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1933 Vol. 15. Novembre-Décembre

QUELQUES REMARQUES

SUR

LA THEORIE DE LELECTRON MAGNETIQUE DE DIRAC"

PAR

L. de BROGLIE

Vous savez que la théorie de l’électron magnétique de
M. Dirac constitue aujourd’hui la forme la plus élaborée et la
plus compléte de la Mécanique ondulatoire de I’électron. Je ne

prétends pas vous apporter sur cette théorie des résultats

vraiment nouveaux; je voudrais seulement vous faire part de
quelques remarques qui me sont venues a l'esprit quand je
I’ail étudiée moi-méme.

Bien que la plupart d’entre vous connaissent sans doute
trés bien les principes généraux de la nouvelle Mécanique, je
dois cependant vous les rappeler avant de pouvoir aborder
avec fruit la théorie de Dirac.

Pour exposer I’idée fondamentale de la nouvelle Mécanique,
du moins sous la forme dite « Mécanique ondulatoire », nous
pouvons nous exprimer de la facon suivante: Pour décrire le
mouvement des corpuscules matériels élémentaires, des élec-

1 Conférence faite 4 Geneéve le 16. XI. 33. lors des Conférences
Internationales des Sciences Mathématique (conférences sur la théorie
des quanta). Pour la conférence de M. de Broglie sur «Les.idées

nouvelles introduites par la mécanique quantique» faite a/la meme.:‘__ ﬁ

occasion, voir I’Enseignement mathématique. DAL

ARCHIVEs, Yol. 15, — Novembre-Décembre 1933.

R e e T et i
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trons en particulier, nous ne devons plus employer comme
Pessayait 1’ancienne Mécanique des équations différentielles
nous permettant de suivre au cours du temps la position du
corpuscule (ou ce qui revient au méme de trouver I’expression
de ses coordonnées en fonction du temps); nous devons intro-
duire une fonction, la fonction d’onde ¥ du corpuscule qui
satisfait & une équation aux dérivées partielles et présente une
analogie de forme marquée avec les ondes de la Physique
classique. Pour former I’équation aux dérivées partielles &
laquelle satisfait la fonction W, on part de I’expression Hamil-
tonienne classique de 1’énergie, c¢’est-a-dire de la fonction des
coordonnées xyz, des moments de Lagrange p,p,p, et du
temps ¢ qui exprime l'énergie du corpuscule. Soit H(z, y, z,
Px> Py» Py» ) cette fonction. Si dans cette expression Hamilto-
nienne, nous considérons chacun des p, comme représentant
non pas un nombre comme dans la théorie classique, mais un

. Y : : 0
opérateur ou symbole d’opération, savoir 'opérateur — B g
e ’%

nous transformons la fonction Hamiltonienne en un opérateur
. . —h 0 —h o —h oD
Hamiltonien H(x e — ey 5T et nous
» Y B oniva 3ma oy’ 2xi 33’ t
admettrons que I’équation aux dérivées partielles a laquelle
obéit la fonction W du corpuscule est:

oW
ot

h .
5 = HY (1)
HY' désignant le résultat de Dopération H appliquée a la
fonction .

Pour un corpuscule se mouvant dans un champ de force
qui dérive d’un potentiel U(z, y, z,1), c’est-a-dire tel que la
force soit en chaque point le gradient changé de signe de la
fonction U, la fonction Hamiltonienne classique est:

1 ;
Hz, y, 5, Py Py Py ) = 5= (P + Py + P) + Ulz, 9, 3, )
(2)
et par suite I'équation (1) s’écrit explicitement:
8=im . brim oW

A — ST = S (3)
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La forme (1) de l'équation en W se justifie par diverses
considérations dans le détail desquelles je ne puis entrer ici
et qui montrent comment la Mécanique fondée sur cette équa-
tion (1) est bien ’extension, la généralisation naturelle de
I’ancienne Mécanique.

L’équation (1) est une équation aux dérivées partielles du
premier ordre par rapport au temps et du second ordre par
rapport aux coordonnées d’espace. Si ’on connait la forme de
la fonction ¥ & un instant initial ¢ = 0, son évolution ulté-
rieure sera entiérement déterminée par I’équation (1). L’équa-
tion (1) est une équation parabolique qui au premier abord
parait semblable & ’équation fondamentale de la théorie de la
chaleur, mais & cause de la nature purement imaginaire du

coefficient oo c¢’est en réalité une équation de propagation

d’ondes qui, pour U =0, admet comme solutions des ondes
planes monochromatiques.

Maintenant supposons que nous connaissions la forme
initiale W' (z, y, z, 0) de la fonction d’onde et que nous sachions
trouver la solution bien déterminée de I'équation (1) qui
correspond a cette donnée initiale. En quoi nous servira alors
la connaissance de la fonction W (z, y, z,¢) pour la description
du mouvement du corpuscule ? La réponse a cette question
fait intervenir le caractére probabiliste de la nouvelle Méca-
nique sur lequel, je crois, M. Born a été le premier a attirer
nettement Pattention. Tandis que la Mécanique classique,
quand elle connaissait 1’état initial d'un corpuscule, était en
principe capable d’assigner & chaque instant une valeur bien
déterminée a toutes les grandeurs caractéristiques du corpus-
cule, la nouvelle Mécanique ne peut avec I’aide de sa fonction ¥
qu’assigner a chaque grandeur certaines valeurs possibles
affectées chacune d’une certaine probabilité.

Voici comment briévement on peut résumer la maniére dont
la nouvelle Mécanique peut obtenir ces prévisions affectées de
probabilités. A chaque grandeur attachée & un corpuscule, on
fait correspondre un certain opérateur appartenant a la caté-
gorie des opérateurs linéaires et hermitiques. Pour une coor-
donnée, x par exemple, Popérateur est x.; pour un moment
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: —h ?
r b ’ o
conjugué tel que p,, 'opérateur est ETEYR Toutes les autres

grandeurs définies par la Mécanique classique sont des grandeurs
dérivées s’exprimant & ’aide des coordonnées et des moments;
les opérateurs correspondants s’obtiennent en remplacant dans

. . —h >
les expressions classiques x par z., p, par 5— —, etc. sans

qu’il y ait d’ambiguité quand on emploie comme nous le
supposons des coordonnées Cartésiennes rectangulaires. On
voir alors que l'opérateur Hamiltonien précédemment défini
est celui qui correspond a I’énergie.

Cecl posé, la nouvelle Mécanique admet comme premier
principe que les seules valeurs que puissent prendre une gran-
deur mécanique attachée au corpuscule et a laquelle correspond
un opérateur linéaire et hermitique sont les valeurs propres
toujours réelles de I'équation:

pour le domaine D de variation des variables xyz résultant de
la pnature du probléme, domaine qui est trés souvent ’espace
tout entier. Les valeurs propres en question sont les seules
valeurs que puissent fournir une mesure précise de la gran-
deur A. ’

- SiPéquation (4) admet un spectre discret de valeurs propres,
il n’y a qu’une suite discréte de valeurs possibles de la gran-
deur A. Cest ce qui se produit pour Pénergie (opérateur H)
dans le cas des systémes que l'ancienne théorie des quanta
étudiait déja avant apparition de la nouvelle Mécanique sous
le nom de «systémes quantifiés ». Aussi est-ce en déterminant
les valeurs propres de leur opérateur H que I'on peut calculer
les niveaux d’énergie des systémes quantifiés par la méthode
si brillamment instaurée par M. Schriodinger.

Les valeurs possibles des grandeurs mécaniques se trouvent
ainsi déterminées par un procédé qui ne fait pas intervenir la
fonction ¥ du corpuscule considéré. Mais la fonction ¥ inter-
vient pour la détermination des probabilités respectives de ces
diverses valeurs possibles et cela grice & un second principe
dont je donnerai ’énoncé en m’en tenant au cas simple ol
I’équation (4) admet un spectre discret de valeurs propres non
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dégénérées, c’est-a-dire ou il vy a une suite discontinue de
valeurs propres o, o, ... &, ... a chacune desquelles correspond
une seule fonction propre ¢;¢,... 9, .... Nous admettrons
que le systéme des fonctions propres est un systéme complet
d’ou résulte que la fonction W(xyzt) peut se développer sous
la forme:

W(zyszt) = zck ey, (5)
kR

les ¢, pouvant dépendre du temps. Nous énoncerons alors le
principe suivant: « La probabilité pour que la grandeur A ait
la valeur o, est égale & ¢, = ¢, *».

Appliqué a I'énergie (opérateur H), ce principe général donne
comme cas particulier ce qu’on peut appeler le «principe de
Born » car il a été énoncé pour la premiere fois par M. Born.
Appliqué a la position du corpuscule, ce principe général
indique que la probabilité pour que le corpuscule soit contenu
dans 1’élément de volume dz dy dz est ¥* 'V dz dy dz.

Connaissant & I’aide des deux principes généraux les valeurs
possibles d’'une grandeur A et leurs probabilités, il est facile
d’en déduire la valeur moyenne de A qui est par définition:

K: Eoﬁk‘cklz . (6)
k )
L’on trouve aisément 1:

T = fffw*Adedydz ) ' (7)
D

Si la valeur moyenne a un sens bien net, il ne me parait pas
en étre de méme de la quantité ¥'* AW qu’on peut appeler
d’aprés (7) la «densité de valeur moyenne ». Si ’on réfléchit
aux définitions et principes qui précédent, on voit que cette
quantité ¥* AW ne peut guére avoir un sens physique:
c’est seulement la quantité qu’il faut intégrer pour obtenir
la valeur moyenne A. En fait, tandis que la valeur moyenne
d’aprés sa définition (6) est essentiellement une grandeur

! Les fonctions étant supposées « normées » ainsi que la fonction
d’ondes W',
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réelle, la quantité ¥* AW ne I'est pas nécessairement, ce qui
ne permet guére de lui attribuer d’une facon générale une
signification physique. Nous nous servirons de cette remarque
pour la théorie de Dirac que nous abordons maintenant.

%
% ES

La Mécanique ondulatoire de I’électron telle que nous venons
de la résumer rapidement dans ses grands lignes a remporté
de magnifiques succés dans les domaines étendus de la Physique.
Néanmoins on ne peut pas réellement la considérer comme
satisfaisante. D’abord elle n’est pas en accord avec la théorie
de la Relativité, ce qui peut se voir de bien des maniéres par
exemple en observant que I’équation (1) fait jouer au temps et
a 'espace un rdle dissymétrique puisqu’elle est du premier
ordre en ¢ et du second ordre en xyz. De plus, ’équation ne
contient aucunement les propriétés de rotation propre (spin)
et de magnétisme propre de 1’électron dont Dintervention
s’était montrée nécessaire, dés avant I’éclosion de la nouvelle
Mécanique, pour interpréter la structure fine des spectres et
les anomalies magnétiques (anomalies de D'effet Zeeman).
La théorie électromagnétique indique que si un corps électrisé
de charge totale ¢ et de masse p est en rotation autour d’un
axe, le moment de rotation M et le moment magnétique M
produit par ce moment sont de méme sens et que leur rapport

I%ﬁ' doit étre égal & T L’existence des anomalies magné-

tiques suggére que l’électron posséde un moment magnétique
propre et un moment de rotation propre comme les posséde-
rait dans DI'image classique une petite boule d’électricité
tournant autour d’un de ses diameétres; seulement le rapport

Lﬂl] ; e e g 5 ko 3

i possede la valeur — etnon o et c’est précisément
cette différence qui explique les anomalies de I'effet Zeeman.
MM. Uhlenbeck et Goudsmit ont été amenés, il y a une dizaine

d’années déja, a supposer que 1’électron a un moment magné-

et un moment

tique propre égal & un magnéton de Bohr A ::mc

de rotation propre égal & une demi-unité quantique de moment

de rotation, soit %Q}i’_ Cette hypotheése s’est montrée trés
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fructueuse et il est devenu nécessaire de 'incorporer dans la
nouvelle Mécanique ondulatoire de 1’électron. Ce n’était pas
possible sur la base de I’équation (1), mais cette incorporation
se trouve automatiquement réalisée par I’équation de Dirac.

M. Dirac a trouvé I’équation d’onde fondamentale de sa
théorie en considérant d’abord le cas simple de ’absence de
champ et en cherchant a construire une Mécanique ondulatoire
relativiste qui conserverait pour la densité de probabilité
de présence une forme analogue a la forme W* Y de la théorie
antérieure. On était en effet parvenu en cherchant a rendre
relativiste la Mécanique ondulatoire & proposer une théorie dans
laquellela densité de probabilité de présence n’avait plusla forme
W* W, mais une forme plus compliquée. M. Dirac a considéré
cette forme comme inadmissible parce qu’elle n’a pas néces-
sairement des valeurs positives et il a considéré comme néces-
saire de conserver pour la probabilité de présence la forme
définitive positive ¥'* ¥ ou du moins la forme légérement plus
générale %‘F,’f Y, en admettant D’existence de plusieurs

fonctions d’onde W', comme avait déja suggéré M. Pauli.
Mais dés que 'on a admis cette hypothése, on peut voir aisé-
ment que I’équation en W', ou plutdt le systéme des équations
en WV, , doit étre du premier ordre par rapport au temps sans
quol la condition évidemment nécessaire que la probabilité

totale VY*Y' dxdydz de toutes les positions dans I'espace
. p P

soit égale a I'unité ne pourrait pas se trouver automatiquement
réalisée. La symétrie relativiste entre espace et temps indique
alors que I’on doit chercher un systeme d’équations aux dérivées
partielles simultanées pour les ¥, qui soit du premier ordre
par rapport aux quatre variables d’espace-temps.

On sait que la forme relativiste de I’Hamiltonien du point
matériel libre de masse propre m, est:

H(p,p,p) = b/ m'd + o + b + b2 - (8)

Pour éviter d’avoir un opérateur H défini par une irration-
nelle, on avait proposé avant la théorie de Dirac de poser

h 20211]' .
() 5 = W% = [0 + 2+ ) + mle]W (9
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s s —h d . TR
Px Py P, €tant les opérateurs 530 Cte Mais c’était la

une équation du second ordre qui conduisait pour la proba-
bilité de présence a4 la forme non définie positive dont nous
avons déja parlé.

M. Dirac a admis qu’il y a 4 fonctions d’onde ¥, et que
chacune d’elles obéit & I’équation (9), mais pour les raisons
indiquées plus haut il considére les 4 équations de la forme (9)
en ¥, comme devant étre des conséquences d'un systéme
d’équations linéaires du premier ordre. Considérons 4 matrices
hermitiques & 4 lignes et 4 colonnes &, &, &3 &, jouissant des
propriétés suivantes:

=1 (i=1,2,30u4) oo =—oe @+ (10)

(#;); = (@), (condition d’hermiticité)  (107)
et définissons I'opération o,'W, par I’équation:
o, 1y, = Zl(ai)murl (11)
ou (a;),; désigne 1’élément de la matrice o; appartenant a la

ke ligne et & la /e colonne. Posons alors comme systéme d’équa-
tions d’ondes:

A 127, v, =0 (12

T bt—+ (alpx+ oczpy+oc3pz+ oty My €) R — (12)
s s h ?
oukpeutprendrelesvaleurs1,2,3et4etoul’ona p, = Y

On a évidemment:

R 1
9zt c ot aPx TGPy %aPr T HMhC

Ro1 o -
X (27”,25—{4- 4GPy + %P, + a3pz+ ac4m0c)1bk =0 (13)

puisque la quantité qui suit la premiére parenthése est nulle.
Or d’aprés les propriétés admises pour les matrices o;, (13)
peut s’écrire:

h 2 62 2 2 2 2 o
[<§?i> o PxT Py T P2 moc'] ¥, =0 (14)

c’est-a-dire que chaque ¥, se trouve obéir & I’équation (9),
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mais les V', doivent satisfaire au systéme plus restrictif d’équa-
tions simultanées (12) qui sont les vraies équations d’ondes
de la théorie de Dirac.

S’inspirant de la Mécanique relativiste ancienne de I’électron,
Dirac a ensuite généralisé les équations (12) pour le cas ou un
électron se déplace dans un champ électromagnétique défini

———

par un potentiel scalaire V et un potentiel vecteur A en
posant & la place de (12):

h 1 2 e e .
ErenteV)ve [“l(px — oA +aln— o)
+ 0€3<pz'—iAz) -+ O£4mnc:|m'k = | I (15)
On peut écrire les équations (12) et (15) sous la forme:
p ov, .
Tri o0 W (16)

analogue & la forme (1) avec la définition:
H=— %eV + ;:[ocl<px— %Ax) - oc2<py — %Ay)
+ a3(pz——iAz) + oc4moc]% . (17)

L’expression (17) est donc l'opérateur Hamiltonien pour la
théorie de Dirac. |

Les conditions (10) et (10’) pour les matrices o; n’imposent
pas d'une facon univoque un certain choix de ces matrices.
Ce choix reste en partie arbitraire. Rappelons qu’il est souvent
commode de les choisir comme il suit:

0 0 0 1 0 0 0
0 01 0 0 0 —2 0
0t1= a2=
01 0 0 0 z 0 0
10 0 0 -1 0 0 0
0 01 0 1 0 0 0
0 0 0 -1 01 0 0
O3 = &y = (18)
1 0 0 0 0 0-10
0 -10 0 0 0 0 -1
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C’est ce que nous supposerons désormais.

M. Dirac a démontré le fait fondamental suivant: Si 'on
passe d'un systéme de référence Galiléen & un autre qui est
en mouvement rectiligne et uniforme par rapport au premier
en soumettant les coordonnées xyzt 4 une transformation
de Lorentz générale, on peut conserver les équations (12-15)
avec les mémes valeurs des matrices «;, la seule différence
¢tant que les nouvelles fonctions d’onde ¥, sont des combi-
naisons linéaires des anciennes, combinaisons dont les coéffi-
cients dépendent bien entendu du changement de systéme
de référence effectué. Si I'on examine cette transformation
linéaire des W', correspondant & un changement d’axes dans
I'espace-temps, on s’apercoit que les quatre \t’, ne se comportent
pas comme les quatre composantes d’un vecteur quadridi-
mensionnel d’espace-temps. Les ¥, sont des grandeurs d'un
type inconnu en Relativité classique. Ce sont des «demi-
vecteurs » ou «spineurs». On pourrait donc déja soutenir
que la théorie de Dirac n’est que partiellement en accord avec
Iesprit de la Relativité puisque, si la forme des équations de
base (12-15) est bien invariante pour une transiormation de
Lorentz, les grandeurs ', ne se transforment pas d’'une maniére
tensorielle. Mais nous allons rappeler dans un instant qu’il
existe des grandeurs formées bilinéairement & 1’aide des
', et de leurs conjuguées qui, elles, ont le caractére tensoriel
et sur la nature desquelles nous aurons a réfléchir.

Lorsqu’on écrit explicitement les équations (12-15), on
constate tout de suite qu’elles sont trés dissymétriques et
font jouer un role tout particulier a I’axe des z. Pour expliquer
ce fait, il faut se souvenir que le role des fonctions d’onde est
toujours en Mécanique ondulatoire de permettre I'évaluation
de certaines probabilités. Or, comme M. Pauli 'avait remarqué
avant la théorie de Dirac, pour I’électron avec spin les questions
de probabilité doivent étre posées par rapport & un axe de
référence. On peut se demander par exemple quelles sont les
valeurs possibles et les probabilités correspondantes pour
la composante du moment de rotation propre (ou du moment
magnétique propre) de 1’électron dans une direction de réfé-
rence D ? Les équations de Dirac (12-15) (quand on emploie
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la forme (18) des «;) correspondent au cas ou I'on a choisi la
direction de référence D comme axe des z; les V', donnent alors
les probabilités des diverses valeurs possibles pour la compo-
sante z des moments propres. Si donc 'on peut répondre a
une question de probabilité pour laquelle la direction de
référence D ne coincide pas avec I’axe des z initialement choisi,
il faut d’abord faire un changement de coordonnées qui améne
I’axe des z sur la direction D et ce sont les nouveaux V', (combi-
naisons linéaires des W', initiaux) qui fourniront les probabilités
cherchées.

Ce qu’il y a de vraiment trés remarquable dans la théorie de
Dirac, c’est qu’étant partie d'un effort pour se rapprocher de
la Relativité, sans aucune hypothése relative a D'existence
d’un moment de rotation propre et d’un moment magnétique
propre de 1’électron, elle se soit trouvée introduire automati-
quement ces deux éléments. Dirac a montré d’abord que si
I'on considére le mouvement d’un électron dans un champ
électromagnétique conformément a ’équation (15), tout se
passe comme si I’électron possédait un moment magnétique
propre et un moment électrique propre, chacun défini par un
opérateur comme cela doit &tre dans une théorie quantique.

fy . ‘ eh
Lie moment magnétique a comme valeurs possibles + Pp—
N 0

soit - 1 magnéton de Bohr; le moment électrique apparait
conformément a la Relativité grice a la translation de 'aimant
électronique. Le raisonnement développé par Dirac conduit &
faire correspondre aux composantes du moment magnétique
propre les opérateurs suivants:

eh
hrnmge

M. = 4., m, =

= Loty 0y
" brmgye

B (19)

hrmge

oM, =

et aux composants du moment électrique propre les opérateurs:

eh . eh . eh
o = —10 ¥ = —— 10 f =

X7 hrmge Y hrmgc & hmmge

10ty

(20)
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En réalité, ce résultat n’est pas satisfaisant comme nous le
verrons dans un instant en examinant les densités de moyenne
et comme cela résulte dés ’abord du fait que les opérateurs (20)
ne sont pas hermitiques contrairement a la régle générale de
la nouvelle: Mécanique.

En modifiant l1égérement le raisonnement de Dirac, on peut
montrer qu’il y alieu d’ajouter le facteur «, dans les définitions
(19) et (20) et poser:

eh eh
N, = - 10ty 0o O N, = ——log0,a
x l.l:T:mUC 2 %3 4 Yy [Utmoc 3 Y1 M4
eh
N, = — o o,
ReSa hrmge 1 %2 &y
(21)
q eh . & eh . o . eh .
= — 0, o of = 1o, o, = ———— L0y Gy -
£ hnmge *O* V' hrmge *° z brmge °*

Toutes les difficultés sont alors levées: en particulier tous les
opérateurs (21) sont hermitiques.

En ce qui concerne le moment de rotation de ’électron, on
constate qu’en général le moment de rotation dt au mouvement
d’ensemble de I’électron sur sa trajectoire ne satisfait pas aux
mémes théorémes de conservation que dans I'ancienne méca-
nique, par exemple ne reste pas constant dans un champ de
force central; pour obtenir une grandeur qui jouisse des pro-
priétés classiques de conservation, il faut ajouter au moment
de rotation orbital un moment de rotation propre de I’électron
défini par les opérateurs:

h . h . .
Mx:/;:l%% Myzzt_,zl%“l MZZGL%%' (22)

En comparant (22) avec (21), on retrouve le rapport normal
I _

e - ’ e ’ i
= qui caractérise 1’électron,
| M| myc

Nous devons maintenant nous poser la question suivante:
« La théorie de Dirac se concilie-t-elle avec le formalisme général
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de la théorie quantique que nous avons précédemment exposé ?
La réponse est entiérement affirmative.

Comme dans la Mécanique ondulatoire, on fait correspondre
en Mécanique de Dirac un certain opérateur linéaire et hermi-
tique 4 chaque grandeur attachée au corpuscule, mais icl ces
opérateurs pourront contenir a ¢6té des symboles d’opérations
employés antérieurement des symboles d’opération agissant sur
les indices des fonctions W', tels que les matrices «; ou leurs
combinaisons hermitiques (voyez par exemple les opérateurs
(21) et (22)).

Les valeurs possibles de la grandeur qui correspond a un
opérateur A seront ici définies par les valeurs propres réelles

des équations:
A((Pk) = a'cPk, k = 117 21 3a 4 . (23)

dont les fonctions propres sont & quatre composantes cpf cp; cpi cpi.
Les fonctions propres ¢, sont orthogonales, c’est-a-dire que
Pon a

fff;@f opdrdyds =0  (1#1) (24)

et on peut les normer par la condition:

fff;cp}:cpfldxdydz= 1 . (25)

De plus, elles forment un systéme complet, ¢’est-a-dire qu’on
peut développer les fonetions W, du corpuscule sous la forme:

-
¥, = %‘cl 9, - (26)

La probabilité de la valeur propre o, est alors donnée par
ity == lcl ‘2. On en déduit aisément que la valeur moyenne de
la grandeur A est donnée par:

A= Zal’clf - drff;W;A‘thxdydz . (27)

Nous retrouvons donc bien ici tous les principes généraux
de la Mécanique quantique. Il y a lieu seulement de tenir
compte de I'existence de 4 fonctions ¥, et d’introduire dans les
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formules données antérieurement une sommation supplémen-
taire sur I'indice k& chaque fois qu’il y a une intégration dans
’espace.

D’apres (27), on voit que la densité de valeur moyenne pour
la grandeur A est %‘F};A‘Fh. Comme précédemment, on

peut soutenir que cette grandeur n’a pas vraiment un sens

physique, étant seulement la quantité qu’il faut intégrer pour

obtenir la valeur moyenne Eoclﬂc,F. Et ce sont précisément
; !

les densités de valeur moyenne qui se révélent en théorie de
Dirac comme ayant un caractére tensoriel analogue & celui des
grandeurs de la Relativité classique. Ainsi, par exemple, les
densités des composantes de moment magnétique et de moment
électrique forment en Relativité classique un tenseur antisymeé-
trique du second ordre. En théorie de Dirac, si I’on forme &
Yl 4 P—

Paide des 6 opérateurs I, ... &, du moment magnétique propre
et du moment électrique propre les densités correspondantes:
52

h * eh
—— > M g, v bty W o e
lnzmoc; G AT mge

Ellf';ialoc4qf'k , (28)
%
ces densités forment les six composantes distinctes d’un
tenseur antisymétrique du second ordre. Nous sommes ic1 en
accord avec la théorie de la Relativité, mais seulement pour
des grandeurs qui ont un sens de moyennes et qui, du point
de vue quantique pur, ne paraissent pas avoir de signification
physique. Nous voyons bien ici se dessiner une opposition entre
le point de vue quantique pur ou régne ’idée de discontinuité
(caractére discret des valeurs propres) et le point de vue plus
classique de la Relativité qui utilise toujours le continu.
Pour préciser, considérons comme exemple la composante z
du moment de rotation propre de ’électron. L’opérateur corres-

pondant (voir (22)) est: %icxz o5. Les valeurs propres de cet

opérateur, c’est-a-dire les valeurs possibles de M,, sont - i
On prouve a ’aide des principes généraux que la probabilité

de la valeur - ;_ est

fff[iqulz + [w'sl'z]dxdydz
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et que la probabilité d

fff[l‘l;l‘-’ -+ 1u"4|2]dxdydz ,

La valeur moyenne est

W= eSS v

ou en tenant compte de la valeur des «,

— Wt [ || dedy s
(29)

;r./ f/ Wy iy o, Wy dedyds - (30)

conformément a la formule générale (27).
Dans tout systéme galiléen, la mesure de M, ne pourra

donner que + Eh; Il n’y a rien ici qui rappelle la transformation

vectorielle ou tensorielle des grandeurs en Physique classique
ou en Relativité. Le point de vue quantique pur qui n’envisage
que les valeurs propres ignore complétement la représentation
géomeétrique classique des grandeurs physiques par des vecteurs
ou des tenseurs dans ’espace ou dans l'espace-temps. Clest
seulement lorsqu’on envisage les valeurs moyennes (ou plus
exactement ici les densités de valeurs moyennes) que 1’on
retrouve les transformations du type tensoriel. On apercoit
ainsi I'opposition profonde qui existe entre la physique quan-
tique et la physique classique et en méme temps la possibilité
de leur raccordement statistique.

Tant qu’on ne considére que les valeurs moyennes, Paceord
avec la Relativité est complet. Nous voulons en donner un
exemple intéressant. Si on examine le moment magnétique
propre moyen et le moment de rotation propre moyen dans un
systéme de référence ou I’électron est en repos, on leur trouve
méme direction et 'on a la relation vectorielle

7.

M
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Si maintenant on évalue ces deux moments moyens dans des
systémes de référence ou l'électron a des vitesses de plus en
plus grandes, de plus en plus voisines de celle de la lumiére
dans le vide, on constate que le moment magnétique propre
moyen est de plus en plus normal & la direction du mouvement
tandis que le moment de rotation propre moyen tend a se
coucher sur cette direction. On n’a donc plus alors la relation
vectorielle écrite ci-dessus ce dont, au premier abord, on
pourrait étre surpris. En réalité il n’y a pas lieu de 1’étre et
nous sommes ici parfaitement en accord avec la théorie de
Relativité car les vecteurs « moment magnétique» et «moment
de rotation » ne sont pas des « covariants relativistes » et §’ils
se trouvent avoir méme direction dans un systéme ou I’élec-
tron repose, ils ne doivent pas l'avoir dans un systéme ou
I’électron a un mouvement rapide.

*
* ®

D’aprés ce que nous venons de dire, on voit que la théorie
de Dirac n’est en accord avec la Relativité que dans la mesure
ou une théorie quantique peut étre en accord avec les concep-
tions continues de ’ancienne Physique c’est-a-dire en ce qui
concerne les valeurs moyennes. Pour cette raison déja, la théorie
de Dirac n’est conciliable avec la Relativité qu’envisagée sous
certains aspects. Mais en dehors des divergences qui viennent
de la nature discontinue des quanta, il existe encore d’autres
divergences entre la théorie de Dirac et la Relativité. En effet,
dans toutes les théories quantiques sous leurs formes actuelles
et dans celle de Dirac comme dans les autres, la variable temps
joue un role tout a fait différent des variables d’espace contrai-
rement & I'une des tendances fondamentales de la Relativité.
Les problémes de détermination des valeurs propres qui jouent
un role essentiel en Mécanique quantique sont en effet posés
dans un domaine d’espace et il en résulte que les valeurs
moyennes elles-mémes sont définies par des intégrations dans
I’espace (voir formule (27)). De telles définitions ne sont évi-
demment pas relativistes: il faudrait employer pour la défi-
nition des valeurs propres des domaines d’espace-temps et
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pour celle des valeurs moyennes des intégrations dans I’espace-
temps. Mathématiquement cela est évidemment possible, mais
on obtiendrait, me semble-t-il, ainsi une Physique entiérement
statique dont toute évolution dans le temps serait bannie. Il
faut a la théorie quantique un paramétre d’évolution ayant
un role tout & fait différent des variables de configuration
auxquelles correspondent des opérateurs. La théorie quantique
actuelle prend comme paramétre d’évolution le temps et brise
ainsi la symétrie relativiste entre temps et espace. Peut-étre
trouvera-t-on une maniére de tourner cette difficulté, mais
cette maniére ne m’apparait pas du tout pour 'instant.

Il est intéressant de préciser la difficulté qui vient d’étre
mentionnée. Quand avec les principes actuels de la Mécanique
nouvelle, nous « quantifions » un systéme, un atome d’hydro-
géne par exemple, en calculant les valeurs propres de son énergie,
nous isolons par la pensée ce systéme du reste de l'univers.
Rigoureusement parlant, ceci n’est pas permis: pour déterminer
les valeurs propres de I’Hamiltonien, il faudrait en principe
tenir compte de tous les champs de force existant dans 'univers
entier. Fort heureusement, 'influence des champs de force
extérieurs a un atome sur la forme des ondes Y de I'atome
est tout a fait négligeable parce que ces ondes ¥ tendent trés
rapidement vers zéro dés qu’on s’éloigne du domaine atomique.
Bref, en principe, la détermination des valeurs et fonctions
propres exigerait la considération de ’espace tout entier, mais
en pratique la structure du monde matériel se préte & ce que
nous y découpions des systémes suffisamment indépendants
pour pouvoir étre considérés isolément. Mais si nous voulions
définir les valeurs et fonctions propres dans I’espace-temps,
nous ne pourrions pas, me semble-t-il, découper 'existence d’un
individu physique, tel qu’un atome, en sections indépendantes
les unes des autres. Or un atome au cours du temps subit des
actions trés diverses, est le siége d’effets Zeeman et Stark etc.
Si nous voulons définir les valeurs et fonctions propres dans
I'espace-temps, nous trouverons que les états stationnaires de
’atome sont invariables, étant déterminés par tout I'ensemble
des actions qu’il a subi ou subira au cours du temps. Il n’y
aurait plus évolution.
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Cette difficulté me parait se rattacher profondément & la
structure du monde physique. En réalité, méme dans la théorie
de Relativité sous sa forme classique, les variables de temps
et d’espace sont loin d’étre équivalentes (méme en- faisant
abstraction du facteur 4/—1 qui partout multiplie la coordonnée
temps). La variable temps varie toujours dans le méme sens
et les lignes d’Univers de toutes les unités matérielles sont
inclinés dans le sens du temps. Autrement dit, I’espace-temps
posséde une «polarité » essentielle.

A cette polarité est liée la persistance des unités matérielles
qui se traduit & notre échelle par la persistance des objets
matériels qui nous entourent. Cette persistance est symbolisée
en Relativité classique par les lignes d’Univers: en théorie
quantique, une symbolisation aussi précise n’est pas possible
parce que le principe d’incertitude d’Heisenberg s’oppose a
une définition précise des lignes d’Univers. Néanmoins la
persistance existe et peut étre en premiére approximation
symbolisée par une ligne d’Univers. Or dans la conception
relativiste usuelle, un observateur A considére comme simul-
tanés les points de I’espace-temps qui sont contenus dans une
section tridimensionnelle de cet espace-temps. En raison de la
polarité dont nous avons parlé, cette section coupe les lignes
d’Univers de toutes les unités matérielles et c’est ce qui permet
a 'observateur A de découper dans son espace des systémes
permanents presque indépendants. Mais un tel découpement
en sections indépendantes serait évidemment impossible dans
le sens des lignes d’Univers. En raison de la persistance des
unités physiques, I’espace-temps présente une sorte de structure
fibreuse dans le sens du temps: c¢’est cette structure fibreuse
qui nous géne ici et nous voyons que cette difficulté a sa racine
dans la Relativité classique elle-méme.

Pour résumer, nous dirons que la théorie de Dirac est une
trés belle et trés fructueuse théorie qui constitue aujourd’hui
le stade le plus avancé de la Mécanique ondulatoire de I'¢lectron.
Parti d’un effort pour rapprocher la Mécanique quantique de
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la Relativité, elle a introduit automatiquement le «spin» de
Pélectron et a ainsi interprété aisément tous les phénoménes
qui se rattachent & ’existence de ce spin depuis la structure
fine des spectres jusqu’aux effets Zeeman anormaux. Elle
rencontre assurément certaines difficultés dont la plus connue
est la prévision pour ’électron d’états a énergie négative qui
ne paraissent pas réellement exister dans la Nature. Mais méme
14, on peut se demander si elle ne finira pas par remporter la
victoire puisque la découverte expérimentale des électrons
positifs ou « positrons » pourrait peut-étre étre interprétée préci-
sément en faisant intervenir les états d’énergie négative.

Mais si la théorie de Dirac a d’incontestables mérites, il
n’est pas exact de dire qu’elle réconcilie complétement la
nouvelle Mécanique et la Relativité. La théorie de la Relativité,
bien qu’ayant paru révolutionnaire en son jeune temps, est en
réalité une théorie du type classique, le couronnement, pour-
rait-on dire, de la Physique du continu. Prise dans son état
actuel et méme sans parler des difficultés relatives au temps,
elle ne peut pas étre mise en accord complet avec les idées si
nouvelles introduites par la théorie quantique. Profondément
imprégnée de I'idée de continuité, la théorie de la Relativité
ne peut pas, sans avoir subi de modifications essentielles, s’ac-
commoder de la discontinuité fondamentale dont l’existence
et l'indivisibilité du quantum d’action sont la mystérieuse
expression. ' '
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