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F. Vasilesco et R. Wavre. — Exemples simples de fonctions
harmoniques multiformes.

Considérons une couche sphérique homogéne de rayon a et de
masse totale m. Sur cette sphére détachons une calotte C et
soit U, son potentiel newtonien. Soit B la partie restante et U
son potentiel; si r est la distance d’un point au centre de la
sphére I’on a, c’est élémentaire:

m

Uc‘l‘UBﬂiﬁ’ UG—I-UB“:
r a

suivant que le point potentié est & Pextérieur ou & 'intérieur de
la sphére. Le potentiel U, représente 4 I'extérieur de la sphére
un élément de fonction harmonique; soit ¥ cette fonction

W=Uc="?”.—UB.

Lorsque 'on traverse la calotte la derniére expression ne
cesse d’étre harmonique et 'on parvient ainsi en un point
intérieur ou l'on peut écrire

m m
IF—_"_'""UB=_
r r

4+ Ug .
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Enfin, on peut regagner le point de départ en traversant B
ou U, reprend la méme valeur qu’'avant, tandis que l'on a:

m
]Farrivée - ‘Fdépart — 7

al3

Ainsi le pourtour de la calotte est une ligne de ramification
de la fonction harmonique dont un élément coincide avec le
potentiel newtonien de la calotte. Le second membre de I'équa-
tion précédente n’est autre que la fonction période. En résumé:
Toute calotte sphérique homogéne permei d’engendrer une fonction
harmonique multiforme admetiant le pourtour de la calotte comme
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ligne de ramification. La fonction période ne dépend pas de la
forme de la calotte.

Envisageons maintenant une répartition de matiére créant
un potentiel V et soit S une surface de niveau fermée contenant
toute la matiére & son intérieur. On sait qu’une couche de den-
sité

_tau

T 47 dn
étalée sur S, crée a I’extérieur le potentiel V et & I'intérieur un
potentiel constant V. Détachons & nouveau de S une calotte C
et soit B la partie restante. On a de nouveau

Us+Usg =YV Ue + Up = Vg

suivant que I'on est & I'extérieur ou a Pintérieur de S. Comme
précédemment partons d’un point extérieur et posons

V =0Usg=V—Usz.

Cette fonction harmonique est prolongeable au travers de C et
Pon parvient & I'intérieur avec la détermination

W =V—Us=V—Vs + Ue

et 'on peut regagner le point initial en traversant B; l'on

trouve
i ]Farrivée — -llj.départ - V b VS P

La fonction période admet des singularités & P'intérieur de S.
En prenant comme potentiel V le potentiel d’'une calotte
sphérique, la fonction période sera elle-méme une fonction
harmonique multiforme.

Ces propriétés et la possibilité de prolonger comme nous
venons de le faire le potentiel d’un corps au travers de ce corps
tiennent, au fond, 4 ce que les deux parties B et C sont poten-
tiellement équivalentes a des fonctions prés qui sont harmo-
niques au voisinage des deux corps. : ¢ _

Un potentiel de double couche, pour une densﬂ:e constante,
permet par le méme procédé de construire des fonctlons har-
moniques multiformes avec la période 4.



	Exemples simples de fonctions harmoniques multiformes

