Zeitschrift: Archives des sciences physiques et naturelles

Herausgeber: Société de Physique et d'Histoire Naturelle de Genève

Band: 15 (1933)

Artikel: Sondages aérologiques et vent au gradient en Suisse [suite et fin]

Autor: Berger, Pierre

DOI: https://doi.org/10.5169/seals-740580

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 03.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

SONDAGES AÉROLOGIQUES

ET

VENT AU GRADIENT EN SUISSE¹

PAR

Pierre BERGER

(Avec 54 figures.)

(suite et fin)

9. — Vérifications et conclusions (suite).

Vents théoriques en 1927 (altitude de référence: 1140 m).

Pour l'année 1927, les stations d'altitude voisine de 1100 m, dont nous employerons les observations, sont celles de:

Chaumont (poste C du texte précédent, 1127 m); St-Beatenberg (poste D, 1148 m); Oberiberg (poste E, 1090 m), Schwäbrig (poste F, 1152 m), et St-Gall (poste A, 702 m).

Les observations du Weissenstein étant trop incomplètes, il n'est pas possible de les utiliser.

¹ Etude faite sous la direction de M. le Prof. G. Tiercy, directeur de l'Observatoire de Genève.

Comme altitude de référence, choisissons 1140 m. Les réductions à 1140 m des poids spécifiques ou pressions des quatre premières stations sont en général insignifiantes; et, sans commettre d'erreur sensible, nous pouvons admettre que les corrections sont proportionnelles à:

$$rac{h_{_{
m B}}-h_{_{
m A}}}{arphi_{_{
m A}}-arphi_{_{
m B}}} \quad {
m ou} \ {
m a} \quad rac{h_{_{
m B}}-h_{_{
m A}}}{p_{_{
m A}}-p_{_{
m B}}} \ .$$

Puisque nous ramenons les poids spécifiques de l'air ou les pressions des quatre stations à une altitude de référence, il y a plusieurs possibilités de grouper ces stations pour déterminer un plan de densité ou pression constante.

Si pour une raison quelconque, nous ne nous servons que de trois stations, nous les désignerons par leurs initiales respectives: Chaumont = C., Schwäbrig = S., Oberiberg = O., St-Beatenberg = B.; si nous employons les quatre stations, et si nous prenons pour un poste fictif une valeur de ρ ou de p déduite de celles de deux postes voisins, nous désignerons ce poste fictif par:

 $\left(egin{array}{ll} c, & ext{s'il est sur la droite } \overline{ ext{CS}} \ , \\ s, & ext{s'il est sur la droite } \overline{ ext{SO}} \ , \\ o, & ext{s'il est sur la droite } \overline{ ext{OB}} \ , \\ b, & ext{s'il est sur la droite } \overline{ ext{BC}} \ . \end{array}
ight)$

En note ¹ est présentée la marche complète d'une détermination de vent théorique.

Première tabelle de la note :

1re colonne: date.

1

2^{me} colonne: stations (St.) (voir abréviations: (2^{me} colonne de la table du texte).

3^{me} colonne: pression en dixièmes de mm de Hg du jour même à 0730 (p. ma.).

4^{me} colonne: pression en dixièmes de mm de Hg du matin précédent à 0730 (p. p.)

5^{me} colonne: pression en dixièmes de mm de Hg, moyenne mensuelle, à 0730 (p. me.).

 6^{me} colonne: Différence de pression entre la valeur mensuelle et celle du jour précédent (Δp) .

 7^{me} colonne: différence de pression entre la valeur mensuelle et celle du matin (Δm) .

8^{me} colonne: correction instrumentale mensuelle en dixièmes de mm de Hg (c. i.).

9^{me} colonne: correction pour la réduction de la pression à l'altitude de référence (c. a.).

10^{me} colonne: pression employée en dixièmes de mm de Hg (p. e.).

11^{me} colonne: température en dixième de degrés centigrades (t.)

12^{me} colonne: humidité relative en % (h.).

13^{me} colonne: direction et vitesse du vent (d. f.).

14^{me} colonne: pression en dixièmes de mm de Hg, réduite à l'altitude de référence (P. 1140).

Seconde tabelle de la note:

1re colonne: stations.

 2^{me} colonne: corrections dues à la vapeur d'eau $\left(\frac{3}{8}e\right)$ en dixièmes de mm de Hg.

3^{me} colonne: pression équivalente de l'air sec en dixièmes de mm de Hg (p. s.).

4^{me} colonne: température absolue (T.) en dixièmes de degrés.

5^{me} colonne: pression de l'air sec divisée par température absolue (p./T.).

6me colonne: poids spécifique de l'air en gr/m³ (ρ).

 7^{me} colonne: correction pour la réduction du poids spécifique de l'air à l'altitude de référence (Δ_{ρ}) en centièmes de gr/m^3 .

 8^{me} colonne: poids spécifique de l'air à l'altitude de référence (ρ 1140) en gr/m³.

PREMIÈRE TABELLE.

Date	St.	p. ma.	p. p.	p. me.	Δp	Δm	c. i.	c. a.	p. e.	t.	h.	d. f.	P. 1140
1927 30.VIII	Ch. N. S ^t -B. I. O.I. S ^t -G. Sch.	6721 7248 6708 7168 6751 7065 6793	7072	6681 7206,4 6671 7118,3 7713,4 7024,5	$ \begin{array}{r} 37 \\ 50 \\ 38 \end{array} $	- 53 - 44 - 39 - 44 - 41 - 48	$\begin{bmatrix} -4 \\ -4 \\ -4 \\ 0 \\ +4 \end{bmatrix}$	$\begin{bmatrix} -11 \\ +7 \\ -41 \\ +10 \end{bmatrix}$	6724 	139 127 140 120 126 131 133	85 100 65 93 89 81 57	SE 0 WSW 0 E 1 E 0 N 0 N 0	$\begin{bmatrix} 6717 \\ 6713 \\ 6713 \\ 6713 \\ 6717 \end{bmatrix}$

SECONDE TABELLE.

*	$\frac{3}{8}e$	p. s.	T	p/T	6	Δβ	P 1140
Ch	38	6696	2869	23339	1084,10	171	1082,39
St-B	30	6680	2870	23275	1081,12	105	1082,17
O.I	37	6717	2856	23519	1092,46	660	1085,86
St-G	35	7037	2861	24596	1142,48	-	
Sch	25	6678	2863	23325	1083,45	158	1085,03
				91	$\rho_m =$		
					1085,26		

Différence de densité entre St-Gall et Schwäbrig: 59,03 gr/m³. Direction du vent théorique:

Densité	Pression	Sondage
120°	75°	80°

Vitesse du vent théorique:

	Densité	Pression	Sondage
pour $r = \infty$	24,50	16,50	9,0
pour $r \neq \infty$	14,00	11,50	

Stations employées pour calculer le vent théorique: densité C.S.B.; stations employées pour calculer le vent théorique: pression C.S.O.

Situation:

Hautes pressions sur Angleterre et Pologne (770 mm);
Basses pressions sur Groenland (750 mm) et Asie Mineure (760);
A Zurich: tendance à variation positive (+ 0,5);
Zurich dans anticyclone.

Pour alléger les tabelles donnant les résultats de 1927, nous les limiterons aux colonnes qui sont strictement nécessaires, et nous donnerons à la fin, en note, les observations faites à St-Gall, indispensables pour calculer le gradient vertical de densité St-Gall-Schwäbrig.

En ce qui concerne la station de Chaumont, nous rappelons que les indications de pression de ce poste sont des plus douteuses; les variations de la hauteur barométrique au cours des vingt-quatre heures qui ont précédé les observations utilisées, et les écarts de la pression observée par rapport à sa valeur moyenne mensuelle ont non seulement été comparés aux grandeurs correspondantes de Neuchâtel (N.), Interlaken (I.), St-Beatenberg, Oberiberg, etc., mais encore à celles de La Chaux-de-Fonds, poste voisin et presque de même altitude.

Pour chaque jour, nous donnons en notes quelques renseignements très succincts sur la situation météorologique générale; ces indications devraient normalement se trouver dans les tabelles mêmes; mais des difficultés de mise en pages nous obligent à les donner à part et nous employerons quelques abréviations:

B. P. = basses pressions; H. P. = hautes pressions.

Les hauteurs barométriques correspondantes sont données entre parenthèses et exprimées en mm de Hg.

tend. = tendance de la variation barométrique; Zh = Zurich; gr. s. = gradient barométrique au sol en mm; la direction indiquée est celle des basses pressions par rapport à Zurich; dors. antic. = dorsale anticyclonique; disc. = discontinuité.

Les nombres des différentes colonnes de la tabelle suivante désignent:

1re colonne: la date (en chiffres arabes: le jour; en chiffres romains: le mois).

2^{me} colonne: le nom abrégé des stations: Ch. = Chaumont; St-B. = St-Beatenberg; O. I. = Oberiberg; Schw. = Schwäbrig; St-G. = St-Gall.

3^{me} colonne: la pression en dixièmes de mm de Hg.

4me colonne: la température en dixièmes de degrés centigrades.

5^{me} colonne: l'humidité relative en %.

6^{me} colonne: la pression réduite à 1140 m en dixièmes de mm de Hg.

7^{me} colonne: le poids spécifique de l'air réduit à 1140 m en centièmes de gr/m³.

8^{me} colonne: la direction du vent en degré, d'après le vent théorique au gradient densité.

9^{me} colonne: la direction du vent en degrés, d'après le vent théorique au gradient pression.

10^{me} colonne: la direction du vent en degrés, d'après le sondage de Zurich.

11^{me} colonne: la vitesse du vent en m/sec d'après le vent théorique au gradient densité.

12^{me} colonne: la vitesse du vent en m/sec d'après le vent théorique au gradient pression.

13^{me} colonne: la vitesse du vent en m/sec d'après le sondage de Zurich.

14^{me} colonne: les stations employées.

Les lignes « a » contiennent les vitesses du vent pour $r=\infty$ et les stations employées pour calculer le vent théorique au gradient densité;

Les lignes « b » contiennent les vitesses du vent pour $r \neq \infty$ et les stations employées pour calculer le vent théorique au gradient pression.

15 me colonne: remarques.

s		-	2		D 4470	D4440 64440	Din	Direction, par	par		>	/itesse, par	ar	ž	Bem
	36.			=	F 1140	/, 1140	dens.	dens. press. sond	sond.		dens.	dens. press.	sond.	. Dr.	INCIII.
E.				-											
	Ch.	6672	95	100	6665	109213									
	St-B.	6661	85	93	7999	109367									
Branch Committee	O.I.	6707	108	87	9999	109250	240	100	110	a	23,5	4,6	2-3	C.O.B.	_
	Schw.	9799	80	96	0999	109445			******	9	14,0	4,0		C.s.B.	
	Ch.	9299	122	100	6999	107990									
	St.B.	9999	126	69	8658	107809									
	O.I.	2699	102	78	9299	109399	240	75	250	a	21	30	9-10	C.s.B.	7
	Schw.	6651	141	52	6665	107444	a		8	9	21	30		C.s.B.	
	Ch.	6677	150	78	0299	106245							3	=	
	St-B.	6999	157	55	6672	106895									

1a. Comparaison des pressions en dixièmes de mm de Hg à Chaumont et à la Chaux-de-Fonds:

)ate: juin	13	14	15	16	17	21	29	30
hx-de-Fds haumont	6783	6777 6676	6788 6677	6779 6694	6797 6691	6837 6726	6775	6744 6633
Différence	111	101	111	103	106	111	107	111

b. Gr. s.: 325°, 0,5 mm; tend.: + 00 à 05; Zh. sur dors. antic. qui s'étend des Baléares en Pologne par les Vosges.
2. Gr. s.: 290°, 1 mm; tend.: ± 00; Zh. appartient au sac dépressionnaire de la Saône. Discont. Hambourg-Vallée de la Saône.
Saône.

8							Dir	Direction, par	par		Vi	Vitesse, par	ar		
Date	st.	<u>.</u>		p,	P 1140	p 1140	dens.	press.	sond.		dens.	press.	sond.	st.	Rem.
15.VI.	0.I.	6716	160	71	6675	107365	250	240	230	a	14,3	3,8	15,0	c.O.B.	က
	Schw.	6665	181	42	6629	106182		1		9	9,2	3,0		C.s.B.	
16.VI.	Ch.	7699	181	88	6687	105907	200				8				
	St.B.	6683	180	47	9899	106277		and the						*	7
	O.I.	6725	181	09	7899	106733	240	09	220	a	46,2	2,1	4-5	C.s.B.	7
	Schw.	6671	173	65	6685	106548				9	18,2	1,8		C.S.o.	
17.VI.	Ch.	6691	181	80	7899	105949					4				19
	St.B.	6677	193	51	0899	105613	10	4							
	0.I.	6719	168	62	8678	107146	240	09	180	a	24,5	5,9	3-4	C.s.B.	20
	Schw.	6682	210	37	9299	105040				9	14,5	4,5		C.s.B.	
21.VI.	Ch.	8699	100	96	6119	109785									
	0.I.	6761	88	87	6620	110523	260	260	260	a	159,0	4,25	3-4	C.S.O.	9
	Schw.	6681	93	73	6719	110117				p		3,2		C.S.O.	
29.VI.	Ch.	6671	111	08	6661	108460									
	St-B.	0999	86	73	6659	108933					-				
	O.I.	6701	47	92	0999	111206	240	290	240	a	0,9	2,1	15	C.s.B.	~
	Schw.	2499	104	20	6659	108808		775		9	5,0	2,0		C.S.B.	

Gr. s. 20° , 1,4 mm; tend.: + 05 à 10. Zh. appartient B. P. de la Forêt Noire. Gr. s. 310° , 1,2 mm; tend.: + 00 à 05. Zh. en bordure B. P. 7. 6. 7.

Gr. s. 340° , 1,0 mm; tend.: \pm 00. Zh. en bordure H. P. Gr. s. 240° , 0,2 mm; tend.: \pm 00. Zh. dans H. P. Gr. s. 300° , 0,5 mm; tend.: - 00 à 05; Zh. dans dors. antic.

	Kem.			∞				6			2	10	
Š	St.			C.S.B.	C.S.o.			C.s.B.	C.s.B.			C.s.B.	
ar	sond.			12				7				2	
Vitesse, par	press.			6,7	5,0	8		7,8	7,8	Ŷ.		1,9	
Λ	dens.		7.0	62,3	28,0	3:		16,5	16,5			2,55	
				a	9			a	9			a	
par	sond.		22	260				260				230	
Direction, par	press.			220	(4)			245				240	
Dir	dens.			09	MAN COLD			260				240	
	, 1140	107015	106503	106424	106371	107763	107658	109385	107111	106755	106739	107625	
	P 1140	6626	6625	6626	6633	6665	6999	6665	8999	2999	8999	9999	
,	n.	96	50	64	55	100	79	43	45	90	69	84	
	<u>.</u> :	130	148	160	153	124	134	96	150	152	158	132	
	Ď.	8999	6656	6677	945	6672	9999	9029	7999	8698	6665	6707	
i	St.	Ch.	St-B.	O.I.	Schw.	Ch.	St-B.	O.I.	Schw.	Ch.	St-B.	0.1.	
j	Date	30.VI.				4.VII.				5.VII.			

8. Gr. s. 305°, 1,4 mm; tend.: — 05 à 10; Zh. en bordure B.P. 9a. Comparaisons des pressions en dixièmes de mm de Hg de Chaumont et de La Chaux-de-Fonds:

Dates: juillet	4	2	9	18	19	30	21
Chx-de-Fds Chaumont	6784 6672	6785 6678	6788 6678	6788	6818 6720	6822 6718	6817 6689
Différence	112	107	110	123	86	104	130

b. Gr. s. 310° , 0,4 mm; tend. + 00 à 05; Zh. dans H.P. 10a. La pression de Chaumont fut abaissée à 667,4 mm de Hg. b. Gr. s. 300° , 1,0 mm; tend.: \pm 00; Zh. en bordure H. P.

F	Kem.				11				12				13	
č				- 1	C.s.B.	C.s.B.			C.s.B.	C.S.O.	7	2	bs.o.	C.S.O.
ar	sond.			*					4-5				သ	
Vitesse, par	press.				$2,66 \mid 13,8$	8,7			3,2	3,2			5,1	5,1
$\Lambda_{\rm J}$	dens.				2,66		1 K		3,9	3,9			56,4	1
					a	q			a	9			a	9
par	sond.		12		90				270				230	
Direction, par	press.				245				30				04	100 10
Dir	dens.				230				290				200	
ll .	p 1140	408094	106601	105954	106769	105196	107836	107843	107980	107691	107890	108300	108847	108855
	P 1140	000	1/00	8698	9299	6677	6672	0299	8999	8999	6703	0029	6697	8699
	n.		70	64	70	27	100	87	87	89	72	80	88	88
	+,	0.00	0/1	186	164	200	126	128	126	131	141	130	117	112
	ъ.	, c	0/00	6675	6717	6999	6665	2999	6029	6654	6720	6697	6738	7899
	St.	5	Ċ.	St-B.	O.I.	Schw.	Ch.	St-B.	O.I.	Schw.	Ch.	St-B.	0.1.	Schw.
	Date	1111	6.VII.				18.VII.	8			19.VII.		1	6

11. Gr. s. 305° , 1,0 mm; tend.: \pm 00; Zh. en bordure B. P. secondaire. 12a. Différences des pressions barométriques en dixièmes de mm de Hg.

Dates: juillet	1.7	18	19	20	21	
Neuchâtel-Chx-de-Fds. Neuchâtel-Chaumont .	415 523	417	420 518	413	413	

b. Pression de Chaumont augmentée de 1,5 mm de Hg.

e. Gr. s. 150°, 1,6 mm; tend.: + 05 à 10; Zh. dans extrémité méridionale dors. antic. 13 α . Pression admise pour Chaumont: 671,0 mm de Hg.

b. Gr. s. 150°, 1 mm Hg; tend.: + 05 à 10. Zh. dans H. P. à extrémité S. d'une dors. antic.

	кеш.			14				15				16	
	St.			C.S.o.	C.S.O.B.			C.s.B.	C.s.B.			C.s.B.	C.S.B.
ar	sond.			1-6				7-8				က	
Vitesse, par	press.		83	13,0	8,3			14,5	10,5			12,6	9,4
Λ	dens.			82	30			71	35		-	28	
				a	9			a	9			a	9
par	sond.	*1		310				240				160	
Direction, par	press.			09				80			,	115	
Dir	dens.		3	09				260				160	
	, 1140	108827	107756	107604	107628	108048	107330	108278	107795	105220	105627	107330	106043
	P 1140	6707	6700	6700	6700	6703	8699	6700	9029	0299	6999	6999	6682
	i.	69	. 90	75	45	50	88	93	74	77	09	75	45
	ن.	120	142	148	150	141	151	132	142	192	188	144	183
	.d	6718	6697	6741	9899	6687	6695	6741	6692	6677	9999	6710	8999
	SI.	Ch.	St-B.	O.I.	Schw.	Ch.	St-B.	O.I.	Schw.	Ch.	S^{t} -B.	O.I.	Schw.
í	Date	20.VII.				21.VII.				1.VIII.			2

14a. Pression admise pour Chaumont: 671,4 mm de Hg.

b. Gr. s. 160° , 1,1 mm; tend. ± 00 ; Zh. dans H. P.

15a. Pression admise pour Chaumont: 670,9 mm de Hg. b. Gr. s. 330°, 1 mm Hg; tend.: + 00 à 05; Zh. dans dors. antic. des Alpes.

16a. Comparaisons des pressions barométriques en dixièmes de mm de Hg de Chaumont et de La Chaux-de-Fonds:

31	6819 6710	109
30	6830	96
19	6747	106
18	6747	105
9	6752 6648	104
5	6795	107
-	6785 6677	108
Dates: aoùt	Chx-de-Fds Chaumont	Différence

b. Gr. s. 300° , 1,3 mm de Hg; tend.: — 00 à 05; Zh. encore dans H. P.

	relli.				17				18		-	E 1	19	- 4			20	
70	<u>.</u>	,			C.s.B.	C.s.B.	4	¥.	C.s.B.	C.s.B.	8		C.O.B.	C.S.0.			C.S.0.	C.O.B.
ar	sond.				. 7			10	. . .		B		6				2,2	
Vitesse, par	press.				6,5	6,5			13,6	8,5		7.	8,0	l		- 38	8,9	0,4
Λ	dens.				22	I			11,8	7,8			7,5	1			98	l
					a	9		=	a	9			a	9			a	9
par	sond.				250				120				220				220	
Direction, par	press.				210				100				330				105	8
Dir	dens.				245				110				325				100	
	7 1140		107200	106889	107775	106123	105523	105303	106574	105658	102801	107772	107682	105991	108994	108265	109517	110101
	P 1140		8698	6682	6681	0699	6641	8699	0599	6653	6625	6642	6618	6623	6634	6633	9899	9999
,	'n.		100	78	06	65	91	43	72	37	100	82	80	37	100	87	93	89
	 -:		142	158	132	180	170	188	150	183	111	120	112	162	58	103	79	09
	.d		8999	6679	6722	9299	8799	6635	6681	6639	6642	6833	6659	6099	6641	0899	6677	6631
1	St.		Ch.	St-B.	O.I.	Schw.	Ch.	St-B.	O.I.	Schw.	Ch.	St-B.	O.I.	Schw.	Ch.	St-B.	O.I.	Schw.
120	Date		5.VIII.				6.VIII.				18.VIII.			5	19.VIII.			

17a. Pression de Chaumont abaissée de 0,3 mm de Hg.
b. Gr. s. 300°, 0,8 mm de Hg; tend.: ± 00; Zh. dans éperon antic.
18. Gr. s. 320°, 1,1 mm; tend.: — 05; Zh. sur bord B. P. Disc. Lyon-Metz-Calais.
19. Gr. s. 320°, 2,8 mm; tend.: — 10 à 15; Zh. dans B. P. Disc. de Lucerne à Strasbourg. Les vents théoriques sont ceux du revers du front.

Gr. s. 310°, 2 mm; tend.: — 05 à 10; Zh. dans H. P. secondaire. 20.

F	Kem.			21				22				23			24	
č	v.	10		C.s.B.	C.S.O.			C.s.B.	C.S.B.			C.S.0.	C.S.0.	=	C.S.O.	C.S.O.
ar	sond.			6				13				2			23	
Vitesse, par	press.		NATIVE SILIPOO	16,5	11,5		7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	2,45	2,0			3,5	.	*	3,0	2,2
Λ	dens.			24,5	14,0	**		53,0	25,0	•	11	40,0	.		21,5	14,5
				a	9			a	9			a	9		a	p
par	sond.			80				80				270			20	
Direction, par	press.			75			270,000	80		×		09			90	
Dir	dens.	12.		120				120				115			115	111
0.147.9	7 1140	108239	108239	108586	108503	108539	108475	110132	108286	108181	107761	108314	107472	107438	107602	107744
0.44.0	F 1140	6717	6713	6713	6717	6703	6702	6703	6703	6705	6704	6702	6703	6699	6699	6700
ع	:	85	65	89	57	100	7/4	90	26	100	68	92	75	85	91	80
	:	139	140	126	133	120	128	98	133	129	144	127	150	150	144	141
٤		6734	6710	6754	6703	6710	6699	55/29	6899	6712	6701	6743	6899	9029	0549	9899
ż	., 6	Ch.	St-B.	O.I.	Schw.	Ch.	St-B.	0.1.	Schw.	Ch.	St-B.	O.I.	Schw.	Ch.	O.I.	Schw.
Date	Date	30.VIII.				31.VIII.	8		•	1.IX.			200	2.IX.	F:	

21. Gr. s. 180° , 1 mm; tend.: + 00 à 05; Zh. dans H. P. 22. Gr. s. 170° , 1,5 mm; tend.: + 00 à 04; Zh. dans H. P. 23α . Comparaisons barométriques en dixièmes de mm de Hg.:

21	6793 6645	148
9	6791 6684	107
3	6798 6691	107
63	6818 6706	112
7	6823 6712	111
Dates: septembre	Chx-de-Fds Chaumont	Différence
1		*

b. Gr. s. 160° , 1,3 mm; tend.: + 00 à 05; Zh. dans H. P. 24. Gr. s. 160° , 0,6 mm; tend.: + 05 à 10; Zh. dans H. P.

-	, ,									-	-			-							
Dom	Relli			25	8			26				27				28				29	
+5	.1c			C.S.B.	C.S.B.	**************************************		C.s.O.	C.s.O.			C.S.0.	C.S.0.	,	7	C.S.0.	C.s.B.	3		C.S.0.	C.S.0.
ar	sond.			.7.				2,2				6-18						(+		က	
Vitesse, par	press.	8		9,0	0,6			1,8	1,8			7,3	6,5			3,9				6	1
Δ	dens.			57	1			16				125				120	1			45	ļ
		9		a	q			a	9			a	9			a	9			a	9
par	sond.			09				240				240			4)			21		06	
Direction, par	press.		,	75				09				260		2.		140		ü		230	
Dir	dens.			70				190				270		, to	٠.	95				260	
	f 1140		107654	107109	107437	107624	107904	109698	106834	108288	107315	109730	107270	111880	111246	111852	113143	113719	112681	115364	113719
	P 1140		7899	0899	6883	6677	9299	6675	6677	9299	8628	6629	9299	7699	6695	2699	6703	6704	8029	6714	6713
	<u>-</u>		100	74	92	85	67	06	65	89	57	85	41	86	80	93	77	100	68	93	66
	ټ	-	133	153	134	134	133	78	152	121	150	88	150	39	58	7,7	14	27	29	- 30	4
	ď.		6691	6677	6999	7899	6673	6716	6999	999	6675	6720	6662	6701	6692	6738	6899	6715	6705	6755	6699
	St.		Ch.	St-B.	Schw.	Ch.	St-B.	0.I.	Schw.	Ch.	St-B.	O.I.	Schw.	Ch.	St-B.	0.I.	Schw.	Ch.	St-B.	O.I.	Schw.
5	Date		3.IX.		125	6.IX.	2	 ->		21.IX.				5.X.				6.X.			100

Gr. s. 260°, 1 mm; tend.: ± 00; Zh. dans H. P.
 Gr. s. 320°, 1 mm; tend. + 05 à 10; Zh. dans H. P.
 Pression admise pour Chaumont: 668,3 mm Hg.
 Gr. s. 330°, 1,3 mm; tend.: — 00 à 05; Zh. dans H. P.
 28a. Pressions comparées en dixièmes de mm de Hg:

Chx-de-Fds.	•	6813	6832
Chaumont	•	6701	6715
Différence.		112	117

b. Gr. s. 170° , 3,5 mm Hg; tend.: + 00 à 05; Zh. dans H. P. 29. Gr. s. 150° , 2 mm; tend.: + 05; Zh. dans H. P.

Les résultats exposés dans ces tabelles seront interprétés plus loin ¹.

Vents théoriques en 1928 (altitude de référence: 1140 m).

Nous nous servirons des observations du Weissenstein, de Chaumont, du S^t-Beatenberg, d'Oberiberg, de Schwäbrig et de S^t-Gall². L'altitude de référence choisie est 1140 m. Les calculs sont menés de la même manière que pour 1927; nous employerons les abréviations déjà mentionnées, et nous les complèterons par les suivantes:

 $\begin{array}{lll} W & = & Weissenstein \ (1285 \ m) \ , \\ c & = & poste \ fictif \ sur \ la \ droite \ \overline{CW} \ , \\ w & = & poste \ fictif \ sur \ la \ droite \ \overline{CS} \ , \\ cs & = & poste \ fictif \ sur \ la \ droite \ \overline{CO} \ , \\ co & = & poste \ fictif \ sur \ la \ droite \ \overline{WO} \ , \\ wb & = & poste \ fictif \ sur \ la \ droite \ \overline{WO} \ , \\ sb & = & poste \ fictif \ sur \ la \ droite \ \overline{SB} \ . \end{array}$

¹ Observations faites à St-Gall en 1927:

Dates	p.	t.	h.	Dates	p.	t.	h.	Dates	р.	t.	h.
1927 13.VI 14 15 16 17 21 29 30 4.VII	7021 7012 7025 7042 7024 7024 7024 7020 7021	117 148 176 151 229 128 122 188 154	95 67 69 99 78 83 78 50	1927 6.VII 18 19 20 21 1.VIII 5 6	7021 7021 7056 7058 7051 7018 7032 6986 6964	216 152 148 154 175 192 161 176 148	50 84 81 86 83 70 99 70 80	1927 30.VIII 31 1.IX 2 3 6 21 5.X	7072 7058 7059 7055 7037 7030 7021 7064 7088	131 132 139 145 136 137 155 129 127	81 84 85 90 91 85 75 92

² Observations faites à St-Gall en 1928:

Dates	p.	t.	h.	Dates	p.	t.	h.	Dates	p.	t.	h.
1928	2015			1928				1928			
4.VI 19	$\frac{7015}{6971}$	$\frac{144}{124}$	62 82	10.VII 11	7070	171 155	$\left \begin{array}{c} 67 \\ 87 \end{array}\right $	6.VIII	7065	112	88
22	7065	138	64	12	7085	180	71	10	7045	162	67
$\frac{23}{25}$	$7050 \\ 7035$	$ 203 \\ 186$	$\begin{bmatrix} 53 \\ 79 \end{bmatrix}$	13	7075	$\begin{array}{c} 210 \\ 225 \end{array}$	58 62	11 13	$ \begin{array}{c} 7032 \\ 7003 \end{array} $	$\begin{vmatrix} 155 \\ 200 \end{vmatrix}$	64
26	7002	213	48	16	7042	216	64	15	7006	185	84
28 29	$7087 \\ 7081$	$\begin{array}{ c c c }\hline 107 \\ 124 \\ \end{array}$	74 75	17 20	7066	206	70	17	7036	137	75
2.VII	7065	171	73	24	7043	160 188	80	18	7014	117	89 86
3	7045	213	65	26	7058	204	62	20	6997	178	68
4 5	$7020 \\ 7056$	220 160	47 75	30 1.VIII	$7030 \\ 7037$	$\frac{155}{193}$	57	23	7044	154 151	65 81
6 9	7025	229	49	2	7034	215	62	25	7025	175	85
9	7048	150	74	4	6995	206	67	31	7071	125	75

£	Kem.			_	2				2					က		
	St.			w.O.b.	w.O.b.	entron a			s.o.wb.	s.o.wb.				b.W.S.	W.O.B.	
ar	sond.			9					6					calme		
Vitesse, par	press.	do.	9	8,4	7,4				10,5	7,3	ž.			1,8	1,5	5
Λ	dens.			61					15,3	6,2				8,3	5,5	
				a	9				a	9				a	9	
par	sond.			270			12		270					calme		
Direction, par	press.			260			naneu		125					245		
Dir	dens.			265					190					250		
	6 1140	108632	107905	107178	107841	107105	108131	108369	107822	108585	107923	109199	109190	109262	110290	109232
	P 1140	9999	7999	7999	6665	6661	6616	6617	6615	6621	6627	8029	6705	9029	9029	6703
	j.	54	53	57	72	32	75	50	65	80	38	80	89	75	90	43
	+; 	112	128	148	128	150	100	06	111	76	112	110	100	110	98	111
	.d	6675	6542	6661	90/9	2499	6633	6495	6612	6662	6613	6715	6581	6703	6747	6899
(No.10)	st.	Ch.	W.	St-B.	0.1.	Sch.	Ch.	W.	St-B.	O.I.	Sch.	Ch.	W.	St-B.	O.I.	Sch.
	Date	4.VI.			397		19.VI.		5	7		22.VI.		128		

1a. Comparaisons des pressions journalières en dixièmes de mm de Hg:

Dates: juin	7	19	22	23	25	97	88	53
							8	3
Dif. Chx-FdsCh.	105	102	110	122	115	105	111	10
_	133	138	134	116	114	133	135	131
» Chx-FdsW.	388	240	544	238	558	238	246	23

b. Pression admise pour Chaumont: 667,3 mm de Hg.

11

c. Gr. s. 315,1 mm de Hg; tend.: — 00 à 05; Zh. dans H. P. 2a. Pression admise pour Chaumont: 662,3 mm de Hg.

^{— 05} à 10; Zh. sur bordure B. P. b. Gr. s. 290° , 1,3 mm; tend.: 3. Gr. s. 270° , 0,5 mm Hg, ten

^{°, 0,5} mm Hg, tend.: + 00 à 05, Zh. dans H. P.

	Rem.		4				ಬ					9								
	St.		C.s.o.	C.S.o.			C.wo.	C.S.o.				c.o.sb.	W.O.B.			C.O.S.	B.O.S.			
ar	sond.		16				7					12			100000	7				
Vitesse, par	press.		16,8	16,8			8,5	5,5				8,4	10,0			18,0	11,5			
Λ	dens.		09	I			4,8	3,3	ř			33	ŀ			14	13		7/-	
	V.		a	9			a	q				a	9			a	p			
par	sond.		260				260					250				240				
Direction, par	press.		250				280					330				245				
Dir	dens.		265				275					275				245				
	p 1140	107222	107221	108040	106754	106116	105040	106436	103305	107486	106907	106081	107231	105762	110792	110159	110892	110875	109398	109764
	P 1140	8899	6702	6700	8699	6687	6693	6682	6682	6665	6661	6662	6656	6655	6726	6721°	6721	6719	6718	6720
	h.	55	50	78	39	100	71	87	45	52	45	09	80	30	75	81	87	78	69	89
	t.	150	163	140	172	170	171	160	192	140	140	173	142	182	80	76	78	73	110	86
	р.	6695	6699	6741	7899	7899	0699	6723	8999	6672	6233	6659	6697	6641	6733	6718	6762	6705	6725	6596
	st.	Ch.	St-B.	O.I.	Sch.	Ch.	St-B.	O.I.	Sch.	Ch.	W.	St-B.	O.I.	Sch.	Ch.	St-B.	O.I.	Sch.	Ch.	W.
	Date	23.VI.	39			25.VI.				26.VI.					28.VI.				29.VI.	

Gr. s. 320°, 1 mm; tend.: + 05; Zh. dans H. P. Disc. Paris-Dijon-Berlin. Gr. s. 320°, 1 mm; tend.: + 05; Zh. dans H. P. Disc. Pa 5a. Pression admise pour Chaumont: 669,4 mm Hg.
 b. Gr. s. 270°, 1 mm Hg; tend. ± 00; Zh. dans H. P.
 Gr. s. 340°, 1,2 mm Hg; tend.: ± 00; Zh. dans H. P.
 Gr. s. 170°, 2 mm Hg; tend.: + 05 à 10; Zh. dans H. P.

	nem.	∞			6					10			11			
78	. 'Sc'	W.S.B.	c.S.B.		W.S.B.	wo.S.	8			cs.B.	c.S.B.		W.S.O.	W.S.B.		
ar	sond.	က			က			٠		က			12			
Vitesse, par	press.	2,3	2,0		4,7	3,9				8,4	3,2		12	∞		
Δ	dens.	19	15		32	13			andria del	31	12		09	32		
		а	9		a	9				a	9		a	9		
par	sond.	180			200					260			225			
Direction, par	press.	140			200	2				240			225			
Dire	dens.	220			245					310			80			
	p 1140	109411	109302	107746	102201	108658	107532	106131	106394	106332	107508	105712	105214	105878	106033	105965
	P 1140	6719	6716	6711	6712	6707	8029	6693	9699	2699	8699	6692	7699	6691	8999	8299
,	i i	75	64	75	80	91	53	71	42	89	68	36	95	09	97	35
,	.;	112	114	140	154	124	154	180	174	180	149	200	204	194	164	185
	ъ.	6716	6702	6590	6029	8749	7699	6700	6576	7699	6233	6883	6671	6732	6547	7999
į	St.	St-B.	Sch.	W.	St-B.	O.I.	Sch.	Ch.	W.	$S^{t-}B.$	O.I.	Sch.	St-B.	O.I.	W.	Sch.
	Date	29.VI.		2.VII.				3.VII.					4.VII.			

8. Gr. s. 315°, 1,1 mm Hg; tend. \pm 00; Zh. dans H. P. 9a. Comparaisons des pressions barométriques en dixièmes de mm de Hg:

Dates: juillet	- 5	e .	4	2	9	6	10	11
	_			_	_		_	_
Dif. Chx-FdsW.	239	235	239	242	235	238	240	744
" Chv-Fds -Ch		400	105	113	111	100	115	-
" OHA-Fusi-OH:	10			0011	101		200	10
, CnW.	1.28	1.24	134	1.29	174	158	CZ I	13

b. gr. s. 270°; 0,2 mm; tend. + 00 à 05; Zh dans Hp.
0. Gr. s. 300°, 2 mm; tend.: ± 00; Zh. dans H. P.
1. Gr. s. 340°, 1,6 mm Hg; tend.: + 05 à 15; Zh. en bordure H. P. Front chaud Berlin-Innsbruck; front froid Berlin-Dijon. 10.

	Kem.			12				13				14			-65	15				16		
76	St.			c.S.O.	o.C.B.			wb.S.O.	wb.S.O.			C.S.B.	wo.S.			W.S.B.	W.S.B.			W.S.o.		
ar	sond.			9		-	8	9				7				67				000		
Vitesse, par	press.			5,4	5,0			4,8	4,5			7,2	5,0			7,4	0,9	3.		0	0	2.000-948
Λ	dens.			04	24			80	1			12,5	8,5	3		33	19			7,3		
	1-2 11-20			a	9			a	9			a	9			a	9			a	9	
par	sond.	Lab		260				270				360				06				80		
Direction, par	press.	77		260				285				20				75				1		
Dir	dens.			225				260				75				110				40		
	p 1140	106574	108073	107657	107728	107926	105350	105902	105718	105595	108456	107556	108268	107961	108104	108306	109487	107844	108246	108190	108972	108141
9	P 1140	0029	0029	6702	6701	6899	6299	6682	9299	7199	6695	0699	6692	6687	6716	6714	6712	6721	6727	6727	6727	6728
_	П	7.5	54	77	90	56	94	52	89	32	59	83	66	58	58	81	97	50	20	79	100	70
,	<u>.</u> :	171	130	147	144	140	188	188	190	194	120	144	126	134	134	135	106	152	140	144	122	144
	ъ.	6707	6578	6699	6742	6885	6560	6679	6717	0999	6573	6687	6733	6673	6593	6711	6753	6707	6603	6724	6768	6714
č	St.	Ch	W.	St-B.	0.1.	Sch .	W.	St-B.	O.I.	Sch.	W.	St-B.	O.I.	Sch.	W.	St-B.	O.I.	Sch .	W.	St-B.	O.I.	Sch.
F	Date	5 VII					6.VII.				9.VII.				10.VII.				11.VII.			

13. 14. 15.

Gr. s. 150° , 1,6 mm Hg; tend.: + 00 à 05; Zh. dans H. P. Gr. s. 310° , 2 mm Hg; tend.: + 05 à 20; Zh. dans H. P. Gr. s. 170° , 0,5 mm Hg; tend.: + 00 à 05; Zh. sur ensellement dors. antic. Gr. s. 170° , 1,0 mm Hg; tend. + 08 à 10; Zh. dans H. P. Gr. s. 180° , 0,7 mm Hg; tend.: + 05 à 08; Zh. dans H. P.

	Kem.			17				18				19				
,	St.			c.S.o.	c.S.o.			W.S.B.	W.S.B.			W.S.B.	c.S.o.			<u> </u>
ar	sond.			7				∞				9				
Vitesse, par	press.			2,8	.]			5,7		æ		3,3	3,0	,		
Λ	dens.			42,2				58				52				
				a	9			a	9			a	9	13/10/2004		
par	sond.			220				280				350				
Direction, par	dens. press.			10				300				15		11		
Dir	dens.		2	275	3			240				300				
3	P 1140	107010	107218	107309	107515	106595	105938	106546	106548	106444	106167	106463	106842	105525	106601	106392
9	F 1140	6733	6731	6731	6729	6728	6728	6730	6724	6733	6738	6734	6732	6731	6730	6730
کہ	:	69	65	92	88	37	42	65	33	59	7,7	56	83	32	55	41
+	٠.	174	170	166	158	190	198	187	190	191	200	194	178	220	187	190
\$	p.	6740	6612	6728	6770	6714	8099	6727	6710	6730	6619	6731	6773	6717	6737	6607
ż	36.	Ch.	W.	St-B.	O.I.	Sch.	W.	S^{t} -B.	Sch.	Ch.	W.	St-B.	OI.	Sch.	Ch.	W
Doto	Date	12.VII.					13.VII.			14.VII.		ě			16.VII.	a

17a. Comparaisons des pressions barométriques en dixièmes de mm de Hg.

110 127 237	119 119 238	116 127 243	72 169 241	95 144 239	110 130 240	120 111 231	$\frac{108}{130}$	107 130 237	Dif. Cx-FdsCh. " ChW " Cx-FdsW.
30	56	24	2.0	17	16	14	13	12	Dates: juillet

b. Gr. s. 150°, 0,2 mm Hg; tend:. + 00 à 05; Zh. dans H. P.
18. Gr. s. 310°, 1,1 mm Hg; tend:. + 05 à 08; Zh. dans H. P.
19a. Pression admise pour Chaumont: 674,0 mm Hg.

b. Gr. s. 150°, 0,7 Hg; tend.: + 05 à 10; Zh. dans H. P.

F	Kem.	20			21				22				23	8			24	
	St.	C.O.B.	c.O.B.		C.S.B.	C.S.O.			C.o.o.S.	C.S.o.			W.s.o.	W.s.o.			W.S.O.	W.S.O.
ar	sond.	0			အ				0				9				က	
Vitesse, par	press.	6,7	6,0	i i	5,3	5,3	9		5,90	5,0	0		6,4	6,4			3,6	3,6
Λ	dens.	78			38				18	1			39	1			150	1
		a	9		a	9			a	9			a	p			a	9
par	sond.	230			110				360				290				310	
Direction, par	press.	350			50				55				360				320	
Dir	dens.	250			350				290				15				270	
	P 1140	107196	107118	107133	106871	107525	106224	106860	107014	108600	107566	108053	107275	107962	106521	107393	107975	107078
	F 1140	6727	6722	6717	6715	6713	6713	0699	6687	9899	9899	0699	0699	2699	8299	6710	9029	6704
-	n.	51	82	72	67	95	38	26	62	76	53	04	09	87	04	73	100	09
,	<u>.</u>	174	168	165	174	154	193	164	162	117	144	130	155	137	170	150	138	162
	b.	6724	6263	6233	6712	6754	6699	6735	0699	6727	6672	6574	6687	6738	4999	6588	6747	0699
70	Sf.	St-B.	OI.	Ch.	St-B.	OI.	Sch .	Ch.	St-B.	OI.	$\mathbf{Sch.}$	W.	St-B.	OI.	Sch.	W.	OI.	Sch.
Dote	Date	16.VII.		17.VII.				20.VII.				24.VII.				26.VII.		

Gr. s. 150° , 0,7 mm Hg; tend.: + 05 à 10; Zh. dans H. P. Pression admise pour Chaumont: 672,4 mm Hg. Gr. s. 150° , 1,6 mm Hg; tend.: + 00 à 08; Zh. dans H. P. 20. 21a. b.

²²a. b.

Pression admise pour Chaumont: 669,7 mm Hg. Gr. s. 150° , 1,0 mm Hg; tend.: + 05; Zh. dans H. P. Gr. s. 60° , 0,6 mm Hg; tend.: + 00 à 05; Zh. dans H. P. Gr. s. 40° , 0,7 mm Hg; tend.: + 00 à 04; Zh. dans H. P.

Ć.	KeIII.		25				26			27				
76	Sr.	n n	W.S.B.	W.S.O.		W.S.O.	W.S.O.	2		W.S.o.	W.S.O.	5		
ar	sond.		က			ಸು				15				
Vitesse, par	press.		1,8	1,8		2,0	1,8			14	14			
Δ	dens.		35	1		25	1			06	1			
			a	9		a	9			a	9			
par	sond.		250			250				310				
Direction, par	press.		330			120				305				
Dir	dens.		20			105				265			Į.	
	6 1140	108298	108161	110090	107773	106267	106227	106373	105860	106416	106349	105859	104379	104893
	P 1140	7299	6999	6673	6672	6899	6899	0699	6691	6691	6691	7899	6657	6659
	-i	53	77	100	94	7,7,	75	95	20	65	78	37	63	04
	ن.	108	124	78	134	173	180	171	180	174	178	190	211	210
	<u>.</u>	6553	6672	6714	8699	6573	6730	9299	6570	7699	6732	0299	7999	6542
	St.	W.	St-B.	OI.	Sch.	W.	OI.	Sch.	W.	St-B.	OI.	Sch.	Ch.	W.
	Date	30.VII.				1.VIII.			2.VIII.				4.VIII.	

25. Gr. s. 160° , 1,5 mm Hg; tend.: + 04 à 08; Zh. dans H. P. 26a. Comparaisons des baromètres en dixièmes de mm Hg:

Dates: août	1	8	4	9	7	10	11	13
Dif. Chx-FdsCh " ChW. " Chx-FdsW.	125	114	101	93	93	111	104	103
	112	127	122	149	147	127	132	131
	237	241	223	242	240	238	236	234

b. Gr. s. 320° , 1,4 mm Hg; tend.: — 00 à 08; Zh. dans H. P. 27. Gr. s. 330° , 0,6 mm Hg; tend.: + 05 à 20; Zh. dans H. P.

	Kem.	28	ì		29						30	o gene			31				
	ž.	C.w.B.	W.S.O.				W.S.O.	C.S.0.			C.S.B.	C.S.B.			c.S.o.	c.S.o.			
ar	sond.	7					2				9		50		5				
Vitesse, par	press.	15	10,5				3,5	2,9	`		6.3	6,3			4.3	6,0			
Λ	dens.	4.7	1				35]			170				18				
		a	9				a	9			a	9			a	9			ir.
par	sond.	200					30				80				260				
Direction, par	press.	65					55				75				300				
Dir	dens.	245					300				35				280				
071	0 1 1 4 0	104827	105533	104094	110430	110143	109256	110237	110474	114221	112856	110044	107321	107925	107104	108222	107522	108161	107224
D 447.0	F 1140	6653	6653	6657	4069	6700	8699	6701	6699	6716	6713	6714	6702	6702	6703	0029	8699	0699	₹899
ء	:	09	81	25	09	96	90	100	95	59	54	50	54	18	83	66	38	50	19
-	ا ن	207	177	230	82	70	107	85	72	113	149	7 6	158	144	160	130	153	132	162
ء		6656	7699	6643	6728	6228	6701	6742	6685	6737	6716	6700	6209	6582	6700	6741	6684	6697	6568
ž		St-B.	OI.	Sch .	Ch.	W.	St-B.	O.I.	Sch.	Ch.	St-B.	Sch .	Ch.	W.	St-B.	O.I.	Sch.	Ch.	W.
Dafe	7,877	4.VIII.			6.VIII.					7.VIII.			10.VIII.					11.VIII.	

Gr. s. 320° , 1,8 mm Hg; tend.: $00 \text{ à} + 10 \atop 5$; Zh. en bordure B. P.

²⁹a. Pression admise pour Chaumont: 671,1 mm de Hg.
b. Gr. s. 140°, 1,6 mm Hg; tend. + 05 à 15; Zh. dans H. P.
30a. Pression admise pour Chaumont: 672,1 mm de Hg.
b. Gr. s. 180°, 1,0 mm Hg; tend.: + 00 à 04; Zh. dans H. P.
31. Gr. s. 160°, 0,4 mm Hg; tend.: + 00 à 05; Zh. dans H. P.

	Kem.	32	-	N	•	33	***************************************				34	- No 1		
70	St.	c.S.o.	c.S.o.				c.S.o.	C.S.B.				c.S.o.	c.S.o.	
ar	sond.	က			2		7	l				6		
Vitesse, par	press.	10,5	1				_	r				7,0	6,0	,
Λ	dens.	78	1			21	37	37				63		
		a	9	li e			a	9				a	9	
par	sond.	310			3							280		
Direction, par	press.	90			31		20					20		
Dir	dens.	360			5	ran	05					280		
2	7 1140	106937	107787	106838	105430	105701	105683	106118	106010	106191	106576	106165	107089	106057
477	F 1140	7899	6685	0699	0999	7999	9299	6657	6654	6662	6999	6657	6659	6657
2	.i.	09	85	30	61	64	63	78	39	66	63	83	66	26
+	ند	161	135	170	187	170	180	170	173	161	150	164	142	170
\$	D	6681	6726	9299	6667	6536	6653	8699	0499	6999	6541	6653	6700	6499
ž	of.	St-B.	O.I.	Sch.	Ch.	W.	St-B.	0.1.	Sch .	Cb.	W.	St-B.	O.I.	Sch.
Defe	Dare	11.VIII.			13.VIII.				13	15.VIII.				3

Gr. s. 160° , 0.7 mm de Hg; tend.: + 00 à 05; Zh. dans H. P. Gr. s. 20° , 1.2 mm de Hg; tend.: + 05 à 10; Zh. sur dors. antic. Front Stettin-Dijon. 32. Gr. s. 160° , 0.7 mm de Hg; tend.: + 00 à 05; Zh. dans H. P. 33. Gr. s. 20° , 1.2 mm de Hg; tend.: + 05 à 10; Zh. sur dors. antic. Fron 34a. Comparaison des pressions barométriques en dixièmes de mm de IIg:

Date: août	15	11	18	19	30	23	24	25	31
Dif. Cx-FdsCh.	104	108	118	100	117	111	104	118	125
» ChW	128	136	122	139	121	126	127	120	11
» Cx-FdsW.	232	544	240	239	238	237	231	238	245

b. Gr. s. 300° , 0,7 mm de Hg; tend.: — 00 à 05; Zh. en bordure H. P.

F	жеш.		35				36				37			38		
	St.		C.S.O.	C.S.O.	² g		W.S.o.	W.S.o.			C.S.0.	C.S.0.	14 14 4	C.W.0.	C.W.B.	
ar	sond.		9				4				21			12		
Vitesse, par	press.		4,7	n			4,6	4,0		-	6,3	5,5		3,8	1	
	dens.		75				67				4,5	3,8		33	1	
			a	9			a	9			a	9		a	9	
par	sond.		300				80				270			290		
Direction, par	press.		285				115				300			300		
Din	dens.		295				85				135			205		
	p 1140	109740	109258	108689	109860	109230	111207	109857	106539	107477	107688	107647	106720	106812	106550	107633
	P 1140	2899	6677	6675	0899	0699	0899	6682	6656	9299	6657	6662	6658	6657	6658	6651
	ü.	95	6	72	78	7 9	66	82	75	75	86	53	80	32	56	70
		87	86	109	72	106	54	82	158	134	124	133	150	150	161	130
	<u>م</u>	7699	6718	6661	6559	6687	6721	8999	6673	6653	8699	8799	8658	6537	6655	6692
į	st.	Ch.	O.I.	Sch.	W.	S.B.	O.I.	Sch.	Ch.	St-B.	O.I.	Sch.	Ch.	W.	St-B.	0.I.
	Date	17.VIII.		96	18.VIII.				19.VIII.		11		20.VIII.			

Gr. s. 120°, 1,1 mm Hg; tend.: + 05 à 08; Zh. dans H. P.
 Gr. s. 180°, 0,9 mm Hg; tend.: + 00 à 04; Zh. dans H. P.
 Pression admise pour Chaumont: 666,3 mm Hg.
 Gr. s. 310°, 1,8 mm Hg; tend.: + 05 à 15; Zh. en bordure H. P.
 Pression admise pour Chaumont: 666,5 mm Hg.
 Gr. s. 320°, 0,7 mm Hg; tend.: — 00 à 08; Zh. dans H. P.

	St. Rem.	s.B. 39	(100-11-12-12-12-12-12-12-12-12-12-12-12-12-		S.o. 40 S.o.	
	<u> </u>	W.s.B.	w.0.B		W.S.o. W.S.o.	W.S.o. W.S.o. C.w.O.
par	. sond.	. 7			4	4 9
Vitesse, par	press.	14,5	14,5		5,2 6,4	
	dens.	135	1		65	65 25,8
	,	a	9		a	p a p a
par	sond.	260			180	180
Direction, par	press.	240			240	240
Di	dens.	245			95	95
	p 1140	108347 109346 110217	$\frac{108212}{106727}$	106472	106472 108028 106458	106472 108028 106458 106930 107267 107081
	P 1140	6693 6694 6695	6686	6999	6669	6669 6667 6672 6672 6673
,	и ——	53 56 90	45	85	8 8 7 8 8 3 8 3 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8	8 8 8 7 8 8 8 2 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
	نـــــــ	118 106 84	123 163	162	162 121 170	162 121 170 150 140 150
	ď.	6574 6691 6736	6548	9999	6666 6708 6654	6666 6708 6654 6672 6672 6572
	St.	W. St-B. O.I.	Sch. W.	St-B.	St-B. O.I. Sch.	St-B. O.I. Ch. O.I.
	Date	23.VIII.	24.VIII.		,	25.VIII.

39. Gr. s. 10°, 1,2 mm Hg; tend.: + 00 à 04; Zh. dans H. P. 40. Gr. s. 280°, 1,1 mm Hg; tend.: + ou — 00; Zh. dans H. P. 41a. Pression admise pour Chaumont: 667,9 mm Hg. b. Gr. s. 350°, 1 mm Hg; tend.: + 10 à 15; Zh. dans H. P. 42a. Pression admise pour Chaumont: 671,2 mm Hg. b. Gr. s. 160°, 1,0 mm Hg; tend.: + 05 à 11; Zh. dans H. P.

Les exemples précédents montrent que la température et l'humidité subissent des influences locales non méprisables. Pour cette raison nous simplifierons les calculs de la fin de l'année 1928 et nous nous bornerons à comparer le vent au gradient pression à celui déduit des sondages. Les colonnes de la tabelle suivante signifient:

1re colonne: date: jour (chiffre arabe), mois (chiffre romain) de 1928.
 2me colonne: station enmployée, même abréviation que précédemment.

3me colonne: direction du vent théorique au gradient pression.

4^{me} colonne: direction du vent d'après le sondage, en degrés.

 5^{me} colonne: vitesse du vent théorique au gradient pression pour $r=\infty$, en m/sec.

 6^{me} colonne: vitesse du vent théorique au gradient pression pour $r \neq \infty$, en m/sec.

7^{me} colonne: vitesse du vent d'après le sondage, en m/sec.

8^{me} colonne: direction du gradient barométrique au sol, comme précédemment.

9^{me} colonne: gradient barométrique au sol en mm de Hg.

10me colonne: situation de Zurich dans le relief barométrique.

Dates 1	St.	11	ction ar Sond.	pres.	itesse j	par	dir. gr. sol	gr.	Situa- tion
		Pres.	Sona.	$r = \infty$	$r \neq \infty$	Soliu.	8		
1.IX	W.B.S.	160	140	0,8	0,7	2	140	0,85	H.P.
4	W.B.S.	265	90	1,9	1,3	4	165	1,2	H.P.
5	Wb.S	300	270	8,7	7,7	10	270	1,0	H.P.
6	Wb.S	310	290	4,1	3,5	5	320	0,8	H.P.
8	W.B.O.	115	90	5,6	5,2	3	330	1,0	H.P.
10	W.O.S.	290	100	9,0	8,1	5	150	1,2	H.P.
21	W.B.O.	85	80	3,6	3,3	5	200	1,0	H.P.
24	W.B.O.	285	270	10,7	9,0	6	150	1,1	H.P.
25	W.O.S.	235	270	7,5		6	300	1,9	H.P.
26	W.B.O.	85	110	9,0	9,0	4	170	0,5	H.P.
27	W.B.S.	25	360	2,7	2,7	3	240	0,5	H.P.
29	W.B.S.	240	180	3,9		3	330	1,1	B.P.
9.X	C.B.S.	240	260	15,4	15,4	12	320	1,5	H.P.
20	W.B.S.	160	170	1,6	1,6	3	310	2,4	H.P.

¹ Comparaison des pressions barométriques en dixièmes de mm de Hg: (suite de la note voir page suivante)

Les conclusions que l'on peut tirer de ces tabelles sont exposées plus loin.

Vents théoriques en 1929 (altitude de référence: 1152 m).

Pour mettre en évidence l'influence possible de la méthode de réduction, un autre procédé sera utilisé pour ramener les poids spécifiques de l'air à un niveau de référence (1152 m).

Les stations employées sont: Schwäbrig, Einsiedeln (E., 913,9 m), Oberiberg, Weissenstein et Langenbruck (L., 704,7 m)¹. Admettons que le poids spécifique ρ de l'air varie

(suite de la note de la page précédente)

Dates - Sept.	1	4	5	6	8	10	21
Cx-FsCh	107	125	94	127	139	124	85
ChW	136	121	145	115	99	120	153
Cx-FsW.	243	246	239	242	238	244	238
Dates	24	25	26	27	29	9.X	20.X
Cx-FsCh.	78	102	116	112	97	120	88
ChW	170	143	121	133	140	122	141
Cx-FsW.	248	245	237	245	237	242	229

¹ Le tableau suivant indique les différences de pression, en dixièmes de mm de Hg, d'un jour à l'autre pour les stations dont les observations furent employées. Le signe — indique une baisse; le signe+indique une hausse de pression.

linéairement entre des stations très voisines, par exemple: Langenbruck et Weissenstein, Einsiedeln et Oberiberg. Calculons par inter ou extrapolation les valeurs $\rho_{\scriptscriptstyle LW}$ et $\rho_{\scriptscriptstyle EO}$ aux traces des droites $\overline{\scriptscriptstyle LW}$ et $\overline{\scriptscriptstyle EO}$ sur le plan de référence. Ces traces sont déterminées géométriquement sur une carte militaire au 1: 100.000. Comme gradient vertical $\Delta\rho$ nous prendrons une valeur moyenne (correspondant à une différence fictive d'altitude de 450 m) déduite de $\rho_{\scriptscriptstyle L}-\rho_{\scriptscriptstyle W}$ et $\rho_{\scriptscriptstyle E}-\rho_{\scriptscriptstyle O}$; soit:

$$\Delta \, \rho \, = \, \frac{1}{2} \bigg[\left(\rho_{\rm L} - - \rho_{\rm W} \right) \frac{450}{580,3} \, + \, \left(\rho_{\rm E} - - \rho_{\rm O} \right) \frac{450}{176} \bigg] \; . \label{eq:delta-rho}$$

Comme précédemment, nous limiterons les tabelles de 1929 au strict nécessaire. Les nombres donnés dans les diverses colonnes signifient:

1re colonne: dates (1929), jours et mois comme précédemment.

 2^{me} colonne: stations: L.-W. = poste fictif à 1152 m sur la droite WL. E.-O. = poste fictif à 1152 m sur la droite EO.

3^{me} colonne: poids spécifique de l'air à 1152 m en dixièmes de gr. 4^{me} colonne: pression de l'air à 1152 m en dixièmes de mm de Hg. 5^{me}, 6^{me}, 7^{me} colonnes: directions du vent comme précédemment.

 8^{me} colonne: lignes a et b comme précédemment.

9^{me}, 10^{me}, 11^{me} colonnes: vitesses du vent comme précédemment.

12^{me} colonne: direction du gradient barométrique au sol en degrés.

13^{me} colonne: gradient barométrique au sol en mm de Hg.

14^{me} colonne: situation de Zurich sur le relief barométrique.

15^{me} colonne: tendance.

16^{me} colonne: remarques.

		3	1	Dire	Direction, par	par	-	Vi	Vitesse, par	ar	Dir.	Gr.	Situa-		۶
Date	St.	p 1152	P 1152	dens.	dens. press.	sond.		dens.	press.	sond.	gr. s.	mm	tion	Tend.	 K.
> ×	L, -W	10968	6639				5	a 2							
•	: i)))))))	275	260	80	8	250	8.2	7	300	0.7	Н. Р.	+ 00 à 10	1
	EO.	11060	6643				9		7,5						
2	Sch.	10902	6641_{\circ}												
13.V.	LW.	11050	6658		Œ.		57						•		
				305	290	270	a	83	3,6	%	150	9,0	H. P.	+ 08 à 10	
	EO.	11040	8299				9	l	4,0						
	Sch.	10984	6656										•		
14.V.	WL.	10987	6650	285	270	180	a	108	13,9	1,5	indéterminé	rminé	H. P.	$+$ 00 $\grave{ m a}$ 04	
	E-0-	11013	7999				9	1	1						
	Sch.	10914	6799												
21.V.	LW.	10980	6641	290	230	calm	a	27	4,1	calme	indéterminé	rminé	H. P.	+ 05 à 08	ä
	臣0.	10985	7599				q	I	l						
	Sch.	10961	7599												
22.V.	LW.	10881	9799	275	270	ind.	a	5 8	14,0	indét.	270	0,3	H. P.	+ 10 à 15	2
	E0.	10918	6799				9	1]						
	$\operatorname{Sch.}$	10859	643												
23.V.	LW.	10802	8699	270	230	06	a	280	2,7	23	300	12	en bor-	$00 \ a$ 10	
	EO.	10943	9899			3	9]	2,3				dure		
	Sch.	10799	9899									ě	В. Р.		

1. Pression au W. très douteuse. Pression admise 5 mm plus haut par comparaison avec le 13.V et les autres postes. 2. Pression W. probablement 1 mm trop haut.

													18									
۲	귝.		1	က		į.					4					ŭ.	P	U.		55		
E and E	rena.	00 +	} 		-05			$+05 \ aos 08$			— 00 à 05		4	12	00 T		=	$+05 \ ag{08}$	s/	*	+ 00 à 05	
Situa-	tion	éneron	H. P.	3 3 8	H. P.			H. P.			В. Р.				H. P.			H. P.			H. P.	
Gr.	mm	1			x			0,5			8,0				1,0		24	0,7			0,7	3
Dir.	gr. s.	160			x			20			200				270		ă,	150			180	
ar	sond.	νc)		6	7.5		67			1		P		က			67			ಸ	
Vitesse, par	press.	9.7	:	5	6,4	1		6,7			6,5	5,5			7,9	6,5		1,4	1,4	71	22,5	1
Vi	dens.	808			100	1		270			13,5	10,0			74,0			340,0	[0,89	l
			9		a	p		a	9		a	9			a	9		a	9		a	9
par	sond.	330			06			300			360				150			ind.) e		06	
Direction, par	dens. press. sond	076			265			260			35				255			50		2	110	
Dir	dens.	275			275			280			290				280			285			285	17
0,11,0	F 1152	6633	6639	8699	9999	7999	9999	8999	6671	6999	6799	5599	6643	6899	6693	6691	6700	6701	0029	8699	9699	6708
0277	P 1152	10759	10858	10707	10727	10797	10709	10787	10881	10724	10722	10725	10713	10602	10660	10570	10880	10941	10755	10768	10786	10725
70	St.	M- 1	EO.	Sch .	LW.	EO.	Sch.	LW.	EO.	Sch.	LW.	EO.	Sch.	LW.	EO.	Sch.	LW.	EO.	Sch.	LW.	EO.	Sch.
, T. C. T.	Date	Λ 1/6	•		25.V.	SI.		29.V.	19		31.V.			12.VI.			17.VI.			18.VI.		

3. Front Anvers-Perpignan.

ρ	Ъ.					0			9	7													
P month	rena.		a .	+ 05	53		00 十			— 00 à 05	15		+ 08 à 25			00 +			+ 05 a 10	1994		+ 05 à 15	2
Situa-	tion			H. P.			H. P.			В. Р.			B. P.	1411		Н. Р.			H. P.			Н. Р.	
Gr.	mm			0,7			6,0			6,0	195	8	1,2		8	8,0	8:		1,0			8,0	
Dir.	gr. s.			150			240			330			310			180			170			310	
ar	sond.			67	040	100000000000000000000000000000000000000	1 /			13	8		က			9			ಸು			∞	
Vitesse, par	press.	-		7,5	6,5		11,6	8,8	29	20,4	14,8		21,4	I		24,0	17,0		1,4	1,4		10,2	8,8
Vi	dens.			340,0			115,0			115,0			34,0	I		12,3	10,0		70,0	ļ		70,0	1
				a	9		a	9		a	9		a	q		a	9		a	9		a	9
par	sond.			270			250			270			310			100			80	•		280	
Direction, par	dens. press.			110			280	۵		270	9		265			85	8		50	×.		290	
Dire	dens.		45	280			290			90			04	i.		270			95	8		280	
	P 1152		6629	6628	6632	9999	8999	6999	6613	6620	6612	8699	2499	0599	8029	8699	9029	6702	6701	6701	6693	7 699	6899
	p 1152	20	10980	11045	10848	10864	10884	10785	10821	10761	10835	10578	10541	10538	10769	10800	10772	10677	10747	10796	10592	10819	10561
	St.		LW.	E0.	Sch.	LW.	EO.	Sch.	LW.	EO.	Sch.	LW.	EO.	Sch.	LW.	EO.	Sch.	LW.	EO.	Sch.	LW.	EO.	Sch.
	Date		27.VI.	3f (5		29.VI.	37 37 32 33	20 20 20 20 20 20 20 20 20 20 20 20 20 2	1.VII.	19		4.VII.			12.VII.	19		13.VII.		2	17.VII.		383 V

4. Pression admise pour S.: 6612 au lieu de 6672.

Les conclusions que l'on peut tirer de ces tabelles seront exposées plus loin.

Vents théoriques 1929-1930 (altitude de référence: 702 m).

Pour permettre d'apprécier les influences du niveau de référence et de la répartition des postes sur les résultats, des déterminations de vents théoriques ont été faites pour une altitude de référence à 702 m à l'aide des deux groupes suivants de stations:

- a) Langenbruck, Zurich (Z.: 493,2 m) et St-Gall (St-G.);
- b) Langenbruck, Unter Hallau (U. H.: 449,5 m) et St-Gall. Les trois premières stations forment un triangle très aplati présentant de grands inconvénients pour la détermination de la vitesse des vents théoriques.

 $\Delta \rho$ sera calculé par l'une ou l'autre des expressions suivantes:

$$a) \qquad \Delta \, \rho \, = \, \frac{1}{2} \bigg[\, (\rho_{\rm L} \, - \, \rho_{\rm Z}) \, \frac{450}{211,5} \, + \, \, (\rho_{\rm SG} \, - \, \rho_{\rm Z}) \, \frac{450}{208,8} \bigg] \; \; ; \label{eq:delta-rho}$$

$$\delta \rho \, = \, \frac{1}{2} \bigg[(\rho_{\rm L} - \rho_{\rm UH}) \, \frac{450}{255,2} \, + \, (\rho_{\rm SG} - \rho_{\rm UH}) \, \frac{450}{252,5} \bigg] \; . \label{eq:delta-rho}$$

Les nombres donnés dans les différentes colonnes ont même signification que dans la tabelle précédente ¹.

¹ Différences de pression d'un jour à l'autre, comme précédemment:

Date	Ď	6 703	D 700	Dire	Direction, par	par		Λ	Vitesse, par	ır	Dir.	Gr.	Situa-	·	۴
416	36.	7012	F 102	dens.	press.	sond.		dens.	press.	sond.	gr. s.	mm	tion	Tena.	·
11/1 06		44070	р С	-		14							-	0	
٠11٠	i ż	11079	0000	2	, ,	7	4				000	6	;		
87	2 - 2 - C	11082	7007	265	265	720	a		I	4,0	320	2,0	н. Р.	00 +	
æ	Z.	11119	7061	(8)			9	I	1			1 80			
	U.H.	l	7059											æ	
22.VII.	L.	11159	7070				5					N			
	St-G.	11142	7074	80	260	270	a	l	1	6,0	330	8.0	H. P.	$+05 \ ag{10}$	
	Z.	11128	7073				9	1							
g **	U.H.		7070												
24.VII.	ľ.	11039	7032					3		(+					
	St-G.	11976	7022	260	260	260	a	l		3,0	340	7,0	H. P.	— 00 à 15	
	Z.	11920	7028				9	l	- [v 0			
	U.H.	I	7025												
26.VII.	ľ.	11200	7007												
2	St.G.	11206	9002	85	265	270	a	l		5,0	360	1,0	H. P.	+ 00 à 11	
	Z.	11120	7007		2		9	1	I			ă		1	
	UH.		9002				8								
29.VII.	L.	11281	2009	9										-	
3:	St-G.	11247	7012	85	265	260	a	l		5,0	320	1,0	H. P.	— 05 à 10	38
	Z.	11170	7011				9	1	l			e.		s. 1	
	U.H.	l	7007		0						,			0 (65)	
7.VIII.	L.	11433	2008		201							30		8	
	St-G.	11167	7014	80	265	290	a		- [4,0	280	1,4	H. P.	00 +	
	Ζ.	11231	7013	8	2		9	l				8		,1	

II——					42000							0.50101252	110.000	16.76	C 8181350-a				44						
-	 F.																								
E	rena.	54		•	$+ 00 \ a 05$		- F		$+ 00 \ ao 5$				+ 10 à 20	G			00 +	**		-	+ 00 à 05	**	5.		+ 10
Situa-	tion				H. P.				H. P.				H. P.				H. P.				H. P.				H. P.
Gr.	mm				0,5				0,5				1,8				1,0				8,0				1,1
Dir.	gr. s.				320				240				04				340				260				330
ar	sond.				5,0				2,2				0,9				x			37	3,0				x
Vitesse, par	press.				1		7		I	1			l	1			1				I				1
Λ	dens.				l	I			I	l			[-			l	I			1	[1
					a	9			a	9			a	9			a	9			a	9			a
par	sond.				180				290	00 may 0,000 m			250	* i :			x				130		25		s
Direction, par	dens. press.				265		ė		90				265	ě			265				95			W	90
Dire	dens.				85		-		85				85		9		90			,	90				275
001	P 702	000	1001	7033	7035	7035	7031	7027	7030	7028	7025	7025	7027	7028	7019	7073	7078	7077	7073	7036	7039	7037	7034	7035	7035
1	30. a.			11258	11165	11191	- [11322	11227	11195	I	11253	11160	11062	[11361	11368	11284	1	11361	11320	11217	l	11334	11083
	St.	11 11	0.11.	Ľ.	St-G.	Z.	U.H.	ľ.	St-G.	Z.	U.H.	ľ.	St-G.	Z.	U.H.	L.	St-G.	Z.	U.H.	ľ.	St-G.	Z.	U.H.	Γ.	St-G.
	Date	111/7	/· V 111.	15.VIII.				16.VIII.		9	2	17.VIII.				24.VIII.				27.VIII.				28.VIII.	
ll	- 1																								

Ľ	a. K.				à 11			à 10				à 10		à 08				à 06			à 20 1	
	Tena.				+ 05 à 11			$+ 05 \ a$ 10				+04 à 10		+ 02 à				+ 00 à	104		$+10 \ ao 20$	
Situa-	tion				H. P.			H. P.				H. P.	*1	H. P.				H. P.	35		B. P.	
Gr.	mm —				1,8		•	6,0				1,1		0,4				8,0			0,7	
Dir.	gr. s.				$\parallel 310$			180				160		$\parallel 310$				150			360	
oar	sond.				6,0			5,0				1,0		4,0				3,0	8		3,0	
Vitesse, par	press.				17,0			8,0	8,0			4,4	3,2	8,0	8,0			15,6	15,6		6,4	
>	dens.				36,0			270,0	l			51,0]	37,0]			x	s		107,0	
		4			a	9		α	9			a	9	a	9			a	9		a	
par	sond.		5		260		1000 a 100 a 1	90				330		70				20			250	
Direction, par	press.				260			220				210		235				270			265	
Di	dens.				340			280	8			55		320				115			275	_
700	F 102	7033	7027	7035	7036	7030	7119	7125	7121		7052	7056	7053	7072	7077	7072	7051	2049	2407	6987	6987	_
0.07.0	7017	11150		11342	11197	11205	12011	11880	11800		11550	11493	11552	11529	11469	11480	11296	11616	11688	11358	11332	
ţ	or:	N	H.H.	L.	St-G.	U.H.	L.	St-G.	U.H.		L.	St-G.	U.H.	ij	St-G.	U.H.	ij	St-G.	U.H.	ľ.	St-G.	200 200000
o do C	Date	111V .89		5.IX.			26.IX.			1930	16.V.		gar.	17.V.			20.V.			28.V.		

1. Bordure B. P.

	,																		
F	 		2														က		
E	r end.		+ 08 à 14		+ 10 à 20			-06 a + 04			+04 à 16			+ 02			$+ 06 \ a$ 12		
Situa-	tion		B. P.		H. P.			H. P.			H. P.			H. P.			B. P.		
Gr.	mm		1,0		0,5		*	1,0			0,5			0,2			x		
Dir.	gr. s.		340	53	200			300			180			240			50		
ar	sond.		3,0		2,0	8		5,0	RI.		2,0			4,0			x		
Vitesse, par	press.		9,4	[14,0	l		11,7	9,3		14,6	12,2		18,2	12,7		12,3	12,3	
Λ	dens.		75,0		21,0	1		7 9	1		x			38,5	l		x	1	e
			a	9	a	9		a	9		a	9		a	9		a	9	
par	sond.		250		310			200			210			330			x		
Direction, par	press.		255		245			85			260			85			265		
Din	dens.		340		295			150			285			255			300		
9	F 102	6982	6883	6981	7023	7028	7021	7020	7027	7029	7031	7032	7027	9004	9002	7012	7021	7021	7017
000	20 0.	11295	11147	11219	11259	11240	11240	11222	11347	11296	11245	11169	11129	11171	11188	11159	11237	11114	11130
5			St-G.	U.H.	L.	St-G.	U.H.	ľ.	St-G.	U.H.	ľ.	St-G.	U.H.	L.	St-G.	U.H.	ľ.	St-G.	U.H.
F	Date	3.VI.			4.VI.			6.VI.			11.VI.			18.VI.			19.VI.		

2. Marais B. P. 3. Couloir B. P. Front: Strasbourg-Friedrichshafen.

Les conclusions que l'on peut tirer de ces tabelles sont exposées plus loin.

Vents théoriques 1927 (altitude de référence: 2066 m).

Pour terminer, choisissons un dernier niveau de référence à 2066 m, et utilisons les observations de 1927. Prenons pour stations: le Righi (R.: 1787 m), le Pilate (P.: 2068 m), la Schatzalp (SA.: 1868,3 m) et le Saentis (S.: 2500,1 m).

Faisons ici l'hypothèse, un peu téméraire peut-être, que le poids spécifique de l'air varie linéairement entre le Righi et le Saentis, puis entre la Schatzalp et le Saentis. A l'aide d'une carte ¹ au 1: 100.000^e, déterminons géométriquement les traces des droites R.S. et SA.S. sur le plan de 2068 m d'altitude; calculons par interpolation le poids spécifique de l'air en ces points, qui sont presque à la verticale: le premier d'Einsiedeln, le second de Zizers.

Nous pouvons écrire:

$$\frac{\mathbf{p}_{\mathrm{R}}-\mathbf{p}_{\mathrm{S}}}{h_{\mathrm{S}}-h_{\mathrm{R}}}=\frac{\mathbf{p}_{\mathrm{2068~RS}}-\mathbf{p}_{\mathrm{S}}}{h_{\mathrm{S}}-h_{\mathrm{p}}}$$

ou

$$\rho_{\rm 2068~RS} = \frac{h_{\rm s} - h_{\rm p}}{h_{\rm s} - h_{\rm R}} (\rho_{\rm R} - \rho_{\rm S}) \, + \, \rho_{\rm s} \ ; \label{eq:response}$$

et semblablement:

$$\label{eq:rho_2068_sas} \varrho_{\rm 2068~sa~s} = \frac{h_{\rm s}-h_{\rm p}}{h_{\rm s}-h_{\rm sa}} \left(\varrho_{\rm sa}-\varrho_{\rm s}\right) \,+\,\varrho_{\rm s} \ ;$$

 1 Pour déterminer avec précision les traces des droites R.S. et SA.S. sur le plan de 2068 m d'altitude, on pourrait être tenté de se servir des coordonnées géographiques des postes Righi et Saentis, ou Schatzalp et Saentis. Les longitudes et latitudes sont simplement données en degrés et minutes dans les *Annales de l'O. C. M.* de Zurich. La position d'un poste est donc connue à \pm 926 m près pour chaque coordonnée.

 $ho_{_{
m R}}$, $ho_{_{
m S}}$, $ho_{_{
m 2068~SA.S}}$, etc., désignent le poids spécifique de l'air au Righi, au Saentis, à la trace de la droite SA.S. sur le plan de 2068 m d'alt., etc.; $h_{_{
m S}}$, $h_{_{
m R}}$, etc. = altitude du Saentis, Righi, etc.

Il nous faut encore admettre que la répartition des densités dans le triangle: Pilate, trace RS et trace SA.S, serait analogue à celle des densités d'un second triangle identique, situé à même altitude, et dont le centre de gravité serait sur la verticale de Dübendorf.

Précédemment, nous avions pu négliger les très faibles corrections dues à la variation de la pesanteur en fonction de l'altitude et de la latitude. Les corrections mentionnées dans les Annales de l'Office central de Météorologie de Zurich sont:

En admettant une variation linéaire de g entre le Righi et le Saentis, puis entre la Schatzalp et le Saentis, nous obtenons les corrections suivantes pour les traces des droites R.S. et SA.S.: — 0,135 mm (au-dessus d'Einsiedeln) et — 0,14 mm (au-dessus de Zizers). Les trois corrections du Pilate et des traces sont donc pratiquement identiques. Grâce à ce fait on pourra ne pas en tenir compte dans les calculs et transformer cette différence de pression en une variation d'altitude:

$$-0.14 \cdot 13.2 = -1.98 \text{ m}$$
;

13,2 m est la différence de hauteur de deux points sur la même verticale, aux environs de 2000 m d'altitude, et où les pressions sont respectivement p et (p + 1) mm de Hg.

Les calculs de pressions effectués pour l'altitude de 2068 m correspondent donc aux conditions à 2066 m.

Le gradient vertical $\Delta \rho$ est calculé à l'aide des observations du Righi et du Pilate ¹.

Contrôle des pressions.

Les importantes variations anormales de pression au Pilate en 1930 nous ont obligé à employer les observations de 1927. De la comparaison des pressions au Pilate à celles correspondant aux traces R.S. et SA.S. se dégage l'impression que la pression au sommet est trop faible de 1,1 mm environ. Pour cette raison le vent théorique au gradient pression a été calculé une seconde fois en ajoutant 1,1 mm de Hg à la pression mesurée au Pilate. Les résultats sont contenus dans les lignes c de la tabelle suivante.

Jusqu'en 1911, la correction barométrique admise pour la Schatzalp fut de — 0,4 mm de Hg. Depuis cette époque l'erreur instrumentale a varié et semble n'être plus que de — 0,2 mm. Cette nouvelle valeur fut calculée à l'aide des différentes moyennes mensuelles de pression entre Davos et la Schatzalp pendant les périodes de 1909 à 1911 et de 1925 à 1927. Ce résultat est confirmé par la comparaison des pressions annuelles de Davos et Arosa pendant les périodes de 1904 à 1911 et de 1923 à 1930.

¹ Les différences de pression mesurées en dixièmes de mm de Hg d'un jour à l'autre sont:

Les différentes colonnes de la tabelle suivante ont respectivement la même signification que précédemment.

													20
D	<u> </u>					0005	• 0000	Dir	ection,	par	Vi	tesse, p	ar
Date	St.	p.	t.	h.		p 2066	P 2066	dens.	press.	sond.	dens.	press.	sond.
1927	1				Ī			6	1	i i	-		<u> </u>
13.VI	R.	6158	45	100	a	5952	9989	115	115	290	156,0	33,0	3,0
	P.	5944	30	100	b	5944	9967	_		<u> </u>			
	SA.	6101	58	92	c	5954	9946		120			20,0	
	S.	5636	000	100	d	_		270	180	250	0	2,0	7,0
14.VI	R.	6161	140	6	a	5960	9718	275	240	210		41,0	5,0
	P.	5955	64	50	\boldsymbol{b}	5955	9878	_	-	_			_
	SA.	6127	94	52	c	5977	9842	_	270			46,0	
	s.	5652	72	50	d	-		135	180	180	0	2,0	3,0
15.VI	R.	6183	126	23	a	5984	9758	45	115	240	35,0	58,0	11,0
	P.	5971	100	50	b	5971	9765		_				
	SA.	6132	130	47	c	5989	9736	_	215			10,0	
	S.	5678	87	75	d	_		270	180	225	0	2,0	3,0
16.VI	R.	6198	160	8	a	6003	9632	325	130	170	6,0	43,0	3,0
	P.	5990	152	25	b	5990	9634			_	·		
	SA.	6154	162	34	c	6012	9628		235			21,0	
	S.	5703	160	36	d			135	135	180	6,0		5,0
17.VI	R.	6195	164	24	a	5996	9652	290	130	210	107,0	42,0	4,9
	P.	5985	130	40	b	5985	9684		_	_	<u> </u>		
	SA.	6146	164	28	c	6002	9650		250			18,0	
	S.	5689	120	50	d	l		90	225	180	0	0	4,0
21.VI	R.	6216	108	1	a	6013	9892	275	110	270	145,0	42,0	6,0
	P.	6004	80	11	b	6004	9919						
	SA.	6159	88	48	c	6014	9914		270			8,0	
	S.	5701	68	12	d	_		315	180	250	0	2,0	8,0
29.VI	R.	6158	60	31	a	5954	9929	280	95	240	250,0	65,0	11,0
	P.	5946	30	45	b	5946	9989			_			
	SA.	6090	42	62	c	5948	9949		20			11,5	
	S.	5639	35	54	d			225	180	180	0	2,0	4,0
30.VI	R.	6140	112	14	a	5940	9726	290	230	260	200,0	31,0	8,0
	P.	5936	86	40	b	5936	9771						_
	SA.	6101	114	46	c	5955	9922		265			74,0	_
	S.	5637	90	40	d			135	180	180	2,0		3,0
4.VII	R.	6168	85	41	a	5963	9890	85	120	250	105,0	38,0	15,0
	P.	5953	62	75	b	5953	9870		_				_
	SA.	6114	92	82	c	5967	9851		250	-		10,0	_
	S.	5648	24	100	d			270	180	250	2,0	6,0	11,0
5.VII	R.	6179	140	12	a	5978	9723	305	100	230	240,0	65,0	2,0
	P.	5967	98 -	25	b	5967	9787						_
	SA.	6127	150	40	c	5983	9679		250	· ,		16,0	
	S.	5670	92	40	$\mid d \mid$			270	180	250	0	2,0	5,0

						1111		Dir	ection,	par	Vi	tesse, p	ar
Date	St.	p.	t.	h.	7	p 2066	2066	dens.	press.	sond.	dens.	press.	sond.
6.VII	R.	6187	156	17	a	5990	9675	280	120	70	225,0	33,0	6,0
	P.	5981	120	40	b	5981	9721	_	-		_	,—	_
	SA.	6135	140	42	C	5993	9695	_	270	-	 -	18,0	-
	S.	5686	110	60	d	ļ. .		135	180	135	2,0	2,0	2,0
18.VII	R.	6167	74	100	a	5964	9885	70	115	240	96,0	34,0	9,0
	P.	5956	60	100	b	5956	9872			_	-		
	SA.	6111	92	75	c	5966	9837	· —,	275		· /	24,0	-
# E 6 E	S.	5651	36	100	d	-	-	270	225	250	0	2,0	5,0
19.VII	R.	6197	85	100	a	5992	9909	70	125	230	8,0	35,0	8,0
	P.	5983	62	100	b	5983	9908	4 <u>2 5</u> 33	 -	:	· -		
	SA.	6144	85	85	C	5997	9905) () -	265			21,0	
	S.	5678	35	100	d		_	315	180	230	2,0	6,0	13,0
20.VII	R.	6201	90	100	a	5997	9891	.95	110	330	170,0	37,0	8,0
	P.	5989	78	100	b	5989	9858					_	_
	SA.	6144	100	90	c	5998	9861		275		:	21,0	
	S.	5683	40	100	d			270	225	250	0	2,0	6,0
21.VII	R.	6199	92	100	a	5996	9877	260	110	230	74,0	57,0	8,0
	P.	5984	72	100	b	5984	9871	-					
	SA.	6143	100	88	C	5998	9852		265			12,0	
	S.	5683	48	100	d		-	270	180	250	0	6,0	5,0
1.VIII	R.	6188	160	7	a	5989	9672	300	125	260	60,0	37,0	7,0
	P.	5979	130	35	b	5979	9687			<u> </u>			_
	SA.	6138	146	55	C	5995	9671	- <u>- 11</u> -	260	1.5		21,0	_
	S.	5683	112	48	d	1 2 2		270	180	200	0	2,0	5,0
5.VIII	R.	6187	118	40	a	5986	9799	275	125	260	150,0	26,0	10,0
	P.	5979	96	35	b	5979	.9807	_					_
	SA.	6134	114	98	c	5990	9778		275			40,0	v <u></u>
	S.	5678	68	76	d		<u> </u>	315	180	270	0	2,0	8,0
6.VIII	R.	6157	160	14	a	5960	9596	280	130	230	200,0	38,0	1,0
	P.	5949	132	35	b	5949	9630			_			
	SA.	6108	142	48	c	5966	9624		250			18,0	
	S.	5656	130	46	d	_	_	270	180	250	0	2,0	3,0
18.VIII	R.	6128	112	16	a	5933	9708	165	260	170	63,0		7,0
	P.	5939	114	40	b	5939	9678						
	SA.	6100	100	50	c	5953	9748	1 10	265			85,0	
	S.	5632	92	55	d			180	180	180	13	2,0	7,0

Dans les 6^{me} et 7^{me} colonnes (la colonne des lettres a, b, c, d ne comptant pas), la pression et le poids spécifique de l'air sont réduits à 2066 m; la ligne a donne les valeurs de p et ρ à l'endroit de la trace R.S.; la ligne b donne les valeurs de p et ρ au Pilate; la ligne c donne les valeurs p et ρ pour la trace S.SA. Il ne serait pas possible avec nos données, sans tomber trop

souvent dans le domaine de la fantaisie, de déterminer le rayon de courbure des isobares ou des lignes d'égale densité à 2066 m. Pour cette raison, il n'y a aucun nombre aux lignes b dans les colonnes « direction » et « vitesse ».

La signification des nombres inscrits aux lignes c, dans les 9^{me} et 12^{me} colonnes, a déjà été indiquée plus haut.

Les nombres des lignes d indiquent le vent en montagne: direction: 8^{me} col., au Righi; 9^{me} col., au Pilate; 10^{me} col., au Saentis; vitesse en m/sec: 11^{e} col., au Righi; 12^{me} col., au Pilate; 13^{me} col., au Saentis.

Les renseignements concernant le gradient au sol, la situation météorologique, la tendance barométrique, etc., ne sont pas donnés à nouveau (voir vents théoriques en 1927, altitude de référence: 1140 m).

Conclusions.

La précision des mesures utilisées dans la présente étude étant bien souvent sujette à caution, il est inutile d'allonger les séries; d'autre part, pour la même raison, il ne serait guère intéressant d'interpréter chaque résultat séparément. Par contre, on peut tirer de ces calculs quelques renseignements généraux.

Directions. — Portons, pour commencer, notre attention sur les directions des vents théoriques et des vents observés dans les sondages. Mettons en évidence les fréquences en % des écarts de direction de 10° , 20° , etc. (exprimés en dizaines de degrés) entre tous les vents théoriques calculés et les vents déduits des sondages à même altitude. Dans la tabelle suivante, les chiffres de la colonne m indiquent les méthodes employées:

- 1 = possibilité de choix des postes et élimination de ceux qui semblent douteux.
- 2 = détermination des vents théoriques à l'aide de trois postes à même altitude, dont deux fictifs (traces).
- 3 = identique à la 1^{re} méthode, mais le vent théorique au gradient densité n'a pas été calculé.
- 4 = trois postes presque en ligne droite (Langenbruck-Zurich-S^t-Gall).
- 5 = trois postes à différents niveaux (Langenbruck-Unter Hallau-S^t-Gall).

	19		Colonne						Fréquence	ence	des	écarts	en	dizaines	nes de	de degrés	rés						
Dates	alt. réf.	m .	grad.	~		.	4	5	9	7		9	10	11	- 2	3	4 18	5 16	6 17	7 18	~ ~ &	u	_
7007			4		- 9	- 9	- <u></u>	c	л. ———		- 67					-							
	1140	_	A 0	22	13	7	10	10	7	- 67	0 01	7	· —	. m	ေက	်	- m		. ca	. 21	0 3		70
1928		Ć	d-d			က		11	7	87	2	2	4	_	100	1 0							0
1928	1140	က	d	22	22	21	1	0	-	0	0	C	0	0	0	0	 	0	0 14		0 0	14	4
			<u>d</u>)	10	15	10	10	5	0	0	0	0	0	20	<u>l.</u>	1	<u> </u>		50		-	<u> </u>	 0
1929	1152	2	, o.	10	10	0	10	0	ಹ	ಸು	0	<i>ا</i> ت	0	ນ	0	<u>س</u>	0	0	0 15	_	5 15	=20	
			d-c	20	20	ಬ	10	ro	ಸು	0	0	0	0	<i>ا</i> ت	3"			338 33- 37	0 10	_	8		0
		,	<u>d</u>)	25	25	000	8	0	0	0	0	 ∞	0	0		-			0	1	-	-	67
1929	702	7	· O.	∞	%	0	%	0	0	0	0	0	∞	0	0	0	8 0	******	8 17	7 17	7 18	_	2
			d-d	34	0	0	0	0	0	0	0	0	0	0					8			1	67
1929			<u>d</u>)	17	6	0	0	∞	0	8	0	0	0	0	5							-	2
	702	,ro	· 0.	0	6	%	0	œ	0	8	25 1	<u></u>	0	6	0	0	0	0	8 -0	<u> </u>	8 		2
1930)			d-c	6	0	œ	∞	œ	6	∞	8		0	0								<u> </u>	7
			<i>d</i>)	0	0	16	20	က	<u> </u>	0	ಸರ	ಸರ	ಬ	ಬ		_			5			_	6
	0000	G) p'		16	11	16	0	11	0	0	0	0	0				$0 \mid 1$				_	6
1927	2000	٧	0	11	ಸು	11	10	ro	0	بر	1	0	0	0	0 5		$0 \mid 1$	_			$\frac{0}{0}$	_	6
5			d-d	20	ಬ	ಸ್ತ	ಸು	70	11	ಸು	0	بر آ	0	0			$0 \mid 22$	67	-			_	6
			<i>d</i>)	20	15	6	∞	ကြ	4	-	7	<u> </u> က	1	61								_	က
	1	M	· 0	17	10	20	6	_	က	4	2	20	1	က	_	<u>ි</u>	1 6	4	5		9 +	113	က
			d — 0	22	∞	7	œ	<u>∞</u>	2	က	2	4	27	67								_	က
			•		8		ec :0																

L'avant-dernière colonne (c) contient les observations où, faute de vent (calme) dans le sondage, l'écart de direction n'a pas pu être déterminé. La dernière colonne indique le nombre d'observations qui ont servi à calculer les %.

Rappelons ici que les observations qui ont servi à calculer les vents théoriques dans ce travail n'ont pas toujours été exécutées exactement au même instant que les sondages correspondants. A plusieurs reprises, l'écart de date entre ces deux déterminations a été supérieur à 60 minutes. C'est là un fait indépendant de notre volonté; nous avons dû nous contenter d'observations faites dans un autre but.

La variation de la vitesse ascensionnelle des ballons-pilotes peut provoquer des erreurs d'interprétation dans la tabelle précédente. Pour éliminer les principales fautes, établissons une nouvelle tabelle, analogue à la première, mais dans laquelle nous n'employerons que les sondages au cours desquels la direction du vent fut constante au moins entre les limites suivantes:

Altitude de référence	Limite inférieure	Limite supérieure
702 m	sol	1000 m
1140/1152 m	950 m	1350 m
2066 m	1750 m	2500 m

Les différentes colonnes de la nouvelle tabelle ont même signification que précédemment. La colonne « calme » est supprimée. Les observations p (de 1928, 1140 m, 3^{me} méthode) sont réunies à celles de p (de 1927-28, 1140 m, 1^{re} méthode). Les observations à 702 m des 4^{me} et 5^{me} méthodes sont réunies. Par le signe Σ on a désigné la somme des observations des 2^{me} , 3^{me} , 4^{me} et 5^{me} méthodes. La ligne Σp contient les observations p' à 2066 m, et non les observations p à cette altitude. Les 4^{me} et 3^{me} lignes de la tabelle à partir du bas correspondent aux cas où la direction du vent fut constante (d'après le sondage) de 750 à 1600 m. Les deux dernières lignes de la tabelle correspondent aux cas où la direction du vent fut constante du sol à 1600 m.

	000						Fre	r'requence	se des	s éca	écarts en		dizaines de	de d	degrés					_	
	311	grad.	-	53		4	5	9	7	- ∞	6	10	11	12		14	15	16	17	18	u
-~-	4	\$	c n							_					c	c		c			
	4	7	2 6	5 6	6 ,	ر د د	> <		> <	> <	> <		-	<i>b</i> 0	o (0 0	,	o 0	o -		700
	1 et 3	o. ~~	7	91	+ (1.9	4	_	<u>,</u>	+ /	-)))	<u> </u>	0 1	0	+ /	-	4		56
		d-d	16		12	19	4	<u></u>	4	0	- -		0	.		0	0	0	0		26
		, p	0	50	0	0	0	0	0	0	0	0	0	0	0	0		0		00	2
1929 1152	21		0	0	0	0	0	0	0	0	0	0,	0	0	0	0	0	20	0	50	2
	20	-d	50	0	0	0	0	0	0	0	0	0	0	0	0	0		0		20	63
1929 ,			33	0	33	0	0	0	0	1	0	0	<u>-</u>	34	0		0	0	0	0	3
702	4 et 5		0	0	0	0	0	0	0	0	33	0	0	0	0	0	33	0	0	34	က
1930)		d-d	0	C	0	0	0	0	0	0	0	0		0	0		33	0		67	က
		d)	0	0	0		20	-	0	0	0	0	0		0.5	0	1	20		07	2
9066	G	0	20	20	0	0		0	0	0	0	0	0	0	0	0	7 0	40	0	20	2
•	1	d-d	20	20	0	0	0		20	0	0	0	0	0	0	0		20 5		0	ಸ
ž.		, d	07	0	0	0			0	0	0	0	0	0	0	0		20	0	07	ಬ
		1 p	30	10	10	0	0	10	0	0	0	0	0	10	0	0	1	10	 	07	10
A		0	10	10	0	0	0	0	0	0	10	0	0	0	0	0	$\frac{2}{100}$	30		30	10
	18	q - q	20	10	0	0	0	0	10	0	0	0	0	0	0	0	10 1	10	10	30	10
750 à (1120		d (30	14	14	14	0	0	0	14	0	0	0	0	0	0	0	14	0	0	
1600 m (1130		o. ~	0	09	0	40	0	0	0	0	0	0	0	0	0	0	0	0	0	0	5
sol à		<i>d</i>)	14	72	14	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	~
1600 m		- - ~	80	0	0		20	0	0	0	0	0	0	0	0	0	0	0	0	0	ಸ್

On peut admettre que les directions des vents déduits des sondages et conservés dans la seconde tabelle sont assez exactes; c'est particulièrement le cas en ce qui concerne le quatre dernières lignes.

L'étude des tabelles précédentes montre que, plus la direction réelle des vents est connue avec exactitude, plus faibles sont les écarts de direction entre vents théoriques aux gradients pression et densité, et vents mesurés. En effet, dans la première tabelle (nous n'avons pas tenu compte des variations de direction des courants aériens) les directions des vents théoriques aux gradients pression ou densité ne correspondent pas toujours aux vents déduits des sondages; les écarts de direction sont fréquents et quelques-uns sont importants; les écarts les plus fréquents sont ceux de 0 à 40° et ceux de 150 à 180° (ces derniers semblent dus à une grave faute d'observation de la pression ou de la température). Ces différences de direction ne sont pas toutes à la charge des vents théoriques, loin de là. A cause des variations spontanées de la vitesse ascensionnelle V des ballons-pilotes, la direction du vent déduite des sondages est douteuse; non seulement nous ne connaissons pas l'altitude réelle du ballon à la Xe minute, mais toute variation dV de la vitesse ascensionnelle au cours des minutes X à (X + Y) entraîne une erreur dans la direction déduite, comme nous l'avons montré au chapitre 6 ¹.

¹ Supposons que le ballon soit doté d'une vitesse ascensionnelle de 200 m/min.

a) Admettons que la vitesse ascensionnelle soit égale à la vitesse présumée.

A la 120^{me} sec, par exemple, la position du ballon est: E, 45° d'élévation; à la 240^{me} sec sa position est: S, 45° d'élévation. La projection horizontale du ballon est: à la 120^{me} sec, à 400 m à l'E du point d'observation; à la 240^{me} sec, 800 m au S du point d'observation. Entre la 2^{me} et la 4^{me} min, le vent soufflait du NE et formait un angle de 30° avec le N géographique.

b) Admettons maintenant que la vitesses ascensionnelle réelle soit différente de la vitesse présumée.

A la 120^{me} sec la position du ballon est: E, 45° d'élévation; hauteur réelle: 300 m au lieu de 400 m; à la 240^{me} sec, la position du ballon est: S, 45° d'élévation, hauteur réelle: 1000 m au lieu de 800 m. Le vent souffle du N et forme un angle de 18° avec le N géographique.

Dans la nouvelle tabelle les principales de ces erreurs sont éliminées. Cette deuxième tabelle ne contient que les cas où la direction du vent déduite des sondages fut constante, de quelques centaines de mètres en-dessus à quelques centaines de mètres en-dessous de l'altitude présumée du ballon. Et les écarts de direction entre les vents théoriques et les sondages sont alors beaucoup moins nombreux et plus faibles que dans la tabelle précédente.

Les 3^{me} et 4^{me} lignes depuis le bas de la seconde tabelle, et en particulier les deux dernières lignes (la direction du vent d'après le sondage fut constante du sol à 1600 m sur mer), prouvent que la direction des vents théoriques est tout aussi exacte que celle déduite des sondages. Ces tabelles nous montrent ainsi que les écarts notés sont surtout provoqués par les irrégularités de vitesse ascensionnelle au cours des sondages. Autrement dit, il semble bien qu'il y ait avantage à se servir des vents théoriques. C'est un fait important.

D'ailleurs, la comparaison des tabelles précédentes avec les directions des vents en montagne (voir le début de ce chapitre 9) prouve aussi que les vents théoriques sont plus précis que ceux déduits des observations sur les sommets.

Enfin, la comparaison des lignes p et p' (altitude: 2066 m) des deux tabelles révèle l'importante amélioration due à une modification constante de 1,1 mm de Hg des pressions mesurées sur un sommet, et laisse deviner la précision que l'on pourrait obtenir si toutes les observations étaient meilleures.

Il est juste d'ajouter que c'est à l'altitude de 702 m, donc au voisinage immédiat du sol, que les déterminations des vents théoriques sont les moins précises.

Quant aux différentes méthodes de calcul utilisées, les méthodes 1 et 2 semblent être de même valeur; par contre, la méthode 4 est à rejeter, certaines directions y étant trop privilégiées.

Dans les tabelles suivantes, nous avons mis en évidence les écarts de direction des vents correspondant aux différentes directions des sondages. En abscisse est notée la direction du vent du sondage de 20 en 20°; en ordonnées sont indiqués les écarts de direction de 20 en 20°. Les chiffres du tableau indiquent le nombre de fois que tel écart fut observé pour une direction donnée; les numérateurs de chaque fraction correspondant au gradient pression; les dénominateurs au gradient poids spécifique; les colonnes ne contenant pas d'observations sont supprimées.

		4 m e	méth	ode				5	me m	éthod	e -		
Ecarts			N	iveau	de ré	férenc	ee 702	2 m; c	lir. so	ndage	e:		
-	1400	180°	260°	280°	3000	600	80°	100°	2000	2200	260°	3200	3400
0													
180°			-/1	-/2			1/-	-/1			-	-	
160°		_	-/1		1/2	-			-		_		
140°						1/-		1/-					
120°						_	-/1		1/-				1/-
100°		1/1				_					1/1		-/1
80°						-/1				-/1	-/1	1/1	
60°									-/1	1/-			
40°	1/1		_		1/-		_				-/1	1/-	
20°			4/2	2/-		_					2/-	-/1	

						1 re	mét	hode							
			N	livea	u de	référ	ence	1140	/52 n	n; dii	r. sor	ndag	e:		
Ecarts	400	600	80°	100°	1200	160°	180°	2000	220°	2400	260°	280°	3000	3200	360°
180°										2/-	1/_				
160°		_		1/1	_	_		_	2/-	1/-	-/3	2/2			_
140°				1/-	-/1			1/-	2/2	-/1	1/1	1/1		1/-	_
120°				-	-/1		1/-	-		1/-	-	1/-	-	1/1	
100°		1/-			1/-		-/1					-	-/3		
80°											2/-	-/1	1/-	-	-/2
60°		-/1			1/-	1/-	1/1	-/2	-/1	1/1	-/1	_		-/2	1/1
400	1/-		1/4		<u> </u>		1/1		<u> </u>	1/2	3/2	1/1		-/1	1/-
200		1/1	3/1	1/1	1/1	-/1	<u> </u>	1/-	1/1	4/7	7/8	4/5	2/1	2/-	2/-

				2 m e m	éthode	;				
		Niv	veau de	e référe	ence 11	40/52	m; dir.	sonda	ge:	J.
Ecarts	80°	100°	160°	180°	260°	280°	300°	3200	340°	360
180°	1/1	1/4		-				_		
$160^{\rm o}$						1/1				
140°	_	1/-	-/1					-		
120°			1/-	-/1				1		
100°	-			1/-				-/1	1/-	
80o	_									-/1
$60^{\rm o}$								1/-	-/1	-
40°	1/-				1/1	-/1			1/-	1/-
20^{o}	-/1	2/-				3/2	-/1			

		2 m e	méthod	le			8
		Niveau o	le référe	nce 2066	m; dir.	sondage:	
Ecarts	80°	180°	220°	2400	260°	280°	3400
180°			6 	-/2	_/ 1		
160°	-/1	-/1		1/1	3/-	1/-	
140°				4/-			1/1
120°				2/-			
1000		1/-					
80°		<u>.</u>	1/2	-/1			
$60^{\rm o}$	1/-	1/-		-/1			
$40^{\rm o}$			1/-	-/2	1/2		
200	-	-/1			_/1	-/1	

Il ne se dégage pas nettement de ces tabelles l'impression que certains écarts soient les privilèges de directions déterminées. Il semble alors que les écarts doivent être attribués principalement à la précision relative des observations.

Vitesses. — Comparons maintenant les vitesses des vents théoriques à celles « mesurées » ou observées sur les sommets.

En résumé, la vitesse du vent théorique « au gradient pression » est moins grande que celle déduite du vent « au gradient poids spécifique ». Et en général, les vents théoriques sont plus violents que ceux déduits des sondages par ballons-pilotes ou mesurés sur les sommets.

Dans la tabelle suivante les lettres signifient:

n =nombre d'observations qui ont servi à calculer les moyennes.

 v_8 = vitesse du vent d'après les sondages.

 o_p = vitesse du vent au gradient pression.

 v_9 = vitesse du vent au gradient densité.

Les chiffres dans la colonne « remarques » indiquent les nombres d'observations ayant servi à calculer les moyennes correspondantes.

Altitude:		7(02 m			-11	40 m	*		20	066 m	programme of the state of the s	~<= ~>	ri .	
Secteurs	n	v_s	v_p	$v_{_{arphi}}$	n	v_s	v_p	v_{ϱ}	n	v_s	v_p	v_{ϱ}	F	Remarq	ues
001-045	0		_	_	1	2	3	35	0		_	_			
046-090	3	4	11	154'	18	5,5	6	79"	1	6	33	225	′2	″15	
091-135	0				-6	4	8,6	23"	0	_		7/ *	/ -	" 3	
136-180	0			_	9	3,5	5,7	54"	2	5	70	35		· ′′5	
181-225	2	3,5	10,5	64'	6	5,5	5,1	30,4"	2	4,5	41,5	107'''	'1	" 5	1"1
226-270	3	4	9	73	41	6,8	7	50"	12	8	44	130		"34	
271-315	1	2	14	21	13	6	8	75"	1	3	33	156		″12	
316-360	2	2,5	8	45	5	3,2	6,0"	59	1	8	37	170		-" 6	
Moyennes	_	3,2	10,5	72		4,6	6,2	51		5,8	43,1	137			

Cette tabelle met nettement en évidence la force supérieure des vents théoriques par rapport aux vents mesurés. Quels sont alors les meilleurs renseignements?

Tout en ne considérant pas les résultats des sondages comme exempts de toute erreur, loin de là, il semble cependant que le vent réel à 702 m soit notablement plus faible que les vents théoriques. L'intense brassage de l'air au voisinage du sol paraît en être la cause principale.

A 1140 m, soit à 700 mètres au-dessus de Zurich ou Dubendorf, le vent mesuré est encore environ 34% plus faible que les vents théoriques. Une bonne partie de cette différence est à attribuer à l'erreur due à la vitesse ascensionnelle du ballonpilote, qui est généralement plus grande que celle admise; dans ce cas, la restitution donne un vent horizontal mesuré

trop faible; et il semble bien que la vitesse théorique soit préférable.

Dans le secteur S à SW, le vent théorique « au gradient pression » est plus faible que le vent mesuré. Dans tous les autres secteurs c'est l'inverse. A 2066 m, les vents mesurés donnent l'impression d'être beaucoup trop faibles, tandis que les vents théoriques paraissent trop forts.

En ce qui concerne les vents mesurés sur les sommets, le « déficit » de vitesse mesurée peut s'expliquer comme suit. Au Saentis, par exemple, le vent est mesuré à faible hauteur, à l'aide d'un moulinet Robinson dont la constante anémométrique χ est très variable. Pour donner une idée de la variation de la constante anémométrique $\chi = \frac{W}{h}$ d'un tel instrument, citons quelques résultats (W = vitesse du vent en m/sec; n = nombre de tours du moulinet par seconde; i = inclinaison du vent sur le plan horizontal).

		i =	= 0°		
W -	n		W	n	χ
4,52	9,15	4,71	14,96	4,43	3,38
9,15	2,44	3,75	20,48	6,43	3,18

W = 15 m/sec					
<i>i</i>	n	Х	i	_ n	χ
0	4,26	3,38	60	2,39	6,3
$\frac{15}{30}$	4,32 4,60	$\frac{3,43}{3,25}$	70 75	$\begin{array}{c} + 0, \dots \\ - 0, 35 \end{array}$	positif tr. grand — 41,5
45	4,00	3,71	90	-0,35 $-0,995$	— 41,3 — 15,3

La vitesse du vent enregistrée au Saentis serait donc trop faible pour les tempêtes et dépendrait de l'inclinaison du courant (provoquée par les rochers) nécessairement différente suivant le courant aérien.

En outre, à cause du frottement, pris dans le sens le plus général du mot, la vitesse du vent est bien plus faible au voisinage du sol que quelques mètres plus haut.

Sur les sommets, le brassage de l'air provoqué par les flancs de la montagne est plus intense que le brassage au-dessus d'une vaste plaine; la force du vent devrait y être assez faible; mais, si le courant aérien souffle contre la ligne de crête, l'étranglement des filets provoque une augmentation de la vitesse du vent, qui compense plus ou moins l'effet du brassage.

Il est bon de rappeler ici que plusieurs facteurs peuvent avoir influencé les résultats numériques conclus. Par exemple, dans les pages précédentes, nous avons admis que les observations de température et d'humidité étaient exactes; or, cette hypothèse n'a peut-être pas toujours été justifiée. D'ailleurs, les observations n'ont pas été rigoureusement simultanées, et il est possible qu'elles n'aient pas toujours pu être effectuées avec tout le soin désiré.

Indépendamment de ces facteurs, nous avons fait précédemment quelques hypothèses qui ne furent probablement pas toujours remplies dans les observations dont nous nous sommes servis. Notamment, nous avions admis que nous avions à faire à des courants stationnaires et laminaires subissant peu l'influence de la température et de l'humidité. Cette condition ne semble pas avoir été toujours satisfaite, en particulier pendant les jours de beau temps utilisés. Mais alors, rappelons que c'est surtout pendant les jours de mauvais temps, lorsque le ciel est couvert bas, qu'il est intéressant de connaître les vents théoriques; ces jours là, les variations de température et d'humidité étant moins prononcées, elles influenceront plus faiblement la détermination des vents théoriques.

D'autre part, faute de renseignements sur les rayons de courbure, nous n'en avons généralement pas tenu compte et nous avons admis, dans la majorité des cas, que toute l'énergie des masses d'air était transformée en mouvement rectiligne.

Tacitement, nous avons négligé le travail nécessaire pour

que l'air puisse s'élever au-dessus d'une crête, l'énergie indispensable au maintien de la turbulence, les difficultés provoquées par un gradient thermique inférieur à un.

Ces différentes raisons expliquent, partiellement au moins, pourquoi la vitesse des vents théoriques est plus grande que celle déduite des sondages. Et il résulte de cette analyse que la vitesse réelle des vents doit être un peu inférieure à celle calculée, mais sensiblement supérieure à celle donnée par les sondages.

Et nous pouvons conclure par les remarques suivantes:

Il ne semble pas justifié, il paraît même inexact de substituer le vent théorique « au gradient pression » à celui « au gradient poids spécifique ».

Les vents théoriques sont aussi précis que ceux déduits des bons sondages en ce qui concerne la direction; et pour des altitudes de 1000 à 2000 m, par exemple, les vitesses calculées semblent préférables à celles déduites des sondages.

Il est bien préférable de se servir du vent « au gradient densité » pour la direction, et du vent « au gradient pression » pour la vitesse.

Il est indiqué de ne pas choisir des postes trop rapprochés (70 km) à faible altitude (702 m) formant un polygone aplati.

Il ne sera, probablement, jamais possible de calculer l'intensité des vents très faibles, à cause des erreurs dues à la manière qu'ont les observateurs d'arrondir les lectures de hauteur barométrique. Si l'emploi des vents théoriques venait à se développer, il serait utile d'employer d'autres instruments à sensibilité plus grande.

Relevons encore une fois le fait que, même avec les observations plus ou moins exactes qui ont servi à calculer les vents théoriques dans ce travail, leurs directions sont plus précises que celles des vents observés sur les sommets, et leurs vitesses correspondent mieux à la réalité.

Actuellement, en pays montagneux, les seuls sondages qui puissent donner pleine satisfaction sont ceux à deux théodolites; encore est-il bon de choisir pour le lâcher du ballon-pilote un endroit où les vents plongeants soient rares et faibles. Il y a là, pour l'exécution, un ensemble de difficultés évidentes. Par contre, on peut toujours établir rapidement le vent au gradient.

Pour terminer, soulignons l'intérêt croissant, tant pratique que théorique, qu'il y aurait actuellement, à la veille de l'établissement d'un trafic aérien transalpin régulier, à étudier les vents théoriques au-dessus des Alpes, région où les sondages à un seul théodolite sont pratiquement exclus à cause des violents courants à composantes verticales.