Zeitschrift: Archives des sciences physiques et naturelles

Herausgeber: Société de Physique et d'Histoire Naturelle de Genève

Band: 16 (1934)

Artikel: Étude sur la largeur des spectrogrammes d'étoiles de type G0

Autor: Tiercy, G. / Grosrey, A.

DOI: https://doi.org/10.5169/seals-741505

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 28.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

tenir compte ici du fait que les courbes C_4 , C_5 et C_6 donnent des valeurs λ trop faibles. La valeur de λ_M est fonction de x; la relation suivante fournit une assez bonne représentation:

$$\lambda_{\rm M} = 0.030 \left[\log x\right]^2.$$

Si maintenant on porte les valeurs de m en abscisses et les λ en ordonnées, on obtient un graphique dans lequel, pour chaque durée de pose, les points sont approximativement en ligne droite; ces droites ont un coefficient angulaire commun égal à -0.028 à peu près. Comme la valeur calculée de $\lambda_{\rm M}$ pour x=300 est 0.184 (ce qui correspond à une étoile de magnitude 4.2 environ d'après ce même graphique), on a finalement:

$$\lambda_{M,300} = 0.184 - 0.028 (m - 4.2);$$

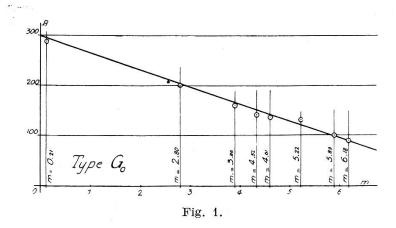
$$\lambda = 0.030 [\log x]^2 - 0.028 (m - 4.2).$$

G. Tiercy et A. Grosrey. — Etude sur la largeur des spectrogrammes d'étoiles de type G_0 .

Cette étude a été faite sur huit étoiles G_0 , de magnitudes visuelles apparentes allant de m=0.21 à m=6.18; pour chacune de ces étoiles, on a fait plusieurs poses, dont les durées respectives sont 30 sec, 60 sec, $2\frac{1}{2}$ min, 5 min, 10 min, 20 min et 40 min; au total 60 poses. Dans l'établissement des résultats, nous avons abandonné les spectres correspondant aux poses de 30 sec; ils sont trop faiblement marqués pour qu'on puisse en tirer un renseignement valable. L'instrument utilisé est le prisme-objectif de Schaer-Boulenger. C'est M. A. Grosrey qui a pris les photographies et qui a effectué les mesures.

Le tableau I donne l'ensemble des mesures directes; les largeurs des spectres sont exprimées en μ .

Pour les deux premières étoiles, les valeurs entre parenthèses sont probablement trop fortes (effet dû peut-être à un défaut de conduite de l'instrument); les valeurs correspondantes déduites pour λ seront donc aussi quelque peu exagérées; mais cela n'influencera guère le résultat d'ensemble.


TABLEAU I.

m	Largeur, pour une pose de:							
	60 sec	150s	300s	600s	1200s	2400s	Courbe	
0,21	/120	154	163	183\	219	261	C_1	
2,80	65	85	113	123	145	172	C_2	
3,86	30	50	70	90	110	164	C_3	
4,32	29 31	40	50	69	90	118	C_4	
$4,61 \\ 5,22$	25	41 36	47 39	74 56	101 90	$\begin{array}{c c} 125 \\ 121 \end{array}$	G_{5} G_{6}	
5,89		31	35	40	57	92	$\begin{bmatrix} G_7 \end{bmatrix}$	
6,18	17	21	27	36	52	(107)	C_8	

Les courbes C_i peuvent être représentées par une équation de la forme:

$$y = A.10^{-\frac{1}{x^{\lambda}}}, \qquad (1)$$

où A est l'ordonnée de l'asymptote parallèle à l'axe des x.

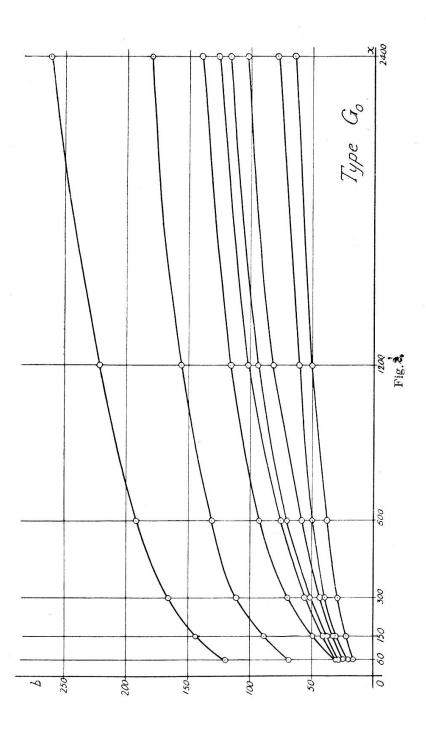

Le coefficient A. — C'est une fonction de m. En traçant les courbes C_i du tableau I, on peut estimer facilement la valeur approchée du A de chacune d'elles; on obtient le tableau II et la figure (1):

TABLEAU II.

\mathbf{c}_i	C ₁	C_2	С3	C4	C ₅	C ₆	C ₇	C ₈
A	290	200	160	140	135	130	100	90

On voit vite que A peut être exprimé par la fonction linéaire approchée:

$$A = 300 - 34 m$$
.

L'exposant λ. — C'est une fonction de m et de x. Il s'agit d'en trouver une expression approchée. Pour cela, on a d'abord

régularisé les courbes C_i , ce qui donne les résultats exposés par le tableau III et la figure (2):

TABLEAU III.

	Largeur pour une pose de:							
Courbe	60s 150s		300s 600s		1200s	2400s	calculé	
C_1	120	144	166	192	222	262	293	
C_{2}	68	89	111	131	155	178	205	
$\begin{array}{c c} C_3 \\ C_4 \end{array}$	$\frac{30}{30}$	50 41	70 56	92 75	116 101	140 126	169 153	
C_{5}	30 29	38	52	70	93	117	143	
C_6	25	34	44	58	81	102	123	
C_7 C_8	$\begin{array}{c} 21 \\ 16 \end{array}$	$\begin{array}{c} 32 \\ 22 \end{array}$	28	$\begin{array}{c c} 50 \\ 38 \end{array}$	60 50	$\begin{array}{c} 78 \\ 64 \end{array}$	100	

Ces valeurs régularisées graphiquement, portées dans (1), permettent de calculer les λ correspondants; le tableau IV donne les résultats de ces calculs:

TABLEAU IV.

	$egin{array}{c} ext{Courbe} \ ext{C}_i \end{array}$	`i	Pour une pose de:						
m			60s	150s	300s	600s	1200s	2400s	
0,21 2,80 3,86 4,32 4,61 5,22 5,89	C ₁ C ₂ C ₃ C ₄ C ₅ C ₆ C ₇	λ_{1} λ_{2} λ_{3} λ_{4} λ_{5} λ_{6} λ_{7}	0,231 0,179 0,069 0,085 0,088 0,090 0,094	0,235 0,202 0,127 0,111 0,112 0,113 0,140	0,245 0,232 0,168 0,145 0,144 0,141	0,261 0,256 0,207 0,183 0,183 0,175 0,184	0,298 0,297 0,258 0,241 0,233 0,241 0,212	0,388 0,359 0,322 0,318 0,314 0,318 0,286	
6,18 Moy. 4,2	$-\frac{\mathrm{C_8}}{\mathrm{C_M}}$	$egin{array}{c} \lambda_8 \ \hline \lambda_M \end{array}$	0,070	0,099 $0,142$	0,119	0,153	0,192	0,245	

La courbe moyenne λ_{M} serait celle fournie par une courbe C_{M} correspondant à une étoile de magnitude 4,2 environ; on peut tenir compte ici de la remarque faite au début, au sujet des courbes C_{1} et C_{2} ; mais elle n'a pas grande influence numérique.

La valeur λ_{M} est fonction de x; et l'on a approximativement:

$$\lambda_{\rm M} = 0.028 \lceil \log x \rceil^2.$$

Maintenant, si on porte les valeurs de m en abscisses, et celles de λ en ordonnées, les points correspondant à une durée de pose déterminée se trouvent à peu près alignés; on obtient ainsi une série de droites approchées, ayant un coefficient angulaire commun égal à -0.024. Comme la valeur calculée de $\lambda_{\rm M}$ pour x=300 est 0.169 (ce qui correspond à une étoile de magnitude 4.2 environ d'après ce dernier graphique), on a finalement:

$$\lambda_{\text{M}, 300} = 0.169 - 0.024 \ (m - 4.2) ;$$

$$\lambda = 0.028 \ [\log x]^2 - 0.024 \ (m - 4.2) .$$

G. Tiercy. — Sur la fonction $f(\xi)$ introduite dans le calcul de répartition des températures à l'intérieur d'une étoile.

La fonction $f(\xi)$ précédemment introduite ¹ peut être représentée empiriquement comme il est indiqué ci-après.

Il s'agit d'une courbe présentant à gauche une branche qui tend asymptotiquement vers l'ordonnée f=1; pour $\xi=5$, la valeur de f est encore à peine supérieure à l'unité; puis f augmente de 1 à 1,852 lorsque ξ passe de 5 à 6,886; après quoi la courbe descend brusquement; et l'on a f=1 pour $\xi=6,888$ où la courbe s'arrête (frontière effective de l'étoile).

La courbe est représentée assez fidèlement par la fonction:

$$f = 1 + A.10^{-h(\xi^{m} - U^{m})^{2p}} \cdot \left[+ \sqrt{\frac{1}{1 + \frac{1}{N \left[\xi - \left(6,888 + \frac{1}{N}\right)\right]}}} \right],$$
(1)

où m est impair, U = 6,886, où A est un facteur plus petit que l'unité, N un grand nombre, et k une fonction croissante de ξ .

¹ Voir notre précédente note sur la répartition des températures dans une étoile.