Zeitschrift: Archives des sciences physiques et naturelles

Herausgeber: Société de Physique et d'Histoire Naturelle de Genève

Band: 16 (1934)

Artikel: Application de quelques cellules photoélectriques au dosage des gaz

nitreux et de l'ozone

Autor: Wakker, Charles-H.

DOI: https://doi.org/10.5169/seals-741517

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 30.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

3º Dans le cas d'une granule de forme rigoureusement sphérique, dont les dipôles ont leur axe orienté radialement, on a f = 0; mais c'est là sans doute un cas limite, schématique.

Les considérations qui précèdent semblent avoir quelque intérêt au point de vue du mode d'action des micelles sur le milieu qui les entoure. Nous reviendrons ultérieurement plus en détail sur l'ensemble de la question.

Séance du 5 juillet 1934.

Charles-H. Wakker. — Application de quelques cellules photoélectriques au dosage des gaz nitreux et de l'ozone.

Le principe du dosage de gaz colorés par des mesures photoélectriques étant bien connu, nous avons essayé de simplifier l'appareillage utilisé pour ces mesures. L'appareil que nous avons réalisé pour le dosage continu des oxydes d'azote est constitué par un tube de verre de 1 m de longueur et de 3 cm de diamètre parcouru à vitesse constante par les oxydes d'azote préalablement oxydés dans une chambre d'oxydation; les deux extrémités de ce tube sont fermés par des verres plans. La lumière produite par une lampe à filament ponctuel de 130 v. 100 w. éclaire une cellule photo-électrique après avoir traversé le tube de verre dans sa longueur; cette lampe est sous-voltée et commandée par un rhéostat.

La cellule est du type dit au sélénium utilisé dans les photomètres électriques que l'on emploie en photographie. Elle est constituée par un disque de fer de 40 mm de diamètre, recouvert de sélénium actif, lui-même recouvert par un mince film d'or; l'or et le fer constituent les électrodes du système qui se comporte comme un redresseur et comme une pile photoélectrique; en effet, le contact fer sélénium devient générateur de courant sous l'influence de la lumière ayant traversé l'or et le sélénium.

Le courant produit par cette cellule est sensiblement proportionnel à l'intensité lumineuse dans de larges limites si la résistance du circuit extérieur est convenablement choisie. Le galvanomètre utilisé a une sensibilité de 0,3 ma. pour toute l'échelle. Lorsque le peroxyde d'azote est introduit dans le tube, la lumière est partiellement absorbée et l'aiguille du galvanomètre qui avait été amenée à l'extrémité droite de l'échelle (point choisi comme zéro) par le réglage du rhéostat de la lampe, dévie vers la gauche d'un angle déterminé qui est toujours le même pour une même concentration d'oxyde d'azote. Le galvanomètre peut être gradué en % de gaz nitreux, le zéro de l'échelle étant à droite et les divisions de l'échelle plus ou moins serrées suivant que le tube parcouru par les oxydes d'azote est plus ou moins long.

Nous utilisons ce dispositif depuis plusieurs mois et la précision des résultats obtenus est du même ordre de grandeur que celle des analyses chimiques qui ont servi à étalonner l'appareil. Nous avons également construit un appareil comprenant deux cellules photo-électriques montées en opposition et en parallèle sur le galvanomètre; l'une des cellules sert à compenser les variations de la lampe; ce dispositif permet d'avoir le zéro de l'échelle à gauche, ce qui est plus agréable.

Sur la suggestion de M. le professeur Emile Briner, nous avons appliqué cette méthode de dosage à l'ozone. Comme l'ozone n'est que très légèrement colorée en bleu en transparence, nous avons dû utiliser un tube de deux mètres de longueur et de quatre centimètres de diamètre et une lampe de 250. w. L'emploi de cette puissante source de lumière et du montage en opposition a permis d'augmenter la sensibilité du système et l'absorption du 1/8 de la lumière (correspondant à de l'oxygène contenant 3,5% d'ozone) suffit pour que l'aiguille du galvanomètre atteigne l'extrémité de l'échelle. L'emploi de filtres jaunes n'est pas nécessaire, car les cellules au sélénium présentent un maximum de sensibilité pour le jaune.

La précision de la mesure, qui est limitée par les variations du réseau alimentant la lampe, est, à Genève, de l'ordre de 0.03% pour une échelle de 0 à 3.5%. Dans le but de diminuer la longueur du tube de dosage, nous avons utilisé une cellule à gaz et un amplificateur de tension (une pentode) ce dernier étant alimenté en alternatif brut, la stabilisation du système étant obtenue par une autre pentode montée en opposition; le galvanomètre est monté en pont sur les anodes des deux

lampes. Des premiers essais avec une source d'ultra-violets (lampes à vapeur de mercure stabilisées) ont montré que l'intensité de rayons ultra-violets nécessaire pour le dosage détruit une partie notable de l'ozone. D'autres essais avec de la lumière jaune ont permis d'obtenir une grande sensibilité, la précision étant liée à la stabilité de la source de lumière.

La comparaison des cellules à sélénium et des cellules à gaz montre que les premières sont d'une utilisation beaucoup plus pratique et donnent des résultats plus facilement reproductibles quand on ne demande pas une trop grande sensibilité; d'autre part, ces cellules sont exemptes de « fatigue photo-électrique » et ne nécessitent aucune source extérieure de courant, ce qui simplifie leur emploi et élimine de nombreuses causes d'erreur.

J. Weigle et H. Saini. — Sur la transformation du NH_4Br autour de — 40° C.

On sait que le NH₄Br se transforme autour de — 40° par une contraction de son réseau lorsque la température augmente. On a attribué cette transformation au fait qu'à cette température les groupes NH₄ qui oscillaient jusqu'ici, se mettent à tourner dans le cristal. Simon et von Simson ¹ ont montré que cette transformation avait lieu sans changement de symétrie. Or cette contraction du réseau nous a semblé inexplicable et le manque de parallélisme entre les changements qui se produisent dans le NH₄Cl et le NH₄Br nous ont fait penser que Simon et von Simson n'avaient pas un appareil très précis et n'avaient peut-être pas vu la décomposition des lignes de Debye-Scherrer aux grands angles de réflexion, résultant d'un petit changement de symétrie ².

Nous avons donc étudié dans une chambre de précision à basses températures la structure du $\mathrm{NH_4Br}$ à — 75° C. Le résultat fut très net, toutes les raies montrant une « Aufspaltung » indiquant que le cristal qui est cubique au-dessus de — 40° C., ne l'est plus au-dessous; la « non-cubicité » étant

¹ Simon et von Simson, Naturw., 14, 880, 1926.

² Voir J. Weigle, ces comptes rendus, 51, 15, 1934.