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SUR

LES POLYDROMIES DES POTENTIELS

Esquisse d'une théorie générale
PAR

IR. WAVRE

Soit R une répartition de matiéres, homogéne, et limitée
entre autres par une portion ¢ de surfaces. Soient P un point
voisin de ¢ et situé hors de R et Q un point voisin dans R, soit
enfin, U le potentiel newtonien créé par R. L’on sait que si ¢
est réguliére et analytique, le potentiel U(P) en P se prolonge
au travers de o; soit alors U(P), son prolongement calculé
en (). Nous appellerons fonction barriére relative a o 'expression
suivante:

f = UP)y — UQ),

différence du potentiel extérieur prdldngé et du potentiel inté-
rieur. Elle est nulle sur ¢ en vertu de la continuité de U et
analytique du c6té de R. Elle est donc analytique encore d’aprés
un théoréme connu du coté extérieur. Si 'on passe maintenant
de Q en P par le méme chemin, la relation précédente donne:

e fy = TU(Q), — U(P) ;

{5 sera dite la fonction d’entrée et —f; fonction de sortie au
travers de ¢. La fonction barriére f; ne dépend que des matiéres
situées sur un circuit infinitésimal joignant un point P a un
point Q. En effet, les matiéres R’ non situées sur le circuit
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donnent une fonction barriére nulle, car le potentiel est harmo-
nigue le long du trajet et 'on a:

0 = U'(P), — U(Q) .

L’on pourra donc calculer la fonction barriére relative & ¢ en
prenant un corps, d’une forme favorable pour le calcul, s’ap-
puyant a 5. La fonction barriére ne tend pas vers zéro lorsque
le corps devient infinitésimal.

Hypothése H. Nous admettons que les fonctions barriére
n’ont que des singularités polaires dans tout I'espace réel.

Hypothése HA. Les fonctions barriére n’admettent que des
singularités polaires dans un domaine A de I'espace réel. Nous
verrons que les plans et les sphéres satisfont & 'hypothése H.

Le potentiel U (Q) est analytique et holomorphe dans tout
domaine d’un seul tenant faisant partie de R. Dés lors, en vertu
de I’hypothése H, le potentiel a I'extérieur U (P) est prolon-
geable analytiquement au travers de ¢ dans tout le -domaine
d’un seul tenant R; limité par . L’on a en effet :

UP), = f= + U(Q

et les deux termes du second membre sont bien prolongeables
dans R;. Soient alors X, X'/ ... les surfaces limitant R et suppo-
sons que pour chacune d’elles 'hypothése H soit vérifice. L’on
pourra écrire pour la sortie de R au travers de X':

CUQ)y = —for + UP) .

Mais U(Q’) est le prolongement de U (Q). L’on aura par consé-
quent, si 'on est entré par 3, ressorti par 2"

U(P) == U(P), = fu + UQ — fs

+ U(Q) = fx —for + UP) ;

une fléche indique un prolongement analytique, et si I’on rentre
dans R par 2" I'on aura évidemment:

U(P) e f: — fgf + f}_‘;ff ~+ U(Q”} .
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D’une maniére générale, le prolongement de U (P) le long
d’un certain chemin qui joint P & M donne lieu & la relation:

U (P)M = U(M) = f: - f\:‘f —i“ f:ﬂ - f:m —|"

L’on peut ainsi gagner un point queleonque M pourvu que le
chemin évite les arétes de la frontiére du corps, intersections des
surfaces X car, sur ces intersections, les fonctions barriére ne
peuvent plus étre définies par des surfaces ¢ analytiques et
réguliéres. La fonction harmonique ainsi définie dans tout
I'espace est multiforme, elle admet une infinité de branches qui
s’échangent entre elles autour des arétes. Ces derniéres sont des
lignes de ramification. En effet, si 2 et ¥’ sont deux portions
de frontiére qui se coupent suivant une aréte A, un circuit
entrant par ¥ et sortant par X’ donnera une fonction période:

p— UP) =fc —Fu .
51 I'on décrit le circuit »n fois dans le méme sens, I'on aura:

Ulrrivee — Uagpart = now, .
Si le circuit est décrit en sens inverse, la période fondamentale
pour I'aréte est évidemment — o,

Soient Ry, R,, ... les domaines d’un seul tenant et sans surface
frontiére commune en lesquels se répartit la matiére R. Soient
encore Dy, D,, ... les domaines d’un seul tenant sans frontiere
commune en lesquels se répartit 'ensemble des points (ui ne
font pas partie de R. Les premiers domaines comme les seconds
ne peuvent avoir entre eux que des arétes communes.

Le potentiel U calculé dans D, appartiendra a la méme fonc-
tion multiforme que le potentiel D, s'il existe un chemin
joignant D; & D, et tel que 'on ait:

l

fﬂ_'f2’+fsllmf:m+ 0 "

Cela se produit notamment si ’on entre de D; dans R par X,
pour ressortir la premiére fois par X en pénétrant dans D,,
car 'on aura alors fy — fy. Le potentiel dans un domaine R,
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jouit évidemment des mémes propriétés de polydromie que le
potentiel & 'extérieur de R; précédemment étudié, car 'on a:

L’on prouverait de méme :
U(Q)M - U(M) = '—"fg + fg' me” -+

lci encore les deux déterminations principales du potentiel
dans R; et R, appartiendront & la méme fonction multiforme
st ces deux domaines peuvent étre reliés par un chemin tel que
la somme al'gébrique des fonctions barriere soit nulle.

Par exemple deux domaines R, et R, qui s’appuient a la
méme surface analytique X rentreront dans le cas envisagé
s’il est possible de les relier par un chemin traversant ¥ a la
sortie de R; et & I'entrée dans R, sans avoir rencontré d’autres
matiéres,

Si ¢’est 'hypothése HA pour toutes barriéres qui est réalisée
et que A contienne toutes les frontiéres & son intérieur, les
meémes conclusions subsistent, 4 part ceci, ¢’est qu'en dehors
de A, les singularités les plus diverses peuvent se présenter.

Nous pouvons donc formuler la proposition suivante: Soit A
un domaine d'un seul tenant contenant a son tatérieur une répar-
tition homogéne R de matiéres limitée par des surfaces X telles
que les fonctions barriéres fy, n’aient que des singularités polaires
dans A.

Le potentiel U créé par R et calculé au voistinage d’'un point
n’est qu’ une branche d'une fonction multiforme qui admet les arétes
de R comme ligne de ramification et aucune autre singularité
dans A que des péles.

Les potentiels physiques dans deux régions de R appartien-
dront @ la méme fonction harmonique multiforme s'il est pos-
stble de relier les deux domatnes par un chemin le long duquel la
somme algébrique des fonctions barriére est nulle. Il en est de
méme pour deux domaines distincts extérieurs aux masses.

Avant de passer aux exemples qui concrétiseront la théorie
précédente, examinons le cas des potentiels de simple couche.

Soir ¥ une couche analytique, ¢’est-a-dire une surface régu-
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liére et analytique, chargée d’une densité analytique. Soient z et ¢
les deux cdtés de la surface. On sait que le potentiel U (z) du
cOté i se prolonge au travers de X. 1l en est de méme du potentiel
du ¢oté e. La fonction barriére pour le passage de 7 & e au travers
de X sera définie par 'équation suivante :

fo = Uli)y— Ul -

Elle ne dépend encore ici que d’une portion infinitésimale
de X que le trajet traverse. Le passage de e & i donne évidem-
ment — fs. La fonction fy nulle sur ¥ est holomorphe dans

un domaine qui contient a4 son intérieur tout point intérieur
de 3. Nous dirons qu'une fonction barriére satisfait a ’hypo-
thése HA, si elle n’admet que des poles dans la région A. Envisa-
geons alors une famille de couches analytiques telle que les
fonctions barriére fy, fy, ... satisfassent toutes & une hypothese

HA relative & un méme domaine A, qui contient toutes les
couches & son intérieur et est d’un seul tenant. Partons du
potentiel total U du c6té ¢ de X. Aprés avoir traversé 3, I'on
aura:

U(i), = fo + Ule) .
Si 'on traverse ensuite X' en restant dans A, I'on aura, en M:
fz ““ fs' +' U (M) ’

et, d'une maniére générale, si 'on va de P en M, en traversant
3, 3, 2 ... 1'on aura:

UP), —UM) = fo + for + for + .-

Le potentiel U(P) est prolongeable au travers de toutes les
couches, il représente dans A une fonction harmonique multi-
forme. Il n”"admet que des poles dans A a part les lignes d’inter-
section des surfaces X ou leur frontiére qui sont des lignes de
ramifications. Les potentiels dans deux domaines D; et D,
distincts appartiendront a la méme fonction harmonique multi-
forme §’ils peuvent étre reliés par un chemin tel que la somme
algébrique des fonctions barriéres soit identiquement nulle.



368 SUR LES POLYDROMIES DES POTENTIELS

Diétermination de quelques fonctions barriéres.

1o Une couche sphérique homogéne S crée & I'extérieur un
potentiel égal a — et a Iintérieur — oua est le rayon de la

spheére, m la masse totale et r la distance au centre. La fonction
barriére pour cette couche est done:

Iy =

23
=3

20 Envisageons une répartition de matiéres M située hors
d’un domaine A et une surface de niveau N pour cette réparti-
tion traversant A. Le potentiel:

.1 p1av

U= 7™
pour une couche de Robin étalée sur N est comme on le sait
constant & l'intérieur de N et égal & V a I'extérieur de N. La
fonetion barriére est donc ici:

fjo=K—V,

elle satisfait a I'hypothése HA dans A, mais admet dans M,
des singularités diverses.
3° Le potentiel d’une sphére pleine de rayon ¢ est a ’extérieur:

*
=

a3 A e , . 2 2
— et a Vintérieur 2mar — §r.r
A

4

ET:
La fonction barriére pour I’entrée dans une masse sphérique
de rayon a est donc:

£ a® 2

a 9 w2 -
_‘I':_._.__ _lﬁa ._.‘.r

f 3 r 3 ’

L’on démontre facilement que si la masse est a I'extérieur
de cette sphere, la fonction pour I'entrée est encore f°.

4° L’entrée par un plan. Considérons une demi-sphére pleine
(1) et soit (2) la région symeétrique. Soit enfin £, une fonction
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prenant, sur le plan de séparation 2 = 0, les valeurs du poten-
tiel de la sphére totale divisées par 2:

By = 1:(1,2,.—13:-(3:2 + 7,

Envisageons maintenant la fonction harmonique prenant les
meémes valeurs que la précédente pour z = 0 et symétrique par
rapport & ce plan; on démontre qu’elle est unique et que c’est:

9 =

k = Tca“———g(r'zw?)z?) .

Posons:

fry = UP(B)—h(P) et fo =h(Q —TUY@Q ;

17 est harmonique dans (2), f* dans (1) et 'on a, aux points
symétriques:

fP@, gy, —9 =—1"@,y, 9,
puis:

f ey, 0 =P, y, 0 =0.

Ces deux fonctions {1 et f*) sont le prolongement analytique
I'une de autre en vertu du principe de la symétrie de Schwarz,
et 'on peut écrire:

U{')(P) — fﬂ) o Ty f(z) g T o= _F_U(2) + 2h
La fonction barriére pour P'entrée par un plan z = 0 est donc:

foeo = UM (P}, —UP(Q) = 2x2* .

Q

Elle est égale & 27 qui multiplie le carré de la distance au plan.
Elle est holomorphe dans tout I'espace.

Exemples de polydromie. @) Des polyédres (qui peuvent
admettre des cavités et étre emboités les uns dans les autres)
engendrent un potentiel newtonien U qui prolongé au travers
du corps donne:

UP)yy— UM) = 2x(d —ds + dy—ds + -..) ,
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les d étant les distances au plan traversé par le chemin PM
considéré; la période pour une aréte 7, j est donec 2w (dj — d;).

Les polyédres engendrent un potentiel newtonien qui est une
fonction harmonique multiforme dont les branches s'échangent
autour des arétes et cette fonction n’admet dans tout Uespace réel
aucune autre singularité que ces lignes de ramification li.

b) La région d’une sphére massive située d’un méme coté
d’un plan sécant engendre un potentiel qui admet pour I'aréte A
de ce corps une fonction période égale a:

"
o

v, = 27d? — —5— 4+ 2ra?® —

L
A 3 r

W o

d est la distance au plan et @ le rayon de la sphére. Cette
fonction période ne tend pas vers zéro avec le volume généra-
teur, j’entends ce segment sphérique.

¢) Envisageons une calotte sphérique homogéne limitée par
une courbe fermée I' tracée sur la sphére et considérons un
circuit tracé autour de I'. La fonction période sera, puisqu’on
ne traverse que la calotte et une seule fois:

(01‘ —

2|3

m
r

d) Prenons deux sphéres pleines moins leurs parties commifnes.
La fonction période sera, pour 'aréte A intersection des surfaces

sphériques:
3 3
Gh—= [ Qq Qg
' — 2 g al) = 1: _——
“a \ / 3\, n
2 2 2% 4 2
+ 27 (as — ay) + 5 (ry — 7o) ,

a, et a, étant les rayons des sphéres. 11 est possible de montrer
que le potentiel dans la région extérieure aux deux spheéres
n’appartient pas a4 la méme fonction multiforme que le potentiel
dans la région intérieure aux deux sphéres.

e) Enfin, envisageons un homoide sphérique c’est-a-dire la
région comprise entre deux sphéres concentriques, puis un
second homoide qui coupe le premier et enfin ’'anneau commun
aux deux.homoides. Il engendre un potentiel qui admet les
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4 aretes x, y, z, t de 'anneau comme lignes de ramification et
a par celd uniquement des pdles au centre des sphéres. Les
fonctions période pour les arétes sont, si b, b, sont les rayons

des sphéres extérieures; a;, a, des sphéres intérieures:
— fb2 a — % by — {02 ax
(')x - f - f w, = f - f 3 mz = f - f ’

! Y
o — g

I

wy

) Envisageons maintenant les deux homoides réunis, 'anneau
n’étant pris qu’'une seule fois. Le corps est alors homogéne.
Les périodes pour les arétes de anneau, qui sont encore ici les
seules arétes du corps, sont:

— ) —_— ) — — )
X 5 'y, wz: !t

le sens de parcours des lacets étant resté le méme.

Actuellement: les potentiels physiques dans les quatre régions
contigués au corps et séparées par ce dernier appartiennent o la
méme fonction harmonique multiforme, en vertu d’un principe
exposé précédemment. '

Autre maniére de former des fonctions barriéres.

On peut imaginer une simple couche telle que la fonction
barriére soit égale & une fonction harmonique donnée H (z, y, 2)
a une constante prés, et faire passer la couche par un point
donné arbitrairement, ou la faire aboutir & ce point, pourvu
qu’il se trouve dans une région ou H est harmonique.

En effet, soit z,, y,, z, le point donné et envisageons une sur-
face ouverte o donnée par l'équation:

hl(xayaz) :ZH(.’L', y3z)mH(x0>y0>zu) *

Prenons sur 7 une densité égale a:

et formons le potentiel de simple couche:

| U:f—;—da’.
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Je dis qu’il satisfait & la condition. En effet, soit f; la fonc-
tion barriére on aura sur g:

fs=0 (1) el 3—": = 4%ng , (2)
d’ou:
fr=nr et %5 = i—z
sur ¢, puis dans le voisinage:
Afy = 0, (3)

comme d’ailleurs Ak = 0. Or en vertu du théoréme de Cauchy-
Kowalewska, I'on doit avoir f; = k.

On peut former les fonctions barriére a partir des conditions

(1), (2), (3). Envisageons un plan homogéne. Prenons-le pour
plan des z, y. On devra avoir:

fo = ay, + a;2 + a2 + ...,

mais (1) donne ¢® = 0, (3) donne ¢, = a; = ... = 0 et (2) donne
a, = 4mp. La fonction barriéere pour un plan homogéne que
l'on traverse dans le sens des z positifs est done:

On vérifie facilement que pour une surface cylindrique de révolu-
tion, de rayon a, la fonction barriére est:

0
i

f,, — {tﬂpa L= N
a

ou ! est la distance & 'axe de rotation; cette expression satisfait,
en effet, aux équations (1), (2) et (3).
Pour un volume s’appuyant &4 o, I'on a comme l'on sait:

1-(Q) = U(P), —U(Q) ouencore f;(P) = U(P)—U(Q), ;
d’ou dans le voisinage de 7:

Afs = b7g (%)
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et en vertu de la continuité du potentiel et de ses dérivées
premieres:
dfs

fﬂ' =0 (5) dn

= (6)
sur o. Ces trois équations déterminent encore d’une maniére
univoque la fonction f; au voisinage de o.

On peut déduire de 1a que la fonction barriére pour un volume
~ eylindrigue de rayon «a, est, [ étant la distance a I'axe de révo-
lution :

fr = T:,o(cﬂ + P — Z'aZLEl) ;

I1 n’est pas superflu de remarquer le role du théoréme de
Cauchy-Kowalewska dans I'étude des polydromies, analogue
a celui du principe de Dirichlet dans I'étude des potentiels
eux-meémes.
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