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1934 Vol. 16 Septembre-Octobre

SUR |
L'EQUILIBRE RADIATIF DANS LES ETOILES

FORMULES FONDAMENTALES MODIFIEES
PAR

Georges TIERCY

REsumMmE.

Reprenant 1’égalité kv = ak, de la théorie de M. Eddington,
on remplace 'hypothése d’une valeur uniforme « = 2,5 pour
toutes les étoiles par une autre hypothése exprimant o en
fonction de la température centrale T,. Il en résulte de nou-
velles formules pour exprimer la puissance totale rayonnée L,
le rayon r,, et les éléments centraux ¢,, T,, P,.

1. — RAPPELSs.

Nous supposons connue la relation donnant la puissance totale
de radiation dans la théorie d’Eddington:

_ hmcGM(1 — B)
L = e ; 1)

ou L est la puissance de radiation, M la masse totale de I’étoile,
G la constante de gravitation, ¢ la vitesse de la lumiere, % le

coefficient d’absorption, et 3 le rapport entre la pression:p. -
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222 SUR L'EQUILIBRE RADIATIF DANS LES ETOILES

de la matiere et la pression totale P; c’est-a-dire qu’on a, en
appelant p’ la pression de radiation:

[ R
— BP = 5T ,
l\p B 2P

[ p=(—BP =zal;

le coefficient d’absorption est exprimé par la formule suivante
en fonction de la température absolue T et de la densité p:

ky

k:‘;- ; (3)

e
||

. k ; ;
dans cette expression, j est une constante, si 'on représente

par . le poids atomique moyen de I’étoile; quant au coefficient =,
il a été défini comme suit par M. Eddington:

(4)

=
=
e

ou L, est la puissance rayonnée par une sphere de rayon r, et
M, la masse de cette méme sphére.

Les quantités k et ) ne figurent dans (1) que par leur produit;
or, I’analyse montre que le facteur 7, qui vaut I’'unité a la surface
de I'étoile, augmente lorsqu’on passe de la surface au centre;
mais la valeur centrale v, ne peut valoir qu'un petit nombre de
fois I'unité; d’autre part, a cause de I'égalité (3), le facteur &
diminue progressivement de la surface au centre; car on a aussi,
a cause de (2):

w et B étant des constantes, p est proportionnelle a T2; il
s'ensuit que & est inversement proportionnel & 4/T, et diminue
lorsque la température augmente.

Ces constatations ont permis & M. Eddington de considérer
qu'en premiére approximation on pouvait poser:

kn = const.
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dans toute I'étoile; cette hypothése est d’ailleurs liée a celle
de 3 = const. par (1). En réalité, kv n’est pas rigoureusement
constant; et, dans la suite, il s’agit plutét d’une valeur moyenne
k7. On déduit de ces prémisses que:

T ——— e

o= [ e)

Les égalités (5), (6) et f = const. avaient déja été indiquées
par M. Bialobrzeski! en 1913, dans la supposition qu’on avait
affaire a une sphére gazeuse en équilibre polytropique de

classe n = 3; I'équation caractéristique d’un tel équilibre est
4
justement P = Co3.

Quant & la valeur du coefficient {, elle est fournie par I'équa-
tion du quatriéme degré suivante:

IIM2pipt + B —1 =0, avec
N {7)
I = const. = (7,83) . 10770,

tant dans la théorie de M. Bialobrzeski que dans celle de
M. Eddington. '

Du fait que les quantités 1. et M sont grossiérement cons-
tantes pour toutes la série des étoiles géantes, il résulte que le
produit moyen ﬁ garde, en gros, la méme valeur tout le long
de la dite série.

M. Eddington a déduit de cette remarque une conséquence
importante. A cause de (3), et en tenant compte de (5), on

obtient I'égalité:
T
k= kc(,—r‘-’) , (8)

! Sur I’équilibre thermodynamique d’une sphére gazeuse libre.
Bull. de I’ Acad. de Cracovie, 1913.
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ou I'indice ¢ indique les valeurs centrales. On tire de (8) pour
le produit moyen %+ Pexpression:

nous écrirons cette égalité comme suit:

kn = ak, , en posant :

_m—T_:_

o=\/ F ;
o est donc un facteur moyen, dont il s’agit de déterminer la
valeur convenable. M. Eddington a admis pour « une valeur

uniforme o« = 2.5 pour toutes les étoiles de la série; et cette
hypothése I'a conduit & sa célébre relation:

(9)

4

Lok "M . (1—B)

3 4

2.;1.5.T

|~
® o)

; (10)

ou T, est la température effective de 1'étoile; cette relation
montre que I'éclat absolu dépend essentiellement de la masse
du corps, et relativement peu de la température effective.
De cette expression (10), on déduit les suivantes, en désignant
par r, le rayon de I'étoile:

: . 3 & 8
i 5 10 4 5 5
Lo mpow ke M l—B) Ty 3
¢ _u s _sm
5 10 4 5 5
ook M L (A—p) . T,
(11)
2 1 3 .2 i
5 5 2 5 5
T, .M 7.1 —B) w LT,
8 4 ' 8 32
5 . 5 5 5 .3
\Pcr\)kl.M .('1—6) . .Te

Dans les comparaisons par division, la constante k; est
éliminée.
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2. — NOUVELLE HYPOTHESE SUR LE FACTEUR MOYEN o.

La valeur de o dépend de la répartition des facteurs v dans
le corps de I’étoile; et le facteur v dépend lui-méme du régime
admis pour la libération d’énergie; ce régime peut étre tel que
Pénergie libérée (4me) par unité de masse et par seconde soit
proportionnelle & T, ou & T2, ou & T4, par exemple; plus I’expo-
sant de T est élevé, plus la libération d’énergie est concentrée
dans la partie profonde de I'étoile.

Dans chaque cas de libération envisagé, le facteur %, qui
vaut 1 a la frontiére de I'astre, croit vers le centre jusqu’a
une valeur déterminée 7, supérieure a 1, et qui ne peut atteindre
qu'un petit nombre de fois I'unité. Avec la loi e~ T, on a
Ne = 1,7; avec ¢ ~ T2, on a M. = 2,06; avec ¢ ~> T4, i] vient
Ne = 41, '

D’autre part, si on prend la distribution de température dans
le corps de l’étoile résultant des théories de Bialobrzeski,
d’Eddington et d’Emden, la formule (3) montre que le coefficient

d’absorption £ augmente dans le rapport de 1 a 4% quand on

va du centre a une distance r = 0,87 ry 1. Ainsi, du centre a
une couche toute proche de la surface, c’est-a-dire en prenant
la presque totalité de la masse de I’étoile (999%), v diminue
tandis que %k augmente. Les valeurs indiquées plus haut
montrent que, quelle que soit ’hypothése de distribution des
sources d’énergie, le produit % doit rester approximativement
constant dans 1’étoile; en fait, comme il a été dit ci-avant,
c'est la valeur moyenne k—y] qui intervient dans les formules;
et nous avons relevé que ce ky moyen garde grossiérement la
méme valeur quand on passe d’une étoile a Pautre dans la
série des géantes.

Quelle est, dans ces conditions, la valeur numérique du
coefficient moyen o« ? Pour la trouver, il faut diviser 1’étoile en

1 Nous laissons de coté la derniére couche extérieure, pour laquelle
les tables numériques d’Emden ne sont plus utilisables.
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une série de couches d’égale masse, calculer les valeurs indi-

T,
viduelles de o = n\// Tc pour les différentes couches respec-

tivement, et faire ensuite la moyenne. D’aprés les calculs
préparés par M. Eddington dans les hypothéses de libération
d’énergie e ~ T, e ~ T2 et e ~~ T4, on a le tableau suivant:

€ ~T ~ T2 ~o T4
Ne 1,7 2.6 4,7
o 1,74 2,12 2,75

Il faut alors remarquer que les valeurs individuelles de o
pour les différentes couches ne s’éloignent jamais beaucoup
de la moyenne correspondante, sauf cependant les a cen-
traux («,) pour les cas de forte concentration des sources
d’énergie; par exemple, pour ¢ ~ T4 on a «, = 4,71 contre
une moyenne de 2,75; de méme pour e ~ T2 on a o, = 2,57
contre une moyenne de 2,12; alors que pour e ~ T, il vient
a, = 1,70, valeur presque égale a la moyenne.

Quelle loi faut-il adopter pour la répartition des sources
d’énergie ? La méme loi convient-elle uniformément pour tous
les types d’étoiles ? Clest la une question a laquelle il est
extrémement difficile de répondre.

Si on adopte une valeur moyenne « uniforme pour toutes
les étoiles, on court évidemment le risque de commettre un
écart systématique, puisque k, peut varier, du type spectral M
au type A, dans le rapport de 3 a 1; la théorie de répartition
des densités et des températures donne en effet, comme on

1 . ;

T il est vrai que la valeur
e

du poids atomique moyen p peut varier d’un type spectral &

Pautre, méme si 'on ne sort pas de la série des géantes; mais

e A6 2 9.0 %
sait: o, ~T1,, T, ~T,, dou k,

cette variation de p. est minime; et son influence est faible,
comparée & celle de la variation de £,

Le petit tableau numérique précédent montre que le «
moyen est certainement fonction du régime de libération
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d’énergie. Cette fonction ne prend évidemment que des valeurs
relativement rapprochées de 25 quand on passe de la loi
e~T & e~T4 cependant I'adoption de la valeur uniforme
« = 2,5 pour toutes les étoiles ne me parait pas étre entiére-
ment satisfaisante.

Prenons en effet I'égalité (9):

kn = ak, ,

par laquelle on a défini le facteur a.. Le premier membre restant
grossierement constant lorsqu’on passe d’une étoile géante a
Iautre, il doit en étre de méme pour le second membre.

En réalité, la moyenne ﬁ semble montrer une légére dimi-
nution systématique, lorsqu’on passe d’une étoile ou régnerait
la loi e ~ T & une autre étoile ou la loi € ~ T* serait valable;
en effet, o, passe alors de 1,70 a 4,71; tandis que le £, diminue

proportionnellement & %-, puisqu'on a, & cause de (3) et
c

5):

]f‘:k,i, 3_1___ 12
CERA g O (12

Précisons cependant que, si ko diminue quelque peu lorsqu’on
passe d’une loi de libération d’énergie & une autre, cette
moyenne prend une valeur déterminée pour chaque étoile,
de méme que le coefficient (3.

Le produit ak, doit donc étre grossierement constant, avec
tendance a diminution lorsqu’on passe de la loi e ~ T a la loi
¢~ T4 or, dans le dernier cas, et & masse égale, la tempé-
rature centrale T, est plus grande que dans le premier cas;

. X 1 .
k, est donc plus petit et a diminué comme ——. Pour réta-
. c
blir la constance approximative du produit ok, on est amené

4 considérer une augmentation compensatrice du facteur «.
Nous allons donc abandonner '’hypothese d’Eddington d’une
valeur uniforme o == 2,5 pour toutes les étoiles, et la remplacer
par une autre hypothése plus satisfaisante.
Remarquons qu’admettre une variation de « quand on
passe d’une étoile & 'autre, cela revient 4 admettre que la loi
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de libération d’énergie n’est pas la méme pour toutes les
étoiles; et cela semble raisonnable, puisque les températures T,
sont sensiblement différentes, du moins dans la série des
géantes.

Pour compenser la diminution de %, avec LFI_‘_’ je propose

C
I'’hypothése suivante:

(13)
a = on4/T, , a, == const. ;

on voit que la compensation n’est pas complete; et lorsque T,
augmente, c’est-a-dire lorsqu’on passe de e~T & e~ T4,
le produit ak, diminue quelque peu.

En utilisant ’hypothése (13), on constate que le « moyen
varie dans les limites indiquées par le tableau numérique
précédent, lorsqu’on passe d’une étoile & I'autre. Voici les
résultats pour un groupe de six étoiles; on remarquera que les
derniéres sont des naines; la théorie générale de I’équilibre
radiatif s’applique en effet aux étoiles naines denses, comme
Eddington I’a montré en 1924.

3

Etoile TC A/ TC . (avec ug = -é—é)

\

Capella (0,91)-107 209,1 1,74
V Puppis (4,24)-107 348,7 2,90
Y Sagittarii (6,87)-10° 190,1 1,58
Soleil (3,95)-107 340,6 2.84

(5,32)-107 375,92 3,13
60 Keueger (7,91)~107 429.3 3,58

La moyenne générale de ces différentes valeurs est & peu pres
de 2,5.

Nous adopterons donc I’hypothése (13); et nous allons la
mettre en jeu pour établir la formule « Radiation-Masse »
modifiée.
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3. — NOUVELLE FORMULE FONDAMENTALE.

Nous ne reprendrons pas le calcul ab ovo; il suffit de repartir
de la formule fondamentale (10) d’Eddington, ol nous réintro-
duirons le facteur o; il y figure tout naturellement, puisque
le dénominateur de (1) est kv = ok, La relation (10) s’écrit
alors comme suit:

4

(S T
|~

o

Lvo ok oM. (—p). . T

@© O B~

(14)

Ici, nous sommes obligés de faire appel & un résultat fon-
damental, tant de la théorie de M. Bialobrzeski que de celle de
M. Eddington; ¢’est celui qui donne la valeur de la température
centrale T, ; on a:

G uBM
== - —_ . 1
T, = 0,856 - ) (15)
Comme on a d’autre part:.
L= 4nr§cT§ )
il vient:
GM.24/ns. T
T, = 0,856 - \{ £ &R@ ; (16)
L2
d’ou:
1 1 2 .1_ 1
’l_ 3 6 . 3 3 3 3
3 M T, uwB -
T, — G980, F.0 VA50 2 (17)
R L

Cette quantité exprime la variation admise pour o par
Phypothése (13); portons-la dans la relation (14); on obtient:

4 17

. 8
Leok > MY, (1 —p)

.p.E.T

_s 2
B ML B

%
i

LR

b 1
e
mais alors ’équation (7) en § donne:

4 1 5

2
g P —p) B MR (19)
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de sorte qu'on a finalement, en portant cette expression dans
(18):
12 19 43 1:

Lok B.MB, (1 —p)%. "

[ B
| =

&
.
=

«w

O -

{20)

Telle est la nouvelle formule que nous proposons pour
représenter la relation entre la puissance totale rayonnnée et la
masse.

On constate immédiatement que, suivant cette nouvelle
formule, la puissance rayonnée L dépend de la masse plus
essentiellement encore que ce n’était le cas avec la formule (10);

I'exposant % de M dans (2) est plus grand que l'ancien

exposant % ; et le nouvel exposant g—i de (1 — B) est supérieur

a l'ancien exposant E; on sait, d’autre part que, a4 cause de
I’équation (7), la parenthése (1 — B) est une fonction croissante
de la masse. Par contre, dans la nouvelle relation (20), la tem-
pérature effective T, a moins d’influence sur la valeur de L que
ce n’était le cas dans la formule (10).

De la relation (20), on déduit d’autres relations utiles de méme

genre, comme on le fait avec P'ancienne expression (10). Nous
les donnons ci-apres.

4. — FORMULES NOUVELLES DEDUITES DE (20).

1° Tirant r, de I'équation L = 4nr§cT2, et remplacant L
par 'expression (20), on trouve:

6 19 43 6 24
T 2 13 13
Foo o kg BOMHT L —pEouBlT, B

" ; (21)
20 Ensuite, comme la théorie générale établit que p, est
proportionnelle 4 la densité moyenne p, et comme on a toujours

= M
d énrg ’
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il vient, grace a (21):

18 31 129 18 72

o -Npmk:3.M 26-(1_3) ').’“‘ ”.TE}; (22)

3¢ Puis, partant de la valeur (15) de T,, tenant compte de
T'expression (21), d’une part, et de I’équation (7), d’autre part,

on trouve:
[ 3 15 6 24

T, K5.M B —p) P BT (23)
40 Enfin, de I'égalité générale (1 —B)P = %T‘l, on tire:

(1 - B) Pc ~ ’Tz 3

ce qui donne:
24 12 43 24

P~ kS.M ®.(1—p) Py BT

C

>
=

w

(24)

D -

Les nouvelles formules (20) a (24) conduisent nécessairement,
a des conséquences analogues a celles entrainées par la célébre
formule (10) de M. Eddington et par les autres formules
déduites; on trouve notamment que:

a) Pour un type spectral donné (T, donnée), les étoiles les
plus massives sont les plus légeres et les plus froides;

b) L’augmentation de radiation avec la masse se fait & un
rythme plus rapide pour les petites masses que pour les
grandes;

¢) Et I'on peut ajouter que la puissance rayonnée totale 1.
exprimée par (20) est une fonction plus rapidement croissante
de la masse que ce n’était le cas avec la formule (10).

) _ ky
5. — NOUVELLE VALEUR DE LA CONSTANTE w’

II va sans dire que la nouvelle hypothese (13) a aussi pour
effet de modifier quelque peu la valeur numérique de la cons-

tante (—]3) de (3).
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Adoptons la valeur ak, = 122 obtenue en utilisant les données
numeériques assez bien connues relatives a I’étoile Capella, et
en admettant pour le Soleil une magnitude bolométrique
absolue légale & 4m 85,

Dans ’hypothese de la valeur uniforme o = 2,5 pour toutes
les étoiles, on trouvait &k, = 49; et la valeur —{-11 s (1011 Q%6
était tirée de la relation (3) appliquée au centre de I'étoile:

k Pe

]f — i | % mm—— a

S I

2

c

T

3
Avec notre nouvelle hypothése o = «,4/T,, on trouve
d’abord:

P12 122k fo
¢ & LT m T*
cc(,T?c Tz
5
6
ok 1227, 1
i s = avec % = 735 (25)

-

et comme, pour Capella, on a T, = (0,914).107 et p, = 0,1250,
on trouve finalement:

b 9,93) 10w

1
y

Nous avons appliqué les formules précédentes (20) a (25) a
plusieurs étoiles de types respectifs différents; elles ont donné
des résultats s’accordant trés bien avec les faits observés.
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