sont équivalentes & une seule. Cest-a-dire que les
six degrés de liberté peuvent étre considérés indépendamment
les uns des autres.

Voici comment on passe de la premiére approximation
(corps rigide) & une approximation plus proche de la réalité
(changement des distances entre les molécules & l’intérieur
du corps réel, en vertu de ’énergie interne qu’il possede, — les
molécules étant assimilées & des points matériels). La cinéma-
tique d’un corps rigide est caractérisée par six degrés de liberté
de déplacements rigides; sa dynamique en a autant et sa
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mécanique est compléetement déterminée par le principe de
d’Alembert. Pour introduire dans la cinématique, dans la dyna-
mique et dans la mécanique une nouvelle approximation, on
adjoint d’abord dans la cinématique les degrés de liberté permet-
tant de modifier les distances qui séparent les points matériels les
uns des autres. Ces degrés de liberté caractérisent la possibilité
de déformations et les corps auxquels on les attribue sont dits
corps déformables. Le corps déformable le plus simple que 1’on
puisse imaginer est un continuum homogéne déformable, tel
que pour un élément d¢ de volume pris dans ce corps tout
déplacement linéaire soit permis; pour une partie finie du milieu,
par conséquent, tous les déplacements analytiques sont permis.
(C’est dans ce sens restreint que nous considérerons dorénavant
le corps déformable. T.es déplacements rigides (de translation
et de rotation) étant linéaires sont compris dans cette possi-
bilité, de sorte que le corps rigide peut étre considéré comme
un cas spécial du corps déformable.

L.a définition des corps déformables limite leur maniere de
réagir vis-a-vis des actions extérieures aux déplacements
linéaires de tout élément de volume d¢. On en déduit que dv a
12 degrés de liberté, 6 correspondant aux déplacements rigides
et 6 aux déformations.

La dynamique de tout corps réel — donc aussi des corps
idéalisés, rigides ou déformables — est fondée sur le principe de
d’Alembert qui réunit les énoncés de Newton et de Boltzmann;
si on suppose que les actions dynamiques sont données arbi-
trairement, on peut les décomposer en deux parties, I’'une aura
un effet sur un des degrés de liberté au moins,! soit une action
a laquelle dv est autorisé a céder d’une maniére ou d’une autre,
— D"autre n’aura aucun effet cinématique sur le corps, le dv ne
cédant pas aux actions qu’elle englobe. Nous nous intéresserons
seulement & la premiére partie puisque ’autre est sans effet sur

! Cette premiére partie comprend les forces pour lesquelles un
travail effectué le long du chemin selon lequel dv se déplace virtuelle-
ment n’est pas nul. '

2 Pour les corps rigides, la tension peut étre négligée complétement
dans les actions dynamiques car elle n’effectue aucun travail le long
des déplacements rigides que le do est autorisé & subir.
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le corps déformable 2. On démontre que la dynamique de la
premiére partie, qui seule nous intéresse, se traduit par des
expressions linéaires en ce qui concerne 1’élément de volume.

Nous admettons donc dans la dynamique des corps défor-
mables autant de degrés de liberté que dans la cinématique,
ce qui entraine I'introduction de « la tension », grandeur dyna-
mique qui agit seulement dans les degrés de liberté nouvelle-
ment introduits, mais ne produit aucune action dans les degrés
de liberté associés aux déplacements rigides.

L’étude d’un corps homogéne et déformable pris dans son
ensemble se réduit en principe a celle d’un de ses éléments dv
(de volume), en vertu méme de I’homogénéité postulée, car
tous les éléments de sont équivalents; et ’on connaitra le
comportement du corps par simple intégration sur le volume
entier, ou sur toute portion de dimensions finies dont on s’occupe.
Pour cette raison, ne considérant dorénavant que des corps
homogénes, nous nous bornerons a I’étude de ce que nous
appellerons la cinématique, la dynamique et la mécanique de
de et le probléeme qui se pose sera donc la recherche des relations
entre la cinématique et la dynamique, toutes deux étant
supposées linéaires,

Pour définir des corps déformables dont la mécanique soit
compléetement déterminée, le principe de d’Alembert ne suffit
pas (car il ne détermine la mécanique que dans les degrés de
liberté associés aux déplacements rigides) et il faut recourir
aux lois générales de la conservation de I’énergie et de la masse
dans un systeme fermé ainsi qu’aux principes fondamentaux
de la thermodynamique. Cela nous conduit & une équation
valable pour tout élément infinitésimal de masse dm; elle
exprime que la puissance mécanique (développée par les forces
extérieures) ajoutée aux variations dans le temps des énergies
libre et liée du systéme fermé ! donne une somme nulle, chaque
puissance étant rapportée a 'unité de masse.

S1 on admet que ces trois densités de puissances sont des
fonctions des variables mécaniques seulement (variables

t Le systéme fermé est composé du corps déformable, d’un bain a
température constante entourant le corps et d’'un «réservoir» de
travail mécanique.

ArcHIVES. Vol. 17, — Janvier-Février 1935. 4
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~cinématiques et dynamiques) I’équation en question est une
relation entre ces variables et détermine de cette maniére la
mécanique du corps. Dans ces conditions on appellera cette
équation l’équation d’état et le corps lui-méme, un corps défor-
mable déterminé du point de vue mécanique. Pour procéder d’une
maniére systématique on envisagera d’abord des fonctions
simples, puis des fonctions de plus en plus compliquées, de
maniére & obtenir toute une série de corps idéalisés qui se
rapprochent de plus en plus de la réalité.

Nous avons ainsi précisé le sens de ce que nous appelons une
deuxiéme approximation dans la cinématique, dans la
dynamique et dans la mécanique; nous 1’étudierons avec plus
de détail dans la suite. |

Le probleme qui se rapporte a 12 dimensions est extréme-
ment compliqué; aussi faut-il trouver d’abord la forme la plus
simple possible et la plus intuitive des variables cinématiques
et dynamiques ainsi que celle des rélations qui les lient. On y
parvient par deux étapes. L.a premiere est d’ordre purement
mathématique: On se fonde sur le calcul tensoriel et le développe
dans une forme invariante afin de pouvoir se débarrasser des
indices de covariance et de contravariance nécessairement
rattachés aux systemes de coordonnées; cela est nécessaire,
car toute relation entre deux tenseurs qui s’exprime a l'aide
d’une fonction analytique générale ne peut étre donnée pour les
composantes que par un développement en série convergente
de puissances, dont la forme n’est pas close. Par contre si on
passe des composantes a des grandeurs invariantes (valeurs
propres et directions d’axes principaux des tenseurs) ces
relations s’expriment d’une maniére simple et close. Nous avons
réuni dans un appendice des formules et des développements
purement mathématiques, qui sont nécessaires pour suivre la
théorie que nous exposons, en particulier les démonstrations
relatives & l’invariance des tenseurs. Nous avons fait usage
autant que possible de I'invariance en question, en particulier
dans les chapitres de la cinématique et de la dynamique. Le
calcul tensoriel laisse encore un choix arbitraire assez grand
dans les variables cinématiques et dynamiques; ¢’est pourquoi
nous déterminerons dans une deuxiéme étape ces variables de
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telle maniére que les relations générales qui les lient — soit le
principe du travail virtuel et celui de d’Alembert — s’expriment
sous une forme aussi simple que possible; les variables dyna-
miques seront définies directement par le principe de d’Alembert
et elles s’exprimeront par des densités vectorielles et des densités
tensorielles antisymétriques et symétriques (densité de forces,
de moment de rotation, de tension); les variables cinématiques
associées seront déterminées par le principe du travail virtuel;
elles s’exprimeront par un vcecteur de translation, un tenseur
antisymétrigue d’angle de rotation et un lenseur symétrigue de
déformation. Les définitions de tous ces tenseurs s’expriment &
l’aide des formules invariantes de I’appendice dans une forme
exacte, close et valable aussi bien pour les déformations
infinitésimales, que pour les déformations finies. Ayant déter-
miné les variables mécaniques, nous pourrons procéder au
développement de la cinématique et de la dynamique. Le
probléme le plus intéressant qui se pose ici est celui de la super-
position des déplacements successifs, et des actions dynamiques
successives, ou chaque déplacement est décomposé en
translation, en rotation et en déformation et toute action
dynamique d’une maniére analogue.

Ce probléme a été étudié surtout dans les travaux classiques
de E. et F. Cosserat, Léon Brillouin, E. Hencky et nous suiverons
la méthode employée par ces auteurs. Nous faisons d’abord
une distinction entre I’état non travaillé ! pris comme état (0)
de référence et les états travaillés atteints grice a une action
cinématique ou dynamique exercée sur l’état (0). Pour la
cinématique nous donnons alors les formules explicites qui
permettent de calculer le déplacement résultant de deux dépla-
cements successifs, tout déplacement étant décomposé en trans-
lation, rotation et déformation; puis nous donnons une
systématique des mouvements linéaires, qui nous conduit
a I’étude de certaines classes de mouvement privilégiées.
Outre les mouvements rigides et les déformations pures, il
apparait un type de mouvement & déformation constante,

1 (Vest-a-dire un état de repos dans lequel aucune action dyna-
mique n’a lieu.
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classe. qui n’a pas encore été étudiée jusqu'a présent et qui
présente des phénomenes paradoxaux, et finalement la classe
des mouvements laminaires. Ces mouvements privilégiés nous
serviront dans 1’étude qui fait suite, celle de la dynamique et
de la mécanique de I’état non travaillé et des états travaillés.

Pour plus de simplicité nous ferons dans le traitement de la
mécanique trois hypotheses: premiérement le corps déformable
est isotrope dans l’état non-travaillé, deuxiémement il est
incompressible (ces hypotheses facilitent beaucoup les calculs,
et les résultats obtenus peuvent étre facilement généralisés pour
le cas des corps anisotropes et compressibles), et troisiemement
la température est maintenue constante.

Nous ajoutons encore quelques remarques générales éclairant
les deux hypotheses introduites et les simplifications qu’elles
comportent.

En combinant le principe de d’Alembert et I’équation d’état,
on obtient une premiére simplification; on en ajoute une
deuxiéme en faisant I’hypothése que le milieu est isotrope dans
I’état non-travaillé, car cette hypothése implique que toute
relation linéaire entre deux tenseurs symétriques d’ordre 2
(par exemple entre la tension et la déformation ou la vitesse de
déformation) se décompose (voir ’appendice) en deux relations
indépendantes, dont I'une représente une dilatation isotrope de
volume et 'autre crée des déformations & volume constant.
En admettant que cette indépendance, valable pour des rela-
tions linéaires, soit valable encore dans le cas général, on
peut étudier séparément le mécanisme de la dilatation isotrope,
qui est connu et ne sera pas traité dans ce travail, et celui des
11 autres degrés de libertés. Si on admet, comme troisieme
simplification, que la dilatation est nulle, c¢’est-a-dire que le
milieu déformable est incompressible, la forme générale de
Péquation d’état est la suivante:

dA d® dG
_ — ey e —
dt & di ' dt 0,

ou A, @ et G sont des densités (volumiques) d’énergie: A la
densité du travail (réel) accompli par la tension, @ et G celles
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de I'énergie libre et de 1’énergie liée de do. Les densités de
puissance qui apparaissent dans cette équation sont fonc-
tions des variables mécaniques, cette équation est donc tres
générale,

La simplification obtenue par I’hypothése de I'isotropie dans
I’état non-travaillé (état que nous noterons (0)) ressort de la
remarque suivante. Si on applique & 1’état (0) une action
dynamique quelconque, toutes les grandeurs tensorielles,
dynamiques (tension, pression, etc.) et cinématiques (défor-
mation, vitesse, accélération, etc.) sont paralléles, de sorte
que ’on peut réduire tous les tenseurs a la forme diagonale
et identifier selon les trois termes qui subsistent (valeurs
propres).

l.a simplification obtenue par I’hypothése de I’incompressi-
bilité consiste en ce que les trois équations que I’on obtient a la
suite de cette identification sont identiques et que les dérivées
par rapport au temps des densités massiques et volumiques sont
identiques aussi.

Pour le cas général d’un état travaillé ou d’une déformation
quelconque, les tenseurs ont des orientations quelconques, ces
simplifications n’apparaissent naturellement pas, et 1'on doit
superposer la connaissance des expressions qui relient les
valeurs absolues des tenseurs & celle des relations entre les
orientations de ceux-ci.

Nous avons divisé ce travail en quatre chapitres et un
appendice. A la suite de la présente introduction vient un
deuxiéme chapitre qui donne le traitement rigoureux de la
cinématique linéaire de d¢, fondé sur les résultats contenus
dans I’appendice; le sens physique de ce traitement apparait
dans le troisieme chapitre qui s’occupe de la dynamique
linéaire et des relations générales entre les variables cinéma-
tiques et dynamiques. Dans le quatriéme chapitre nous expo-
serons la mécanique de I’élément de volume, en résumant dans
une premiére partie la théorie thermodynamique & partir de
Péquation d’état déja citée, et en relevant dans une seconde
partie les traits les plus marquants de la mécanique des corps
déformables dans un état travaillé, qui se résument dans un
théoréme d’anisotropie.,
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IT. — LA CINEMATIQUE DE L’ELEMENT DE VOLUME.

A. Notions fondamentales.

Pour caractériser la cinématique de I’élément de volume,
introduisons un systeme 2 de coordonnées trirectangulaires
X, et considérons la transformation?® qui fait passer les coordon-
nées des points matériels d’un continuum envisagé d’une
position arbitraire (1) occupée au moment ¢ = ¢, en une autre
(1) occupée au moment ! = I

Xp = 7+ Xjdyp -

Ce déplacement a douze degrés de liberté selon les trois
grandeurs 7, et les neuf grandeurs ¢, indépendantes 1’une de
I’autre. Cette transformation est invariante si les 7, sont les
trois composantes d’un vecteur 7 et les neuf {;, les neuf compo-
santes d’un tenseur ¢ d’ordre 2. Chaque déplacement (11)
s’écrit alors 2

R=x+R-{

ol R et R sont des rayons vecteurs issus du centre C du systéme
de coordonnées et marquent la position des points du continuum
par rapport a ce systéme. Nous prendrons T et { en fonction
du temps comme variables cinématiques, et nous les décompose-
rons en des opérateurs de translation, rotation et déformation
correspondant au déplacement (11), afin de trouver le plus
simplement possible les expressions qui relient ces variables
cinématiques aux variables dynamiques.

Pour cette décomposition, il faut tout d’abord voir com-
ment un déplacement linéaire affecte les distances et les direc-
tions entre les points matériels du corps.

1 Nous convenons que dans toutes les formules il y a sommation
sur tout indice redoublé.

? Pour Pexplication des symboles et des calculs de ce chapitre,
voir 1’appendice.
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Envisageons deux points matériels arbitraires P, et P .
Le vecteur P P, qui détermine leur distance sera désigné par
r avant et par r apreés le déplacement.

En substituant pour R, et Ry les valeurs indiquées par la
transformation on obtient

;:14)

r et r peuvent étre considérés comme des rayons vecteurs issus
du point matériel P du milieu.

Nous pouvons aussi considérer T et ¢ comme des opérateurs
agissant sur les rayons vecteurs r; 7 effectue une translation et
¢ une représentation affine. Pour déterminer le changement
de distance résultant d’un déplacement linéaire nous envisageons
le rapport des valeurs absolues de r et r:

Vi Ve g d _ Ve )

Yy RV o RV /"

Puisque (q,; . {L) est toujours un tenseur symétrique !, l/gp . :[;
est également symétrique, et on peut intervertir l'ordre des
termes sous la racine, ce qui nous donne )

| VAV Ve D viT

~ |

|

| Yoo T

Si 'on pose, pour abréger

~

1l vient

1 On aen effet

= ° ~

- P=9-0 =149

ce qui met cette symétrie en évidence.
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et

avec

On peut interpréter ces résultats d’une maniére intuitive;
cela nous permettra de montrer le role des tenseurs & et ¢ dans
la cinématique des corps déformables et de les définir comme
tenseur d’allongement trirectangulaire et tenseur de rotation
(sans ou avec inversion) associé au déplacement (11).

Pour cette interprétation il faut considérer les 7" comme des
rayons vecteurs issus, dans la position (1), du méme point
matériel P, que les r; les r' déterminent alors une certaine
position (1’) du continuum et nous imaginons que le déplace-
ment total (11) soit effectué en deux étapes dont la premiére
fasse passer de (1) en (1') et la deuxiéme de (1') en (1).

Ce premier déplacement (11') caractérisé par " =r-37
entraine un changement des distances de 1r1 en }r'i qui est
identique a celui du déplacement total (11) parce que la relation
entre |rl et |r’ [ est la méme que celle entre ’r| et I;[

Le deuxiéme déplacement (1'1) caractérisé par r = r’ - o est
rigide et ne produit aucun changement des distances parce
que la relation entre ' r’ ] et l r ' est qu’ils sont identiques.

Si enfin on réalise les déplacements (11°) et (1’1) 'un apres
’autre on retrouve le déplacement total

o= (g )
r=rg-9)7" )

done
r=ur-4y

Nous fondant sur ces considérations nous introduirons les
définitions fondamentales concernant la mécanique des corps
déformables. Nous considérons: a) les grandeurs associées au
déplacement (11), qui caractérisent le changement de distances;
b) celles qui caractérisent la partie rigide de ce déplacement; et
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finalement ¢) ce qui découle de ces considérations, c¢’est-a-dire
la décomposition du déplacement général (11) en translation,
rotation et déformation, '

a) Les grandeurs caractérisant le changement de distances dans
le déplacement (11).

I. Le tenseur symétrique avec trois valeurs propres 1 réelles

s=Vy.J

et positives:

sera nommé fenseur d’allongement associé au déplacement
général (11), car il caractérise le changement des longueurs
des distances entre les points matériels.

Le théoréeme de Cayley-Hamilton permet de déterminer les
valeurs propres et les directions des axes principaux de 3.
Les valeurs propres sont toutes réelles et positives; elles
valent

5 =+ V(- ),

ou ({ . ¢), sont les trois valeurs propres du tenseur ¢ . . Les
directions d’axes principaux de Z sont normales entre elles, car
< est symétrique, et elles coincident avec celles du tenseur

¢ . . Soient alors trois vecteurs unités e, le long des trois axes
principaux de <

ro=r,e,
P = I'];ek
T = Iee,
d’ou l'on tire
Y= r. 5 = r;eh = I,

' On prouve que I’équation de Cayley-Hamilton pour. le tenseur

¢ - ¢ a toujours trois racines réelles et positives (Y - LlJ)k, les 23,

étant définis comme leur racine carrée sont par conséquent réelles
et puisque pour toutes les racines il faut prendre le signe -+, ces
racines représentent les valeurs absolues des vecteurs, ils sont positifs
également,
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relation qui décompose I’allongement subi par r en trois allonge-
ments perpendiculaires dans les directions des e,; les grandeurs
de ces allongements sont mesurées par le rapport deslongueurs
apres et avant 1’allongement, ces rapports étant identiques aux
valeurs propres 3, de 3. Les formules qui donnent explicitement
les valeurs propres de S et les vecteurs unités ¢, sont les sui-
vantes:

I = 3Jye.e
avec
V’ "31" ¥ :%7 Jp — 39y, cos (_7:(_3___) + 5 cos - - 1o ;_,I"
: 2|/(:JI e 35{1)

ou I, I, et I, sont les trois invariants fondamentaux du

tenseur ({ . {),
' (k)

o — i
¢ ; (R)2
32 Ay

ou g; sont trois vecteurs unités orthogonaux pris comme bases
d’un systeme de référence, et A;; le mineur relatif 4 'élément ¢
dans la matrice

Si deux des valeurs J, ou toutes les trois coincident (3, = I,
ou 3; =39, = 33), le tenseur S est dit deux ou trois fois
dégénéré, sa symétrie (symbolisée par V;) étant alors cylin-
drique D _, ou sphérique K,. Dans les cas dégénérés, 1'orien-
tation des axes principaux n’est pas completement déterminée;
dans le cas deux fois dégénéré I’axe 3 coincide avec ’axe du
cylindre, I’axe 1 peut étre choisi arbitrairement dans le plan
perpendiculaire & I’axe 3 et ’axe 2 perpendiculaire a ’axe 1
et a4 'axe 3; dans le cas trois fois dégénéré I’orientation des axes
est completement arbitraire.

En général le volume change par suite d’une déformation;
soient ¢ et ¢ le volume avant et aprés la déformation; on trouve
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Le volume reste donc constant si (9),, = 1. Dans ce cas

Chaque déformation peut étre décomposée en une dila-
tation isotrope et sphérique ne modifiant que le volume et
une déformation anisotrope & volume constant:

‘3- A '9-0 [« ]
ou
. 3/,V, -
Yo — N (f-')m ¥
et
S = . S
'\/(3)111

En général les surfaces changent aussi. Mais il existe une
déformation particuliére pour laquelle les aires sont conservées,
et qui est caractérisée par les relations

(3)111 =1

ou

C’est une déformation, dans le plan des axes principaux e;, ey,
les rayons vecteurs paralleles &4 [’axe principal e; restant
inchangés,

I1. Pour simplifier, dans la suite, les calculs (voir la dyna-
mique), on introduit le tenseur de déformation s défini comme
suit:

Le tenseur symétrique

s=1In% =Y In(J- )

qui a des valeurs propres réelles s, = In S, et des directions
d’axes principaux paralléles a celles de 5 sera appelé tenseur de
déformation, et les valeurs propres s, peuvent étre considérées
comme des mesures de la déformation dans ces directions. La
déformation peut étre définie en général comme le logarithme
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de l'allongement, c’est-a-dire le logarithme du rapport des
longueurs aprés et avant 1’allongement. Si, par exemple,
I’allongement est égal a 1, la déformation est égale a In 1, soit
a zéro.

La décomposition d’une déformation en une dilatation
sphérique et une déformation & volume constant, qui pour les
tenseurs < se fait d’'une maniére multiplicative, se fait pour les
tenseurs logarithmiques de la maniére additive suivante:

On a d’abord

Ing =1In¢ 4 In {(Fi1) -

Or (voir I’appendice)

In (3,) =5
ot s = In Z. Done: le volume reste constant si s, =0; dans

ce cas

et s est par conséquent un déviateur.
Chaque tenseur de déformation s s’écrit alors

ou

et

Le tenseur s, est associé a la déformation sphérique du
volume, le tenseur s’ a la déformation & volume constant; le
tenseur s’ est un dérivateur, car s, = 0.

Les considérations concernant le changement des surfaces
sont analogues. On a en particulier pour les déformations &
aire constante

et



LA MECANIQUE DES CORPS DEFORMABLES 61

Le tenseur s est dans ce cas un déviateur plan, car une de ses
valeurs propres est nulle et la somme de deux autres donne zéro.

Le tenseur d’allongement 3 ainsi que le tenseur de déforma-
tion déterminent donec, en vertu des définitions ci-dessus, le
changement des distances entre les points matériels lors d’un
déplacement linéaire général (11) et par conséquent «la défor-
mation » du milieu pendant le passage de la position (1) a la
position (1).

Nous avons jusqu’ici discuté le cas général dans lequel il
fallait préciser ’allongement et la déformation correspondant
a un déplacement linéaire général (11). Il faut encore envisager
deux cas particuliers, nommés déformation pure et déplacement
rigide, pour lesquels nous donnerons les définitions suivantes:

ITI. Un déplacement qui consiste en trois allongements
trirectangulaires sera nommé « déformation pure »; il est carac-

/ -
térisé par ¢ =5 =\/{¢ - ¢. La déformation pure est donc
représentée par

Fes

l

ou
R=R-3

oit & = S est un tenseur symétrique avec les valeurs propres S,
réelles et positives. La symétrie de T impose & ses composantes
trois conditions, de sorte que 6 seulement des 9 composantes
sont indépendantes. I’ot, 6 degrés de liberté pour ces déplace-
ments.

IV. Un déplacement qui laisse inchangé les distances sera dit
rigide.
b) Partie rigide d’un déplacement général (11).

La partie rigide du déplacement (11) consiste en le déplace-
ment (1'1) qui se présentait sous la forme

F= ¥

avec
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Le tenseur ¢ est un tenseur orthogonal car
ere = (0 P PHE =T

(la symétrie des tenseurs (¢ - :IJ)J/Z et (¢ - :];) permet de
changer I’ordre des termes).

Nous avons done ¢ = w ou ¢ = j - w suivant que le déter-
minant ¢ de ¢ vaut + 1 ou — 1. Le signe de ce déterminant
est toujours identique & celui du déterminant ¢, de ¢; donc
si on suppose que Y ne contient pas d’inversion son déterminant
est positif et ¢ = o représente une rotation. Cette supposition
sera faite dans la suite de ce travail. Cela étant nous pouvons
mtroduire les définitions suivantes:

V. Le tenseur orthogonal
o= (4P

avec un déterminant positif sera appelé tenseur de rotation
associé au déplacement général (11).

En parfaite analogie avec le tenseur d’allongement nous
introduisons également ici le logarithme de ce tenseur:

VI. Le tenseur antisymétrique
w=Ine =1In(($ - $77%- )
sera nommeé tenseur d’angle de rotation associé au déplacement

général (11).
Les déplacements rigides sont définis par la condition

7l =1rl,

ce qui implique que

avec

©

St
l
et

Autrement dit, la condition nécessaire et suffisante pour qu’un
déplacement linéaire soit rigide, est que le tenseur ¢ soit
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orthogonal. 1l faut distinguer deux sortes de tenseurs orthogo-
naux, selon que leur déterminant vaut + 1 ou —— 1. Les ten-
seurs orthogonaux auxquels correspond le déterminant -+ 1
représentent une rotation et seront désignés par w; les tenseurs
avec déterminant — 1 représentent une rotation a laquelle se
superpose une inversion !, ils seront désignés par j - (ou j
désigne le tenseur d’inversion j = — ¢, ¢;). Les déplacements
rigides seront donc représentés par

r=r-o ou ;zr-j-w
soit

R=~r4+R-w ou E:T—I—R-j-m
avec la condition d’orthogonalité
wowo=1.

Cette condition est équivalente 4 6 équations entre les
9 composantes de w, de sorte qu’il n’y a que 3 composantes de w
qui solent indépendantes; les déplacements rigides n’ont par
conséquent que 6 degrés de liberté, 3 associés a 7 et trois aux
composantes indépendantes de w.

Les formules ci-dessus montrent que chaque déplacement
rigide peut étre considéré comme composé d’une translation
et d’une rotation, éventuellement d’une translation et d’une
rotation avec inversion. Dans le mouvement continu d’un
milieu homogeéne, il ne peut y avoir d’inversion. C’est pourquoi
nous admettrons que tout déplacement rigide est représenté
par T et @ et non par 7 et j.

Pour un calcul explicite, nous devons deﬁnlr I’axe et I’angle ¢
de la rotation. Ils peuvent étre déterminés au moyen de I’équa-
tion de Cayley-Hamilton. Un tenseur orthogonal w a un axe
principal réel qui coincide avec ’axe de la rotation et deux axes

! Par une transformation ¢ ou ’on choisit pour » successivement
les ex, on trouve 7, = ¢,, ce qui représente un systéme trirectangulaire;

selon que ¢, et e, représentent. tous deux des systémes droits (ou

gauches) ou que 1'un représente un systéme droit et I’autre un sys-
téme gauche, le tenseur effectue une rotation ou une rotation combi-
née avec une inversion.
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imaginaires dans le plan perpendiculaire au premier. Les valeurs
propres du tenseur sont e'?, ¢ et 1 ou ¢ représente ’angle de
la rotation; les logarithmes de ces valeurs propres sont donc
ig, — ig et 0. Nous avons introduit le tenseur d’angle de rota-

tion « par la relation
w=Inao,

w est un tenseur antisymétrique:

ses valeurs propres sont (¢ + 2nw), —i(q + 2nmw) et 0 + 2n i,
et ses axes principaux coincident avec ceux de w. Dans un
systeme trirectangulaire de coordonnées dont I'axe 3 coincide
avec I’axe de rotation, on trouve !

w = qlee, — es0;) = —

(=R T =
I
o o ©

ce qui justifie le nom de tenseur d’angle de rotation donné & w.
Dans un systéme trirectangulaire orienté d’une maniére quel-

conqgue on trouve
= Wil

avec w; = 0 et w;, = — w,,. On peut aussi trouver I’angle et
I’axe de la rotation en introduisant le pseudo-vecteur (vecteur
axial)
@D
W o= TT o ;
axe de rotation est alors parallele a4 1 et ’angle ¢ est donné

par la relation
g = 2 arctg jw| .

Ajoutons encore une remarque:

Nous avons considéré plus haut le déplacement linéaire
général (11) comme étant composé de deux déplacements
successifs (11') et (11); d’apreés les définitions ci-dessus ces deux

1 On peut négliger les multiples de 2= dans cette représentation.
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composantes sont une déformation pure et un déplacement
rigide.

¢) La translation, la rotatton el la déformation associées au
déplacement général (11).

La décomposition d’un déplacement quelconque se fera de
la maniére suivante: Nous admettrons d’abord que le déplace-
ment linéaire ne contient pas d’inversion et que par conséquent
le déterminant ¢ , de ¢ est positif. Dans ce cas on peut
décomposer ¢ en une rotation et une déformation pure. Selon
qu’on effectue la déformation avant ou apreés la rotation (ce
que nous indiquerons par un ¢ ou un p ajouté au symbole
tensoriel) on a

Pt o= . BW * =r.wa,
‘,'“” Frceatas ]-".(_,Qp 5 ]'** = r..cz'p )
r=r=r3a0p=r-¢, r=r*=r.-va-Sp=r-9.

On en tire (voir le détail 4 ’appendice) la valeur des tenseurs:
Ja = \/LIJ ‘ LE 2
sp=Viy,

o =o0a=op=( - HF g=¢ G

d’ou les tenseurs logarithmiques

1 N
se = 5 In(y-4¢),
s = 51 (b -y,

w=wn=wp=lu{(y P f=MI{b- (L §7}.

Sion compare ces formules avec celles du paragraphe précédent
on voit apparaitre ce fait que seul Ja est identique & 3 et non
Jp. Nous appellerons done Za le tenseur d’allongement, sa le
tenseur de déformation, tandis que Jp et sp seront les tenseurs
post-rotationnels d’allongement et de déformation. Le tenseur

ArcHIVES. Vol. 17. — Janvier-Février 1935. 5



66 LA MECANIQUE DES CORPS DEFORMABLES

wa étant identique a4 wp et wa & wp on notera simplement
o et w, qui seront appelés tenseur de rotation et tenseur d’angle
de rotation. Selon 1’ordre de la superposition de la translation,
de la rotation et de la déformation pure on obtient deux diffé-
rents tenseurs d’allongement Sa et Sp. Pour la translation et la
rotation on obtient toujours les mémes valeurs 7 et w, quel que
soit ’ordre. Remarquons qu’en principe on pourrait se contenter
d’introduire seulement les tenseurs Za et s¢ en exprimant
Jp et sp a partir de Ja et sa, ® et w, mais comme dans les
calculs explicites les grandeurs Ip et sp interviennent souvent,
il est préférable de les introduire lorsqu’on se rapporte 4 un
systéme de référence X fixé dans 'espace 1.

Les directions d’axes principaux de < a coincident avec celles
de sa d’une part, celles de S p avec celles de sp d’autre part;
elles sont trirectangulaires et dirigées dans les directions des
trois allongements (avant ou aprés la rotation). En introdui-
sant des vecteurs unités eq, et ep, dans ces directions on trouve
les formes dyadiques suivantes pour les tenseurs:

© = eayep;, w = qle,e, — €y¢,)
Sa = ~peapea, sa = spea,ea,

Sp = Ipepyep;, sp = Spepyepy, -

Nous nommerons t© le vecteur-opérateur de translation, o le
lenseur-opérateur de rotation et 3 le tenseur d’allongement pur,
ces tenseurs étant associés au déplacement (11).

Nous prendrons comme variables cinématiques, fonctions
du temps, le vecteur de translation t, le tenseur d’angle de
rotation w = Inw et le tenseur de déformation s = In 5.

I’ordre dans lequel on effectue la superposition des opérations
translation, rotation et allongement a une grande importance
quant au déplacement résultant. Le déplacement ( 11) est
équivalent a trois déplacements successifs représentés par les

! La loi d’¢lasticité, par exemple, s’exprime alors beaucoup plus
simplement en fonction de sp qu’en fonction de sa, car dans le cas
linéaire la tension est simplement proportionnelle a sp et non pas
a sa.
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trois opérations linéaires 7, w, et & a condition de respecter
I’ordre suivant: '

R"=R: 3a
R" = R’ .

R' =R ++=R=1+R-}.

La succession des opérations est donec 1° 1’allongement,
20 la rotation et 3° la translation; si on compose les mémes
opérations dans un autre ordre on n’obtient en général pas le
déplacement (11).

Pour diverses applications il est utile de discuter brievement
une autre méthode équivalente a celle exposée ci-dessus pour
la décomposition d’un déplacement linéaire général en une
déformation pure et un déplacement rigide; cette méthode
emploie un systéme mobile de référence.

Au lieu du systéeme de référence X, qui était fixe dans
Iespace, on introduit un systéme mobile X, qui se déplace et
tourne, tout en restant rigide, de maniéere que le déplacement
(11) soit dans X, une déformation pure. La composante rigide
du déplacement (11) est alors donnée par le déplacement
de X, par rapport & X, la composante de déformation par le
déplacement du milieu par rapport a4 X, .

Pour plus de simplicité nous supposerons dans le caleul.
explicite que I’origine de X soit le point matériel P et qu’au
temps ¢t = 1, le systéme 2 , coincide avec X.

Les rayons vecteurs de 2, qui seront désignés par p, suivent
le déplacement rigide du systéme mobile. Au temps ¢ = {; nous
avons en vertu de notre supposition

p:r:R

tandis qu’au temps ¢ = 17

p=rp- 3"
J_zrkp

R==<+R-¢
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L.es relations qui relient X%, a X sont

ﬁZT*_}_;_m*
et

r=p-o¥

En éliminant les ravons vecteurs dans ces équations on
obtient

2

T*:T; 3*:5’(1:\/¢:P et (ﬂ*:m:((qj:w_‘p)

Les formules ci-dessus montrent comment les tenseurs
introduits dans le systéme X opérent dans le systéme mobile 2
sur les rayons vecteurs p.

Représentation géoméirigue. — Nous terminerons ces
considérations générales par une représentation géométrique.
Un déplacement linéaire (11) transforme une sphere de rayon
unité en un ellipsoide. Le vecteur de translation t est le vecteur

—_—

CC qui joint les centres de la sphére et de I’ellipsoide; les demi-
grands axes de ellipsoide sont les $,, leurs directions sont
paralléles a ep,; d’autre part le triedre trirectangulaire défini
par trois vecteurs unités issus du centre de la sphére, qui par
suite du déplacement (11) est transformé en les trois axes de
I’ellipsoide, est identique au triédre ea,; les directions de ea, et
ep,, sont donc différentes dans I'espace mais identiques dans le
milieu déformé, c’est-a-dire que ce sont les mémes points
matériels qui se trouvent au moment ¢ = ¢; sur les eq, et au
moment ¢ = {3 sur les axes 5, ep, de Dellipsoide. Enfin la
rotation w est identique & la rotation qui transforme le triede eq,
en un triédre ep,.

Mathématiquement cela s’éerit de la maniére suivante:
Le déplacement r = r - { transforme la sphére r - r = 1
de rayon 1 en une surface

~

eyt =1,

soit

~ I

oyt =1,
ou encore



LA MECANIQUE DES CORPS DEFORMABLES 69

ce qui est un ellipsoide puisque 3 est symétrique. Explicitement
I’équation de cet ellipsoide est la suivante:

(2]

_3_

(24

r

-~

L
~
c}

[

.%_+ :’1_
2
31

mlpwrm
W

e o

Les directions d’axes de cet ellipsoide sont donec bien
paralléles aux axes principaux de Sp et les longueurs des axes
égales & I, ep,,.

51 on remplace ¢ par sa valeur Ja - o et r par un des vecteurs
unites eaq,,,

3/( Py = edy - v
et

w = E'Clk ep,{ s

ce qui montre que le triedre ee, se transforme par suite du
déplacement en un triédre parallele aux axes de 1’ellipsoide
et que c’est la rotation w qui fait passer du triédre ee, au
triedre ep,.

On peut se demander d’autre part quel est I'ellipsoide dans
la position (1) qui a donné dans la position (1) une sphére
dont I’équation est

———

Cet ellipsoide a pour équation

D]

reYedr=r-3a%-r =1,

ce qu'on vérifie en effectuant sur lui la transformation (11) qui
donne bien I’équation de la sphére . r = 1.

B. Le probléme de la superposition de déplacements successifs.

Etat non-travaillé et état travarllé. — Dans tout ce qui précéde
nous n’avons étudié qu'un seul déplacement d’une position (1)
a une position (1) d’un élément de volume d¢ du milieu défor-
mable. Pour établir la cinématique de I’élément de volume on
considére d’abord d¢ dans un état ou il n’existe aucune action,
soit un état dans lequel tous les points matériels qui constituent
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dv sont en repos par rapport a un systeme de référence fixe
dans I’espace. Cet état sera nommé état non-travaillé et sera
désigné par (0). Au cours d’un déplacement 1’état (0) passe
a d’autres états (@), (b) ... (n), qui seront nommés états travaillés.
Suivant qu’on prend I’état non-travaillé (0) ou un état travaillé
(1) comme référence, on dira que I'on étudie la mécanique du
milieu non-travaillé ou celle du milieu travaillé.

Le probléme qui se pose est de déterminer comment on passe
d’un état (0) a un état (k) au moyen des intermédiaires (@), (b)

(l); c’est-a-dire qu’il faut trouver la superposition des
déplacements (Oa), (ab) ... (Ik) qui fournit le déplacement
global (0k), les déplacements élémentaires (ab)... étant eux-
mémes décomposés en translation, rotation et déformation
pure.

Au cours d'un mouvement quelconque, les points matériels
contenus dans un élément de volume changeront leur position
d’une maniere linéaire par rapport a un systéme de référence
donné. Soit (0) une position arbitraire prise comme base,
(1) et (1) deux autres positions; le probléme qui se pose est de
calculer les variables caractérisant le déplacement résultant
(01) en fonction des variables caractérisant les déplacements
successifs (01) et (11). Ce probléme est connu sous le nom
de probleme de la superposition; il sert de base pour établir
la cinématique des corps prédéformés, c’est-a-dire des corps
qui, par rapport & un certain état (0) étaient soumis a un
déplacement linéaire (en particulier & une déformation) (01),
et auxquels on fait subir dans cet état un déplacement linéaire
(une déformation) accessoire (11).

Nous nous intéresserons dans ce travail a la superposition
des rotations et des déformations seulement, en faisant la
supposition que pendant tout le mouvement le point P reste
inchangé. Dans ce cas tous les R possibles sont identiques aux
r correspondants et t est nul; les déplacements (01), (11) et (01)
seront représentés par les équations

= s (déplacement (01))
r=r-¢ (déplacement (11))
PR (déplacement résultant (01))
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ou r, r et r sont les rayons vecteurs dans les positions (0), (1)
et (1), ¥, ¢ et I les tenseurs opérateurs qui caractérisent les
déplacements (01), (11) et (01). On en déduit que

V=Y.4¢.

S’il suffisait de caractériser les déplacements par les tenseurs
opérateurs, le probleme serait résolu par cette équation, mais
pour déterminer les relations entre les déplacements et les
grandeurs dynamiques (forces, moments de rotation, tension)
cela ne suffit pas. Il faut connaitre pour chaque déplacement la
translation, la rotation et la déformation qui le composent.

En associant Oa, ®p et Q ainsi que leurs logarithmes Sa, Sp
et W au tenseur ¥, de méme en associant Ja, Sp et « ainsi
que leurs logarithmes sa, sp et w au tenseur ¢ et enfin Qa,
®p, Q et leurs logarithmes Sg, Sp, W au tenseur ¥ on obtient
la loi de superposition pour les rotations et les déformations
en appliquant la méthode de décomposition établie ci-dessus
aux déplacements (01), (11) et (01). Les lois générales de super-
position sont les suivantes:

L @a* - Q1

&)
)
l
2

@
=
I

ol . Op* - w

Q-0%.

ol
l

ol Pa*, @p* et O* sont des grandeurs auxiliaires associées a un
tenseur P* = @p . Sa résultant de la superposition des deux
allongements purs @p et Sa; le caleul explicite donne

(ea, et epk sont les vecteurs unités dirigés dans les directions
d’axes principaux de @, et de @;).



72 LA MECANIQUE DES CORPS DEFORMABLES

La loi de superposition pour les tenseurs logarithmiques est
analogue; on trouve

Sa = eV Sa*e™™

gp = eV gp* eW

W — eWeW*gw

ou Sg*, Sp* et W* sont les tenseurs logarithmiques de @a*,
@p* et QF.

Il est commode de formuler ces lois en réduisant les tenseurs
a leur forme diagonale, ce qui se fait a I’aide de I’équation de
Cayley-Hamilton.

Les dérivées des tenseurs par rapport au temps sont données
par la limite des différences entre les tenseurs surlignés et les
autres, divisées par di (dt — 0). Par contre les tenseurs de la
vitesse de déformation § et de rotation W sont donnés par

Pour le cas particulier de déplacements a aire constante dans
un plan, tous les opérateurs logarithmiques sont des déviateurs
plans, on a alors S, = S, -+ s, cos 25, ou & signifie ’angle entre
deux axes de méme indice de sa et de Sp. Les figures que nous
donnons illustrent ces formules, précisément pour le cas o
Pon a aftaire a4 des déviateurs plans, car il s’agit de mouvements
qui conservent les aires. Dans les mouvements a aire constante,
les tenseurs Sa, sa, Sa, Sp, sp, Sp, W, @ et W sont aussi des
déviateurs plans, ainsi que Sq, Sp et W.

La décomposition de ¥, § et I en tenseur d’angle de rotation
et de déformation nous donne ce qui suit:

1o Pour les tenseurs de déformation associés a 1" on trouve
les formes dyadiques

Sa == Sh Eah Efdh 3
Sp = B, ep, ey, ,

dans lesquelles les valeurs propres S, s’expriment ainsi:

8 = (=1 5 ©
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ou & est la valeur absolue de Sa et Sp:

et les vecteurs unités ea), et ep,, dirigés selon les directions
d’axes principaux de Se et de Sp, ainsi:

say, = e cosAjh ;

ep, = € cosBjk 5
ou ¢; signifie 'un de deux vecteurs unités dirigés dans les
directions d’axes de coordonnées d’un systéme de référence
rectangulaire; A, et B, sont les angles entre ¢; et ca, d’une
part, e; et ep; de ’autre. En tenant compte du fait que

A= A, = 90° — A, = A, —90° = A,
B, =B,, = 90° —B, =B, —9%° =B,

on peut écrire

RALURSY 2% Fie

tg2A = B2 = ru T
lPki ‘Fki ﬁ% qth‘Fk‘i

o g gr
1 1k }1k o IFQkII 2k

20 Pour le tenseur d’angle de rotation associé é‘ W on trouve
W = Qlere, — ey ey)
ou Q, 'angle de rotation, vaut
2Q = 2A — 2B .

Les formules se rapportant aux tenseurs surlignés et en
caractére miniscule, sont analogues. '

Ayant déterminé les valeurs propres et les directions d’axes
de tous les tenseurs en question, nous donnerons les lois de
superposition pour deux déplacements successifs finis. La
relation entre les valeurs propres est la suivante

By == {— 1)k —;— arcch (cosh 25, cosh 2s, — sinh 25, sinh 2s, cos o)
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ou o signifie le double de I'angle entre les axes principaux de
meéme indice de sa et Sp. Les orientations sont reliées entre elles
par les relations

T AL amlg e sin ¢ tanh (\/2%) _
sinh (4/23) + cos o cosh (1/28) tanh (4/28)

2

B=B+ q

1 cotanh (6\/5) sinh (6\/5) sinc + sinc cos o (coshss \/5— 1)
+ —arctg — =

2 cosh (84/2) cos?o + cos o cotanh (€4/2) sinh (84/2) + sin’s

ol A, A et a, B, B et b signifient les angles entre les axes de
méme indice du systéme de référence et des tenseurs Sa. Sa
et sa, Sp, Sp et sp, tandis que Q, Q et ¢ sont les angles de
rotation de W, W et w. ©, & et & sont les grandeurs absolues
de Sa et Sp, Sa et Sp et de sa et sp. Pour ’angle ¢ on obtient

c=2B—a) =2A+Q—a) =2B—5b+gq .
Pour les rotations on a
W =W+ w + W* |
d’ott 'angle de rotation
Q=Q+¢+Q*=B A

ot B et A sont donnés par les formules ci-dessus pour 1’orienta-
tion suivante des axes de rotation: W, ||W ||w,||W . Si
on passe pour le déplacement (11) & la limite infinitésimale, on
obtient pour les déformations infiniment petites

ds, =8 —38, = s, c0sc ,

— § sine
dA = A—A=——— ——— |
/2 sinh (€ 4/2)
dB =B —B =g + 6_ sin 6 cotanh & 4/2 |

et pour le tenseur d’angle de rotation infinitésimale

dQ — Q- Q — q+ > sino tanh .

N V2
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Il faut remarquer que ces formules, qui donnent des diffé-
rentielles, ne sont valables que lorsque les grandeurs des
tenseurs d’angle de rotation et de déformation associés au
déplacement (11) sont infiniment petites comparées aux gran-
deurs analogues associées au premier déplacement (01). Pour
le cas dans lequel le premier déplacement (01) est de méme
ordre de grandeur! que le second (11), il faut appliquer
les formules données plus haut pour le cas général. Le cas
général tridimensionnel donne des formules beaucoup plus
compliquées, mais du méme type; elles seront publiées ailleurs.

Pour obtenir des formules par des différentielles, il faut
étudier séparément le cas dans lequel le tenseur de déforma-
tion S associé au déplacement (01) est dégénéré, en partant
des formules établies pour la superposition des déplacements
finis.

Pour le cas spécial ou le premier déplacement (01) est fini
et n’est pas dégénéré tandis que le déplacement accessoire (11)
est infiniment petit, on obtient pour la superposition des valeurs
propres des tenseurs de déformation

Sk == Sn’i‘, -+ Sj CcO0Ss- Gjh .

bl

oy, signifie angle entre I'axe j de sa et 'axe £ de Sp.

C. Etude systématique des mouvements.

Nous discuterons les divers mouvements de déformation, et
nous serons par la amenés & considérer plusieurs sortes de
mouvements linéaires qui, quoique importants pour la méca-
nique, n’ont pas encore été envisagés jusqu’a présent, et qui
paraissent paradoxaux. |

Afin de faciliter cette étude systématique, nous éliminerons
la partie rigide du mouvement en introduisant un systéme de

! Ce cas est trés important pour les corps « solides » (du point de
vue physique), car avec eux on ne peut réaliser que des déformations
petites.
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référence X tournant avec les rayons vecteurs p. Comme nous
I’avons vu, chaque déplacement linéaire

se réduit alors a la forme

:p,s'(],

0 |

avec S =V ¢ - Vet p =, w L. On peut prendre pour les r
les rayons vecteurs 7 donnant la position (0) non déplacée des
points du milieu; les p sont associés & la méme position que
les r, mais dans le systéme X tournant, aussi écrivons-nous °.
Il faut cependant remarquer que la position (0) sert de référence
seulement pour les positions parcourues par le mouvement et
qu’en général elle ne fait pas partie du parcours du systéme.

Le tenseur Z¢ en fonction du temps sera pris comme base
de la systématique des mouvements de déformation. Chaque
tenseur symétrique est caractérisé complétement et d’une
manieére invariante par ses directions d’axes et par ses valeurs
propres. La classification que nous nous proposons de faire
nous oblige donc a distinguer le cas dans lesquels ces directions
et ces valeurs propres restent inchangées de ceux ou elles ne le
restent pas. Pour distinguer les valeurs propres de Sa de son
orientation relative & X . on exprime Ja sous la forme (voir
appendice)

m?
.S‘a:o)*l-.u,‘-m

ol @ est un tenseur orthogonal, qui exprime en fonction du
temps la rotation qui fait passer du triede trirectangulaire
de description e, (choisi arbitrairement mais fixe dans le
systeme des p) au triedre ea, de Sa; le symbole SH représente
un tenseur avec les mémes valeurs propres S, que Sa mais
dirigé dans les directions fixes du triédre de deseription % .
Nous trouvons donc pour le mouvement général I’expression

s *i"‘
P — p-rw J”(D

avec w = w(l) et 7, = 3, (t)
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Nous distinguons alors le cas général dans lequel o (2) et
3‘/ /(1) varient avec le temps, et les cas particuliers dans lesquels
un des tenseurs reste constant. Le cas particulier @ = const.
et 3/! = S‘H(t) représentera la classe des déformations pures,
tandis que le cas particulier &@ = & () et 3, = const. représen-
tera une classe de mouvements linéaires qui n’a pas encore été
étudiée jusqu’a présent et qui apparait comme paradoxale.
Pour éclairer le sens physique de cette classification nous
discuterons les différents cas plus explicitement.

Pour plus de simplicité, nous conviendrons que le triédre
e, de description (fixe dans le systeme tournant des p) est

choisi de telle maniére que pour un instant arbitraire ¢ = {;,
. M M N

<, soit paralléle & Ja, Ja représentant le tenseur Ja & I’instant
t =t;. Dans ce cas le tenseur © caractérise directement la
rotation 1 des axes principaux de Ja par rapport au systéme
tournant des g, donc par rapport au milieu déformable.

Considérons une position arbitraire (k) du milieu et le
déplacement (14). On a

donc pour le déplacement (14)

N,k .
o - da =p, 7.

. . [
Pk:ﬁ"a
ou

Suivant qu'on rapporte chaque position o = p, & une
position (1), p = p;, faisant partie du parcours ou & la position
(0), p = ¢, qui en général ne fait pas partie du parcours, on
trouve

ep = p - va ou Pp = P2 "X -

1 Cette rotation « de Ja par rapport au milieu (ou plus exactement
par rapport au systéme tournant %,, des p) ne doit pas étre confondue
avec la rotation o du continuum {du systéme 2,,) par rapport & un
systéme de référence X fixe dans ’espace. :
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Tout déplacement entre deux positions (1) et (k) parcourues
est donc caractérisé par le tenseur y et non par Sa.

Le tenseur d’allongement associé au déplacement (1k) est
donné par 4/, ..

Pour le premier cas particulier o = const. on obtient, en
substituant pour y la valeur donnée ci-dessus:

W =5 = ¥ §

donc tout déplacement (1%) contenu dans ce mouvement est
une déformation pure. D’autre part on prouve, si 'on admet
pour un mouvement que tout déplacement (1k) parcouru
entre deux positions arbitraires (1) et (k) est une déformation
pure, que & doit étre constant.

Pour la déformation pure on a

L=V -1

ce qui donne

Ell)1 (Rh) (R) (1)
a " Sa = 3Ja-Ja

Donc: le déplacement (1k) est une déformation pure par rapport
(1 (k)
au systéme tournant X si, dansle produit Sa7!. Za, les deux

tenseurs commutent. La condition nécessaire et suffisante pour
qu’ils ecommutent (voir 'appendice) consiste en ceci:

1] Sl S

ce qui exprime que la rotation qui fait passer du triedre d’axes
(1) (k)
principaux de Se a celui de Sa est donné par le tenseur

d’1dentité I:

:J:constzl, et 3‘:.3'//(1:).

Le cas de déformation pure correspond donc au cas ou
Porientation de Sa, représentée par &, reste inchangée par
rapport a X . tandis que les valeurs propres représentées
par <, varient en fonction du temps.
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Autrement dit les trois directions dans lesquelles I’allongement
(1) ;
Sa est effectué restent inchangées dans le systéme tournant de

maniére que tout allongement trirectangulaire accessoire Y
soit effectué dans les mémes directions du milieu. Ces directions
trirectangulaires restent donc inchangées pendant tout le

mouvement et peuvent étre considérées comme les directions
1) (R)
d’axes principaux de Ja, de ¥ et de Ja.
(1) (R)
Par contre, si Sa n’est pas paralléle a Sa le déplacement (1F)

caractérisé par y n’est pas une déformation pure, mais contient
une rotation, bien que le mouvement (1k) se rapporte au
systeme tournant 2 dans lequel il est décrit au moyen d’un
seul tenseur d’allongement trirectangulaire Ja fonction du
temps; Pexplication de ceci est que Sa est défini comme un
opérateur agissant sur le systeme des rayons vecteurs p, tandis
que x agit sur le systéme des g, '

En résumé, nous distinguons parmi les déformations celles

p=r¢-Ja

qui sont des déformations pures des mouvements généraux,
selon que le triédre trirectangulaire de directions paralléles
aux axes de Ja reste inchangé (& = const. = I) ou change
son orientation (@ = (¢)) dans le continuum au cours du
mouvement. Dans un mouvement de déformation pure, il y a
trois degrés de liberté seulement, selon les trois valeurs
propres, variables de Ja. Nous ajoutons une remarque: Ces
mouvements de déformation pure sont trés importants pour la
mécanique des corps déformables. Cela est clair, si on considére
ces mouvements du point de vue différentiel. On déduit des
formules de superposition données ci-dessus ce qui suit:

En général les dérivées par rapport au temps des tenseurs S
et W ne sont pas identiques aux tenseurs § et W qui repré-
sentent la vitesse de déformation et la vitesse de rotation.
Il n’y a qu’une seule classe privilégiée de mouvements — les
déformations pures — pour laquelle

as

EﬁS_.
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Pour cette classe 1l v a des relations analogues entre les dérivées
d’ordre 2, et d’ordre supérieur par rapport au temps et
Paccellération ordinaire et celles d’ordre supérieur de la
déformation.

Dans un tel mouvement, et seulement dans un tel mouvement,
tous les tenseurs associés a la cinématique (tenseur de déforma-
tion et ses dérivés par rapport au temps) sont paralléles entre
eux, et si 'on suppose que le milieu est isotrope, les tenseurs
dynamiques associés (tension P et ses dérivées par rapport au
temps) sont aussi paralleles. Ce fait implique une grande
simplification, car en général un de ces tenseurs n’a pas des axes
principaux paralléles & ceux des autres tenseurs.

Nous venons d’envisager les déformations pures. Nous y
distinguons les divers mouvements possibles suivant que.
0, 1, 2 ou les trois valeurs propres <, (donc aussi les valeurs
propres de Svﬂ restent constantes. Le cas zéro est évidemment
le cas général d’une déformation pure dans les trois dimensions
de I'espace. Le cas 1 (¥; = const.) est plan, on a affaire a un
mouvement rigide dans la direction de I'axe 3 et & une défor-
‘mation pure dans le plan perpendiculaire & cet axe. Le cas 2
(S5 = const., S, = const.) est linéaire, on a un mouvement
rigide dans le plan contenant les axes 1 et 2, une déformation
dans la direction de I’axe 3. Enfin le cas 3 correspond & un
mouvement rigide dans les trois dimensions de ’espace.

Envisageons maintenant 1’autre cas particulier. Les conditions
qu’il pose entrainent que

s =¢%a
avec
Sa =0l 5 0
ou
9, = const et o = Z)U);t const. ,
donc
6P'— oy - 7
avec
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Ces formules caractérisent complétement le mouvement
en question. ‘

Si on discute ce mouvement du point de vue différentiel
on trouve — contrairement au cas des déformations pures —
que

j_tS # 8 et %-tv #= W .
En ce qui concerne l’orientation des tenseurs la différence
entre les deux cas particuliers devient encore plus évidente.
Pour les déformations pures nous avons vu que les tenseurs
S et S sont paralléles; on trouve par contre ici que ces deux
tenseurs sont orthogonaux, 1’angle absolue + entre eux
valant 90°: ‘

§..8

T ——

SERFTREI

La discussion du mouvement se fait d’une maniére intuitive
lorsqu’on se rapporte aux surfaces métriques des tenseurs.
Envisageons dans la position (1) du milieu une série d’ellipsoides

b) (=Y -
d’axes eq,:

La surface de chacun d’eux peut étre considérée comme
représentant Ja. Dans la position (1) nous avons par définition
* , r . = -

o = I et par conséquent I’équation des ellipsoides est

- —
91'3//~' pr =1

Par suite du mouvement les p, se transforment en o5, selon
la relation donnée plus haut et les ellipsoides deviennent

r— ‘eh

-1 -2 -1,
orot cF e =1

ce qui donne, en substituant pour y sa valeur

* _ 9 * —_
Pk'wi-'?;/ “’"szi'

Or o™ . 37%. & représente un tenseur ayant les mémes
valeurs propres que 3/‘/2 mais une orientation différente de

ARcHIVES. Vol, 17. — Janvier-Février 1935. : 6
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sorte que la rotation o fait passer .9/_,,2 en o !, 3/",2 . w; donc
la relation ci-dessus représente dans la position (k) une série
d’ellipsoides de forme et de volume identiques & ceux des
ellipsoides dans la position (1), de sorte que seule I'orientation
(par rapport au systéme X tournant) varie selon le tenseur
de rotation .

Chaque ellipsoide dans la position (1) est donc transformé
par le mouvement en un ellipsoide dans la position (k) tel que
seule orientation par rapport au systéme tournant des p ait
changé. Par rapport au systéme non tournant des r il n'y a
également qu’un changement d’orientation, mais cette fois égal®
aw.o. '

D’autre part, si on envisage dans la position (1) du milieu
une série de sphéres

ces sphéres deviennent des ellipsoides 2

S ey -
enl  F cpp=1.

Il en est de méme dans le systéme non tournant des r.
La transformation des sphéres en ellipsoides montre que le

1 Aussi si ’on imagine dans la position (1) du milieu des ellipsoides
dont les équations sont

ry - §%.r, = const ,

tous ces ellipsoides restent inchangés en forme et en grandeur au
cours du mouvement, et seule leur orientation change selon & . .
* Cette relation ne représente une sphére que si

et =1.

En substituant pour y sa valeur on en tire
o =1,
ce qui est réalisé seulement dans la position (1), a laquelle ces sphéres

ont été rapportées; pour toute autre position parcourue par le
mouvement ces spheres sont transformées en ellipsoides.
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mouvement en question contient une déformation car les
distances ! entre les points matériels ont changé.

Le méme mouvement — caractérisé par les formules ci-dessus
— transforme donc d’une part une série d’ellipsoides en d’autres
ellipsoides de méme forme et méme volume et, d’autre part,
une série de spheéres en ellipsoides. Cela semble paradoxal, vu
qu’il s’agit d’'un mouvement linéaire et homogéne. Ce paradoxe
apparait encore plus curieux si on considére par rapport au
systtme X non tournant des 7 le cas spécial de ce mouve-
ment qui est caractérisé par & . = I, ¢’est-a-dire & = & .
Dans ce systéme la rotation @ . des axes des ellipsoides est
égale a I de sorte que non seulement la forme et le volume des
ellipsoides, mais aussi les orientations de leurs axes restent
les mémes par rapport au systéme X fixe dans l’espace,
tandis que les sphéres se transforment en ellipsoides dont les
axes tournent par rapport au méme systéme des r. Ce mouve-
ment particulier est caractérisé par I’équation !

r=r-o-3,

1 Cela ressort du cas général

- * *
P = . ) M/"l « (&) ,
on a alors
*
w0 =1,
soit
* 9
w = o0,
et par conséquent
r=mr- 0)3//

avec o . o (t) et 5“/ ; = const. Si on compare cette équation avec
I’équation générale

r s r-wap

! Dans la position (1) tous les points matériels de la surface de la
sphére sont équidistants du point matériel situé au centre; par suite
du mouvement les points de la surface et le point central de la sphére
deviennent les points de la surface et le point central de l'ellipsoide;
ils ne sont plus équidistants.
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on constate que le mouvement paradoxal que nous notions
correspond au cas Jp = const., et ® = o (f) == const.

Le paradoxe s’explique d’une maniere simple lorsqu’on fait
les calculs explicites et qu’on procéde & la superposition des
déplacements linéaires successifs. On voit alors que les ellipsoides
subissent dans chaque intervalle de temps exactement le méme
allongement trirectangulaire que les sphéres; chaque sphere
change nécessairement sa forme si on effectue un allongement
de n’importe quelle grandeur et quelle orientation; tandis qu'un
ellipsoide peut subir des allongements tels que 1’ellipsoide
résultant ait exactement la méme forme et le méme volume
que le premier ellipsoide.

Ce mouvement paradoxal a une certaine importance, il peut
étre réalisé aisément dans un milieu élastique. Nous donnerons
un exemple pour le cas plan, pour lequel nous avons fait cons-
truire un modéle (reproduit dans les figures 1, 2 et 3 annexées
au présent article): Si on applique & une membrane élastique
dans 1’état (0) non travaillé un allongement birectangulaire on
obtient un état (1) déformé; chaque cercle de I’état (0) passera a
une ellipse, qui peut étre considérée comme la trace de la
surface métrique du tenseur < p d’allongement. Si nous dis-
posons d’'une machine (un opérateur) capable d’effectuer un
allongement birectangulaire le long de deux directions fixes
dans I’espace, nous pouvons réaliser toute une série d’états (1),
(2), ... (k) ... (n) a partir de ’état (0) en appliquant a la mem-
brane d’abord une rotation w, (k = 1, 2, ... n) puis toujours a
I’aide de la machine le ' méme allongement birectangulaire. La
grandeur de l’allongement est la méme pour tous ces états
(k) (k =1, ... n) mais ce sont chaque fois de nouveaux rayons
vecteurs matériels qui sont dans les directions dans les-
quelles I'allongement est effectué. Un mouvement continu
qui passe successivement de ’état (1) aux états (2), (3), ... (n)
est précisément le mouvement cherché, qui correspond a
I’équation

r=r-w-3p (avec o = w(t) et Ip = const.)

qui exige d’effectuer d’abord une rotation puis le méme allonge-
ment fixe par rapport & I’espace. On réalise aisément ce mouve-
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ment- avec une membrane de caoutchouc fixée sur un cercle
d’acier; on fixe la membrane d’abord dans l’état (0) non
déformé; elle suit toutes les déformations que ’on imprime au
cercle d’acier; si 'on effectue un allongement birectangulaire
sur le cercle, celui-ci est transformé en une ellipse dont on peut

Fig, 1.

Hlustration du mouvement & déformation (post-rotationnelle)
constante 5 p montrant la série d’ellipses qui représentent Sp et qui
restent inchangées. On a dessiné des cercles sur la membrane de caout-
chouc, dans I’état (0) non déformé; par une déformation du cadre on
atteint Iétat (1) et les cercles peints, ainsi que le cercle d’acier,
deviennent des ellipses. On réalise alors le mouvement en question en
fixant le cadre dans cette position (1) et en tournant l’ellipse d’acier
dans le cadre, ce qui imprime ainsi a tout état (k) parcouru la
méme déformation 5p par rapport a Iétat (0). On constate alors
que les ellipses dans I’état (1) restent des ellipses de directions d’axes
principaux et de grandeur constantes. On atteint un état (2) grace
a une rotation de 30°; en continuant le mouvement au dela de 30°
on revient a Iétat (1). '



Fig. 2.

Illustration du méme mouvement 4 déformation post-rotationnelle
constante qu’a la fig. 1, montrant la série de cercles qui, dans ce
mouvement, sont transformés en des ellipses & forme et orientation
variables. On a dessiné sur la membrane de caoutchouc, dans I’état (0)
non déformé, des ellipses qui, par la déformation (01), sont devenues
des cercles dans I’état (1). En effectuant alors le mouvement en
question en faisant tourner la lame d’acier dans le cadre fixé dans
la position (1), on obtient successivement les états (2), (3) et (4),
qui correspondent a des angles de rotation de 30°, 60° et 90°. On
constate alors que les cercles dans I’état (1) deviennent des ellipses
d’axes variables en grandeur et en direction. Si on continue le
mouvement jusqu’a 360° on retrouve ’état (1), et, lors du parcours
total au travers des quatre quadrants, les configurations (1), (2),
(3) et (4) se répétent d’'une maniére symétrique et périodique.



Fig, 3.

Cette figure illustre les deux phénomeénes représentés séparément
aux figures 1 et 2 sur une seule membrane de caoutchouc : les
cercles foncés a ’état (0) non déformé deviennent des ellipses dans
I’état (1) déformé, et le restent au cours du mouvement & déforma-
tion post-rotationnelle constante, tandis que Dellipse de I'état (0)
non déformé (en couleur claire) qui devient un cercle a Iétat (1)
déformé se transforme en ellipses d’axes variables en grandeur et
en direction dans les états (2), (3) et (4), qui correspondent aux
angles de rotation 30°, 60° et 90°,
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fixer les axes dans l’espace par un cadre articulé a4 quatre
branches de longueur égale, et qui prend une forme de losange;
il maintient la forme elliptique de la monture d’acier et I’oblige
a rester de mémes dimensions (voir les figures 1, 2 et 3). Le
cercle en acier est ainsi devenu une ellipse; elle peut tourner
dans le cadre rigide, les éléments géométriques de [Dellipse
étant constitués & tout instant par des points matériels nou-
veaux, les allongements restant constants en grandeur, mais pas
en grandeur dans la matiére méme de la membrane. Pour
mettre en évidence le paradoxe mentionné, on a dessiné des
cercles sur la membrane dans I’état (0), ces cercles deviennent
des ellipses par suite de 1’allongement birectangulaire (01).
Dans I’état déformé (1), on dessine de nouveaux cercles;
en effectuant alors le mouvement continu que nous avions
1maginé, on voit que toutes les ellipses restent inchangées
en forme, orientation et grandeur, mais que, en méme
temps, les cercles (dessinés dans la position (1)) sont défor-
més en des ellipses; on voit de plus que tous les cercles
d’une part, et toutes les ellipses, d’autre part, sont affectés de
la méme maniere, ce qui met en évidence I'homogénéité du
mouvement, et si enfin on dessine sur la membrane des lignes
droites, elles restent des lignes droites, ce qui doit étre en vertu
de la linéarité 1 du mouvement. A 'aide des formules explicites
qui permettent de faire la superposition des déplacements
successifs a aire constante dans le plan et qui sont résumées
dans ce chapitre, on peut analyser tous les détails du mouve-
ment paradoxal qui vient d’étre esquissé; en les comparant avec
le modele réel on vérifie que les milieux élastiques se déforment
effectivement de cette maniére.

I orthogonalité des tenseurs S et S, par exemple, qui est
caractéristique pour ce mouvement, apparait dans ces figures
de la maniére suivante:

Si on considére les cercles placés dans la position (1) on
remarque qu’en passant de (1) en une position infiniment

! La fixation de la membrane au cercle d’acier telle que nous I’avons
réalisée ne correspond pas rigoureusement aux conditions posées par
la théorie, ¢’est pourquoi a proximité de cette fixation la linéarité et
I’homogénéité ne sont pas exactement respectées.
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voisine (1) ils se transforment en ellipses dont les axes sont a
45° avec ceux de D'ellipse d’acier; ces ellipses peuvent étre
considérées comme représentant le tenseur Ja associé au
déplacement (11), leurs axes sont donc paralléles aux axes
principaux de sa et par conséquent de S; d’autre part les axes
de I'ellipse d’acier sont paralléles & ceux de ®a, donc de S.
Pour les déviateurs plans S et S, ’'orthogonalité se traduit (voir
I’appendice) dans l’espace ordinaire par le fait que I'angle
entre les axes principaux de ces tenseurs vaut 45°.

Ayant discuté les deux cas particuliers comme s’ils étaient
des cas extrémes des déformations générales, revenons au cas
général.

Pour le cas général de déformation nous avons

Bos o Now
et ’angle absolu entre les tenseurs S et S peut avoir une valeur
quelconque.

La classification des déformations générales est tres compli-
quée. En principe il faut distinguer les différents cas pour
lesquels 0, 1, 2 ou les trois valeurs propres de < restent
constantes, les cas ou 'orientation de 1’axe de la rotation o
reste inchangée et coincide ou ne coincide pas avec un axe
principal de £, ou il y a telle ou telle relation entre w et &, ete.
Nous ne voulons pas entrer dans les détails, mais il nous faut
reternir ’existence d’'une classe importante de déformation
générale, la classe des mouvements laminaires. Ces mouvements
se placent entre les deux cas particuliers considérés plus haut

et ne doivent pas étre confondus avec eux.
(A suivre)

APPENDICE.

L’algébre des tenseurs d’ordre 2 sous une forme invariante. —
Dans I'espace a trois dimensions, un tenseur d’ordre 2 est une
forme bilinéaire! de deux triplets de vecteurs a,, a,, @, b, 0, 0.

o= a,b; + ayby + agby = a,b, ..

! Dans toutes les formules, il sera convenu d’effectuer une som-
mation sur tout indice redoublé,
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Dans chaque terme la multiplication est indéterminée (ni
scalaire ni vectorielle).

Les opérations fondamentales intérieures. — Il y a trois
opérations fondamentales intérieures:

a) La transposition, &) la contraction, ¢) la pseudo-contrac-
tion.

a) Si on change l'ordre de la succession des deux triplets
(transposition) on trouve un tenseur ¥ (dit ¥ transposé):

W o= b .

b) et c). Si on remplace la multiplication indéterminée par la
multiplication scalaire (contraction) ou la multiplication
vectorielle (pseudo-contraction), on trouve soit une grandeur
scalaire Y., soit une grandeur vectorielle ¥, :

Y.=nq . b,

V=, X by

Les grandeurs W'., ¥, et " sont en relation avec ¥ d’une
maniére invariante. La grandeur vectorielle ¥, n’est pas un
véritable vecteur, ¢’est-a-dire qu’il ne se transforme pas comme
un vecteur, c’est un vecteur axial ou pseudo-vecteur. La
théorie compléte des pseudo-tenseurs et pseudo-vecteurs a été
donnée par Léon Brillouin (Ann. de Phys., 111, 251, 1925).

Si nous donnons les composantes , et b, par rapport a un
systeme de référence trirectangulaire portant des vecteurs
unités e, de méme longueur, nous obtenons pour ¥ la forme

L
Y= W ee,
et par conséquent

l[”‘. — 111011 + 11"‘22 "I— \Faﬂ ?
Vy = W — VYl + (Yo — Frs)eo + (Fis — Fai)es

X

¥ = Fhee

done

i

iw =Y

hi 2
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Les opérations fondamentales extérieures. — a) L’addition et
la soustraction des tenseurs se définit par I’addition et la sous-
traction des formes linéaires correspondantes.

b) La multiplication (qui donne des termes zéro, une, deux,

. n fois contractés) de deux tenseurs d’ordre quelconque se
définit par la multiplication indéterminée des deux formes qui
correspondent aux tenseurs, suivie de zéro, une, deux, ... n
contractions de la forme résultante.

La multiplication une fois contractée sera nommée simple-
ment multiplication. Elle sera représentée par un point. La
multiplication deux, trois, ... fois contractée par deux, trois,
... points placés entre les tenseurs.

Dans un produit de tenseurs ceux-ci ne commutent pas en
général, mais les lois d’association et de distribution sont
valables.

Pour la multiplication une fors contractée de V" par un vecteur
r=rye, et un tenseur d’ordre y = y;;€.¢, on obtient les
relations

re¥ = rk\Fem(ek ) ee) Em. =g ‘Fhm €m
Lo = A menle - epley, = tmu¥tmenen

(en général r -¥' =¥ .ret x - ¥ =Y. ). De la définition du
tenseur transposé il résulte que

et

() =¥y .
Nous fondant sur ces réegles de multiplication nous intro-
duisons le tenseur I d’identité en disant qu’il existe un tenseur I
et un seul pour lequel I’équation

X == I . ‘v = X - I
est vérifiée pour tout tenseur y d’ordre quelconque. Ce tenseur I

est appelé tenseur d’identité, il est d’ordre deux et s’exprime
dans le systéme trirectangulaire des ¢, par

_ [ s )
I = Ihkehek (Ou Ihk 0 pour h
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Pour la multiplication deux fois contractée on a
X ..II]' — lljl .-X' = (I{P 07‘)- = (x % I}I‘)- ) '/iklP‘ki .

La multiplication deux fois contractée des tenseurs est
analogue a la multiplication scalaire (une fois contractée) des
vecteurs; pour tirer profit de cette analogie nous introduirons
des notions analogues a celles du calcul vectoriel:

La valeur absolue |‘P’ ’ d’un tenseur V' est définie par

|[¥] = + V/F.¥ -

L’angle absolu = entre deux tenseurs est défini par

| 3PS

COS & = ot
EANYAR

ce qui nous permet d’écrire
Y.y =|T|]|y]cose,
et I'analogie avec le produit scalaire de deux vecteurs est

compléte. Deux tenseurs sont orthogonaux s1 e = 90°, ¢’est-a-
dire si leur produit doublement scalaire est nul. Le tenseur

Kd sera désigné sous le nom de tenseur d’orientation de V.
| .

Les puissances et les racines d’un tenseur. — lia puissance
YP.(p étant un nombre entier et positif) est définie comme la
multiplication, p fois répétée de V', effectuée comme suit:

Si p est un nombre entier et négatif, les puissances négatives
sont déterminées par I’équation

On en tire
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Si p est une fraction rationnelle m/n les racines et les puis-
sances fractionnelles sont définies par

m. n
(11;'—7{) — gm

On déduit de ces définitions que les différentes puissances
d’un méme tenseur ¥ commutent dans un produit, soit

q

‘FI)'TQZT‘ .‘sz‘?p_}—q-

Pour le cas particulier ou p + ¢ = 0, on trouve ¥° =1
La division. — On effectue une division par un tenseur

d’ordre 2 en multipliant par le tenseur réciproque, et en conser-
vant 'ordre d’écriture des tenseurs. Si par exemple

x-Pey =7
on a
By = ol 1
~1
e AR g X - '\’
Caractére d’invariance d’un tenseur. — Une premiere carac-

téristique Invariante d’un tenseur est celle qui se rattache a sa
symétrie éventuelle. En general il n'y a pas d’autre relation

1ndependante entre ¥ et ¥ que celle donnée par la définition

de ‘F nous dirons dans ce cas que le tenseur ¥ est sans symétrie
(asymeétrique). Si, par | contre, il existe une autre relation indé-

pendante entre ¥ et ¥ nous parlerons d’une certaine symetrle
du tenseur. Nous distinguons trois types de symétrie: un tenseur
est symétrique (o), antisymétrique (o), orthosymétrique ou
orthogonal (o) suivant que ' :

]

% =8 i Sik = Cml
‘. (I:'_"‘xv)' Oﬁih _ - “ki
ou
- ' ' 1 pour &k =1
pro=1L.... onoa= ‘ '

{ 0 pour k== 1°
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La premiére équation dans chaque ligne donne la défini-
tion sous sa forme invariante, la deuxiéme !’exprime en
composantes relatives au systéme trirectangulaire des e,.

On tire de ces formules

« .0 =0 ;

donc o et ¢ sont orthogonaux.

Un tenseur peut avoir plusieurs sortes de symétrie en méme
temps. Par exemple le tenseur sphérique K = aeze, est en
méme temps symétrique et orthogonal.

Les symétries spatiales que peut présenter un tenseur
d’ordre 2 sont: C; (triclinique), C,, (monoclinique), V; (rhom-
bique), C,,; (symétrie polarisée de rotation), D_, (cylindrique)
et K, (sphérique).

Pour les tenseurs symétriques o, il y a seulement V,, D_; et
K,. Les tenseurs antisymétriques o« ont les symétries C_,, et K;,
et les tenseurs orthogonaux ¢ les symétries C_,, D, et K;.

Si on introduit un systéme de référence trirectangulaire
portant des vecteurs unités ,, la maniére de le faire pour
obtenir la forme la plus simple des tenseurs consiste a faire
coincider l'axe de la symétrie la plus élevée avec 1'axe 3;
alors

O = ORrk %
o |
g === \/25 (g,80 — E58)

+ @ = cosq (g8, + g,8) + (5,8, — 5,8) SING + g8, .

Une autre caractéristique, plus importante que les deux
premiéres, est mise en évidence par un théoréme de Cailey-
Hamilton d’apres lequel il existe toujours une relation linéaire
et scalaire entre quatre puissances successives d’un tenseur
d’ordre 2. Pour plus de simplicité, prenons les quatre premiéres
puissances d’un tenseur ¥'; ce sont ¥, W1, W2, W3, L’équation
de Cailey-Hamilton s’écrit comme suit:

—J -2+ I —Ju - I =0

ou J,, J,, et J, sont trois grandeurs scalaires, nommées les
trois invariants fondamentaux. I est le tenseur d’identité égal a
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10, Pour le calcul explicite nous supposerons que ¥ est donné
a partir de vecteurs unités e, (k = 1, 2, 3) orthogonaux. Nous

avons alors
Y = Vee

et

J, =¥), =¥, + Y%, +¥,, (somme destermes diagonaux
de 7).

Jy =M),; =] |+] |+ | (somme des mineurs relatifs
aux termes diagonaux).

I = U =1 | (déterminant de V).

III

Un tenseur pour lequel (¥), = 0 est appelé un tenseur
déviateur.

A P'aide de I’équation de Cayley-Hamilton on détermine les
valeurs propres et les directions d’axes principaux d’un tenseur.
Les trois valeurs propres de ¥ sont les trois racines ¥, ¥, et V',
de 1’équation scalaire -

7“3_'11}‘2 + Jn)‘ — Jm = 0.

On trouve pour les valeurs propres

5 J; 2 T
lk =¥ = g— +.§.I/JI_3JH +
. ces BY o Q0L — 274
cos | 271 4) . Larecos 201t 2 Duln m

o)/ (37 — 33,)

(k)
En désignant par Ayg le mineur de la matrice

[\Fuv_\yh' Iuvl

relatif au terme «f de cette matrice, on trouve, caractérisant
la direction principale % associée 4 la valeur propre ¥, , des
cosinus directeurs tels que

' Ry (k) (@)
cos (k1) : cos (k2):cos(k3) = Ajy: Ajpt Ay

L

et
i>) cos? (kj) =1,
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ou (kj), pour j =1, 2, 3, désigne ’angle formé par la direc-
tion principale & et 'axe j du systéme de référence.

Le tenseur est déterminé complétement et d’une maniere
invariante par ses valeurs propres et ses directions d’axes
principaux. Si deux des valeurs propres ou les trois coincident,
le tenseur est dit dégénéré, la multiplicité de la dégéné-
rescence étant respectivement 2 ou 3. On parle aussi d’un
tenseur dégénéré si les trois directions d’axes principaux du
tenseur sont dans le méme plan ou si deux ou les trois coin-
cident.

Les considérations que nous venons de développer nous
permettent de donner aux tenseurs des formes privilégiées
spécialement adaptées & leurs diverses applications:

a) Forme normale. — On peut réunir les valeurs propres et
les directions d’axes principaux de V" dans une forme normale.
En général on écrit

Y o= IF;L“:”,L :

ou ', sont les valeurs propres de ‘', et 1, des vecteurs unités
dirigés dans les directions d’axes principaux et ll: les vecteurs
réciproques ! de 1,. Cette représentation peut toujours se faire,
& moins que le tenseur soit asymétrique et dégénéré en méme
temps. Pour les tenseurs symétriques, antisymétriques et ortho-
gonaux on obtient |

l

.‘ JI 'T]I JlII
a 6[ GII 0.III

il
o || 0 g2 0
Cp“i(’l—JrQCOSg) + (14 2cosq)| +1

1 Si on fixe pour les indices une succession A, p, v, on trouve les
vecteurs réciproques au moyen de la relation

. m, X m,

n, = ——————= .
: [nl n;J. n-:]
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Il faut donc distinguer deux sortes de tenseur orthogonal,
celle pour laquelle J, est positif, celle pour laquelle il est négatif.
La premiére représente une rotation, la deuxiéme la combinaison
d’une rotation et d’une inversion. Nous n’envisagerons que la
premiére, qui sera représentée par w. Nous avons

¢ = o pour (@), = (0), = +1
et
¢ =7 o pour (g, =—(o),=—1,
ouj = —1 = -—¢,e, est appelé le tenseur d’inversion.
Les valeurs propres et les orientations d’axes principaux
sont données par le tableau suivant:

1 Valeurs propres Orientations d’axes principaux1
|
k4 v, L n, 1, 1,
c o, o, Oy 0 010 1 00 0 1
a| iy/u, | —iqy/a, 0 1 40| i10[0 01
© eld e id 1 1 ¢ 0l i1 0l0 01
w><

ou ¢ = 2 arctg T On en déduit 1° que les directions

I
d’axes principaux d’un tenseur symeétrique sont trirectangu-

laires, 20 que tout tenseur antisymétrique est un déviateur plan.

Fonctions analytiques d’un tenseur. — Pour former une fone-
tion analytique f(¥') d’un tenseur, nous supposons d’abord que
la fonction analytique y = f(x) est celle d’un argument

scalaire z, et est représentée par une série convergente des
puissances de x:

(1)
=1l = 2 On

nl

! I’orientation de chaque axe principal est donnée par trois gran-
deurs proportionnelles aux cosinus des angles entre cet axe et les axes
d’un systéme de référence.

ArcHuives, Vol. 17. — Janvier-Février 1935.

-1
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On définit alors un tenseur y = f(¥) fonction du tenseur ¥
par la relation
(n)
7= fw) = o3 T Oyn

| nl

Il faut remarquer que les relations qui peuvent exister pour
des fonctions & argument scalaire ne sont pas nécessairement
valables pour des fonctions de tenseurs 2.

On déduit de I’équation de Cayley-Hamilton que chaque
puissance " d’un tenseur W a les mémes directions d’axes
principaux que W, et des valeurs propres qui sont la méme
puissance des valeurs propres de '¥'. Le tenseur % défini ci-dessus
apparait donc comme une somme de puissances de ¥'; ses
valeurs propres sont par conséquent y, = f(¥',) et ses direc-
tions d’axes principaux sont paralléles a celles de ¥. Dans le
cas ou V' peut étre mis sous la forme normale

I il *
YV = Wy

(ce qui est toujours possible pour les tenseurs symétriques,
orthogonaux et antisymétriques, ainsi que pour les tenseurs
asymétriques non dégénérés) on a

7 = f¥) = f(F)nm, .

La représentation de ¥ sous forme invariante au moyen des
valeurs propres et des directions d’axes principaux nous permet
donc de calculer les fonctions analytiques tensorielles sans
développement en série, elle leur donne une forme & nombre fini
de termes.

Envisageons le cas particulier de la fonction logarithmique,
dont nous faisons usage dans ce travail.

L’équation de Cayley-Hamilton nous dit que

10 Soit p = In'¥:

p, = In(Y)

Irr -

? Soit par exemple eA = eB . eC, une relation entre des exponen-
tielles. Si A, B et C sont des arguments scalaires, e = ¢3+¢, mais si
A, B et C sont des tenseurs il n’en est pas ainsi en général.
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Si le déterminant de W' est égal 4 1, le tenseur p est un
déviateur.

20 Soit & un tenseur symétrique dont les trois valeurs
propres <, sont réelles et positives:

I = Je,e (avec 3y > 0) .

Le tenseur s = In< est également symétrique et ses valeurs
propres s;, sont réelles aussi mais pas nécessairement toutes
positives; nous avons

s = [nd = Sy € €

~ R oY
ou s, = IlnJ,.

3° Soit & un tenseur orthogonal dont le déterminant est
positif:
weo = 1 (avec (w),, = + 1) .
Le tenseur w = [nw est un déviateur antisymétrique plan:
W = — 5 wo o= w = 0,

I ITT

Les valeurs propres de « étant données par
. (r)x
N Wy — e , Gy — 1 q = 2 arctgm"
I

on trouve ! pour les w:

w, = it{¢g + 2nn), w, = —1i(qg+ 2nn), w, =0+ 20w .
Décomposition d’un tenseur. — a) Décomposition additive
d’un tenseur quelconque ¥. — Tout tenseur V' peut étre

décomposé en la somme d’un tenseur symétrique Wy et d’un
tenseur antisymétrique (qui est en méme temps déviateur) ¥y :

¥ =%, + %,

ou
. o v
o = —5—, A

1 On peut écrire cela si 'on considére le logarithme comme une
fonction périodique ayant une période imaginaire 2mi.
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On décompose quelquefois ¥'; en la somme d’un tenseur sphé-
rique W et d’un tenseur symétrique déviateur ¥, :

11}1,- == \FU + lP.rrm

oun
11’.10 — (‘I"') l . [

et
¥+ ¥
2

Yo =

— (), - I

I

Le tenseur V' prend alors la forme

V=V, + V. + ¥, .

b) Décomposition d’un tenseur quelconque ¢ en un produit.
— Tout tenseur ¢ peut étre décomposé en un produit d’un
tenseur orthogonal ¢ et d’un tenseur symétrique S dont les
valeurs propres sont toutes réelles et positives. Selon la position
.des deux tenseurs dans le produit, position qui sera indiquée
par un ¢ (antérieure) ou un p (postérieure), on obtient deux
décompositions:

ou

. ‘Ces tenseurs valent !
Sa =+ V(Y- Y

-0

-C-

=1

3p = + Vi
et

! En multipliant ¢ par ¢ en avant ou en arriere on trouve

B

¢ .

— = =

4-’:'; :sa‘@P'm5=3a-cpp-cp&p-§a:3a2
¢ = (pa-Jp)pa-Sp = Ip-ga-ga-3Ip =

[=Y
o~

p® .
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Les tenseurs ZL et q; - { sont symétriques® et on démontre
au moyen du théoréme de Cayley-Hamilton qu’ils ont les mémes
valeurs propres, toutes trois réelles et positives. En choisissant
le signe + devant les racines on constate que les valeurs
propres de Sa et de Ip sont identiques, et de plué réelles et
positives. En désignant par ea, des vecteurs unités dirigés dans
les directions d’axes principaux de Sa et par ep, des vecteurs
selon les axes principaux de 2p on trouve |

Sa = Sh eay eay

o

gp = 3k8pk€pk s
et
¢ = ] w,

ou j est égal & + 1 ou — 1 suivant que le déterminant (), de ¢
est positif ou négatif. Les valeurs de S, eq, et ep, sont déter-
minées a partir de Péquation de Cayley-Hamilton relative
aux tenseurs ¢ - ,jj et L}j -3 les eay et epy, sont identiques aux
deux triplets de vecteurs unités dirigés dans les directions
d’axes principaux de ces tenseurs, tandis que les S sont les
racines carrées de leurs valeurs propres. On obtient les for-
mules explicites en remplacant V' dans 'equation de Cailey-
Hamilton par ¢ - ;': et par !.I: - .

On décompose parfois les tenseurs symétriques en produits
d’un tenseur sphérique 9, et d’un tenseur &' & déterminant 1:

Sa = %a,-3a
et
9p = Ipy - Ip’
ou
5. = 3’&0 == Spn LPIII I %
! 1 =
S0 = g ]
ITY
r /1 S
I = VI
Il
: bbb =%-3 =093
et
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Le tenseur { s’écrit dans ce cas

¢ = 3,-3a" -9
ou
= 3-0-3p.

Orientation d’un tenseur. — I’ orientation d’un tenseur est
caractérisée par ses directions d’axes principaux. Deux tenseurs
A et B sont dits paralléles (A / / B) si leurs directions d’axes
coincident. Pour des tenseurs paralléles, la multiplication est
commutative:

A.-B=B-.A,

done
In{A-B)y=InA-+InB.

Ces regles ne sont valables que pour des tenseurs paralléles.

Si Iorientation d’un tenseur A change par rapport & un
systéme de référence quelconque, A se transforme en un
tenseur A’ de la maniére suivante

A =01 A.Q

o £ est un tenseur orthogonal qui effectue une rotation faisant
passer le triedre des axes principaux de A a celui des axes
principaux de A’

Déorateurs symétriques plans. — Pour les déviateurs symé-
triques plans les régles générales se simplifient. Les valeurs
propres d’un tel tenseur @ sont a, = — ;. Sa valeur absolue
vaut |a| = a;4/2 = —ayy/2. L’angle absolu entre deux
déviateurs symétriques plans a et b vaut

g = 2 (ab).’{h
ou (ab),;, représente ’angle entre les axes principaux de méme
indice de ¢ et b. Deux tenseurs déviateurs symétriques plans

sont donc orthogonaux si (ab),;, = 45°. Le produit doublement -
scalaire de a et b vaut

a.b = ja||b|lcose = |a||b]| cos2(ab),, -
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La symétrie d’un systéme matériel. — La symétrie d’une
grandeur est définie par son invariance par rapport & un groupe
de transformations de coordonnées. Nous dirons en particulier
qu’une grandeur est isotrope ou anisotrope suivant qu’elle est
invariante ou non relativement au groupe qui contient toutes
les rotations. Pour discuter la symétrie des propriétés méca-
niques, il faut considérer les propriétés mécaniques d’un corps
matériel représentées par les relations entre les variables ciné-
matiques et dynamiques, soit en général entre des grandeurs
tensorielles; elles déterminent les propriétés mécaniques du
corps d’une maniére quantitative et permettent donc de
définir la symétrie plus ou moins grande des propriétés méca-
niques.

Les propriétés mécaniques qui nous intéressent particuliére-
ment ici sont données par des relations entre des grandeurs
tensorielles symétriques ! d’ordre 2 qui représentent les va-
riables dynamiques et cinématiques. Il suffit de discuter les
relations linéaires, les résultats obtenus s’appliquant aussi a
des cas plus généraux. Soient o et 3 deux tenseurs variables
d’ordre 2; la relation linéaire la plus générale entre leurs
composantes s’exprime par un tenseur constant d’ordre 4:

[8 — ml
Bik = % Wip -

En général les 34 composantes de p sont indépendantes et @
est asymétrique (anisotrope); si on suppose que « et (3 sont des
tenseurs symétriques, et que la propriété mécanique repre-
sentée par p est parfaitement isotrope, il n’y a que deux
composantes de p qui soient indépendantes. Si on représente
les tenseurs o et B par leurs valeurs propres et leurs direc-
tions d’axes, la condition d’isotropie exige premiérement que

“//B,

L Pour lisotropie et I'anisotropie la différence entre les pseudo-
tenseurs d’ordre deux et les véritables tenseurs peut étre négligée,
¢’est pourquoi nous dirons simplement « tenseurs »,



104 LA MECANIQUE DES CORPS DEFORMABLES

c’est-a4-dire que les directions d’axes principaux de « et 3 coin-
cident, et deuxiémement que ’équation générale se décompose
en deux relations indépendantes, 1'une entre «, et B3,;:

avec o, = &y + ®y + x5 et 3, = By + By + B33, 'autre entre
les valeurs propres des déviateurs o’ et B':

!

r
B = %, - M",
ou
/ 1
leic Blz _ ?Br
et
I .l.
Lp = %p — ga] )

M et M’ sont deux grandeurs scalaires calculables a partir des
deux composantes indépendantes de .

Représentation géométrique.

a. L’espace a neuf dimensions des variables cinématiques et
dynamiques. — Dans I’étude de la mécanique des corps défor-
mables il est trés avantageux d’introduire un espace 4 9 dimen-
sions dans lequel tous les tenseurs (d’ordre 2) dynamiques et
cinématiques peuvent étre représentés par des vecteurs, car
il v a une analogie profonde entre la mécanique d’un point
matériel dans I’espace ordinaire a trois dimensions et la méeca-
nique de I’élément de volume dans I’espace ordinaire & trois
dimensions complété par un espace a 9 dimensions.

Par rapport a notre systéme trirectangulaire des ¢, nous
avons pour chaque tenseur 9 composantes. Nous imaginons
alors un espace a 9 dimensions avec un systéme de référence
ennéarectangulaire. Nous numérotons chaque axe de ce systéme
au moyen de deux indices 7, £ (ou i et £k = 1, 2, 3) et nous
définissons des vecteurs unités selon chaque axe au moyen du
tenseur e;e,. Chaque tenseur d’ordre 2, ¥ = x;,e;€,, apparait

-

alors dans ’espace a4 9 dimensions comme un vecteur x ayvant
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9 composantes x;, ennéarectangulaires. En général la valeur
absolue |y| du tenseur y n’est pas identique a la valeur
-

absolue (longueur) du vecteur y définie comme la racine carrée
de la somme des carrés de ses neuf composantes. Mais les ten-
seurs caractérisant la cinématique et la dynamique de d¢
(tels que P, M, sa, sp, w, etc.) sont tous symétriques ou
antisymétriques et la valeur absolue de tels tenseurs, l X, l, est

égale a la valeur absolue };i du vecteur correspondant ;
selon que I'on considére le cas symétrique ou le cas antisymé-
trique ’angle absolu ¢ entre deux tels tenseurs W et y est
égal a l’angle, ou a4 180° moins l'angle entre les vecteurs
correspondants. L’orientation d’un tel tenseur est donnée par
la direction du vecteur correspondant dans I’espace & 9 dimen-
sions. En général il n’y a pas une relation simple entre
I’angle absolu ¢ dans I’espace a 9 dimensions et 1’angle «,,
dans ’espace ordinaire & trois dimensions compris entre deux
axes principaux de méme indice des tenseurs, mais pour le cas
particulier des déviateurs symétriques dans un plan, on trouve

e = 2ay

de sorte que deux déviateurs symétriques donnés dans le
meéme plan sont orthogonaux si ’angle entre les axes princi-
paux de méme indice est égal a 45°.

Il faut cependant remarquer que le vecteur résultant de
deux vecteurs dans cet espace ne représente pas le tenseur
résultant des deux déplacements successifs correspondant &
ces vecteurs.

b. L’espace a trois dimensions. — La représentation géomé-
trique des vecteurs est connue. Pour les tenseurs symétriques o
d’ordre 2, il existe plusieurs représentations géométriques;
on utilise I'une ou ’autre suivant ce qu’on se propose de faire.
On associe premiérement & ¢ la surface décrite par 'extrémité du
vecteur 7 dans I'équation
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On associe deuxiemement 4 ¢ une surface métrique qui est
du deuxieme degré; ses axes coincident avec o, e, (ou o, sont
les valeurs propres et e, sont dirigés dans les directions d’axes
principaux de ¢); cette surface métrique a pour équation

rocter =1.

Les tenseurs antisymétriques o seront représentés par le

b |

: 1 i
pseudovecteur, (vecteur axial) 3 % les tenseurs orthosymeé-
tri r le vect ial %
riques o par le vecteur axial w = ——— .

q p W=7 Y

(A suivre)
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