Zeitschrift: Archives des sciences physiques et naturelles

Herausgeber: Société de Physique et d'Histoire Naturelle de Genève

Band: 16 (1934)

Artikel: De la largeur des spectrogrammes d'étoiles G5

Autor: Tiercy, G. / Grosrey, A.

DOI: https://doi.org/10.5169/seals-741522

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 16.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

G. Tiercy et A. Grosrey. — De la largeur des spectrogrammes d'étoiles G_5 .

Cette recherche a été effectuée suivant le même plan que pour les types spectraux précédemment étudiés. On a pris neuf étoiles, dont les magnitudes respectives vont de m=3.18 à m=6.59. (Instrument: prisme-objectif de Schaer-Boulenger.) Les durées de poses utilisées valent respectivement $2\frac{1}{2}$ min., 5 min., 10 min., 20 min., 40 min et 80 min.

Le premier tableau ci-après donne les résultats des mesures; les largeurs des spectres sont exprimées en μ :

000000	Largeur, pour une pose de:							
<i>m</i>	150s	300s	600s	1200s	2400s	4800s	Courbe	
3.18	48	76	93	118	15 0	(207)	C_1	
3.68	41	59	77	121	149	(221)	C_2	
4.20	44	58	91	103	141	(247)	C ₃	
4.52	40	46	81	127	145	(214)	C_4	
4.73	30	41	68	109	141	(180)	C ₅	
5.22	25	38	49	65	87	110	C_6	
5.66	27	37	39	53	79	101	C ₇	
6.09	21	30	36	49	70	91	C ₈	
6.59	22	37	41	57	77	88	C ₉	

TABLEAU I.

Les valeurs entre parenthèses ne sont pas sûres; elles semblent trop fortes; et on les a laissées de côté pour apprécier la position approchée des asymptotes des cinq premières courbes C_i ; celles-ci peuvent être représentées par la relation:

$$y = A.10^{-\frac{1}{x^{\lambda}}}.$$
 (1)

Le coefficient A. — En première approximation, d'après le tableau I, on peut estimer la position des asymptotes comme suit:

TABLEAU II.

$C_{m{i}}$	C ₁	C ₂	C ₃	C ₄	C ₅	C ₆	C ₇	C ₈	C9
\mathbf{A}	210	200	180	175	170	130	120	105	100

ce qui donne la figure (1), et la relation approchée:

$$A = 320 - 33 m$$
.

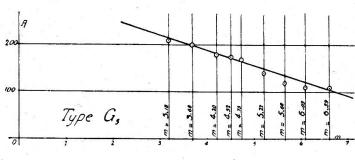
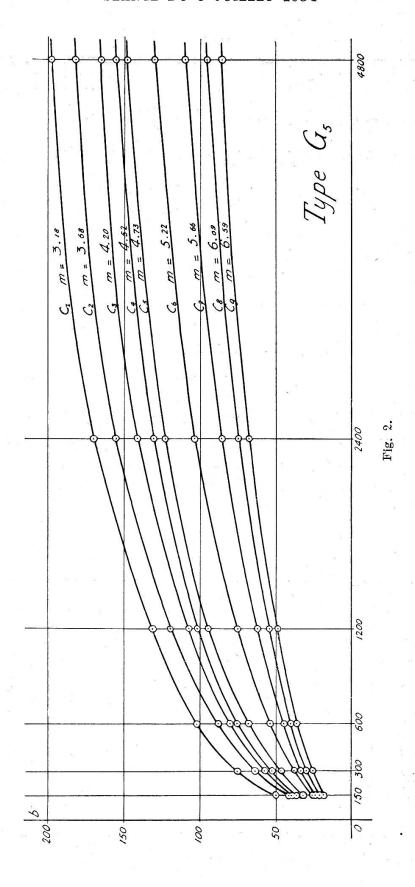


Fig. 1.


Cette égalité n'est utilisable que dans les limites des magnitudes considérées.

L'exposant λ . — Pour trouver cette fonction de m et de la durée x de pose, on a tout d'abord régularisé les courbes C_i ; on a ainsi obtenu le tableau III et la figure (2):

TABLEAU III.

Courbe	Largeur, pour une pose de:							
	150s	300s	600s	1200s	2400s	4800s	calculé	
				1 to 10 to 1			li li	
C_1	50	76	102	132	170	198	215	
C_2	42	64	88	120	155	182	209	
C ₁ C ₂ C ₃	40	58	80	108	141	165	181	
C_4	36	50	76	103	130	155	171	
C_5	32	46	69	95	123	148	164	
C_6	26	38	53	75	104	130	148	
C ₆	24	33	45	62	86	110	133	
C_3	21	30	40	54	75	96	119	
C ₉	18	25	36	49	68	86	103	

En portant ces valeurs dans la formule (1), on trouve les λ correspondants, rassemblés dans le tableau IV:

G	m_i) i	Pour une pose de :						
Courbe			150s	300s	600s	1200s	2400s	4800s	
C_1	3.18	λ_1	0.091	0.139	0.176	0.219	0.293	0.390	
C_2	3.68	λ_2	0.078	0.124	0.161	0.214	0.285	0.381	
C_3	4.20	λ_3	0.084	0.123	0.162	0.211	0.285	0.376	
C_4	4.52	λ_4	0.078	0.110	0.164	0.215	0.273	0.372	
C_{5}	4.73	λ_5	0.068	0.114	0.152	0.203	0.267	0.366	
C_6	5.22	λ_6	0.056	0.092	0.126	0.172	0.241	0.339	
C ₇	5.66	λ_7	0.060	0.088	0.118	0.155	0.212	0.294	
C_8	6.09	λ_8	0.056	0.090	0.117	0.151	0.206	0.280	
C_9	6.59	λ_{9}	0.066	0.089	0.121	0.161	0.217	0.295	
			II						
	Cas								
	moyen								
$C_{\mathbf{M}}$	(4.0)	$\lambda_{\mathbf{M}}$	0.071	0.107	0.144	0.189	0.253	0.344	

TABLEAU IV.

La courbe moyenne $\lambda_{\scriptscriptstyle M}$ correspondrait à une étoile de magnitude 4.0 environ.

On trouve une assez bonne représentation avec:

$$\lambda_{\rm M} = 0.020 [\log x]^2$$
.

En procédant comme il est dit dans la note précédente (type F_0), on obtient six groupes de neuf points chacun. Chaque groupe de neuf points fixe approximativement une droite; les six droites ont le même coefficient angulaire, égal à -0.020.

Comme la valeur calculée de λ_{M} pour x = 300 est 0.124 (ce qui correspond à une étoile de magnitude 4.0 environ, d'après le graphique), on a finalement:

$$\lambda_{300} = 0.124 - 0.020 \ (m - 4.0) \ ;$$

$$\lambda = 0.020 \ [\log x]^2 - 0.020 \ (m - 4.0) \ .$$

P. Rossier. — Généralisation de la formule de Russel pour le calcul de l'index de couleur d'une étoile.

On calcule facilement cet index en faisant sur l'œil et la plaque photographique l'hypothèse que la sensibilité est