Zeitschrift: Archives des sciences physiques et naturelles

Herausgeber: Société de Physique et d'Histoire Naturelle de Genève

Band: 14 (1932)

Artikel: Constitution et stabilité des noyaux atomiques

Autor: Schidlof, A.

DOI: https://doi.org/10.5169/seals-740776

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 16.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

CONSTITUTION ET STABILITÉ

DES

NOYAUX ATOMIQUES

PAR

A. SCHIDLOF

(Avec 2 figures.)

Sommaire.

Le présent travail a pour point de départ une hypothèse appliquée précédemment déjà à l'interprétation théorique de l'émission des rayons β par les noyaux radioactifs: les noyaux plus lourds renferment, à côté des particules α , les « pseudo-protons » ou « particules α_1 », porteurs des électrons surnuméraires (§ 1). Un bref rappel des connaissances actuelles concernant les isotopes et les isobares (§ 2), des données relatives à l'effet de masse et à la stabilité de la particule α (§ 3), et des conventions sur lesquelles repose la division des noyaux en classes (§ 4) précède l'étude de la constitution et de la stabilité des noyaux atomiques (§ 5).

La stabilité des noyaux est due à leur concentration électronique qui doit être comprise entre deux limites plus ou moins rapprochées suivant le nombre atomique et suivant la classe du noyau. Les recherches sur les isotopes ont mis en évidence l'existence d'une « bande de stabilité » qui devient très étroite pour les noyaux de nombre atomique élevé (§ 6). L'application de la condition de stabilité conduit à une nouvelle détermination de la différence des masses des particules α_1 et α . Le calcul numérique effectué pour deux noyaux distincts fournit des valeurs concordantes qui confirment, de plus, le résultat obtenu précédemment au moyen de la théorie du seuil de Gamow-Condon-Gurney (§ 7). L'alternance des deux espèces de transformations radioactives procure des renseignements intéressants sur la portion supérieure de la «bande de stabilité» et sur les deux limites de cette bande (§ 8). L'étude aboutit à des considérations théoriques concernant la limite du système périodique des atomes et la limite supérieure absolue des concentrations électroniques (§ 9).

— Conclusions (§ 10).

ARCHIVES, Vol. 14. - Mai-Juin 1932.

§ 1. Introduction. On admet habituellement que les noyaux lourds sont composés principalement de particules α , mais il est certain que presque tous les noyaux renferment, à côté des particules α , d'autres éléments de charge électrique positive et de constitution différente. Dans une publication récente qui avait pour but l'extension de la théorie du seuil de Gamow-Condon-Gurney au phénomène de l'émission des rayons β , l'hypothèse de l'existence d'électrons « libres » dans les noyaux lourds, source de très nombreuses et très graves difficultés, a été remplacée par l'hypothèse suivante: Les noyaux lourds, renferment, à côté des particules α , d'autres particules qui proviennent de la fixation d'un électron surnuméraire à une particule α . Une telle particule a sensiblement la même masse que la particule α , mais sa charge électrique est celle du proton. On a appelé ces particules « pseudo-protons » ou « particules α_1 ».

La particule α_1 ne peut exister ni à l'état libre ni à l'intérieur des noyaux légers, pour des raisons qui seront indiquées à la fin du présent mémoire, mais elle intervient dans une proportion de plus en plus considérable dans les noyaux lourds. La présence des particules α_1 se manifeste par un excès croissant d'électrons inclus dans les noyaux supérieurs.

Quoiqu'il soit impossible, par hypothèse, d'observer les particules α_1 détachées, il existe cependant plusieurs procédés indirects permettant l'évaluation de leur masse. Désignons par M_{α} la masse atomique de la particule α , en prenant pour base la masse atomique de l'atome d'oxygène posée par définition égale à 16,0000, et soit M_{α_1} la masse atomique de la particule α_1 . Des considérations basées sur la théorie du seuil de Gamow-Condon-Gurney, dont on peut trouver les détails dans le mémoire cité 2 , ont conduit au résultat suivant:

$$\mathbf{M}_{\alpha_1} - \mathbf{M}_{\alpha} = 0.0224 .$$

Les données sur lesquelles repose la détermination de la différence entre les deux masses M_{α_1} et M_{α} sont trop incertaines

A. Schidlof et H. Saini, Helv. Phys. Acta, 5, 73 (1932).

Voir aussi A. Schidlof et H. Saini, C. R. Soc. phys. Genève, 49,
 11 févr. 1932; Archives [5], 14, suppl. No 1 (1932).

pour qu'on puisse garantir l'exactitude des deux dernières décimales. Nous adopterons donc dans le présent travail la valeur approximative:

$$M_{\alpha_1} - M_{\alpha} \sim 0.02 \tag{1}$$

qui sera contrôlée dans les pages qui suivent et soumise à différentes vérifications.

§ 2. Isotopes et isobares. Les propriétés chimiques d'un noyau sont définies univoquement par le nombre atomique Z. Ce nombre a une signification double, puisqu'il indique, d'une part, la place occupée par l'atome dans le système périodique de Mendelejeff et, d'autre part, le nombre des charges positives du noyau. Si on représente par le symbole e le quantum élémentaire de l'électricité:

$$e = 4,774.10^{-10}$$
 U.E.S.,

la charge positive du noyau est + Ze. Cette charge détermine la constitution des couches électroniques de l'atome, mais elle laisse subsister une certaine indétermination de la masse et de la constitution intérieure du noyau. En effet, le nombre atomique Z est égal à la différence entre le nombre des protons, P, et le nombre des électrons, N, du noyau.

$$Z = P - N , \qquad (2)$$

tandis que la masse et la constitution du noyau dépendent surtout du nombre des protons. Il existe donc en général des noyaux de même nombre atomique qui ont des masses et des constitutions différentes. Ces noyaux distincts, mais chimiquement équivalents, s'appellent des *isotopes*. On trouve aussi des noyaux chimiquement distincts, mais contenant le même nombre de protons, dits *isobares*, parce que ces noyaux ont sensiblement le même poids.

Le tableau 1 contient les nombres Z, P, N et les poids atomiques des atomes sur lesquels on a des renseignements précis, principalement grâce aux recherches de F. W. Aston ¹.

¹ F. W. Aston, *Proc. Roy. Soc.* London (A) 115, 487 (1927), Nature, 129, 956 (1927).

TABLEAU 1.

Poids atomiques.

 $\begin{array}{lll} \text{Atome d'hydrogène} & A_{\mathbf{16}} = 1,0078 \\ \text{Atome d'hélium} & A_{\mathbf{16}} = 4,0022 \\ \text{Proton} & A_{\mathbf{16}} = 1,0073 \\ \text{Particule } \alpha & A_{\mathbf{16}} = 4,0011 \\ \text{Electron} & A_{\mathbf{16}} = 0,00055 \end{array}$

Noyau	z	P	N	(atome)	Noyau	Z	P	N	A ₁₆ (atome)
			_	0.040	0 440			2.2	
Li 6	3	6	3	6,012	Sn 116	50	116	66	115,915
Li 7	3	7	4	7,012	Sn 117	50	117	67	116,9156
Be 9	4	9	5	9,020	Sn 118	50	118	68	117,914
B 10	5	10	5	10,0135	Sn 119	50	119	69	118,913
B 11	5	11	6	11,0110	Sn 120	50	120	70	119,912
C 12	6	12	6	12,0036	Sn 121	50	121	71	120,911
N 14	7	14	7	14,008	Sn 122	50	122	-72	121,911
O 16	8	16	8	16,0000	Sn 124	50	124	74	12 3,909
F 19	9	19	10	19,000	In 115*	49	115	66	114,8*
Ne 20	10	20	10	20,0004	J 127	53	127	64	126,932
Ne 22	10	22	12	22,0048	Xe 124	54	124	70	123,934
Na 23*	11	23	12	22,997*	Xe 126	54	126	72	125,933
Al 27*	13	27	14	26,97*	Xe 128	54	128	74	127,932
P 31	15	31	16	30,9825	Xe 129	54	129	75	128,932
Cl 35	17	35	18	34,983	Xe 130	54	130	76	129,931
Cl 37	17	37	20	36,980	Xe 131	54	131	77	130,931
A 36	18	36	18	35,976	Xe 132	54	132	78	131,930
A 40	18	40	22	39,971	Xe 134	54	134	80	133,929
Sc 45*	21	45	23	45,10*	Xe 136	54	136	82	135,928
V 51*	23	51	28	50,96*	La 139*	57	139	82	138,91*
Cr 52	24	52	28	51,948	Pr 141*	59	141	82	140,93*
Mn 55*	25	55	30	54,94*	Hg 196	80	196	116	196,016
Co 59*	27	59	32	58,95*	Hg 198	80	198	118	198,016
Ni 58	28	58	30	57,942	Hg .199	80	199	119	199,016
As 75	33	75	42	74,934	Hg 200	80	200	120	200,016
Br 79	35	79	44	78,929	Hg 201	80	201	121	201,016
Br 81	35	81	46	80,926	Hg 202	80	202	122	202,016
Kr 78	36	78	42	77,926	Hg 204	80	204	124	204,016
Kr 80	36	80	44	79,926	Pb (RaG)	82	206	124	206,016
Kr 82	36	82	46	81,927	Pb (AcD)	82	207	125	207,017
Kr 83	36	83	47	82,927	Pb (ThD)	82	208	126	208,017
Kr 84	36	84	48	83,928	Bi 209*	83	209	126	209,02*
Kr 86	36	86	50	85,929	Ra*	88	226	138	225,99*
Sn 112	50	112	62	111,918	Th*	90	232	142	232,12*
Sn 114	50	114	64	113,917	U*	92	238	146	238,14*
Sn 115	50	115	65	114,916					

^{*} Les astérisques marquent les poids atomiques déterminés chimiquement par des mesures gravimétriques. Toutes les autres valeurs proviennent des mesures faites par F. W. Aston au moyen du spectrographe de masse.

Les poids atomiques désignés par A₁₆ ont pour base le poids atomique de l'oxygène chimiquement pur, égalé à 16,0000.

Les poids atomiques des couples d'isobares réunis dans le tableau 2 ne sont, en général, pas connus avec une précision suffisante pour permettre des comparaisons concluantes. Il est à prévoir que l'isobare dont le nombre atomique Z est plus élevé, donc l'atome dont le noyau renferme moins d'électrons, présente la plus grande masse atomique. Cela prouverait l'action stabilisante des électrons nucléaires. Le fait prévu se vérifie effectivement pour le couple:

$$Sn 124 (Z = 50, N = 74)$$
 $A_{16} = 123,909$ $Xe 124 (Z = 54, N = 70)$ $A_{16} = 123,934$.

Dans la grande majorité des cas, la comparaison exacte des masses atomiques des isobares, qui pourrait procurer des renseignements intéressants sur la constitution des noyaux, est impossible parce qu'on ne possède pas des données suffisamment précises.

TABLEAU 2.

Quelques couples isobares.

Atome | Z | P | N | Atome | Z | P | N

Atome	z	P	N	Atome	Z	P	N	Atome	Z	P	N
Cr Fe Cu Zn Zn Ge Ge Se Ge	24 } 26 } 29 } 30 } 32 } 32 } 34 } 32 } 33 }	54 65 70 74 75	30 28 36 35 40 38 42 40 43 42	Ge Se Zr Mo Cd Sn In Sn Sn	32 } 34 } 40 } 42 } 48 } 50 } 50 } 50 } 51 }	76 92 112 115	44 42 52 50 64 62 66 65 71	Sn Xe Te Xe Te Xe Te Xe Ce Nd	50 } 54 } 52 } 54 } 52 } 54 } 52 } 54 } 54	124 126 128 130	74 70 74 72 76 74 78 76 84 82

§ 3. Effet de masse. Le déchet de masse que présente le noyau de l'hélium (particule α) par rapport aux 4 protons, p, et aux 2 électrons, e, qui s'y trouvent réunis est¹:

$$\Delta M_0 = 4.1,0078 - 4,0022 = 0,029$$
 (3)

¹ Voir A. Sommerfeld, Atombau, I, 5me édition, 1931, p. 181.

En vertu du principe de l'inertie de l'énergie, la diminution de masse, ΔM_0 , est proportionnelle à l'énergie dégagée lors de la formation du noyau, et on obtient l'énergie correspondante, exprimée en ergs, en multipliant ΔM_0 par c^2 , c signifiant la vitesse de la lumière dans le vide. Il vient:

$$\Delta E = \Delta M_0 \cdot c^2 = 0.029.9.10^{20} \sim 2.6.10^{19} \text{ ergs}$$
 (3a)

La particule α_1 , elle aussi, est une combinaison « exothermique », mais sa « chaleur de formation » est seulement un tiers de celle de la particule α . Si on se représente la particule α_1 obtenue par l'adjonction d'un électron à une particule α , la combinaison est « endothermique » et exige un apport d'énergie de 1,7.10¹⁹ ergs environ. On voit pour quelle raison la particule α_1 est très instable. Elle tend à se dissocier en abandonnant l'électron surnuméraire. La particule α , par contre, est extraordinairement stable.

Dans certains cas, les particules α s'échappent des noyaux radioactifs avec une énergie cinétique très considérable. Le cas extrême est celui des rayons α du ThC' dont l'énergie est à peu près un tiers de l'énergie nécessaire pour décomposer la particule α en quatre protons et en deux électrons séparés.

On peut se demander si, en lançant la particule a du ThC' contre un obstacle rigide, le choc ne suffirait pas, éventuellement, à dissocier la particule en deux noyaux dont chacun serait l'isotope H2 du proton, récemment découvert 1. La réponse est négative.

La masse atomique de l'isotope H2 doit être plus petite que 2.1,0078 = 2,0156, mais elle ne peut pas être inférieure à la différence des masses atomiques de Li6 et de He. Cette différence étant:

$$6,012 - 4,002 = 2,010$$
,

il faudrait apporter à la particule α , dont la masse atomique est 4,0011, une énergie qui doit être *au moins* égale à 0,019 c^2 . Or, le choc considéré pourrait libérer tout au plus la moitié

¹ H. C. UREY, F. G. BRICKWEDDE, G. M. MURPHY, *Phys. Rev.*, 39. 164 (1932).

de l'énergie nécessaire et ne peut, par suite, pas produire la dissociation envisagée.

Dans le même ordre d'idées on reconnaît, en examinant les chiffres du tableau 1, qu'aucun noyau ne peut perdre par suite d'une dissociation spontanée l'un de ses protons. Si on compare les poids atomiques A_{16} de deux atomes dont les nombres de protons P diffèrent d'une unité, on constate que la différence entre les deux poids atomiques peut être légèrement inférieure ou légèrement supérieure à 1, mais qu'elle est dans tous les cas très voisine de l'unité. Le poids atomique du proton libre étant 1,0073, l'expulsion d'un proton exige dans le cas de n'importe quel noyau l'apport d'une énergie relativement considérable.

Les principaux éléments constituants des noyaux supérieurs sont, en vertu de l'hypothèse énoncée dans l'introduction, les particules α et les particules α_1 . La stabilité de la particule α_1 , quoique bien inférieure à celle de la particule α est cependant suffisante pour garantir au conglomérat de 4 protons et de 3 électrons une existence individuelle à l'intérieur du noyau lourd auquel il est attaché. L'énergie potentielle négative des forces de liaison réunissant en un noyau stable les différentes particules positives, est mesurée par un effet de masse supplémentaire dont l'étude forme l'un des sujets du présent travail

§ 4. Classes de noyaux. Partant de l'idée que les noyaux supérieurs renferment surtout des particules α , on a groupé les noyaux en 4 classes qui se distinguent par les propriétés arithmétiques du nombre P^1 . En posant:

$$P = 4n + v , \qquad (4)$$

où n est le plus grand nombre entier obtenu en divisant par 4 le nombre entier P, on trouve 4 classes de noyaux qui se distinguent par les 4 valeurs possibles du nombre ν :

$$\nu = 0, 1, 2, 3$$
.

¹ Voir F. G. Houtermans. Ergebn. d. ex. Naturwiss. 9. Neuere Arbeiten über Quantentheorie des Atomkerns, p. 128-221 (1930). — G. Gamow, Der Bau des Atomkerns und die Radioaktivität (1932).

D'après W. D. Harkins¹, les 4 classes portent les noms suivants:

1º	P = 4n	Classe du thorium-hélium.

$$2^{\circ}$$
 P = $4n + 1$ Classe du beryllium (Be9).

$$3^{\circ}$$
 P = $4n + 2$ Classe de l'uranium (Li6).

$$4^{\circ}$$
 P = $4n + 3$ Classe du Li7.

En ce qui concerne les noyaux de la classe du thorium, n signifie le nombre total des particules constituantes. Si N est le nombre des électrons du noyau:

$$N_s = N - \frac{P}{2}$$

est le nombre des électrons surnuméraires non fixés à des particules α et, par suite, le nombre des particules α_1 .

Dans cette classe, le nombre N est plus grand que 2n à partir de l'isotope A40 (voir le tableau 1). Le noyau A40 est composé de 8 particules α et de 2 particules α_1 . Ca44 est composé de 9 particules α et de deux particules α_1 . Les noyaux plus lourds contiennent des particules α_1 en proportion croissante. Le noyau du thorium, le plus élevé de toute la classe, est représenté par la formule de constitution:

$$Th = 32 \alpha + 26 \alpha_1.$$

§ 5. Effet de masse et stabilité des noyaux supérieurs. Tant qu'il s'agit de noyaux composés d'une seule espèce de particules, l'effet de masse mesure directement la stabilité des liaisons du conglomérat. La définition la plus commode de l'effet de masse est celle qui a été adoptée par St. Meyer²;

$$D = 1,0078 \frac{P - A_1}{P} ,$$

A₁ signifiant le poids atomique de l'atome en question, rapporté à l'atome d'hydrogène pris pour unité. La quantité D est

¹ W. D. HARKINS, *Phil. Mag.*, 42, 305 (1923), *Phys. Rev.* 38, 1270 (1931).

² St. Meyer, Ber. Akad. Wien. IIe 138, 431 (1929).

positive dans tous les cas, et elle mesure la stabilité des liaisons par lesquelles les protons sont attachés au noyau.

Si l'on porte en abscisses les nombres atomiques Z et en ordonnées les valeurs correspondantes de D, on obtient une courbe qui fournit des renseignements sur la stabilité des noyaux. L'interprétation complète de l'effet de masse exigerait une connaissance approfondie de la constitution des noyaux à laquelle nous devons actuellement encore suppléer par des hypothèses.

Du point de vue de la mécanique quantique, le problème de la stabilité de l'équilibre des noyaux atomiques est particulièrement simple, car les éléments constituants du noyau satisfont au principe de Bose-Einstein, principe sur lequel repose la statistique des photons ¹. Dans un noyau non excité, toutes les particules identiques sont dans le même état et ont la même énergie propre. Pour cette raison, l'effet de masse D mesure directement la solidité des liaisons des protons dans les noyaux inférieurs de la classe du thorium, composés uniquement de particules α . Dans les noyaux supérieurs, par contre, interviennent aussi les particules α_1 et il faut tenir compte de leur présence pour éviter des conclusions erronnées. Le nombre des particules α_1 contenues dans un noyau de cette classe est, par hypothèse, égal au nombre N_s des électrons surnuméraires défini par la formule:

$$N_s = N - \frac{P}{2}$$
,

P étant le nombre de protons, et N = P — Z le nombre des électrons du noyau dont Z signifie le nombre atomique.

L'intervention des particules α_1 ressort assez clairement dans le cas des isotopes du Kr. Comparons, par exemple, les poids atomiques des deux isotopes Kr 84 et Kr 80 qui diffèrent l'un de l'autre de 4,002. Cette différence étant sensiblement égale au poids atomique de la particule α libre, il semble en résulter que la dernière particule α est très faiblement liée au noyau 84. De toute façon, la différence des poids atomiques semble

¹ Voir G. Gamow, Bau des Atomkerns, p. 19.

indiquer que le Kr 84 est moins stable que le Kr 80, mais en réalité le Kr 84 est l'isotope le plus fréquent donc le plus stable, tandis que le Kr 80 est rare.

Le paradoxe s'explique si l'on considère l'excès de masse des particules α_1 :

$$M_{\alpha_1} - M_{\alpha} = \mu = 0.02$$
 (5)

Si l'on retranche des poids atomiques les excès de masse dus à la présence de 4 particules α_1 dans le Kr 80, de 6 particules α_1 dans le Kr 84, on trouve pour les deux noyaux les résultats suivants:

Noyau	A ₁₆	Α ₁₆ -Ν ₈ μ	M_p	ΔM_p
Kr 80	79,926	79,846	0,99808	0,00972
Kr 84	83,928	83,808	0,99771	0,01009

La masse du proton M_p est donc plus petite et la perte de masse ΔM_p plus grande dans le cas du noyau plus stable, comme il fallait s'y attendre.

Le nombre croissant des particules α_1 contenues dans les noyaux supérieurs est l'une des causes de la diminution progressive de l'effet de masse D qui se manifeste à partir du milieu système périodique (Z \sim 50). Pour cette raison, les courbes tracées par F. W. Aston (l. c.) et par St. Meyer (l. c.) exagèrent la décroissance de l'énergie de liaison. A l'intérieur des noyaux, les particules α_1 forment des conglomérats stables, dont la masse est supérieure de μ à la masse des particules α . Ceci admis, on obtient une meilleure représentation de la solidité des liaisons si on évalue le déchet de masse par proton engagé dans une particule α du noyau au moyen de la formule suivante, tenant compte de l'excès de masse des particules α_1 :

$$\Delta M_p = 1,00780 - \frac{A_{16} - \mu N_s}{P}$$
 (6)

Cette formule a été utilisée pour calculer les valeurs indiquées dans le tableau 3.

TABLEAU 3.

Noyau	A ₁₆	Z	Ns	$\mathbf{M}_{m{p}}$	ΔMp
He	4,0022	2	0	1,00055	0,00725
O	16,0000	8	0	1,00000	0,00780
Ne	20,0004	10	0	1,00002	0,00778
\mathbf{A}	35,976	18	0	0,99933	0,00847
\mathbf{Kr}	79,926	36	4	0,99808	0,00972
$\mathbf{S}\mathbf{n}$	119,912	50	10	0,99760	0,01020
Hg	200,016	80	20	0,99808	0,00972
$\mathbf{P}\check{\mathbf{b}}$	208,017	82	22	0,99800	0,00980
Th	232,12	90	26	0,99827	0,00953

Les forces de liaison qui s'appliquent aux protons dans les noyaux les plus lourds sont bien plus grandes que celles qui s'appliquent aux protons des noyaux légers (He, O, Ne, A). Les valeurs de ΔM_p indiquées dans la sixième colonne du tableau 3 montrent d'ailleurs que, conformément aux courbes de l'effet de masse global, la grandeur des forces de liaison n'augmente plus à partir du nombre atomique 50, et qu'elle diminue même légèrement pour les nombres atomiques très élevés. Il ne faudrait cependant pas chercher à établir une relation directe entre le nombre atomique Z et les liaisons qui assurent la stabilité des noyaux.

On ne peut pas considérer comme « instables » des noyaux tels que l'UI ou le Th dont la demi-période est de l'ordre de 10^{10} années. Si la stabilité des noyaux dépendait vraiment du nombre atomique, l'UI dont le nombre atomique est 92 serait moins stable que le Ra dont le nombre atomique est 88 et, à plus forte raison, moins stable que le RaE dont le nombre atomique est 83.

L'augmentation considérable de l'effet de masse ΔM_p dans les noyaux plus lourds est due à la présence des électrons surnuméraires. Nous verrons que les noyaux de nombres atomiques de plus en plus élevés doivent contenir un nombre croissant de particules α_1 porteuses des électrons surnuméraires qui sont nécessaires pour assurer au noyau une stabilité suffisante, mais, prises isolément, les particules α_1 ne sont guère stables et leur

« tension de dissociation » — rendue manifeste par l'effet de masse μ — s'oppose à la pression qui maintient l'équilibre de l'amas nucléaire.

Pour une valeur donnée du nombre atomique Z, le noyau doit contenir un nombre minimum de particules α_1 nécessaires pour rendre possible l'équilibre du conglomérat, mais la proportion entre les particules α_1 et α du noyau ne peut dépasser une certaine limite sans qu'il y ait rupture de l'équilibre. A mesure que le nombre Z augmente, les deux limites de stabilité se rapprochent de plus en plus l'une de l'autre. Elle se rejoignent pour une valeur de Z qui marque la fin du système périodique des atomes.

Des nombres ΔM_p indiqués dans la sixième colonne du tableau 3, on déduit la diminution Δm de la véritable masse du proton, en divisant ces nombres par le nombre d'Avogadro:

$$A = 6.06.10^{23}$$
.

En appliquant la formule:

$$\Delta m = \frac{\Delta M_p}{A}$$

au noyau du Th, on trouve le résultat numérique:

$$\Delta m = \frac{0.00953}{6.06.10^{23}} = 1.57.10^{-26} . \tag{6a}$$

§ 6. Role des électrons nucléaires. En vertu de la relation d'indétermination de Heisenberg:

$$\Delta x \, \Delta p_x > \frac{h}{4\pi} \,\,, \tag{7}$$

l'indétermination de la position Δx d'un élément nucléaire (particule α ou α_1) est d'autant plus grande que l'indétermination de la composante de la quantité de mouvement Δp_x prise suivant la direction x est plus petite. h signifie la constante de Planck:

$$h = 6.55.10^{-27} (7a)$$

Pour apprécier l'ordre de grandeur de Δx dans le cas d'un noyau lourd, il faut connaître la vitesse des particules en question. Dans les noyaux radioactifs, par exemple, l'énergie propre des particules α est connue. Elle est, en effet, égale à l'énergie des rayons α qui s'en échappent. La vitesse des particules α étant approximativement 10^9 cm. sec⁻¹, il en résulte pour l'indétermination de la quantité de mouvement:

$$\Delta p_x \sim 6.6.10^{-15} \text{ c.g.s.}$$

et pour l'indétermination de la position, selon (7):

$$\Delta x > \frac{6.55.10^{-27}}{12.56.6.6.10^{-15}} \sim 8.10^{-14} \text{ cm}.$$

L'indétermination est de l'ordre du dixième du rayon du noyau.

Les particules périphériques d'un noyau lourd peuvent donc se trouver temporairement dans des régions où l'énergie positive due à la répulsion coulombienne est considérable. Cela entraîne une certaine diminution de la stabilité des grands amas nucléaires.

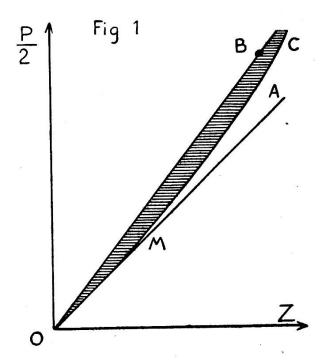
On arrive à la même conclusion si l'on suit le raisonnement de G. Gamow (i.c.) assimilant la résultante des actions homoeopolaires des particules nucléaires à une poussée uniforme. Cette poussée maintient l'équilibre du conglomérat à peu près de la même façon que la tension superficielle assure l'équilibre d'une gouttelette sphérique. A mesure que le nombre des particules augmente, l'amas tend à remplir une portion de plus en plus grande de la région à l'intérieur de laquelle la répulsion coulombienne est négligeable. Il en résulte que l'énergie coulombienne prend, dans les noyaux plus lourds, une importance de plus en plus considérable et que la stabilité de l'équilibre doit être assurée par une augmentation progressive de la « concentration électronique », c'est-à-dire du rapport $^{\rm N}/_{\rm P}$.

Empiriquement, on constate que le rapport $^{\rm N}/_{\rm P}=\frac{1}{2}$ donne aux noyaux les plus légers une stabilité suffisante, mais la limite inférieure du rapport $^{\rm N}/_{\rm P}$ s'écarte de plus en plus de sa

valeur initiale, à mesure que le nombre des protons P augmente-Nous verrons d'ailleurs que la concentration électronique ne peut en aucun cas dépasser une certaine limite supérieure au-delà de laquelle l'équilibre est impossible. L'existence des deux limites du rapport N/P restreint le nombre des isotopes stables compatibles avec une valeur donnée du nombre atomique Z.

Un isotope quelconque est entièrement caractérisé par le nombre Z et par le nombre P des protons qu'il contient, et il peut, par suite, être représenté par un point dans le diagramme obtenu en portant en abscisses les nombres Z et en ordonnées les nombres P_2 . La droite de coefficient angulaire 1 sur laquelle se placent les points figuratifs des noyaux He, Li 6, B 10, C 12, N 14, O 16, etc. marque la limite inférieure absolue de stabilité de tous les noyaux composés.

La limite supérieure absolue de stabilité est indiquée par une seconde droite passant par l'origine O (voir fig. 1) et par le



point B dont l'abscisse est Z=82 et dont l'ordonnée est P/2=107. Cette ordonnée correspond au RaB, noyau instable dont la concentration électronique est supérieure à celle de tous les autres noyaux. Les points figuratifs de tous les noyaux

connus se trouvent effectivement entre la droite OA de coefficient angulaire 1, et la droite OB, dont l'équation est:

$$\frac{P}{2} = 1,304 \, Z$$
 (8)

La droite OA n'est, en réalité, que la tangente d'une courbe limite inférieure OMC qui se sépare de la droite pour des abscisses Z > 20, et qui se rapproche, pour les grands nombres atomiques, de plus en plus de la limite supérieure absolue de stabilité.

Le diagramme ci-contre indique les conditions auxquelles doivent satisfaire tous les noyaux stables, d'une façon grossière et purement schématique. Les noyaux y sont représentés par des points dont les abscisses sont des nombres entiers et les ordonnées des demi-entiers. Tous ces points sont situés à l'intérieur d'une certaine région OMCB du plan, que nous appelons la « bande de stabilité ».

§ 7. EVALUATION DE LA DIFFÉRENCE ENTRE LES MASSES DES PARTICULES α_1 ET α . L'établissement de la condition d'équilibre stable pour un noyau de la classe du Th conduit à une équation qui permet le calcul de la différence des masses M_{α_1} et M_{α} . Soit n le nombre total des particules du noyau, x le nombre des particules α , y le nombre des particules α_1 . Nous désignerons, de même que précédemment, par e le quantum élémentaire de la charge électrique et par A le nombre d'Avogadro (voir le paragraphe 5). L'énergie de répulsion coulombienne des particules positives, α ou α_1 , du noyau est exprimée par la formule:

$$E_c = \frac{e^2}{2r}(4x^2 + y^2 + 2xy) = \frac{e^2}{2r}(n^2 + 3x^2)$$
, (9)

dans laquelle r signifie la distance moyenne entre deux particules quelconques. L'énergie totale accumulée dans tout le noyau est:

$$\begin{split} \mathbf{E} &= \frac{c^2}{\mathbf{A}} (x \mathbf{M}_{\alpha} + y \mathbf{M}_{\alpha_1}) + \mathbf{E}_c \\ &= \frac{c^2}{\mathbf{A}} \{ n \mathbf{M}_{\alpha} + (n - x) (\mathbf{M}_{\alpha_1} - \mathbf{M}_{\alpha}) \} + \frac{e^2}{2r} (n^2 + 3x^2) . \end{split}$$

La condition d'équilibre stable:

$$\frac{d\mathbf{E}}{dx}=0,$$

fournit, par suite, l'équation suivante:

$$\mathbf{M}_{\alpha_1} - \mathbf{M}_{\alpha} = \frac{6 x e^2}{2 r c^2} \mathbf{A} . \tag{10}$$

Nous supposerons qu'en moyenne, la charge électrique positive se répartit uniformément à l'intérieur du volume sphérique du noyau. L'équation (10) permet alors le calcul de la différence M_{α_1} — M_{α} si on connaît le rayon r_0 d'un noyau de constitution donnée. En effet, dans le cas d'une répartition sphérique uniforme, on a:

$$r=\frac{5}{6}r_0, \qquad (11)$$

D'où:

$$M_{\alpha_1} - M_{\alpha} = \frac{36 x e^2 A}{10 c^2 r_0}$$
 (12)

Puisqu'on connaît, grâce aux évaluations de G. Gamow, les valeurs de r_0 pour les noyaux du Th et du Pb, on peut effectuer le calcul pour ces deux noyaux et on obtient alors les résultats indiqués ci-dessous.

Noyau	x	r_0	M,1-Ma	Moyenne
Th 232 Pb 208	32 30	$9.10^{-13} \\ 8.10^{-13}$	0,01964 } 0,02072 }	0,02018

Etant donné la faible précision avec laquelle on connaît les rayons r_0 , la concordance des résultats peut être considérée comme satisfaisante. De plus, la moyenne des deux résultats est très rapprochée de la valeur obtenue précédemment. Cette confirmation du chiffre déduit de la théorie de l'émission des rayons β constitue un nouvel argument en faveur de l'existence des particules α_1 .

§ 8. LES DEUX LIMITES DE LA BANDE DE STABILITÉ ET L'ALTERNANCE DES DEUX ESPÈCES DE DISSOCIATIONS RADIO-

ACTIVES. Comme l'on sait, les dissociations α et β se suivent presque exactement d'après le même schéma dans les 3 familles radioactives. La série des transformations débute toujours avec l'émission d'une particule α , de sorte que la concentration électronique du noyau se trouve augmentée. Dans le cas de l'UI et du Th, la concentration se rapproche de la limite supérieure absolue. Il en résulte un noyau moins stable que le noyau initial.

La première émission α est suivie de deux émissions β dans le cas de l'UX₁ et du MsThI, d'une seule dans le cas de l'Ac. La faible stabilité du RaAc semble être en relation avec sa faible concentration électronique. (Voir les tableaux numériques à la fin du paragraphe).

Une suite de transformations α (cinq dans le cas de l'U, quatre dans les deux autres séries) élève progressivement la concentration électronique des noyaux consécutifs et aboutit à des noyaux de très faible stabilité (RaB, ThB, AcB) pour lesquels le rapport $^{\rm N}/_{\rm P}$ est particulièrement grand. L'émission de rayons β tend à rétablir une concentration électronique normale, mais on obtient des noyaux qui se trouvent dans un état excité (noyaux C). L'état excité des noyaux C se manifeste, entre autres par l'émission simultanée de rayons β et de rayons α (bifurcations radioactives).

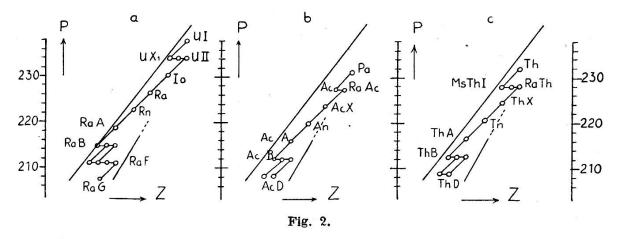
La représentation dans le diagramme du § 6 des noyaux radioactifs procure des renseignements intéressants sur la portion supérieure de la bande de stabilité. Comme le montrent les figures 2, a, b, c l'émission α déplace le point figuratif parallèlement à la droite:

$$P = 2Z$$

de deux unités vers la gauche et, en même temps, de deux unités vers le bas, l'émission β déplace le point figuratif parallèlement à l'axe des abscisses d'une unité vers la droite.

On a indiqué dans les diagrammes la position vraisemblable des deux courbes-limites de stabilité. La limite supérieure absolue est marquée par une droite qui passe très près des points représentant le RaB et l' UX_1 . La limite inférieure doit se placer, pour $Z \sim 90$, près des points RaTh, RaAc, Pa et

UII. Comme l'on voit, la bande de stabilité s'amincit beaucoup dans sa partie supérieure.



La plupart des points figuratifs des noyaux radioactifs se placent à l'intérieur de la bande de stabilité, ce qui ne veut pas dire que les noyaux représentés sont effectivement stables, car la stabilité dépend aussi de l'état intérieur du noyau, en particulier de l'énergie propre des particules constituantes qui, dans certains noyaux radioactifs, est très grande.

Les valeurs numériques des rapports $^{\rm N}/_{\rm P}$ et $^{\rm P}/_{\rm 2\,Z}$ sont indiquées dans les tableaux 4, 5 et 6. On y trouve aussi, à titre de renseignement, les demi-périodes T des différentes substances radioactives.

TABLEAU 4.

		510250			
z	Noyau	P	$\frac{\mathbf{P}}{2\mathbf{Z}}$	$\frac{N}{P}$	т
92 90 91 92 90 88	UI UX ₁ UX ₂ UII Jo Ra	238 234 234 234 230 226	1,294 1,300 1,285 1,271 1,278 1,284	0,614 0,616 0,612 0,607 0,609 0,611	4,5.10 ⁹ a 24j 1,17m 3.10 ⁵ a 9.10 ⁴ a 1580a
82 83 84 81 82 83 84 82	RaB RaC RaC' RaC" RaD RaE RaF	214 214 214 210 210 210 210 210 210	1,304 1,289 1,274 1,296 1,280 1,265 1,250 1,256	0,617 0,612 0,608 0,615 0,610 0,605 0,600 0,602	26,8m 19,5m 10 ⁻⁶ s 1,32m 23a 5j 140j stable

TABLEAU 5.

Z	Noyau	Р	$\frac{\mathbf{P}}{2\mathbf{Z}}$	$\frac{N}{P}$	Т
90	Th	232	1,289	0,612	1,5.10 ¹⁰ a
88	MsThI	228	1,295	0,615	6,7a
89	MsThII	228	1,280	0,610	6,13h
90	RaTh	228	1,265	0,606	1,9a
82	ThB	212	1,292	0,614	10,6h
83	ThC	212	1,277	0,609	60,8m
84	ThC'	212	1,262	0,604	10 ⁻¹¹ s
81	ThC"	208	1,284	0,611	3,2m
82	ThD	208	1,268	0,606	stable

TABLEAU 6.

Z	Noyau	P	$\frac{\mathbf{P}}{2\mathbf{Z}}$	N P	T
0.4	D-	204		0.000	40.000
91	Pa	231	1,268	0,606	12.000a
89	\mathbf{Ac}	227	1,274	0,609	20a
90	RaAc	227	1,260	0,604	18,9j
82	AcB	211	1,286	0,612	36,1m
83	AcC	211	1,270	0,607	2,16m
84	AcC'	211	1,255	0,602	5.10^{-3} s
81	AcC"	207	1,277	0,609	4,76m
82	AcD	207	1,261	0,604	stable

 $a = ann\acute{e}s$, j = jours, h = heures, m = minutes, s = secondes.

La limite supérieure absolue de la concentration électronique doit être très voisine de 0,617. L'arrêt du système périodique au nombre atomique 92 est dû au fait que pour Z > 92, la concentration électronique nécessaire pour maintenir la stabilité de l'amas nucléaire dépasserait la limite supérieure compatible avec l'existence de n'importe quel noyau composé.

§ 9. L'ARRET DU SYSTÈME PÉRIODIQUE DES ATOMES ET LA PLUS GRANDE CONCENTRATION ÉLECTRONIQUE DES NOYAUX. Les considérations suivantes se rapportent à un noyau schématisé, composé d'une seule espèce de particules toutes pareilles. Soit P le nombre de protons, N le nombre des électrons du

noyau. Par l'introduction dans le noyau, chaque proton a subi une diminution de son énergie potentielle propre (non-coulombienne) Δu . Il en résulte une diminution de l'énergie potentielle du conglomérat des protons:

$$\Delta U_0 = - P \Delta u$$
.

L'énergie potentielle coulombienne d'un système de P charges positives et de N charges négatives (P — N = Z) de grandeur e réparties uniformément dans une sphère de rayon r_0 est:

$$E_c = \frac{3 e^2 Z^2}{5 r_0} = \frac{3 e^2}{5 r_0} P(Z - N + \frac{N^2}{P})$$
 (13)

En désignant par:

$$z = \frac{N}{P} \tag{14}$$

la concentration électronique du noyau, on obtient pour l'énergie potentielle totale de l'amas nucléaire l'expression suivante:

$$\Delta U = \Delta U_0 + E_c = -P \left\{ \Delta u + (1 - z) \frac{3 e^2}{5 r_0} N - \frac{3 e^2}{5 r_0} Z \right\}.$$

On reconnaît que l'équilibre du noyau est impossible si:

$$\Delta U > 0$$
.

La condition nécessaire à l'existence du noyau est donc:

$$\Delta u + (1 - z) \frac{3e^2}{5r_0} N - \frac{3e^2}{5r_0} Z > 0$$
 (15)

La somme des deux premiers termes de l'expression (15) est positive car on a:

$$1-z>0.$$

Si on attribue à z la plus petite valeur admissible qui est $\frac{1}{2}$, la somme:

$$\Delta u + \frac{3 e^2}{10 r_0} N = \Delta m.c^2$$
 (16)

signifie l'effet de masse par proton engagé dans une particule $\alpha(z = \frac{1}{2})$ du noyau composé considéré. (En ce qui concerne les valeurs empiriques de Δm pour différents noyaux de la classe du Th, voir le tableau 3 du § 5). De (15) et de (16), on déduit la condition à laquelle doit satisfaire le nombre atomique Z du noyau considéré:

$$\frac{5r_0\Delta m \cdot c^2}{3e^2} > Z \quad . \tag{17}$$

D'après (17), il existe une limite supérieure des nombres atomiques possibles.

La valeur numérique de Δm a été calculée au § 5, (6a), pour le noyau le plus lourd de la classe du Th. On connait aussi avec une certaine approximation le rayon r_0 pour le même noyau qui est:

$$r_0 = 9.10^{-13}$$
,

d'après le calcul de G. Gamow (l. c.), et on peut, par suite, calculer la limite supérieure du nombre atomique Z.

On trouve:

$$\frac{5r_0 \Delta m \cdot c^2}{3e^2} = \frac{5.9.1,57.9.10}{3.4,774^2} \sim 93.$$
 (17a)

Il en résulte:

$$Z < 93$$
 . (18)

L'inégalité (15) interprète donc l'arrêt du système périodique des atomes au nombre atomique 92. La même inégalité conduit aussi à l'évaluation de la limite supérieure absolue des concentrations électroniques si on l'écrit sous la forme suivante:

$$\frac{5r_0\Delta u}{3e^2} + N - Z > zN.$$

D'après (16), on a:

$$\frac{5r_0 \Delta u}{3e^2} + N = \frac{5r_0 \Delta m \cdot c^2}{3e^2} + \frac{N}{2}.$$

Il vient donc:

$$\frac{5 r_0 \Delta m \cdot c^2}{3 e^2 Z} + \frac{N}{2 Z} - 1 > z \frac{N}{Z}.$$
 (19)

Or, empiriquement on constate que pour les concentrations » les plus élevées, le premier terme à gauche de (19) se rapproche de l'unité et qu'on a pour tous les noyaux:

$$\frac{N}{2Z} < 1 \ .$$

Il vient donc:

$$\frac{5 r_0 \, \Delta m \, c^2}{3 e^2 Z} + \frac{N}{2 \, Z} < 2 ,$$

et, par suite, d'après (19),

$$\varkappa \frac{N}{Z} < 1$$
 .

Puisqu'on a:

$$\frac{N}{Z} = \frac{N}{P-N} = \frac{\varkappa}{1-\varkappa} \; , \label{eq:Z}$$

on obtient l'inégalité suivante:

$$\frac{x^2}{1-x} < 1 , \qquad (20)$$

en vertu de laquelle la limite supérieure absolue z' des concentrations électroniques est définie par l'équation:

$$x'^2 + x' - 1 = 0 . (20a)$$

La racine positive de cette équation (qui seule entre ici en considération) est:

$$z' = 0.618$$
 (21)

Cette valeur s'accorde avec les données empiriques discutées au § 8. L'arrêt du système périodique au nombre atomique 92 est donc dû à l'impossibilité d'augmenter la concentration électronique des noyaux au-delà de la limite (21).

On peut aussi caractériser la limite supérieure de stabilité par le rapport:

$$\frac{\mathrm{P}}{2\,\mathrm{Z}} = k = \frac{1}{2\,(1-\mathrm{z})} \;,$$

qui doit rester inférieur à:

$$k' = \frac{1}{0,764} = 1,309 \tag{21a}$$

Il est à mentionner que W. D. Harkins (l. c.) déjà a signalé l'existence de la limite supérieure de stabilité.

Puisque aucun noyau stable ne peut avoir une concentration électronique supérieure à \varkappa' , les « neutrons » hypothétiques doivent avoir une structure qui diffère totalement de celle des noyaux composés considérés ici. Quant aux particules α_1 , pour lesquelles $\varkappa=0.75$, elles sont certainement instables et doivent se dissocier dès qu'elles se séparent de l'amas nucléaire dans lequel elles sont engagées. Par suite de leur instabilité, les particules α_1 ne peuvent exister dans les noyaux légers (Z < 20), et leur présence en proportion considérable dans les noyaux très lourds semble être l'une des causes de la radioactivité.

§ 10. Conclusions. Quoiqu'on soit persuadé que le schéma mathématique de la théorie des quanta doit s'appliquer à n'importe quel problème nucléaire, la mécanique ondulatoire se heurte sur ce terrain à certaines difficultés assez graves. L'hypothèse de l'existence des particules α_1 dans les noyaux lourds a permis d'étendre la validité de la mécanique ondulatoire au phénomène de l'émission de rayons β par les noyaux radioactifs, mais il reste à examiner le rôle que peut jouer cette hypothèse dans d'autres questions de la physique nucléaire.

Le présent travail s'occupe de la discussion des données expérimentales se rapportant à la constitution et à la stabilité des noyaux, notamment en ce qui concerne l'effet de masse. Une telle étude présente de l'intérêt indépendamment du point de vue théorique adopté, d'une part à cause de l'importance fondamentale du sujet, d'autre part, aussi, à cause de l'abondance et de la précision des données empiriques récemment acquises à cet égard et qui n'ont pas encore été interprétées d'une façon entièrement satisfaisante.

L'intervention des particules α_1 explique certaines anomalies de l'effet de masse dans le cas des isotopes du Kr. En supposant que les électrons surnuméraires des noyaux se trouvent fixés à des particules α_1 dont la masse atomique est supérieure de 0,02 environ à celle des particules α , on peut concilier les données qu'on possède sur l'effet de masse avec la stabilité effective des noyaux lourds. La différence indiquée entre les masses de la particule α_1 et de la particule α , précédemment déduite de la théorie de la radioactivité, est confirmée au moyen de considérations de stabilité.

L'étude de l'alternance des deux expèces de transformations radioactives procure des renseignements sur les conditions de stabilité des noyaux de nombre atomique élevé. L'interprétation théorique des résultats numériques conduit à des vérifications satisfaisantes concernant la limite du système périodique des atomes et la plus grande concentration électronique compatible avec la stabilité des noyaux.