Zeitschrift: Archives des sciences physiques et naturelles

Herausgeber: Société de Physique et d'Histoire Naturelle de Genève

Band: 16 (1934)

Artikel: Sur la largeur des spectrogrammes d'étoiles F5

Autor: Tiercy, G. / Grosrey, A.

DOI: https://doi.org/10.5169/seals-741504

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 29.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

G. Tiercy et A. Grosrey. — Sur la largeur des spectrogrammes d'étoiles \mathcal{F}_5 .

Nous avons fait des études analogues pour les étoiles de types spectraux B_5 , A_0 , A_5 et K_0 ; nous avons donné ici-même les résultats de ces études ¹. Nous pouvons maintenant donner nos conclusions en ce qui concerne les étoiles de type F_5 .

On a choisi 9 étoiles de ce type, de magnitudes visuelles apparentes allant de 1 m 90 à 6 m 20; pour chacune d'elles, on a fait plusieurs poses, dont les durées respectives sont de 15 sec, 30 sec, 1 min, $2\frac{1}{2}$ min, 5 min, 10 min, 20 min, 40 min; au total 90 poses. Dans l'exploitation des mesures, nous avons abandonné les spectres correspondant aux courtes poses de 15 sec et 30 sec; ils sont trop faibles, et dès la magnitude m=4 il est impossible d'en tirer un renseignement quelconque. L'instrument utilisé est, comme précédemment, le prisme-objectif de Schaer-Boulenger; et c'est M. A. Grosrey qui a guidé les poses et qui a mesuré les clichés.

Le tableau 1 donne le résumé des mesures directes; les largeurs des spectres sont exprimées en μ.

m	60s	150s	300s	600s	1200s	2400s	Courbe	
1,90	95	119	136	158	187	243	C	
$\substack{1,90\\2,42}$	101	116	120	154	175	228	C_1 C_2 C_3	
3,58	45	69	90	109	120	147	С3	
3,96	29	37	59	86	102	131	C ₄	1
4,84	22	33	40	65	88	95	G ₅	(
5,19	$\begin{array}{ c c }\hline 20 \\ 21 \\ \end{array}$	$\begin{array}{c c} 27 \\ 28 \end{array}$	28 31	44 48	60 69	87 90	C ₄ C ₅ C ₆ C ₇)
$5,59 \\ 5,88$	27	$\begin{vmatrix} 28 \\ 25 \end{vmatrix}$	$\frac{31}{32}$	45	71	79	C_8	
6,20	?	23	34	35	41	61	C_9	

TABLEAU I.

Remarquons immédiatement que les courbes C₄, C₅ et C₆ paraissent avoir des ordonnées trop faibles, sauf pour la pose de

¹ C. R. Soc. de phys., 1933, I et II; 1934, I; les mêmes dans Publ. Obs. Genève, fasc. 21-22, 23-24 et 26.

2400 secondes; les valeurs de λ que nous en déduirons seront donc trop faibles (voir ci-après). Il est difficile de savoir à quoi attribuer ce déficit, qui ne nous gênera d'ailleurs que fort peu.

Les Courbes C_i , ayant la même allure que celles trouvées lors de nos précédentes recherches, seront encore représentées par l'équation:

$$y = A.10^{-\frac{1}{x^{\lambda}}}, \qquad (1)$$

où A est l'ordonnée de l'asymptote parallèle à l'axe du temps x. Le coefficient A. — Il dépend essentiellement de la magnitude m de l'étoile, comme le montre la figure 1. Les ordonnées des points de cette figure ont été estimées d'après les données du tableau I et les courbes qui leur correspondent. L'estimation donne:

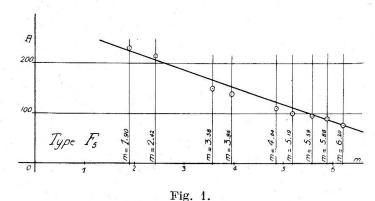


TABLEAU II.

\mathbf{c}_i	C ₁	C_2	C ₃	C ₄	C ₅	C ₆	C ₇	C ₈	C ₉
A	230	215	150	140	110	100	95	90	75

et l'on voit vite que A est lié à m par la relation linéaire:

$$A = 292 - 35 m$$
.

L'exposant λ . — C'est une fonction de m et de x. Pour l'étudier on a régularisé les courbes C_i ; cette régularisation donne le tableau III et la figure 2:

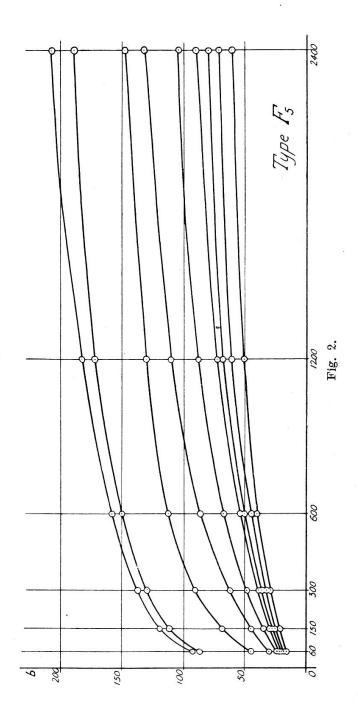


TABLEAU III.

	Largeur, pour une pose de:							
Courbe	60s	150s	300s	600s	1200s	2400s	calculé	
C_1	92	119	138	158	182	207	225	
C_2	88	112	130	150	172	188	207	
C_3	45	69	90	112	130	148	167	
C_4	30	45	62	86	110	132	153	
C ₅	22	34	48	67	88	103	123	
C_6	21	30	38	53	72	90	110	
C ₇	20	28	36	50	67	80	96	
C ₈	18	25	32	44	60	71	86	
C_9	16	21	29	40	50	60	75	

Les valeurs indiquées dans ce tableau III, portées dans la relation (1), permettent de calculer les valeurs correspondantes de l'exposant λ ; les résultats numériques sont rassemblés dans le tableau IV.

TABLEAU IV.

	$oxed{egin{array}{c} ext{Courbe} \ ext{C}_i \end{array}}$	$^{\lambda}i$	Pour une durée de pose de:						
m			60s	150s	300s	600s	1200s	2400s	
1,90 2,42 3,58 3,96 4,84 5,19 5,59 5,88 6,20	C ₁ C ₂ C ₃ C ₄ C ₅ C ₆ C ₇ C ₈ C ₉	λ_{1} λ_{2} λ_{3} λ_{4} λ_{5} λ_{6} λ_{7} λ_{8} λ_{9}	0,231 0,242 0,138 0,085 0,071 0,080 0,094 0,094 0,098	0,252 0,264 0,191 0,126 0,116 0,114 0,125 0,124 0,118	0,271 0,280 0,231 0,164 0,157 0,136 0,149 0,148 0,155	0,297 0,308 0,273 0,216 0,208 0,179 0,196 0,193 0,203	0,336 0,355 0,313 0,274 0,270 0,238 0,261 0,261 0,245	0,426 0,408 0,379 0,353 0,332 0,313 0,326 0,318 0,300	
Moy. 4,2	C_{M}	$\lambda_{ ext{M}}$	0,126	0,158	0,188	0,230	0,284	0,350	

La courbe moyenne λ_{M} serait celle fournie par une courbe C_{M} correspondant à une étoile de magnitude 4,2 environ; il faut

tenir compte ici du fait que les courbes C_4 , C_5 et C_6 donnent des valeurs λ trop faibles. La valeur de λ_M est fonction de x; la relation suivante fournit une assez bonne représentation:

$$\lambda_{\rm M} = 0.030 \left[\log x\right]^2.$$

Si maintenant on porte les valeurs de m en abscisses et les λ en ordonnées, on obtient un graphique dans lequel, pour chaque durée de pose, les points sont approximativement en ligne droite; ces droites ont un coefficient angulaire commun égal à -0.028 à peu près. Comme la valeur calculée de $\lambda_{\rm M}$ pour x=300 est 0.184 (ce qui correspond à une étoile de magnitude 4.2 environ d'après ce même graphique), on a finalement:

$$\lambda_{M,300} = 0.184 - 0.028 (m - 4.2);$$

$$\lambda = 0.030 [\log x]^2 - 0.028 (m - 4.2).$$

G. Tiercy et A. Grosrey. — Etude sur la largeur des spectrogrammes d'étoiles de type G_0 .

Cette étude a été faite sur huit étoiles G_0 , de magnitudes visuelles apparentes allant de m=0.21 à m=6.18; pour chacune de ces étoiles, on a fait plusieurs poses, dont les durées respectives sont 30 sec, 60 sec, $2\frac{1}{2}$ min, 5 min, 10 min, 20 min et 40 min; au total 60 poses. Dans l'établissement des résultats, nous avons abandonné les spectres correspondant aux poses de 30 sec; ils sont trop faiblement marqués pour qu'on puisse en tirer un renseignement valable. L'instrument utilisé est le prisme-objectif de Schaer-Boulenger. C'est M. A. Grosrey qui a pris les photographies et qui a effectué les mesures.

Le tableau I donne l'ensemble des mesures directes; les largeurs des spectres sont exprimées en μ .

Pour les deux premières étoiles, les valeurs entre parenthèses sont probablement trop fortes (effet dû peut-être à un défaut de conduite de l'instrument); les valeurs correspondantes déduites pour λ seront donc aussi quelque peu exagérées; mais cela n'influencera guère le résultat d'ensemble.