Zeitschrift: Archives des sciences physiques et naturelles

Herausgeber: Société de Physique et d'Histoire Naturelle de Genève

Band: 14 (1932)

Artikel: Sondages aérologiques et vent au gradient en Suisse [suite]

Autor: Berger, Pierre

DOI: https://doi.org/10.5169/seals-740781

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 30.10.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

SONDAGES AÉROLOGIQUES

ET

VENT AU GRADIENT EN SUISSE¹

PAR

Pierre BERGER

(Avec 54 figures.)

(suite)

4. — Mouvement vertical théorique des ballons-pilotes (suite).

Calcul de la pression² p.

Généralement, la température et l'humidité sur les montagnes sont influencées par le voisinage du sol; les mesures faites à terre ne correspondent pas à celles faites à même altitude, mais à quelques cents mètres d'éloignement du flanc de la montagne, en pleine atmosphère. Au contraire, aussi longtemps que le vent est faible, la pression reste quasi la même, qu'elle soit mesurée au sol ou à même hauteur à 200 mètres de distance horizontale, par exemple, en pleine atmosphère. En Suisse, pour les basses couches de l'atmosphère (2500 mètres, éventuellement 3400 m), p pourrait donc être déduite des mesures exécutées dans les Alpes. Les postes météo-

ARCHIVES, Vol. 14. - Septembre-Octobre 1932.

¹ Etude faite sous la direction de M. le Prof. G. Tiercy, directeur de l'Observatoire de Genève.

² Désignée à tort par P dans les formules donnant ρ_s et ρ , au début du paragraphe V.

rologiques dotés de baromètres sont malheureusement disséminés (Dubendorf 430 m; St-Gall 702 m; Einsiedeln 914 m; Engelberg 1017 m; Weissenstein 1285 m; Rigi 1787 m; Pilate 2068 m; Saentis 2500 m; Jungfraujoch 3454 m; etc.).

Pour avoir la pression barométrique exacte en un point de la verticale d'un lieu A, en utilisant la pression en l'un des postes mentionnés, il faut:

- a) déterminer le gradient barométrique à l'aide de la carte synoptique du temps, entre la station d'observation et l'endroit A, où la pression doit être connue en altitude;
- b) déterminer la variation temporaire de pression à l'endroit A;
- c) déterminer la variation de pression en altitude.

L'atmosphère étant en équilibre, si la pression p au sol varie de $\pm \Delta p$, la nouvelle pression p_h à l'altitude h sera modifiée de:

$$\pm \Delta p_h = \pm \frac{\Delta p}{p} \cdot p_h$$
.

Quoique la chose soit compliquée, p_h peut donc être connue avec exactitude dans les couches basses de l'atmosphère si des observations sont faites en montagne.

Pour les régions plus élevées, la pression ne peut plus être connue avec autant d'exactitude. Il faut faire usage des formules classiques.

Une valeur moyenne de p peut être facilement obtenue à l'aide de formules empiriques; celles-ci admettent toutes l'hypothèse que l'air est immobile.

La table de conversion des pressions barométriques en altitude, établie par Soreau, est basée sur l'équation empirique¹ suivante:

$$h = 5(3064 + 1.73 \cdot p_h - 0.0011 p_h^2) \cdot (\log 760 - \log p_h)$$

déduite de sondages effectués à Trappes, Uccle, Strasbourg, Hambourg, Munich, Pavie et Vienne. Si elle donne satisfaction

¹ Fédération aéronautique internationale, règlements sportifs. Comptes rendus de l'Académie des Sciences, décembre 1919.

à basse altitude, il n'en est plus de même à haute altitude. La hauteur calculée par cette équation est bien inférieure à celle obtenue par la formule Angot. Pour une altitude donnée, la formule Soreau indique une pression trop faible. Si, au lieu de se servir de l'atmosphère réelle, on admet l'atmosphère fictive standard 2 , il est facile de calculer p_h en fonction de la hauteur h et de la baisse de température. p_h est donnée par l'expression:

$$p_h = p_m [(288 - 0,0065 \cdot h) : 288]^{5,256}$$
;
 $h \text{ est exprimée en m.}$

Le principal inconvénient de cette formule est qu'il faut réduire la pression au niveau de la mer.

Cette dernière loi s'accorde bien avec la ligne moyenne du faisceau des courbes représentant les variations saisonnières dans les pays:

Europe, Amérique, Japon.

La pression à une hauteur quelconque pourrait aussi être déduite de toute table météorologique où *p* est exprimée en fonction de la température et de l'altitude.

Est-il possible de calculer la pression p avec une exactitude au moins égale à celle de \mathbf{T}_h et e_h ?

² Type international de la Commission internationale de Navigation aérienne, résolution 192, Bulletin officiel, nº 7.

Cette atmosphère est définie par les hypothèses suivantes:

- 1. L'air est sec, sa composition chimique est la même à toutes les altitudes; g a pour valeur uniforme 980,62 unités du système C.G.S.;
- 2. Au niveau moyen de la mer, la température est de 15 degrés centigrades et la hauteur barométrique, ramenée à 0° centigrade, de 760 mm Hg;
- 3. Dans ces conditions, la pression atmosphérique est de 10332 kg/m^2 ;
- 4. Pour toute altitude h inférieure à 11000 m, la loi de variation thermique de l'air est la suivante: T = 15 0.0065 h.;
- 5. Pour les altitudes supérieures à 11000 m, la température de l'air est constante et égale à 56°,5 centigrades.

La formule classique de Laplace 1 a la forme suivante:

D = poids du m³ de Hg à 0° C, à 0 m, à la latitude de 45° N = 13595,8 kg ;

 $\rho_0 = \text{poids du m}^3 \text{ d'air à 0° C, à 0 m,}$ à la latitude de 45° N = 1,293052 kg ;

G = intensité de la pesanteur au niveau de la mer à 45° de latitude.

Cette méthode est trop simplifiée. Laplace admet que g, $\frac{e}{p_h}$ et T sont constants, et prennent pour valeurs les moyennes des valeurs respectives correspondant aux deux niveaux considérés.

Angot 2 remplace ces hypothèses par d'autres et établit comme suit la formule barométrique qui porte son nom:

$$h - h_{\rm s} = 7991.f(\varphi.g.T).\left[1 + \frac{3}{16}\left(\frac{e}{p} + \frac{e_h}{p_h}\right)\right].ln\frac{p}{p_h}$$

Posons:

$$C = \frac{h - h_s}{7991.f(\phi.g.T)}$$
; $k = 1 + \frac{3}{16} \left(\frac{e}{p} + \frac{e_h}{p_h} \right)$; $\frac{C}{k} = K$;

d'où:

$$\frac{\mathbf{C}}{k} = \ln \frac{p}{p_h} \; ;$$

$$p_h = \frac{p}{q^K} \; .$$

La fonction $f(\varphi, g, t_m)$ a pour expression classique:

$$(1 + 0.00259\cos 2\varphi) \cdot \left[1 + \frac{a(h + h_s)}{2r_\mu}\right] \cdot (1 + \alpha t_m)$$

- ¹ Sur la formule barométrique, par Angor. Annales du bureau central de météorologie de France, 1896, I. Mémoires publiés en 1898.
 - ² a) Sur la formule barométrique, loc. cit.
- b) Tables pour le calcul barométrique des hauteurs, d'après Angot, augmentées par A. de Quervain. Beiträge z. Physik der freien Atm., Band. 1, Heft 2.

 t_m = température moyenne entre le sol et le point d'altitude h; c'est une valeur particulière de T.

 $r_{\mu} = \text{rayon terrestre};$

 $h_s =$ altitude du sol;

h =altitude d'un point au-dessus du sol;

a = coefficient, dont la valeur est de 2 en air libre et 1,25 sur un plateau.

Pour un même endroit, le produit:

$$(1 + 0.00259 \cos 2\varphi) \cdot \left[1 + \frac{(ah + h_{\rm S})}{2r_{\mu}}\right]$$

reste pratiquement égal à 1 pour une variation d'altitude inférieur à 7000 mètres. La fonction $f(\varphi, g, T)$ ne dépend donc que de la température. Si le gradient thermique est connu avec exactitude en fonction de l'altitude et s'il varie, il faudra opérer par tranches pour le calcul de C.

Si le gradient thermique est admis par hypothèse, C se déterminera à l'aide d'une seule opération.

Par exemple, si le gradient thermique admis est de 1° par 150 m, et si au sol l'air a + 20° C, la température moyenne t_m entre 490 et 7490 mètres sera: - 3,4° C.

Dans ces conditions C variera de:

$$0\,(\mathrm{pour}\ h-h_{\mathrm{s}}=0\ \mathrm{m})$$
 à 0,89 $(\mathrm{pour}\ h-h_{\mathrm{s}}=7000\ \mathrm{m})$.

Aussi longtemps que la température moyenne entre le sol et 7000 m sera supérieure à — 3,4° C (c'est généralement le cas) le quotient C sera inférieur à 1.

A Zurich, une des valeurs maximales que k pourrait théoriquement prendre correspond aux conditions suivantes:

- a) température au sol: + 30° C (condition très rarement réalisée);
- b) humidité 100%.

Jusqu'à ce jour je n'ai jamais vu d'observations météorologiques de Zurich où l'humidité fût si élevée par + 30° C. En admettant pourtant les conditions précédentes, le rapport $\frac{e}{p}$ deviendrait $\frac{23.6}{720}=0.033$; d'où $k=1+\frac{3}{8}(0.033)=1.0125$; tandis que 7000 mètres plus haut $\frac{e_h}{p_h}$ serait approximativement égal à $\frac{0.72}{300}=0.0024$ d'où $k=1+\frac{3}{16}(0.033+0.0024)=1.0065$.

A titre de renseignements, rappelons les faits suivants:

température moyenne annuelle à Zurich: + 8 à 9° C; température maximale à Zurich (extraordinairement rare): + 35° C; humidité moyenne relative à Zurich: 78%.

La valeur moyenne de $\frac{e}{p}$ tombe ainsi à: $0.78 \cdot \frac{8.5}{720} = 0.0092$. A 7500 mètres, d'après les observations de Humphreys 1, la valeur de e_h serait en moyenne de 0.13 et non de 0.72.

k aurait une valeur moyenne, entre le sol à Zurich et 7000 mètres plus haut, de:

$$k = 1 + \frac{3}{16} \left(0,0092 + \frac{0,13}{300} \right) = 1 + \frac{3}{16} \left(0,00963 \right) = 1,0018$$
.

Le coefficient k a donc pour valeur maximale à Zurich 1,0125 et tend lentement vers 1,00625, si la couche d'air envisagée augmente beaucoup d'épaisseur.

Développons e^{κ} en série

$$e^{\mathrm{K}} = 1 + \mathrm{K} + \frac{1}{2} \mathrm{K}^2 + \frac{1}{6} \mathrm{K}^3 + \frac{1}{24} \mathrm{K}^4 + \frac{1}{120} \mathrm{K}^5 + \frac{1}{720} \mathrm{K}^6 + \dots$$

où l'on a:

$$\left(\frac{K}{C}\right)^{2} = 1 + \frac{6}{16}\left(\frac{e}{p}\right) + \frac{6}{16}\left(\frac{e_{h}}{p_{h}}\right) + \frac{9}{256}\left(\frac{e}{p}\right)^{2} + \frac{9}{256}\left(\frac{e_{h}}{p_{h}}\right)^{2} + \frac{18}{256}\frac{c \cdot e_{h}}{p \cdot p_{h}}$$

¹ Humpfreys, Bull. Mount. Weather obs., 121 (1911). Cité dans Leitfaden der Wetterkunde de Börnstein et Brückmann, 4^{me} édition, 1927, Fr. Vieweg u. Sohn, Braunschweig.

En admettant au sol les valeurs initiales suivantes:

 $T=+20^{\circ}$; e maximale = 17,4 mm de Hg; p=720 mm (pression moyenne à 500 mètres sur mer), nous avons pour les différents termes de K^{2} :

$$\frac{9}{256} \left(\frac{e}{p}\right)^2 = \frac{9}{256} \left(\frac{17.4}{720}\right)^2 = \frac{1}{49000} ;$$

à environ 7500 mètres sur mer, nous aurons:

$$\frac{9}{256} \left(\frac{e_h}{p_h}\right)^2 = \frac{9}{256} \cdot \left(\frac{0.52}{300}\right)^2 = \frac{9}{256} \cdot \frac{0.27}{90000} = \frac{1}{10550000} \sim 0 ,$$

quoique la valeur attribuée à e_h corresponde pour ainsi dire à un maximum;

$$\frac{18}{256} \cdot \frac{e \cdot e_h}{p \cdot p_h} = \frac{18}{256} \cdot \frac{17.4}{720} \cdot \frac{0.52}{300} = \frac{1}{294000} .$$

La somme de ces trois termes ne vaut donc que:

$$\frac{1}{49000} + \frac{1}{10550000} + \frac{1}{294000} = 0,000027395.$$

Les termes où $\frac{e}{p}$ et $\frac{e_h}{p_h}$ figurent à la seconde puissance et les produits de ces termes sont négligeables.

K² se réduit ainsi à:

$$\frac{C^2}{1 + \frac{6}{16} \left(\frac{e}{p} + \frac{e_h}{p_h} \right)} = \frac{16 \cdot C^2 \cdot p \cdot p_h}{p_h \cdot (16 \cdot p + 6e) + 6e_h p} .$$

Pour les mêmes raisons:

K³ se réduit à:

$$\frac{\mathbf{C}^{3}}{\mathbf{1} + \frac{9}{16} \left(\frac{e}{p} + \frac{e_{h}}{p_{h}} \right)} = \frac{16 \cdot \mathbf{C}^{3} \cdot p \cdot p_{h}}{p_{h} \cdot (16 \cdot p + 9 \cdot e) + 9 \cdot e_{h} \cdot p} ;$$

K4 se réduit à:

$$\frac{{\tt C^4}}{{\tt 1} + \frac{12}{16} {\left(\frac{e}{p} + \frac{e_h}{p_h} \right)}} = \frac{{\tt 16 \cdot C^4 \cdot p \cdot p_h}}{p_h \cdot ({\tt 16 \cdot p + 12 \, e}) \, + \, {\tt 12 \cdot e_h \cdot p}} \; ;$$

K5 se réduit à:

$$\frac{C^{5}}{1 + \frac{15}{16} \left(\frac{e}{p} + \frac{e_{h}}{p_{h}}\right)} = \frac{16 \cdot C^{5} \cdot p \cdot p_{h}}{p_{h} \cdot (16 \cdot p + 15 \cdot e) + 15 \cdot e_{h} \cdot p};$$

K6 se réduit à:

$$rac{{{
m C}^6}}{{1 + rac{{18}}{{16}}{\left({rac{e}{p} + rac{{e_h}}{{p_h}}}
ight)}}} = rac{{16 \cdot {
m C}^6 \cdot p \cdot p_h }}{{p_h \cdot (16 \cdot p \, + \, 18 \cdot e) \, + \, 18 \cdot e_h \cdot p}} \, .$$

En introduisant ces valeurs dans l'expression de e^{κ} nous obtenons une valeur approchée par défaut:

$$e^{K} = 1 + \frac{16 \cdot C \cdot p \cdot p_{h}}{p_{h}(16 \cdot p + 3e) + 3e_{h}p} + \frac{1}{2} \frac{16 \cdot C^{2} \cdot p \cdot p_{h}}{p_{h} \cdot (16p + 6e) + 6e_{h}p} + \frac{C^{3}}{6} \cdot \frac{16 \cdot p \cdot p_{h}}{p_{h}(16p + 9e) + 9e_{h} \cdot p} + \frac{C^{4}}{24} \cdot \cdots$$

qui dépend de p_h .

Nous pouvons ici substituer provisoirement dans l'expression de e^{κ} la valeur p'_h tirée de l'expression approchée signalée plus haut:

$$p'_h = p_m \left(\frac{288 - 0.0065 h}{288}\right)^{5.256};$$

puis calculons

$$p_h = \frac{p}{e^{K}}$$
.

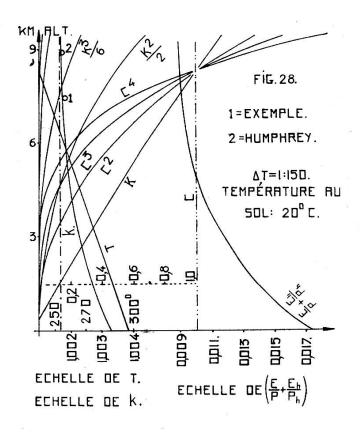
Si p_p' et p_h sont trop différentes l'une de l'autre, il faut substituer p_h à p_h' dans e^{κ} et recommencer le calcul de p_h jusqu'à ce que les 2 valeurs soient sensiblement égales.

Le calcul de p_h est pénible dès le début.

Le diagramme (fig. 28) représente: C, k, K, T en fonction de l'altitude pour un gradient thermique de $^{1}/_{150}^{\circ}$ C.

Les courbes de la figure 28 donnent la variation des différents facteurs entrant dans l'expression de e^{κ} .

Si d'autres diagrammes sont dessinés pour toutes les valeurs pratiques que ΔT et $\left(\frac{e_h}{p_h}\right)$ peuvent prendre, l'équation $p_h = \frac{p}{e^{\kappa}}$ pourra être résolue graphiquement dans tous les cas. La solution graphique allège un peu le travail.



Les valeurs exactes correspondant aux différents points de la fig. 28 sont:

Altitude en km	$\frac{e}{p} + \frac{e_h}{p_h}$	k	С	C ²	C3
0	0,0175	1,00328	0	0	0
1	0,0159	1,003	0,118	0,014	0,00165
2	0,01317	1,00247	0,228	0,057	0,0136
3	0,01198	1,00225	$0,\!362$	0,13	0,047
4	0,01072	1,002	0,458	0,23	0,112
5	0,0101	1,0019	0,617	0,38	0,234
6	0,0096	1,0018	0,75	0,56	0,42
7	0,0092	1,00173	0,89	0,79	0,705
8	0,0091	1,0017	1,025	1,05	1,07
9	0,00897	1,00168	1,17	1,37	1,60

Altitude en km	C4	K	K^2	$\frac{\mathbf{K}^2}{2}$	K3
0	0	0	0	0	0 -
1	0,000196	0,1177	0,0138	0,007	0,00162
2	0,0022	0,2275	0,052	0,026	0,0118
3	0,017	0,3612	0,13	0,065	0,047
4	0,052	0,4571	0,208	0,104	0,095
5	0,144	0,6159	0,377	0,188	$0,\!232$
6	0,31	0,7487	0,56	0,28	$0,\!42$
7	0,62	0,8885	0,79	0,40	0,703
8	1,1	1,10248	1,048	0,524	1,075
9	1,88	1,1680	1,36	0,68	1,59

Altitude en km	$\frac{\mathbf{K}^3}{6}$	K4	$\frac{\mathrm{K}^4}{24}$	K5	$\frac{\mathbf{K^5}}{120}$
0	0	0	0	0	0
1 2	$0,00\dot{0}24 \ 0,002$	$0,00019 \\ 0,0027$	$\begin{bmatrix} \sim 0 \\ 0,00001 \end{bmatrix}$	$\begin{array}{c} 0,0000224 \\ 0,000615 \end{array}$	$\begin{array}{c} \sim 0 \\ \sim 0 \end{array}$
3	0,008	0,0169	0,0007	0,0061	~ 0
4 5	$0,016 \\ 0,038$	$0{,}043$ $0{,}142$	0,0018	$0,0194 \\ 0,0875$	0,00016 $0,00073$
6	0,038	0,142 $0,31$	0,000	0,0873 $0,232$	0,00073
7	0,117	$0,\!62$	0,026	0,55	0,0046
8	0,18	1,1	0,046	1,13	0,0093
9	$0,\!26$	1,77	0,072	2,03	0,017

En introduisant les expressions:

$$T_h = T_s - \left(\frac{h^* - h_s^*}{100}\right) \cdot \Delta T$$
, $e_h = e_s \cdot 10^{-\frac{h}{6}\left(1 + \frac{h}{20}\right)}$,

et

$$p_h = p_m \Big(\frac{288 - 0.0065 h}{288} \Big)^{5,256}$$
 ou $p_h = \frac{p}{e^K}$

dans l'expression de ρ , puis en simplifiant et en exprimant les altitudes en hectomètres et les pressions en millimètres, l'expression devient:

$$z = \frac{1}{215,1} \cdot \frac{p_m \left(\frac{288 - 0.65 \, h}{288}\right)^{5.256} - \frac{3}{8} \cdot e_s \cdot 10^{-\frac{h}{6} \left(1 + \frac{h}{20}\right)}}{T_s - (h - h_s) \cdot \Delta T},$$
(en kg).

^{* (}h en mètres).

Cette valeur a l'inconvénient d'être très compliquée et pourtant pas très précise.

Dans les couches basses de l'atmosphère, e_h , p_h et T_h peuvent être déterminées plus directement, comme nous l'avons vu précédemment dans ce même paragraphe V; il ne faut pas oublier que le voisinage du sol inflûe quelque peu sur ces 3 éléments.

VI) Détermination du volume v du ballon en fonction de l'altitude.

Au sol, le volume v est facile à déterminer. Entre la pression atmosphérique p, la pression intérieure p_i du ballon et la pression additionnelle p_c due à la tension du caoutchouc, nous avons la relation :

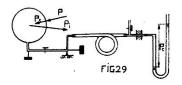
$$p + p_c - p_i = 0$$
 , ou $p_c = p_i - p$;

p se mesure à l'aide du baromètre;

 p_c peut se mesurer à l'aide du dispositif représenté schématiquement dans le croquis suivant (fig. 29):

Si la pression extérieure et la température sont maintenues constantes, en faisant progressivement augmenter le volume du ballonnet (à l'aide d'hydrogène par exemple) jusqu'à éclatement, il est facile de mettre en évidence une propriété impor-

tante des ballons-pilotes. La courbe de p_c en fonction de v ou de F_{at} est une caractéristique d'une série homogène de ballons-pilotes de même provenance. Si l'hypothèse est admise



qu'à volumes égaux, les ballons de même fabrication éprouvent une surpression quasi égale, il est possible de passer des expériences en laboratoire aux sondages eux-mêmes. Dans ce dernier cas, la surpression est obtenue par la diminution de p.

L'expérience prouve que l'hypothèse précédente est justifiée pour des ballons-pilotes de bonne qualité; les tabelles suivantes en font foi.

a) Ballon-pilote de bonne qualité :

Périphérie	$55,5~\mathrm{cm}$
Pression réduite à 0° C	721,8 mm
Température	17° C
Tare	31 gr

Surpression 1	o _c exprimée	
en cm d'eau à 4° C (gr)	en mm de Hg	Force ascensionnelle
18,5	13,6	le ballon est rempli
16	11,78	le ballon est un peu gonflé
13	10,45	le ballon est gonflé
10.5	7,72	force ascensionnelle totale:
	,	31 gr
		force ascensionnelle dispo- nible:
9,5	7,00	10 gr
8,5	6,26	20 »
8	5,88	30 »
7,3	5,37	50 »
7 à 6,8	5,08	70 »
6,5	4,78	80 »
6,5	4,78	100 »
6,4	4,71	120 »
6,3	4,63	130 »
6,1	4,49	150 »
6,3	4,63	160 »
6,2	4,56	170 »
6,3	4,63	180 »
6,4	4,71	200 »
6,7	4,92	220 »
6,7	4,92	230 »
6,8	5,00	250 »
6,9	5,08	260 »
7,3	$5,\!37$	270 »
7,3	$5,\!37$	280 »
7,5	5,52	300 »
7,7	$5,\!66$	320 »
7,8	5,73	330 »
7,9	$5,\!80$	350 »
8,3	6,10	360 »
8,4	6,17	380 »

Le ballon a éclaté.

b) Ballon de mauvaise qualité (Dilatation très irrégulière) Tare 32,8 gr.

Surpression p_c exprimée en cm d'eau à 4° C (gr)	Force ascensionnelle		
7,8	le caoutchouc est simplement tendu		
10,2	le ballon se soulève un peu		
9,5	force ascensionnelle totale: 32,8 gr		
	force ascensionnelle dispo- nible:		
9	10 gr		
8	20 »		
7	30 »		
6	50 »		
6,4	70 »		
6,4	80 »		
$6,\overline{0}$	100 »		

c) Ballon de bonne qualité mais qui a sauté prématurément.

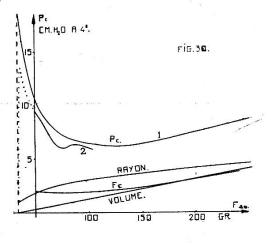
Surpression p_c exprimée en cm d'eau à 4° C. (gr)	Force ascensionnelle disponible	
9	20 gr	
7,5	50 »	
7	80 »	
6 à 8	100 »	
6,5	130 »	
6,2	150 »	

Ces résultats sont représentés graphiquement dans la fig. 30:

La courbe I correspond à un bon ballon.

La courbe II correspond à un mauvais ballon.

A l'aide de la courbe p_c I de la figure 30, on a calculé les grandeurs suivantes (dont nous nous servirons plus tard); on a reporté sur le diagramme la variation du rayon et du volume:



$\mathbf{F}_{at} \ ext{gr}$	Volume dm ⁸	r^3 en dm 3	r en dm	p_{c} en gr	p_c . r
			113 T X X Z	v + 1 + 1 +	
31	29	6,9	1,9	10,5	19,9
51	47,8	11,4	$2,\!25$	8,5	19,1
71	66,4	15,8	2,5	7,5	18,8
91	85	20,3	2,73	7,0	19,1
111	103,5	24,6	2,91	6,7	19,5
131	122,5	29,2	3,08	6,5	20
151	141,0	33,7	3,23	6,3	20,3
171	160,0	38,2	3,36	6,2	20,9
191	178,0	42,5	3,48	6,2	21,6
211	197,0	47,0	3,6	6,3	22,7
231	216,0	51,5	3,7	6,4	23,7
251	235	56,1	3,82	6,6	25,2
271	253	60,4	3,92	6,8	26,6
291	272	65,0	4,02	7,0	28,2
311	291	69,5	4,12	7,3	30
331	309	73,7	4,19	7,5	31,2
351	328	78,2.	4,28	7,7	33
371	347	83,0	4,37	7,9	34,4
391	366	87,4	4,44	8,2	36,4
411	384	91,7	4,5	8,4	37,8

Grâce à la relation de Gay-Lussac:

$$v = \frac{\mathbf{T}_h}{p_h} \cdot p_{\mathrm{s}} \cdot v_{\mathrm{s}} \cdot \alpha ,$$

le volume v d'une masse d'air (par exemple celui déplacé par le ballon-pilote) peut-être connu pour toutes les valeurs T_h et p_h , que T et p peuvent prendre à diverses altitudes. En attribuant à la pression et à la température leurs valeurs moyennes à 2000, 4000, 6000 mètres, etc., v deviendrait:

Volume v	Altitude	Pression p	Température
1	o m s/mer	760	10° C
1,21	2000	594	— 3°,3 C
1,5	4000	457,5	— 16°,7 C
1,82	6000	348	— 30° C
2,34	8000	261	— 43°,3 C
3,00	10000	192	$-56^{\circ},7$ C
etc.			

En appliquant la relation précédente au ballon, et en substituant à la température T_h de l'air celle $T_{H_2,h}$ de l'hydrogène, nous obtiendrons le volume approximatif v_h qu'il posséderait à une altitude quelconque.

Au volume o'_h correspond une surpression p_c , qui varie peu et presque linéairement pour une faible variation arbitraire de $\pm \Delta o'$ (voir fig. 30). En introduisant ces valeurs, le volume assez exact du ballon à l'altitude h serait:

$$\rho_h'' = \alpha \cdot \rho_{\mathrm{S}} \cdot p_{i,\,\mathrm{S}} \cdot \frac{\mathrm{T}_{\mathrm{H_2},\,h}}{p_h + p_c} \,.$$

Si la valeur p'_c correspondant à v'' est trop différente de p_c , il faudrait calculer encore une fois le volume du ballon avec une nouvelle valeur p'_c :

$$\varrho_h^{\prime\prime\prime} = \alpha \cdot \varrho_{\mathrm{s}} \cdot p_{i,\,\mathrm{s}} \cdot \frac{\mathrm{T}_{\mathrm{H_2},\,h}}{p_h + p_c^{\prime}}$$

La différence entre la valeur de p_c (ou p_c') introduite dans l'équation et celle correspondant au volume calculé ρ'' ou ρ''' doit être insignifiante.

Comme précédemment, en attribuant à $T_{H_2,h}$, p_h et p_c les valeurs que ces 3 éléments peuvent prendre, à différentes hauteurs successives pour un certain état de l'atmosphère, il serait possible d'établir une courbe représentative de la variation de v en fonction de l'altitude.

Jusqu'à maintenant, nous avons supposé que $T_{H_2, h}$ était connue; ce n'est pas le cas en réalité. La température de l'hydrogène est généralement supérieure à T_h . Cette différence $T_{H_2, h} - T_h$ dépend de la quantité de chaleur Q cédée ou absorbée par le ballon. Q est une fonction:

- 1º de la surface du ballon, qui augmente avec l'altitude;
- 2º du gradient thermique;
- 3º de la durée de l'ascension;
- 4º de l'épaisseur de l'enveloppe, qui diminue progressivement au cours d'un sondage;

5° du coefficient de conductibilité thermique de l'enveloppe. (Il peut varier de 1,7 à 0,3 suivant le genre de caoutchouc employé);

6º de la conductibilité de l'hydrogène;

7º de la conductibilité de l'air, qui elle-même dépend de l'état plus ou moins agité de l'atmosphère, de la pression p et de la température T;

8º de la couleur du ballon;

9º du réchauffement solaire plus ou moins intense et régulier;

10° de la différence initiale des températures $T_{H_2, s}$ de l'hydrogène du ballonet et T_s de l'air ambiant;

11º des pertes d'hydrogène par diffusion.

Pour un même rayonnement solaire, la température $T_{H_2,\,h}$ sera plus élevée si le ballon est sombre (rouge ou violet) que s'il est clair. Il est donc probable, en particulier pour les ballons sombres, que non seulement la température intérieure ne diminue pas, mais qu'elle augmente, au début de l'ascension. Si l'on abandonne 2 ballons-pilotes, l'un sombre et l'autre clair, de même force ascensionnelle au départ, il n'en sera certainement plus de même après quelques instants; le ballon sombre montera plus rapidement. Pour établir ce phénoméne, on a exposé 2 ballons au soleil, à 5 mètres du sol, et on a mesuré la force ascensionnelle disponible. Le tableau ci-dessous, donne le résultat des mesures:

	Force ascensionnelle			
Temps en min.	Ballon sombre	Ballon clair		
0	88 gr	88 gr		
2	90 ») .		
3 5	00	89 »		
11	92 »	89 »		
15	93 »	90 »		

Au cours d'une ascension, même si le ciel est sans nuage, le ballon traverse des couches d'air plus ou moins brumeuses; son échauffement sera irrégulier. Si le ciel est nuageux, le ballon passera au travers de cônes d'ombre projetés par les nuages ou franchira des zones ensoleillées. L'échauffement sera variable et modifiera la vitesse ascensionnelle du ballon-pilote.

D'autre part, pour un même état du ciel, le réchauffement sera plus grand en juillet qu'en janvier. Il est intéressant de rappeler ici quelques mesures effectuées par F. Linke sur sphérique ¹:

« En plein soleil, le gaz du ballon est, en hiver, de 20° C plus chaud que l'air ambiant; en été, la température intérieure n'est que de 5° C supérieure à celle du milieu. Par nuit clair, la température intérieure du ballon est de 5 à 10° C plus basse que celle de l'air. Les températures ne sont égales que dans les nuages ».

Le réchauffement solaire peut amener des élévations de température de + 30° C, ainsi qu'il résulte des observations faites par Schmauss, Wegener, etc.

Par un vent de 18 km-h j'ai trouvé, en août 1931, à 13.00 h, pour 2 ballons semblables mais de différentes couleurs, les échauffements théoriques ΔT suivants après 15 minutes:

		•	
Ballon rouge	tare 31 gr	$F_{ad} 88/93$	$\Delta T = 15,5$
Ballon blanc	tare 31 gr	\mathbf{F}_{ad} 88/90	$\Delta T = 6.2$

Cette expérience a été faite de la manière suivante:

Les ballons ont été tarés, exposés 15 minutes au soleil, tarés à nouveau et contrôlés; la différence de F_{ad} permit de calculer ΔT ; mais la valeur réelle serait plutôt supérieure, puisque les pertes par diffusion sont négligées.

Il faut donc arriver à la conclusion que la température intérieure du ballon est essentiellement variable et différente de celle du milieu ambiant, contrairement à ce qui est admis pour les sondages aérologiques.

Or, un échauffement de 30°C de l'hydrogène du ballon, au cours d'un sondage, peut provoquer une erreur de la vitesse

¹ a) Ueber die Temperatur des Gases im Freiballon. K. Wegener.

b) Die Temperatur des Gases im Freiballon. K. Wegener. Beiträge zur Physik der freie Atmosphäre. Bd. III et Bd. V.

ascensionnelle de plus de 60 m/min; on saisit ainsi l'importance de la variation de T_{H2, h}.

On voit donc déjà que le volume v du ballon ne peut être connu avec exactitude en fonction de l'altitude par les formules indiquées plus haut, où l'on doit introduire des valeurs admises pour p_h et p_c et $T_{H_2, h}$.

Revenons à pe et aux propriétés du caoutchouc de l'enveloppe. Si, par la pensée, on isole une calotte infiniment petite du ballon-pilote, on voit qu'elle est soumise:

1º A la pression du gaz intérieur p_i qui tend à la chasser vers l'extérieur, et à la pression p atmosphérique;

2º Aux forces de liaison f_c du caoutchouc entre cette calotte élémentaire et les parties voisines.

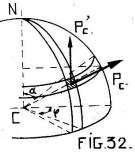
La résultante de ces forces élémentaires f_c normalement à la calotte est une force R_c qui, répartie sur la surface ds donne la pression $p_c = \frac{R_c}{ds}$, neutralisant la différence $p_i - p$ (fig. 31).

 p_c est donc liée à la tension du caoutchouc f_c . Pour connaître la relation entre p_c et f_c , agrandissons la calotte élémentaire dsjusqu'à ce qu'elle soit égale à une demi-

sphère, et fermons-la par un plan équatorial fictif et rigide. Prenons pour axe de projection la droite qui passe par le centre C de la sphère et par le pôle N de la calotte (fig. 32).

Sur un élément quelconque ds de cette demi-sphère s'exerce une surpression égale à p_c dont la composante parallèle à l'axe CN est p_c .

Limitons cet élément ds par 2 parallèles et par 2 méridiens; nous avons: $dx = r \cdot \sin \alpha \cdot d\varphi$ et $dy = r \cdot d\alpha$ où dxest porté sur la tangente au parallèle, et dy sur celle au méridien.



La surface dx. dy sera: $r^2 \sin \alpha$. $d\alpha$. $d\varphi = ds$. La composante de p_c' parallèle à l'axe CN est: $p_c \cos \alpha = p_c'$. La force sur dx. dy sera: $p_c r^2$. $\sin \alpha$. $\cos \alpha d\alpha$. $d\phi$.

La force sur l'hémisphère sera:

$${
m F}_c = p_c r^2 \int\limits_0^{rac{\pi}{2}} \int\limits_0^{2\pi} \sin lpha \cdot \cos lpha \cdot dlpha = p_c \pi r^2 \; .$$

Cette force est égale à la traction totale exercée sur la circonférence de base, normalement au plan de base.

La traction f_c sur le caoutchouc, par unité de longueur (cm) est:

$$f_c = \frac{p_c \cdot \pi \cdot r^2}{2 \cdot \pi r} = \frac{p_c \cdot r}{2}$$

ou

$$p_c = \frac{2 \cdot f_c}{r} .$$

Il est intéressant de noter en passant que cette équation est de forme identique à celle qui exprime la pression à l'intérieur d'une bulle de savon.

Comment réagit le caoutchouc contre cette tension f_c ?

Se dilate-t-il plus ou moins, pour une même force f_c , si sa température change ?.

Soumis à une même force f_c dans un milieu de température constante, se dilate-t-il en fonction du temps?

Avant de rechercher l'influence de la température sur le caoutchouc, il est utile de mettre en évidence la possibilité d'étudier, non l'enveloppe entière d'un ballon-pilote, bien mal commode à manœuvrer pendant les expériences, mais simplement une lamelle découpée dans le ballonnet.

A cause de la grande dilatation que subit le caoutchouc, si sa masse reste évidemment indépendante de son état de tension, le volume reste-t-il aussi constant?

Sous l'action des forces f_c , les espaces intermolléculaires n'augmentent-t-ils pas nécessairement ? le volume ne croît-il pas ?

En faisant l'hypothèse, qui est pratiquement vraisemblable, que le caoutchouc se contracte dans les mêmes proportions, tant en largeur qu'en épaisseur, l'expérience suivante montre que le volume reste pratiquement constant. L'essai a été exécuté sur une bande de caoutchouc (de la Maison Macinlop) de 8 cm de long, de 2 cm de large et de 0,25 mm d'épaisseur. Un rectangle de 5 cm sur 1 cm fut dessiné sur cette bande et servit aux mesures, dont voici les résultats:

Traction en gr	Allongement $l + \Delta l$	$\begin{array}{ c c c }\hline \text{Contraction} \\ b - \Delta b \\\hline \end{array}$	$\frac{\Delta l}{\Delta b}$	Volume en mm
0	50	10	0	125
45	54	9,6	10	124,3
92	60	9,1	10	124,5
145	67,5 (34 %)	8,5	11,6	126
195	79 (56 %)	7,9	14,5	123,2
245	95 (90 %)	7,2	16,1	123,2
295	112 (124%)	6,7	18,8	126
345	130 (160%)	6,2	21,0	125
1045	300 (500%)	4,1	73,2	126

Pour autant que les mesures précédentes sont exactes, le volume du caoutchouc v_c resterait constant; pour le ballon entier, on aurait donc:

$$v_c = e_c \cdot S_0 = e'_c \cdot S$$

 $e_c =$ épaisseur du caoutchouc à l'origine (0,25 mm),

 $S_0 = 4 \pi r_0^2 = \text{surface du ballon non gonflé (9,55 dm}^2),$

 $r_0 = \text{rayon du ballon } \text{« non gonflé » (8,7 cm)},$

r = rayon du ballon gonflé,

S = surface du ballon gonflé,

 $e_c^{'}=$ épaisseur du caoutchouc, le ballon étant gonflé.

A un instant quelconque, l'épaisseur de l'enveloppe est:

$$e_c^{\prime} = e_c \frac{\mathrm{S_0}}{\mathrm{S}} = e_c \left(\frac{r_0}{r}\right)^2;$$

cette dernière est soumise à une tension de:

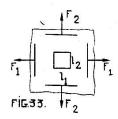
$$\mathfrak{F}_{c} = \frac{f_{c}}{10 \cdot e_{c}^{'}} = \frac{p_{c} \cdot r}{2 \cdot 10 \cdot e_{c}^{'}} \text{ gr/mm}^{2}$$

par unité de surface de la section du caoutchouc; elle correspond à un « allongement » radial de

$$\Delta r_0 = \frac{r - r_0}{r_0} \cdot 100$$
 (en %).

Le facteur 10 dans l'équation de \mathfrak{F}_c est nécessaire pour ramener la traction f_c en gr/mm.

A titre de contrôle, il serait bon de voir si nous obtenons les mêmes résultats en nous servant d'un morceau caoutchouc homogène. Appliquons-lui 4 forces égales, opposées 2 à 2 comme l'indique la figure 33 et analysons les déformations du carré du centre $(l_1 \times l_2)$;



$$l_1 = l_2 = l.$$

Sous l'influence des 2 forces réelles F_1 , l_1 et l_2 deviendront:

$$l_1 (1 + \Delta l_1)$$
 et $l_2 (1 - \Delta l_2)$.

Sous l'influence simultanée de + F_1 et - F_1 d'une part et des deux forces fictives + F_2 et - F_2 d'autre part, le carré primitif l_1 . $l_2=l^2$ deviendrait:

$$l_1 \cdot l_2 (1 + \Delta' l_1) \cdot (1 - \Delta l_1) (1 - \Delta l_2) \cdot (1 + \Delta' l_2)$$

$$= l^2 (1 + \Delta' l)^2 \cdot (1 - \Delta l)$$

son épaisseur deviendrait:

$$e'_c = e_c : (1 + \Delta' l)^2 . (1 - \Delta l)^2$$
.

Cette épaisseur correspond à une tension de:

$$\mathbf{F}_c$$
 : (1 + Δ' l) . (1 — Δ l) . $e_c^{'}$ par unité d'aire de la section ,

et a un allongement de:

$$\frac{(1 + \Delta' l) \cdot (1 - \Delta l) - 1}{1} \cdot 100$$
 en %.

En introduisant dans les équations précédentes les diverses valeurs de la tabelle précédente et de celle accompagnant la figure 30, nous obtenons les grandeurs suivantes pour les épaisseurs et la dilatation de l'enveloppe sous diverses tensions.

2)	Résultats	on	99	servant	dun	hallon .
α	1 LES WILLIES	en	36	Servanu	u un	oullon.

Rayon du ballon r en dm	Allonge- ment linéaire $2\pi r/2\pi r_0$	Surface du ballon $S = 4 \pi r^2$ dm^2	Epaisseur de l'enveloppe $e'_c = e_c S_0/S$ cm	Tension par cm $f_c = p_c \cdot r : 2$ gr/cm	Tension par unité de surface de la section $\mathcal{G}_c = p_c \cdot r/10 \cdot 2e'_c$ gr/mm ²
0,87	1	9,6	0,025	\sim 0	\sim 0
1,1	1,26	15,2	0,0158	88	56
1,5	1,73	28,3	0,0085	100	119
1,7	1,96	36,4	0,0066	102	155
1,9	2,18	45,5	0,0053	95	179
2,9	3,33	106,0	0,00226	97	430
3,9	4,47	192,0	0,00125	135	1080
4,5	5,17	256,0	0,00093	191	2050

b) Résultats en se servant d'une lamelle, dont on observe les déformations de 1 cm².

$$(1 + \Delta l) = a$$
 $e =$ épaisseur 0,025 cm.
 $(1 - \Delta l) = b$ $a \cdot b =$ Allongement total sous l'influence des deux forces perpendiculaires F_1 et F_2 (voir fig. 33).

I	Allongement	;	Surface	Epaisseur	Traction	Tension:
a cm	b cm	a.b cm	$a^2 \cdot b^2 \ \mathrm{cm}^2$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	F ₁ gr	${f c}_c$
1,0	1	1	1	0,025	0	0
	0,91	1,09	1,19	0,021	46	20
1,2 1,58	0,79	1,25	1,575	0,0158	97	49
2,24	0,67	1,50	2,25	0,0111	147	91
2,6	0,62	1,61	2,57	0,0097	172	110

Les diagrammes (fig. 34) représentent ces résultats pour de faibles allongements.

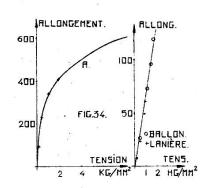
La courbe A du diagramme (34a) est celle que j'ai pu obtenir d'une des maisons qui nous livrent des ballons-pilotes.

Les points marqués par des + ou des O sur les fig. 34a et 34b représentent mes mesures. La concordance est remarquable quoique les méthodes de calculs

soient probablement différentes.

La fig. 34b est à une échelle plus grande que la fig. 34a; elle représente la partie de la courbe A voisine de l'origine.

Pour nos essais, le caoutchouc peut donc être considéré comme corps isotrope. Les résultats obtenus



sur une lamelle peuvent être étendus aux ballons-pilotes.

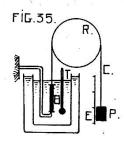
Pour mettre en évidence, l'influence thermique, sur des bandelettes de caoutchouc, nous avons fait deux expériences:

- 1º Influence alternée du chaud et du froid sur le caoutchouc;
- 2º Influence de la température variant constamment dans le même sens. Le premier cas correspond à un sondage, effectué par ciel nuageux; l'ascension du ballon-pilote s'effectuera, tantôt en plein soleil, tantôt dans l'ombre d'un nuage, ou même au travers d'un fragment de nuage.

Le second cas correspond à une ascension par ciel parfaitement serein.

Voici quelques résultats:

1º Bande de caoutchouc de 11 mm de longueur, 10 mm de largeur, 0,22 mm d'épaisseur; traction constante de 200 gr;



le dispositif employé pour effectuer les mesures est représenté schématiquement par la figure 35. La bandelette de caoutchouc (B) est placée entre deux crochets; T est le thermomètre; à droite est un poids (P) de 200 gr, qui se déplace devant une échelle E graduée en cm. La traction, provoquée par P est

transmise à B par un câble (C) qui passe sur une poulie (R). Les résultats de cette première expérience sont:

	Tempé-	Lon- gueur	Allon	gement	Raccourcissement		
Milieu	rature en ° C.	de C en mm	mm	%	mm	%	
Air	15	54					
Eau Eau	15 45	54 51	_	40	3	5,5	
Air Eau	15 94	61 32	7	13	22	41	
Air Eau	15 15	76 76	$\begin{array}{c c} 22 \\ 22 \end{array}$	41			

Cette expérience révèle que:

- a) Le caoutchouc s'allonge lorsqu'il passe de l'eau chaude à l'air plus froid.
- b) Lorsque le caoutchouc passe de l'air à l'eau plus chaude il se contracte passablement.

L'usage assez répandu d'immerger les ballons-pilotes qui ne sont plus suffisamment élastiques, contribue donc dans une certaine mesure à faire varier la vitesse ascensionnelle. Il n'est plus possible de comparer sans autre les résultats des différents sondages exécutés avec des ballons-pilotes identiques, mais traités différemment avant le départ. A tension égale, ceux qui ont été plongés dans de l'eau chaude se dilateront plus facilement dans l'air que ceux qui n'ont pas subi le même traitement.

La seconde expérience a été faite sur une bande de caoutchouc de 18 mm de longueur, 20 mm de largeur et 0,23 mm d'épaisseur, au moyen du même dispositif (fig. 35). La traction fut constamment de 200 gr. L'allongement dans l'air à 14°C fut de 100 %: dans l'eau, les résultats sont les suivants (voir tableau page suivante).

L'étroite dépendance entre l'élasticité du caoutchouc et la température est indiquée par les résultats précédents.

Au cours d'un sondage, si le ballon est temporairement réchauffé, la vitesse ascensionnelle ne peut être constante, puisque le caoutchouc se dilatera davantage, même si f_c reste constante.

Tempé- rature en ° C.	Allonge- ment en %	Milieu	Tempé- rature en ° C.	Allonge- ment en %	Milieu
9	103	eau	61	150	eau
13	106	eau	65	156	eau
17	109	eau	69	166,5	eau
21	111	eau	74	178,0	eau
25	114	eau	77	186	eau
29	117	eau	81	195	eau
33	119,5	eau	85	200	eau
37	122,5	eau	86	211	eau
41	128	eau			
45	133,5	eau	14	328	air
49	136	eau	9	312	eau
53	139	eau			
57	144,5	eau			

Jusqu'ici, il fut admis que le caoutchouc était parfaitement étanche et que l'allongement était indépendant du temps. Or, ces suppositions ne sont pas fondées; les chiffres suivants en font foi. Pour éviter des fuites de gaz, l'appendice, après avoir été soigneusement attaché, fut collé avec du caoutchouc liquide. Les pertes furent déterminées en mesurant, de temps à autre, la variation de la force ascensionnelle disponible; le ballon était d'origine française (tare 78 gr; température de l'air 22° C); voici les résultats:

F_{ad} en gr.	108	107,5	107	106,5	105,5	105,0	104,5	104	100,5
Temps en min	0	6	13	26	37	47	57	65	118

Les tabelles suivantes indiquent que les pertes sont d'autant plus importantes que le volume est plus grand. (Tare 32 gr; température de l'air: 18°C; pression moyenne 755 mm Hg.; Ballon d'origine allemande):

a)

Force ascensionnelle	51,2	50	49	47	45,8
Temps en minutes	0	30	55	105	135

b)

	6			2		
	Force ascensionnelle Temps en minutes	100	98,5 24	94,8 70	91,2 120	89,5 145
-		c)				
	Force ascensionnelle Temps en minutes	146,5	141,6 47	139,5 69	137,2	136,0 104

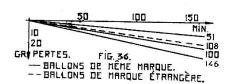
Lectures des observations de a), b) et c) réduites aux mêmes durées:

a)

	<i>u</i> ,				
Force ascensionnelle Temps en minutes	50 0	48,76 30	47,8 60	46,6 90	45,7 120
	b)	26 26			
Force ascensionnelle Temps en minutes	100	97,8	95,7 60	93,5 90	91,1 120
	e)	0			
Force ascensionnelle	150	146,9	143,7	140,6	137,5

Au sol, la variation de F_{ad} est donc d'environ 4 % par heure. Les diagrammes de la fig. 36 indiquent que les pertes par diffu-

0 30



Temps en minutes . . .

sion sont proportionnelles au temps et à la force ascensionnelle; elles se manifestent par une diminution de F_{ad} .

- 60

90

En tenant compte des pertes par diffusion, le volume ν du ballon-pilote pourrait être exprimé (en fonction du temps) par une quantité de la forme:

γ = coefficient de perte pour une minute et pour une force ascensionnelle donnée, et exprimé en unités de volume;

 $\theta = \text{temps exprimé en minutes.}$

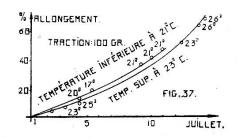
Les tabelles suivantes, établies à l'aide de 2 lanières identiques épaisses de 0,25 mm découpées l'une à côté de l'autre dans le même morceau de caoutchouc, donnent une idée de la variation de l'allongement en fonction du temps (avec température de 18° C).

De minu	ite en minute (De cinq en cinq minutes (2 ^{me} lamelle)				
Traction en gr	Longueur en mm	Allongement en %	Longueur en mm	Allongement en %		
0	47,9	0	48,0	0		
22	50	4,2	51	4,1		
122	58	21	60	22,5		
222	72	50	78	59,2		
322	95	98	110	124		
422	135	181	160	227		
$\bf 522$	194	305	228	366		
622	237	394	275	460		
722	264	450	286	484		
$\bf 822$	271	464	294	500		
922	280	483	301	514		
1022	285	494	307	526		

Les courbes de la figure 37 représentent l'allongement d'une autre lamelle, en fonction du temps et de la température.

En résumé de ce paragraphe VI, on peut dire que le volume exact v_h du ballon à diverses altitudes ne peut être connu, ni avant, ni même après le sondage.

La variation très irrégulière de la température de l'hydrogène à



diverses hauteurs en est une des principales causes. La variation d'élasticité du caoutchouc, en fonction de la température et du temps en est une autre. VII) Calcul de $\rho_{H_2, h}$ en fonction de l'altitude.

La masse spécifique:

$$\rho_{\mathrm{H}_{2},h}' = \rho_{\mathrm{H}_{2}} \frac{p_{i,h}}{76} \cdot \frac{1}{\alpha T_{\mathrm{H}_{2},h}}$$

de l'hydrogène contenu dans le ballon (et comprimé par le caoutchouc) ne nous intéresse que comme terme du produit:

$$\varphi_h \cdot \varphi'_{\mathbf{H}_2, h} \cdot g_h$$
,

qui n'est autre chose que le poids de l'hydrogène.

Nous avons déjà vu l'expression de v_h (paragraphe VI, après la figure 30):

$$o_h = p_{i,s} \cdot o_s \cdot \frac{\alpha T_{H_2,h}}{p_{i,h}} ;$$

d'où

$$g_h \,.\, v_h \,.\, \varphi_{\mathrm{H_2},\;h}' = \,v_{\mathrm{S}} \,.\, g_{\mathrm{S}} \,.\, \varphi_{\mathrm{H_2}} \,.\, \frac{p_{i\,,\,\mathrm{S}}}{76} \ . \label{eq:gh}$$

La masse spécifique de l'hydrogène ρ_{H_2} peut légèrement varier suivant le degré de pureté du gaz à l'intérieur du ballon. Si certaines précautions ne sont pas prises, au début du remplissage du ballon, une petite quantité d'air (contenue dans l'enveloppe, les conduites, le manomètre, etc.) est mélangée à l'hydrogène et en augmente légèrement le poids spécifique.

Si l'accélération terrestre était constante, le produit:

$$g_{\mathrm{S}} \cdot c_{\mathrm{S}} \cdot c_{\mathrm{H_2}} \cdot \frac{p_{i,\,\mathrm{S}}}{76}$$

serait aussi constant puisqu'il ne dépend que des valeurs initiales.

Les pertes d'hydrogène par diffusion (voir fig. 36), qui augmentent en fonction du temps, de la surface du ballon et probablement de la température, diminuent lentement la valeur de l'expression précédente.

Notons que pour un ballon-pilote, dont l'appendice est bien fermé, l'influence des pertes d'hydrogène sera minime au cours d'un sondage dont la durée ne dépassera pas 30 minutes.

VIII) Forces électriques F_e .

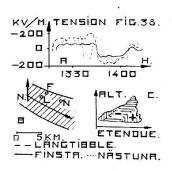
L'effet des forces électriques sur la vitesse ascensionnelle du ballon-pilote est généralement négligeable; mais ce n'est cependant pas toujours le cas, notamment au voisinage de certaines formations nuageuses.

Les stratus et nimbus font souvent baisser le gradient du champ électrique terrestre.

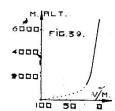
Les nuages orageux peuvent provoquer de grandes perturbations (des tensions de 200 kilovolts par mètre ont été souvent observées). A titre d'exemple, je donne les croquis suivants, empruntés au Traité d'électricité atmosphérique et tellurique, de Matthias ¹ (fig. 38, a, b, c).

Ils donnent:

a) L'enregistrement du potentiel aux stations de Längtibble, Finsta et Nästuna (près d'Upsala). Distance entre Längtibble et Finsta: 1,4 km. Distance entre Finsta et Nästuna: 3,4 km. Distance entre Nästuna et Längtibble: 4,1 km.



- b) La trajectoire du nuage orageux.
- c) Une coupe de ce nuage.



Les forces électriques varient en fonction de l'altitude.

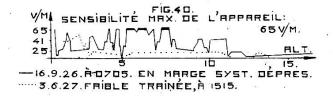
D'après Linke ², la fig. 39 représente la variation du gradient du potentiel en fonction de l'altitude. Entre le sol et 1500 mètres,

¹ Edition 1924, Les Presses universitaires de France, Paris.

² Fig. présentée par Mathias dans son traité d'électricité atmosphérique et tellurique.

le gradient est tout à fait irrégulier, tantôt positif, tantôt négatif. Aux altitudes supérieures à 1500 mètres, le gradient du potentiel diminue peu rapidement mais assez régulièrement.

Des écarts importants existent cependant comme en témoigne la fig. 40 ¹.



Les précipitations entrainent des perturbations.

Au sol, la quantité totale d'électricité positive apportée par la pluie est 3,2 fois supérieure à la quantité totale d'électricité négative; la durée des pluies chargées positivement est 2,5 fois plus grande que celle des pluies chargées négativement. Il est très probable que toutes les pluies sont plus ou moins chargées, soit positivement, soit négativement, quelle que soit l'altitude.

Les brumes porteuses de poussières et de fumées provoquent de profondes modifications du champ électrique.

Les forces électriques qui agissent sur le ballon-pilote ont pour expression:

$$F_e = \sum \frac{k \cdot e \cdot e'}{r^2}$$

e = charge électrique du ballon (en général très petite);
 e' = charge électrique d'un corps (terre, nuage, etc.) qui agit sur le ballon; e' varie très irrégulièrement et dans de grandes proportions;

 r = distance séparant le ballon du « centre » d'un corps chargé d'électricité; r varie beaucoup d'un instant à l'autre;

k = constante diélectrique du milieu.

e n'est guère plus stable que e'; les faits suivants en sont les causes principales:

¹ Recherches sur le champ électrique de l'atmosphère aux grandes altitudes, par P. Idrac. Mémorial de l'Office national de Météorologie de France, 1928.

- a) Le ballon s'électrisera en traversant des précipitations;
- b) Le ballon s'électrisera en traversant des brumes;
- c) Les ions positifs, généralement entraînés vers le bas par le champ électrique terrestre se déposent sur la face supérieure du ballon-pilote.

En résumé, au cours d'un sondage, il n'est pas possible de suivre l'évolution des charges électriques e ou e' et de déterminer qualitativement et quantitativement la force F_e .

Nous arrivons ainsi à la conclusion qu'il est possible qu'une force F_e fausse temporairement, plus ou moins gravement, les conditions d'un sondage.

Revenons maintenant à l'équation complète de ce chapitre 4:

$${
m M} rac{d{
m V}}{dt} = \, arphi_h \, g_h \, (arphi_h - \, arphi_{{
m H_2},\,h}') - g_h \, (m \, + \, m_h') - {
m F}_{r_h} \, \pm \, {
m F}_{e_h} \, \, .$$

L'étude séparée, au point de vue physique, des différents termes de l'équation nous a prouvé qu'ils ne sont pas constants. Généralement ils ne peuvent même pas être calculés pour une altitude quelconque.

Même si les termes de l'équation précédente étaient physiquement constants, le ballon-pilote étant lâché avec une vitesse ascensionnelle nulle, cette dernière croîtrait nécessairement au début du sondage. A partir de quelle minute t la vitesse ascensionnelle deviendra-t-elle presque constante? Le problème est inextricable; on peut alors le simplifier comme suit. Pour la commodité du calcul, transformons un peu l'équation précédente. Groupons tous les termes qui sont explicitement indépendants de la vitesse V et dont la somme algébrique est égale à la poussée statique P de l'air sur le ballon.

Posons:

$$\pm$$
 $\mathbf{F}_{e} = \sim$ 0 ;

et supprimons les indices h; d'où:

$$v \cdot \varphi \cdot g - v \cdot \varphi'_{H_0} \cdot g - mg - m'g = P$$
;

l'équation s'écrit:

$$\frac{\mathbf{M} \cdot d\mathbf{V}}{dt} = \mathbf{P} - \psi \cdot \rho \cdot \pi \cdot (r \cdot \mathbf{V})^2 ;$$

d'où

$$t = \int \frac{\mathbf{M} \cdot d\mathbf{V}}{\mathbf{P} - \psi \cdot \rho \cdot \pi \cdot (r \cdot \mathbf{V})^2} ;$$

cette expression donne, en considérant les quantités sous le signe intégral comme indépendantes du temps:

$$t = \frac{M}{2r\sqrt{P \cdot \pi \cdot \rho \cdot \psi}} \cdot \log \operatorname{nat} \frac{\sqrt{P} + V \cdot r\sqrt{\pi \cdot \psi \cdot \rho}}{\sqrt{P} - V \cdot r\sqrt{\pi \cdot \psi \cdot \rho}} + C ;$$

au temps t=0, V=0; $\log \, \operatorname{nat} \frac{\sqrt{\overline{P}}}{\sqrt{\overline{P}}} = 0$, d'où C=0.

Le temps théorique t, nécessaire pour que la vitesse $\frac{x}{100}$. V soit atteinte, s'obtient en attribuant à V dans l'équation précédente les $\frac{x}{100}$ (par exemple les $99/100^{\rm e}$) de la vitesse ascensionnelle présumée. Il est évident que l'air est supposé parfaitement calme.

Si au cours d'un sondage, V avait la possibilité de devenir constante, à quel moment ce phénomène se produirait-il?

Après un certain nombre de minutes, nous aurions: $\frac{d\mathbf{V}}{dt}=0$; d'où

$$rac{\mathrm{M} \cdot d\mathrm{V}}{dt} = \mathrm{P} - arrho \cdot \pi \cdot \psi \cdot r^2 \cdot \mathrm{V}^2 = 0 \; ;$$
 $\mathrm{V} = rac{1}{r} \sqrt{rac{\mathrm{P}}{\psi \cdot \pi \cdot
ho}} \; ;$

en introduisant cette expression dans la formule de t, nous aurions:

$$t = \frac{\mathrm{M}}{2r\sqrt{\mathrm{P}\cdot\pi\cdot\psi\cdot\rho}}\log \operatorname{nat}\frac{\sqrt{\mathrm{P}}+\sqrt{\mathrm{P}}}{\sqrt{\mathrm{P}}-\sqrt{\mathrm{P}}} = \infty \; ;$$

la vitesse ascensionnelle ne pourrait donc jamais être constante, même dans le problème simplifié comme on a dit. A l'aide des équations précédentes, il est facile de résoudre la question théorique suivante: Quelle est la vitesse calculée que le ballon posséderait après x minutes? On a:

$$e^{\frac{2 \cdot r \cdot x \sqrt{P \cdot \pi \cdot o \cdot \psi}}{M}} = \frac{V \cdot r \cdot \sqrt{\pi \cdot \psi \cdot \rho} + \sqrt{P}}{\sqrt{P} - V \cdot r \cdot \sqrt{\pi \cdot \psi \cdot \rho}}$$

$$V = \frac{\sqrt{P}}{r \cdot \sqrt{\pi \cdot \psi \cdot \rho}} \cdot \frac{e^{\frac{2 \cdot r \cdot x \sqrt{P \cdot \psi \cdot o \cdot \pi}}{M}} - 1}{e^{\frac{2 \cdot r \cdot x \sqrt{P \cdot \psi \cdot o \cdot \pi}}{M}} - 1}.$$

Mais ces formules sont inutilisables.

Pratiquement, à l'origine de chaque sondage, il est bien difficile d'analyser la variation réelle de la vitesse ascensionnelle. Cette variation est due en partie à la turbulence irrégulière de l'air au voisinage du sol et à l'augmentation régulière de la vitesse ascensionnelle de O à V m/sec.

Moltchanoff 1 propose la formule suivante pour diminuer l'importance des erreurs qui entachent la restitution des sondages à basse altitude

$$V_{100} = V_{th} (1 + 0.104 W_{1000}^{1/2})$$

 $V_{100} = vitesse$ ascensionnelle corrigée à 100 m d'altitude;

V_{th} = vitesse ascensionnelle (d'après Hesselberg ²).

 $W_{1000} = vitesse horizontale du vent à 1000 mètres.$

Cette équation permet de rectifier la valeur de la vitesse ascensionnelle à 100 m d'altitude en tenant compte de la force du vent à 1000 mètres. Cette formule est basée sur les observations de Pavlovsk et n'est valable que pour cet observatoire.

La formule précédente non seulement ne tient pas compte de l'influence du relief terrestre sur les courants aériens à faible

¹ Die Steigegeschwindigkeit der Pilotballone im Zusammenhang mit der Windgeschwindigkeit. Pavlovsk. Beit. z. Phy. d. f. Atm., Bd. XIV.

² Ueber die Steigegeschwindigkeit von Pilotballone, Th. Hesselberg-B. J. Birkeland. Annalen der Hydrographie und Maritimen Meteorologie, 1917, p. 313.

altitude, contrairement à ce que laisse supposer son auteur, mais encore elle ignore la variation de la vitesse ascensionnelle au début de chaque sondage.

A l'observatoire de Pavlovsk, la vitesse ascensionnelle présumée des ballons-pilotes est calculée par la formule de Hesselberg-Birkeland:

$$V = a \cdot \frac{\sqrt{F_{ad}}}{d\sqrt{\sigma}} ;$$

a = coefficient déterminé à l'aide des doubles visées exécutées
 à Pavlovsk, indépendamment des courants aériens;

V = vitesse ascensionnelle;

 F_{ad} = force ascensionnelle disponible;

d = diamètre du ballon;

σ = poids spécifique de l'air.

Le coefficient « a » n'a pas la même valeur suivant qu'il est déterminé à l'aide des observations du matin de Pavlovsk ou qu'il est calculé à l'aide des observations dont s'est servi Hesselberg. Pour des valeurs identiques de F_{ad} , d et σ , les différences en % entre les valeurs du coefficient « a », calculées respectivement d'après Moltchanoff et Hesselberg, sont données dans la tabelle suivante. Les lettres indiquent les mois de l'année.

Altitude en mètres	J	F	М	A	М	J	J	A	s	0	N	D
1000	16	5	-2	12	3	-2	-1	2	2	4	5	7
500	12	3	-2	0	7	12	6	4	6	3	7	9
100	34	21	24	33	31	19	21	23	34	40	30	32
Vit. du vent à												
100 m, en m/												
sec	5,9	4,5	5,1	5,3	5,0	4,9	4,8	5,1	5,5	4,5	4,9	5,3

La dernière ligne du tableau indique la vitesse horizontale moyenne du vent en m/sec, à 100 mètres de hauteur, d'après les sondages exécutés de 1920 à 1924 à Pavlovsk.

A conditions égales, puisque le coefficient « a » n'a pas la même valeur pour Moltchanoff et Hesselberg, il en sera de même de la vitesse ascensionnelle calculée d'après les indications de l'un ou de l'autre. Les différences en % des vitesses ascensionnelles correspondantes, calculées d'après les auteurs précédents, sont indiquées dans la tabelle suivante; elles sont groupées pour différentes valeurs du vent à 1000 mètres de hauteur et divisées en deux catégories: la première correspond aux sondages exécutés pendant la saison chaude (S.C.), la seconde aux sondages exécutés pendant la saison froide (S.F.).

Vit. horizontale du vent en m/sec. à 1000 mètres et Saisons.

Vit. du vent	0 à 4	4 à 8	8 à 12	12 à 16	> 16	en m/sec
Sai- sons	S.C. S.F.	S.C. S.F.	S.C. S.F.	S.C. S.F.	S.C. S.F.	
Altit. en m 1000 500 100	$ \begin{vmatrix} -2 & -5 \\ 2 & -5 \\ 20 & 6 \end{vmatrix} $	$egin{bmatrix} -2 & 3 \ 3 & 2 \ 24 & 22 \end{bmatrix}$	$ \begin{vmatrix} 1 & -1 \\ 8 & -1 \\ 32 & 31 \end{vmatrix} $	4 3 13 4 36 42	$egin{array}{c c} -1 & 17 \ 6 & 22 \ 53 & 45 \ \end{array}$	en % en % en %

Ces deux tabelles mettent bien en évidence les différences considérables de la vitesse ascensionnelle présumée à faible altitude, suivant la formule choisie. Elles prouvent qu'il est illusoire de vouloir déterminer avec précision la hauteur des nuages bas sur un aéroport avec des ballons-pilotes et un seul théodolite.

La relation géométrique, entre la vitesse ascensionnelle et la force du vent, qui est à la base du dépouillement des sondages, permet bien à Moltchanoff d'écrire une formule qui donne avec assez de précision la vitesse du vent à 100 mètres de hauteur (W_{100}) :

Cette équation est:

$$W_{100} = W'_{100} (1 + 0.104 W_{1000}^{1/2})$$

 $W_{100}^{'}=$ vitesse du vent calculée d'après la méthode à un seul théodolite;

 W_{1000} = vitesse du vent à 1000 mètres de hauteur.

Pour une hauteur de 100 mètres, la tabelle suivante prouve l'amélioration de la restitution des sondages de Pavlovsk, par l'emploi de la formule précédente.

Vitesse horizont.	Mois											
du vent par	J	F	М	A	М	J	Ј	A	S	О	N	D
Double visée	8,8	5,0	6,4	4,8	4,0	4,0	3,2	4,3	7,4	6,0	6,5	6,1
Visée simple	6,5	4,1	4,7	3,7	3,0	2,9	2,5	3,6	4,4	5,4	5,2	4,4
Visée simple rec- tifiée par éq.	85											
$W_{100} =$	8,8	5,2	6,6	5,2	4,0	3,9	3,1	4,4	7,1	6,3	7,0	5,9

Malheureusement les formules de Moltchanoff:

$$\left\{egin{array}{ll} V_{100} &= V_{ ext{th}} (1\,+\,0.104\ W_{1000}^{1/2}) \ & ext{et} \ & W_{100} &= W_{100}' (1\,+\,0.104\ W_{1000}^{1/2}) \end{array}
ight.$$

ne sont valables que pour Pavlovsk; elles ne le sont même probablement que pour des ballons de qualité comparable à celle des ballons employés à cet observatoire.

Moltchanoff ¹, reprenant la même étude de la variation de la vitesse ascensionnelle au voisinage du sol, mais basée sur les doubles visées de Slutzk, aboutit à des résultats semblables à ceux de Pavlovsk, mais pourtant pas identiques.

La tabelle suivante contient les différences en % entre la vitesse ascensionnelle théorique d'après Hesselberg et la vitesse ascensionnelle réelle d'après les doubles visées de Slutzk.

Les lettres indiquent les mois de l'année; les valeurs ne sont calculées que pour les ascensions du matin; les chiffres des 2^{me}, 4^{me} et 6^{me} lignes indiquent les nombres respectifs d'observations qui ont servi à calculer les différences en % de la ligne précédente.

¹ Resultate der Doppelvisierungen für funf Jahre 1923 à 1927. Beiträge zur Physik der freien Atmosphäre, Band XV.

Altitude en mètres		Mois											Nombre total	
	J	F	М	A	М	J	J	A	s	0	N	D	d'obser- vations	
1000	11 32	4 21	$\begin{vmatrix} 3 \\ 58 \end{vmatrix}$	1 67	90	0 90	1 111	1 82	$\begin{vmatrix} 3\\72 \end{vmatrix}$	5 57	$\begin{vmatrix} 5\\32 \end{vmatrix}$	8 15	729	
500	10 42	5 29	4 75	2 78	7 96	11 101	4 123	1 87	4 82	6 71	8 38	10 26	848	
100	33 47	29 35	33 85	36 86	34 115	27 112	25 127	24 109	37 94	38 77	30 47	29 37	971	

Le tableau suivant donne les différences en % de la vitesse ascensionnelle, déduite des doubles visées de Slutzk ou calculées d'après Hesselberg pour diverses altitudes, forces du vent et température. Les chiffres des lignes « n » indiquent les nombres d'observations qui ont servi à calculer les % des lignes susjacentes.

Température	Vitesse horizontale du vent en m/sec à 1000 m										
absolue en degrés		0 à 4			8 à 12		> 16				
	Haute	eur en n	nètres	Haute	eur en n	nètres	Hauteur en mètres				
	100 500 1000			100	500	1000	100	500	1000		
< 263	6,8	2,7	3,5	16,5	4,3	1,0	42,7	12,4	4,7		
n	23	16	15	43	35	26	15	13	9		
263 à 273 n	16,9 41	4,2 41	$\overset{2,0}{38}$	30,7 66	4,1 63	$-4.0\\55$	57,3 17	11,6 16	8,7 12		
1 1	41	41	30	00	0.0	33	17	10	12		
273 à 283 n	31,7 52	13,5 49	3,1 45	31,8 130	10,0 123	4,3 107	44,7 26	18,7 24	12,3 21		
283 à 293 n	30,9 126	13,5 126	7,7 121	37,5 162	20,1 157	9,8 146	44,8 16	18.8 16	12,9 14		
> 293 n	29,6 68	25,9 68	21,2 67	30,9 33	14,7 33	7,1 32	94,0	34,7	$^{14,5}_{2}$		

En résumé, à basse altitude (h'), la vitesse ascensionnelle V présumée d'un ballon-pilote peut être calculée approximativement en fonction: de la vitesse horizontale (W) du vent

à une altitude (h''), [h'' > h'] et de la vitesse ascensionnelle théorique $(V_{\rm th})$, calculée d'après Hesselberg par exemple; la formule d'approximation contient un coefficient k, qui prend différentes valeurs d'un endroit à l'autre. Les causes de ces différences sont multiples.

A Slutzk, k est égal à: 0,11 pour h' = 100 et h'' = 1000.

Mais, encore une fois, ces formules approchées ne tiennent aucun compte de la variation de la vitesse ascensionnelle au début de chaque sondage.

De ces observations se dégagent les conclusions:

- 1º La vitesse ascensionnelle réelle est différente de la vitesse ascensionnelle théorique, surtout au voisinage du sol.
- 2º La température et la force du vent semblent influencer la vitesse ascensionnelle, surtout au voisinage du sol.

(à suivre) 1

¹ Errata. — P. 166, dernière phrase de l'alinéa (a), lire: la vitesse horizontale aurait théoriquement varié de 1,5 à 8,5 m/sec.

P. 171 et 174: l'expression du nombre de Reynolds est $R=rac{\rho \cdot V \cdot 2r}{\eta}$ et non pas $rac{\rho \cdot V^2 \cdot 2r}{\eta}$.